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We present a novel method, called graph sparse nonnegative matrix factorization, for dimensionality reduction. The affinity graph
and sparse constraint are further taken into consideration in nonnegative matrix factorization and it is shown that the proposed
matrix factorization method can respect the intrinsic graph structure and provide the sparse representation. Different from some
existing traditional methods, the inertial neural network was developed, which can be used to optimize our proposed matrix
factorization problem. By adopting one parameter in the neural network, the global optimal solution can be searched. Finally,
simulations on numerical examples and clustering in real-world data illustrate the effectiveness and performance of the proposed
method.

1. Introduction

Dimensionality reduction plays a fundamental role in image
processing, andmany researchers have been seeking effective
methods to solve this problem. For a given image database,
there are many distinct features, whereas the available fea-
tures are far less enough. Thus, it is of great significance to
find useful features with low-dimensionality to represent the
original feature space. For this purpose, matrix factorization
techniques have attracted great attention in recent decades [1–
3], andmany differentmethods have been developed by using
different criteria. The most familiar methods include Singu-
lar Value Decomposition (SVD) [4], Principal Component
Analysis (PCA) [5], and Vector Quantization (VQ) [6]. The
main idea of matrix factorization methods is finding several
matrices whose product approximates to the original matrix.
In dimensionality reduction, the dimension of the decom-
posed matrices is smaller than that of the original matrix.
This gives rise to a low-dimensional compact representation
of the original data points, which can facilitate clustering or
classification.

Among these matrix factorization methods, one of the
most used methods is nonnegative matrix factorization
(NMF) [3], which requires the decomposed matrices to

be nonnegative. The effect of the nonnegative constraint
leads NMF to learn a part-based representation of high-
dimensional data, and it is applied to so many areas such
as signal processing [7], data mining [8, 9], and computer
vision [10]. In general, NMF is shown to be effective for
unsupervised learning problems, but not applicable to super-
vised learning problems. To overcome this problem, some
researchers [11–13] have presented semi-supervised learning
theory to achieve better performance in dimensionality
reduction. In the light of locality preserving projection, a
graph regularized nonnegative matrix factorization method
(GNMF) has been proposed to impose the geometrical
information on the data space. The geometrical structure is
constructed by a nearest neighbor graph [11]. Based on the
idea of label propagation, Liu et al. [13] imposed the label
information constraint into nonnegative matrix factorization
(CNMF). The idea of CNMF is that the neighboring data
points with the same class are supposed to merge together in
the low-dimensional representation space.

Motivated by previous researches in matrix factorization,
in this paper, we propose a novel method, called graph sparse
nonnegative matrix factorization (GSNMF), for dimension-
ality reduction, which can be used for semi-supervised
learning problems. In GSNMF, a sparse constraint is imposed
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on GNMF, and this leads matrix factorization to learn a
sparse part-based representation of the original data space.
The sparse constraint causes GSNMF to be a nonconvex non-
smooth problem, and traditional optimization algorithms
can not be optimized directly. Recently, numerous neural
networks have emerged as a powerful tool for optimization
problems [14–27]. For some nonconvex problems, an inertial
projection neural network (IPNN) [16] has been proposed
to search different local optimal solutions by the inertial
term. In [17], a shuffled frog leaping algorithm (SFLA) has
been developed using the recurrent neural network. Based
on the SFLA framework, the global optimal solution can be
searched. Moreover, there are many optimization methods
for nonconvexnonsmooth problems that use neural networks
[22–27].

It is worth highlighting some advantages of our proposed
method as follows:

(i) Traditional algorithms for GNMF [11] and NMF [3]
can easily trap into local optimum solution, and these
algorithms are sensitive to initial values, while our
proposed algorithm using inertial projection neural
network can avoid these problems.

(ii) Our proposed algorithm can be initialized by sparser
matrices; however, GNMF and NMF may fail in this
case.

(iii) By adopting one parameter in the neural network,
GSNMF has the better clustering effect than GNMF
and NMF.

The rest of the paper is organized as follows. In Section 2,
some related works to NMF are briefly reviewed; then we
introduce GSNMF. Section 3 reviews the inertial projection
neural network theory and provides a convergence proof to
GSNMF. Section 4 presents numerical examples to demon-
strate the validity of our proposed algorithm. Experiments
on clustering are given in Section 5. Finally, we present some
concluding marks and future work in Section 6.

2. Problem Formulation

To find the effective features of high dimensionality data,
matrix factorization can be used to learn sets of features to
represent data. Given a data matrix 𝑌 = [𝑌1, . . . , 𝑌𝑛] ∈ 𝑅𝑚×𝑛
and an integer 𝑘, matrix factorization is to find two matrices𝐴 ∈ 𝑅𝑚×𝑘 and 𝑆 = [𝑆1, . . . , 𝑆𝑛] ∈ 𝑅𝑘×𝑛 such that𝑌 ≈ 𝐴𝑆. (1)

When 𝑘 ≪ min(𝑚, 𝑛), the matrix factorization method can
be regarded as a dimensionality reduction method. In image
dimensionality reduction, each column of 𝑆 is a basis vector
to capture the original image data and each column of𝐴 is the
representation with respect to the new basis. The most used
method tomeasure the approximation is the Frobenius norm
in the following form:

min
𝐴,𝑆

𝑓 (𝐴, 𝑆) = 12 ‖𝑌 − 𝐴𝑆‖2𝐹

= 12 𝑚∑
𝑖=1

𝑛∑
𝑗=1

(𝑦𝑖𝑗 − 𝑟∑
𝑘=1

𝑎𝑖𝑘𝑠𝑘𝑗)2 .
(2)

Different matrix factorizationmethods imposed different
constraints on (2) that can solve different practical problems.
At present, themost usedmatrix factorizationmethod is non-
negative matrix factorization (NMF) [3] with nonnegative
constraints on 𝐴 and 𝑆. The classic algorithm is summarized
as follows:

𝑎𝑖𝑘 = 𝑎𝑖𝑘 (𝑌𝑆𝑇)𝑖𝑘(𝐴𝑆𝑆𝑇)𝑖𝑘 ,
𝑠𝑘𝑗 = 𝑠𝑘𝑗 (𝐴𝑇𝑌)

𝑘𝑗(𝐴𝑇𝐴𝑆𝑇)𝑘𝑗 .
(3)

Recently, Cai et al. [11] proposed a graph regularized non-
negative matrix factorization method (GNMF) and incorpo-
rated the geometrical information into the data space. The
goal of GNMF is to find effective basis vectors to represent
the intrinsic structure.The research has presented the natural
assumption that if two data points 𝑦𝑗 and 𝑦𝑙 from 𝑌 are
close in the intrinsic geometry of the data distribution, new
representations of two points 𝑠𝑗 and 𝑠𝑙 are also close to each
other. For each data point 𝑦𝑗, we find its 𝑝 nearest neighbors
and put edges between 𝑦𝑗 and its neighbors. Edges between
each data points 𝑦𝑗 can be considered as the weight matrix𝑊. If nodes 𝑗 and 𝑙 are connected by an edge, then 𝑊𝑗𝑙 = 1.𝑊 can be described by

𝑊𝑗𝑙 = {{{1, if 𝑦𝑗 and 𝑦𝑙 have the same label,0, otherwise. (4)

The low-dimensional representation of 𝑦𝑗 with respect to
the new basis is 𝑠𝑗. The Euclidean distance is used to measure
the dissimilarity between 𝑠𝑗 and 𝑠𝑙 by𝑑 (𝑠𝑗, 𝑠𝑙) = 󵄩󵄩󵄩󵄩󵄩𝑠𝑗 − 𝑠𝑙󵄩󵄩󵄩󵄩󵄩2 . (5)

With the above analysis, the following term is used tomeasure
the smoothness of the low-dimensional representation:𝑅 = 12 𝑛∑

𝑗,𝑙=1

󵄩󵄩󵄩󵄩󵄩𝑠𝑗 − 𝑠𝑙󵄩󵄩󵄩󵄩󵄩2𝑊𝑗𝑙 = 𝑛∑
𝑗=1

𝑠𝑇𝑗 𝑠𝑗𝐹𝑗𝑗 − 𝑛∑
𝑗,𝑙=1

𝑠𝑇𝑗 𝑠𝑙𝑊𝑗𝑙= tr (𝑆𝐹𝑆𝑇) − tr (𝑆𝑊𝑆𝑇) = tr (𝑆𝐿𝑆𝑇) , (6)

where tr(⋅) denotes the trace of a matrix, 𝐹𝑗𝑗 = ∑𝑛𝑗=1𝑊𝑗𝑙, and𝐿 = 𝐹−𝑊. Combining (6) and (2), the new objective function
is defined by the Euclidean distance.

min
𝐴⩾0,𝑆⩾0

𝑓 (𝐴, 𝑆) = 12 ‖𝑌 − 𝐴𝑆‖2𝐹 + 𝛼 tr (𝑆𝐿𝑆𝑇) . (7)
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The algorithm to solve (7) is presented as follows:𝑎𝑖𝑘 = 𝑎𝑖𝑘 (𝑌𝑆𝑇)𝑖𝑘(𝐴𝑆𝑆𝑇)𝑖𝑘 ,
𝑠𝑘𝑗 = 𝑠𝑘𝑗 (𝐴𝑇𝑌 + 𝑆𝑊𝑇)

𝑘𝑗(𝐴𝑇𝐴𝑆𝑇 + 𝑆𝐹𝑇)𝑘𝑗 .
(8)

When 𝛼 = 0 or 𝑊 = 0, GNMF is equivalent to non-
negative matrix factorization. In the representation of the
image data, GNMF and NMF only consider the Euclidean
structure of image space. However, recent researches have
shown that human generated imagesmay froma submanifold
of the ambient Euclidean space [28, 29]. In general, the
human generated images cannot uniformly fill up the high-
dimensional Euclidean space.Therefore, thematrix factoriza-
tion should respect the intrinsic manifold structure and learn
the sparse basis to represent the image data. In the light of
sparse coding [30], we impose the sparse constraint on (7)
and the optimization problem is transformed into another
form:

min
𝐴⩾0,𝑆⩾0

𝑓 (𝐴, 𝑆)= 12 ‖𝑌 − 𝐴𝑆‖2𝐹 + 𝛼 tr (𝑆𝐿𝑆𝑇) + 𝛽Φ (𝑆) . (9)

Because the optimization problem (9) is nonconvex, a
block-coordinate update (BCD) [31] structure is proposed to
optimize GSNMF. Given the initial 𝐴 and 𝑆, BCD alterna-
tively solves

min
𝑆∗

𝑓 (𝑆) = 12 ‖𝑌 − 𝐴𝑆‖2𝐹 + 𝛼 tr (𝑆𝐿𝑆𝑇) + 𝛽Φ (𝑆)
s.t. 𝑆 ⩾ 0, (10)

min
𝐴∗

𝑓 (𝐴) = 12 󵄩󵄩󵄩󵄩󵄩󵄩𝑌𝑇 − (𝑆∗)𝑇𝐴𝑇󵄩󵄩󵄩󵄩󵄩󵄩2𝐹
s.t. 𝐴 ⩾ 0 (11)

until convergence. Since (11) and (10) have a similar form,
we only consider how to solve (10); then (11) can be solved
accordingly. The problem (10) can be transformed into the
following vector form:

min
𝐻

𝑓 (𝐻)
= 12 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌𝑖 − 𝐴𝐻𝑖󵄩󵄩󵄩󵄩22 + 12𝛼 𝑛∑
𝑗,𝑙=1

󵄩󵄩󵄩󵄩󵄩𝐻𝑗 − 𝐻𝑙󵄩󵄩󵄩󵄩󵄩22𝑊𝑗𝑙+ 𝛽 ‖𝐻‖1
s.t. 𝐻 ⩾ 0,

(12)

where

𝐻 = [[[[[
𝐻1...𝐻𝑛

]]]]] = [[[[[
𝑆1...𝑆𝑛

]]]]] ∈ 𝑅𝑛𝑘, 𝐻𝑖 ∈ 𝑅𝑘, 𝑌𝑖 ∈ 𝑅𝑚. (13)

It is evident that 𝐿1-norm is not differentiable. However, [32]
has presented a method to solve it. Supposing 𝐻 = 𝑈 − 𝑉,
problem (12) can be rewritten as follows:

min
𝑈,𝑉

𝑓 (𝑈,𝑉)
= 12 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌𝑖 − 𝐴 (𝑈𝑖 − 𝑉𝑖)󵄩󵄩󵄩󵄩2
+ 12𝛼 𝑛∑
𝑗,𝑙=1

󵄩󵄩󵄩󵄩󵄩(𝑈𝑗 − 𝑉𝑗) − (𝑈𝑙 − 𝑉𝑙)󵄩󵄩󵄩󵄩󵄩22𝑊𝑗𝑙+ 𝛽 ‖𝑈 − 𝑉‖1
s.t. 𝑈 − 𝑉 ⩾ 0,

(14)

where 𝑈𝑖 = (𝐻𝑖)+ ∈ 𝑅𝑘, 𝑉𝑖 = (−𝐻𝑖)+ ∈ 𝑅𝑘, (𝐻𝑖)+ = max(𝐻𝑖,0), 𝑖 = 1, . . . , 𝑛, 1𝑛𝑘 = [1, . . . , 1]𝑇, and 𝑈 and 𝑉 are, respec-
tively, defined as follows:

𝑈 = [[[[[
𝑈1...𝑈𝑛

]]]]] ∈ 𝑅𝑛𝑘,
𝑉 = [[[[[

𝑉1...𝑉𝑛
]]]]] ∈ 𝑅𝑛𝑘.

(15)

According to the BCD structure, (14) can be separated into
two subproblems. Given the initial𝑈 and𝑉, one alternatively
solves

min
𝑈

𝑓 (𝑈∗)
= 12 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌𝑖 + 𝐴𝑉𝑖 − 𝐴𝑈𝑖󵄩󵄩󵄩󵄩22
+ 12𝛼 𝑛∑
𝑗,𝑙=1

󵄩󵄩󵄩󵄩󵄩(𝑈𝑗 − 𝑈𝑙) − (𝑉𝑗 − 𝑉𝑙)󵄩󵄩󵄩󵄩󵄩22𝑊𝑗𝑙+ 𝛽 ‖𝑈‖1
s.t. 𝑈 ⩾ 𝑉,

(16)

min
𝑉

𝑓 (𝑉∗)
= 12 𝑛∑
𝑖=1

󵄩󵄩󵄩󵄩𝑌𝑖 − 𝐴𝑈𝑖 − (−𝐴𝑉𝑖)󵄩󵄩󵄩󵄩22
+ 12𝛼 𝑛∑
𝑗,𝑙=1

󵄩󵄩󵄩󵄩󵄩(𝑉𝑗 − 𝑉𝑙) − (𝑈𝑗 − 𝑈𝑙)󵄩󵄩󵄩󵄩󵄩22𝑊𝑗𝑙+ 𝛽 ‖𝑉‖1
s.t. 0 ≤ 𝑉 ≤ 𝑈

(17)
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until convergence. Since (16) and (17) have a similar form,
we only consider how to solve (16); then (17) can be solved
accordingly. Equation (16) can be transformed into the
following convex quadratic program (CQP):

min
𝑈

𝑓 (𝑈) = 12𝑈𝑇𝐶𝑈 + 𝐷𝑈
s.t. 𝑈 ∈ Ω, (18)

where𝐸 = diag (𝐴𝑇𝐴, . . . , 𝐴𝑇𝐴) ∈ 𝑅𝑛𝑘×𝑛𝑘,𝐹𝑖𝑗 = diag (𝑊𝑖𝑗, . . . ,𝑊𝑖𝑗) ∈ 𝑅𝑛×𝑛,
𝐹 = (𝐹11 𝐹12 ⋅ ⋅ ⋅ 𝐹1𝑘𝐹21 𝐹22 ⋅ ⋅ ⋅ 𝐹2𝑘... ... ... ...𝐹𝑘1 𝐹𝑘2 ⋅ ⋅ ⋅ 𝐹𝑘𝑘),
𝐺 = diag (𝐹11, 𝐹12, . . . , 𝐹𝑘𝑘)𝐶 = 𝐸 − 𝛼𝐹 + 𝛼𝐺𝐷 = 𝛽1𝑇𝑛𝑘 − (𝑌𝑇1 𝐴 + 𝑉𝑇1 𝐴𝑇𝐴, . . . , 𝑌𝑇𝑛 𝐴 + 𝑉𝑇𝑛 𝐴𝑇𝐴)− 2𝛼 (𝐺𝑉𝑇 − 𝐹𝑉𝑇)Ω = {𝑈 | 𝑈 ⩾ 𝑉} .

(19)

According to the above analysis, problem (11) can be also
transformed into a convex quadratic program problem. For
saving space, we do not provide the derivation process. In the
following section, we will introduce IPNN to optimize (18).

3. Neural Network Model and Analysis

3.1. Inertial ProjectionNeuralNetwork. To solve problem (18),
we establish the following neural network using IPNN [16]:𝑑𝑈𝑑𝑡 = 𝑋,𝑑𝑋𝑑𝑡 = −𝜆𝑋 + 𝑃Ω (𝑈 − ∇𝑓 (𝑈)) − 𝑈,𝑈 (𝑡0) = 𝑈0 ∈ Ω, (20)

where ∇𝑓(𝑈) = 𝐶𝑈 + 𝐷𝑇. Now, we are ready to show the
convergence and optimality of (20). For any 𝑈 ∈ 𝑅2𝑛𝑘 and𝑋 ∈ 𝑅2𝑛𝑘, we set 𝑄1 = (𝑈𝑇1 , 𝑋𝑇1 )𝑇, 𝑄2 = (𝑈𝑇2 , 𝑋𝑇2 )𝑇, and𝑅(𝑄𝑖) = ( 𝑋𝑖

−𝜆𝑋𝑖+𝑃Ω(𝑈𝑖−∇𝑓(𝑈𝑖))−𝑈𝑖
); then we will present the fol-

lowing theorems.

Theorem 1. For any initial point 𝑄0 ∈ Ω with the initial con-
dition 𝑄(0) = 𝑄0, there exists unique continuous solution𝑄(𝑡) ∈ Ω, where 𝑡 ∈ [𝑡0, +∞).

Proof. Note that ∇𝑓(𝑈) = 𝐶𝑈 + 𝐷𝑇 is Lipschitz continuous.
Let 𝐿 be the Lipschitz constant.Thus, for any𝑄1 and𝑄2 ∈ Ω,
we obtain󵄩󵄩󵄩󵄩𝑅 (𝑄1) − 𝑅 (𝑄2)󵄩󵄩󵄩󵄩≤ 󵄩󵄩󵄩󵄩𝑋1 − 𝑋2󵄩󵄩󵄩󵄩 + 𝜆 󵄩󵄩󵄩󵄩𝑋1 − 𝑋2󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩𝑈1 − 𝑈2󵄩󵄩󵄩󵄩+ 󵄩󵄩󵄩󵄩𝑃Ω (𝑈1 − ∇𝑓 (𝑈1)) − 𝑃Ω (𝑈2 − ∇𝑓 (𝑈2))󵄩󵄩󵄩󵄩≤ (2 + 𝜆) (𝑄1 − 𝑄2) + 󵄩󵄩󵄩󵄩(𝐼 − 𝐶) (𝑈1 − 𝑈2)󵄩󵄩󵄩󵄩≤ (2 + 𝜆 + ‖𝐼 − 𝐶‖) (𝑄1 − 𝑄2) ,

(21)

where 𝐼 and 𝐿 are unit matrix and Lipschitz constant, respec-
tively. Therefore, 𝑅(𝑄) is Lipschitz continuous on Ω. There
exists unique solution𝑄(𝑡)with initial condition𝑄(𝑡0) by the
local existence theorem of solution to ordinary differential
equations.

Theorem2. Define𝑁(𝑈) = 𝑈−𝑃Ω(𝑈−𝐹(𝑈)), if the following
two conditions hold.(1) For any 𝑈1 and 𝑈2 ∈ 𝑅𝑛𝑘,⟨𝑁 (𝑈1) − 𝑁 (𝑈2) , 𝑈1 − 𝑈2⟩⩾ cos 𝜃(1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩 , (22)

where 𝜃 is the angle between𝑁(𝑈1) − 𝑁(𝑈2) and 𝑈1 − 𝑈2.(2) 𝜆 > √(1 + ‖𝐼 − 𝐶‖)/ cos 𝜃. Then, the solution of model
(20) converges to optimal solution set of (18).

Proof. Considering 𝑈∗ ∈ Ω and the Lyapunov function 𝑉(𝑡)= (1/2)‖𝑈(𝑡)−𝑈∗‖ = (1/2)(𝑈(𝑡)−𝑈∗)𝑇(𝑈(𝑡)−𝑈∗), we obtain𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡)= 𝑋𝑇𝑋 + (𝑈 − 𝑈∗)𝑇 𝑋̇ + 𝜆 (𝑈 (𝑡) − 𝑈∗)𝑇𝑋= ‖𝑋‖2 + ⟨𝑈 (𝑡) − 𝑈∗, 𝑋̇ + 𝜆𝑋⟩= ‖𝑋‖2 + ⟨𝑈 (𝑡) − 𝑈∗, 𝑃Ω (𝑈 − ∇𝑓 (𝑈) − 𝑈)⟩= ‖𝑋‖2 + ⟨𝑈 (𝑡) − 𝑈∗, −𝑁 (𝑈)⟩ .
(23)

Since 𝑁(𝑈∗) = 0 and Condition (1) holds, (23) can be re-
written as‖𝑋‖2 = 𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡) + ⟨𝑈 (𝑡) − 𝑈∗, 𝑁 (𝑈)⟩= 𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡)+ ⟨𝑈 (𝑡) − 𝑈∗, 𝑁 (𝑈) − 𝑁 (𝑈∗)⟩
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≥ 𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑁 (𝑈)‖2= 𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩󵄩𝑋̇ + 𝜆𝑋󵄩󵄩󵄩󵄩󵄩2= 𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩󵄩𝑋̇󵄩󵄩󵄩󵄩󵄩2+ 𝜆 cos 𝜃(1 + ‖𝐼 − 𝐶‖) 𝑑 ‖𝑋‖2𝑑𝑡+ 𝜆2 cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑋‖2 .
(24)

Then, (24) can be transformed into𝑉̈ (𝑡) + 𝜆𝑉̇ (𝑡) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩󵄩𝑋̇󵄩󵄩󵄩󵄩󵄩2+ 𝜆 cos 𝜃(1 + ‖𝐼 − 𝐶‖) 𝑑 ‖𝑋‖2𝑑𝑡+ ( 𝜆2 cos 𝜃(1 + ‖𝐼 − 𝐶‖) − 1) ‖𝑋‖2 ≤ 0,
(25)

which indicates that the function 𝑍(𝑡) = 𝑉̇(𝑡) + 𝜆𝑉(𝑡) +(𝜆 cos 𝜃/(1+‖𝐼−𝐶‖))‖𝑋‖2+(cos 𝜃/(1+‖𝐼−𝐶‖)) ∫𝑡
0
‖𝑋̇(𝑠)‖2𝑑𝑠+(𝜆2 cos 𝜃/(1+‖𝐼−𝐶‖)−1) ∫𝑡

0
‖𝑋(𝑠)‖2 ismonotone nonincreas-

ing. Thus, for any 𝑡 > 0,𝑍 (𝑡) ⩽ 𝑍0 = 𝑉̇ (0) + 𝜆𝑉 (0) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑋 (0)‖2= (𝑈 (0) − 𝑈∗)𝑇𝑋 (0) + 𝜆2 󵄩󵄩󵄩󵄩𝑈 (0) − 𝑈∗󵄩󵄩󵄩󵄩2+ 𝜆 cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑋 (0)‖2 . (26)

Since 𝜆 > √(1 + ‖𝐼 − 𝐶‖)/ cos 𝜃, we obtain (𝜆2 cos 𝜃/(1+ ‖𝐼−𝐶‖) − 1) > 0. Further𝑉̇ (𝑡) + 𝜆𝑉 (𝑡) ⩽ 𝑍0. (27)

Bymultiplying the inequality (27) into 𝑒𝜆𝑡, we obtain 𝑉̇(𝑡)𝑒𝜆𝑡+𝜆𝑉(𝑡)𝑒𝜆𝑡 ⩽ 𝑍0𝑒𝜆𝑡 which implies that𝑑 (𝑉 (𝑡) 𝑒𝜆𝑡)𝑑𝑡 ⩽ 𝑍0𝑒𝜆𝑡. (28)

Integrating (28) from 0 to 𝑡, it is obtained that𝑉(𝑡) ≤ (𝑉(0) −1/𝜆𝑍0)𝑒(−𝜆𝑡) + 1/𝜆𝑍0. Therefore, the trajectory of model (20)
is bounded.

Since 𝑉(𝑡) is bounded and inequality (26) holds, we ob-
tain 𝑉̇ (𝑡) + cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑋 (𝑡)‖ ≤ 𝑍0. (29)

Thus, (29) can be rewritten as⟨𝑈 (𝑡) − 𝑈∗, 𝑋 (𝑡)⟩ + cos 𝜃(1 + ‖𝐼 − 𝐶‖) ‖𝑋 (𝑡)‖2 ⩽ 𝑍0. (30)

Since ‖𝑈(𝑡) − 𝑈∗‖ is bounded, (30) indicates that‖𝑋(𝑡)‖2 is also bounded. From (25) and (30), one obtains∫+∞
0

‖𝑋(𝑠)‖2𝑑𝑠 < +∞ and ∫+∞
0

‖𝑋̇(𝑠)‖𝑑𝑠 < +∞.
Assuming ∫+∞

0
‖𝑋(𝑠)‖2𝑑𝑠 = 𝑄 < +∞, and since∫+∞

0
‖𝑋̇(𝑠)‖2𝑑𝑠 < +∞, it implies that there exists 𝑃 > 0, such

that ‖𝑋̇(𝑡)‖ < 𝑃 for any 𝑡 ∈ (0, +∞). Therefore, one obtains∫+∞
0

‖𝑋 (𝑠)‖2 󵄩󵄩󵄩󵄩󵄩𝑋̇ (𝑠)󵄩󵄩󵄩󵄩󵄩 𝑑𝑠 ≤ 𝑃∫+∞
0

‖𝑋 (𝑠)‖2 𝑑𝑠 < +∞, (31)

and it is easy to obtain that∫+∞
0

‖𝑋 (𝑠)‖2 󵄩󵄩󵄩󵄩󵄩𝑋̇ (𝑠)󵄩󵄩󵄩󵄩󵄩 𝑑𝑠≤ 13 lim
𝑡→+∞

[‖𝑋 (𝑡)‖3 − ‖𝑋 (0)‖3] < +∞. (32)

According to the theory of Calculus, the value
of lim𝑡→+∞‖𝑋(𝑡)‖3 exists. Therefore, the value of
lim𝑡→+∞‖𝑋(𝑡)‖ also exists. Since ∫+∞

0
‖𝑋(𝑠)‖2𝑑𝑠 < +∞,

we obtain lim𝑡→+∞‖𝑋(𝑡)‖ = 0. Since 𝑉(𝑡) is bounded, we
have lim𝑡→+∞𝑋(𝑡) = 0.

It follows from (20) that

lim
𝑡→+∞

(𝑋̇ + 𝑈 − 𝑃Ω (𝑈 − ∇𝑓 (𝑈))) = 0. (33)

If lim𝑡→+∞𝑋̇(𝑡) = 0, then
lim
𝑡→+∞

(𝑈 − 𝑃Ω (𝑈 − ∇𝑓 (𝑈))) = 0, (34)

which implies that lim𝑡→+∞𝑈(𝑡) = 𝑈∗. In the following, we
will prove lim𝑡→+∞𝑋̇(𝑡) = 0.

Defining 𝑟𝜀(𝑡) = (1/𝜀)(𝑋(𝑡 + 𝜀) − 𝑋(𝑡)), and substituting𝑟𝜀(𝑡) into (20), one obtainṡ𝑟𝜀 (𝑡) + 𝜆𝑟𝜀 (𝑡) = −1𝜀𝑁 (𝑈 (𝑡 + 𝜀)) + 1𝜀𝑁 (𝑈 (𝑡)) . (35)

Since Condition (1) holds, we have‖𝑁 (𝑈 (𝑡 + 𝜀)) − 𝑁 (𝑈 (𝑡))‖⋅ ‖𝑁 (𝑈 (𝑡 + 𝜀)) − 𝑁 (𝑈 (𝑡))‖≤ 𝜀 (1 + ‖𝐼 − 𝐶‖)
cos 𝜃 ‖𝑁 (𝑈 (𝑡 + 𝜀)) − 𝑁 (𝑈 (𝑡))‖⋅ 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑈 (𝑡 + 𝜀) − 𝑈 (𝑡)𝜀 󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩 .

(36)

Hence, we get‖𝑁 (𝑈 (𝑡 + 𝜀)) − 𝑁 (𝑈 (𝑡))‖≤ 𝜀 (1 + ‖𝐼 − 𝐶‖)
cos 𝜃 sup

𝑠∈[𝑡,+∞]

‖𝑋 (𝑠)‖ . (37)
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Input: 𝑌, 𝐴, 𝑉,𝑊, 𝛼, 𝛽
Output:𝐷, 𝐸, 𝐹, 𝐺
(1) Calculate the number of rows 𝑘 and columns 𝑛 in the matrix 𝑉
(2) Calculate 𝐸 with 𝐸 ← 𝐴𝑇𝐴
(3) Calculate 𝐹 with 𝐹 ← 𝛼𝑊
(4) Calculate the diagonal matrix 𝐺 with 𝐺𝑖𝑖 ← 𝛼∑𝑛𝑗=1𝑊𝑖𝑗
(5) Calculate𝐷 with𝐷 ← 𝛽1𝑛×𝑘 − (𝑌𝑇𝐴 + 𝑉𝑇𝐴𝑇𝐴) − 2𝛼(𝐺𝑉𝑇 − 𝐹𝑉𝑇)

Algorithm 1: Parameters.

Integrating (35), it gives lim𝑡→+∞ sup ‖𝑟𝜀(𝑡)‖ = 0. Since‖𝑋̇(𝑡)‖ ≤ sup ‖𝑟𝜀(𝑡)‖, we obtain lim𝑡→+∞𝑋̇(𝑡) = 0. Thus, the
solution of system (20) converges to the optimal set Ω. The
proof is completed.

Remark 3. InTheorem2, Condition (1) should be satisfied. In
the following, we discuss the existence of parameter cos 𝜃/(1+‖𝐼 − 𝐶‖). For any 𝑈1 and 𝑈2, we have󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩 = 󵄩󵄩󵄩󵄩𝑈1 − 𝑃Ω (𝑈1 − ∇𝑓 (𝑈1)) − 𝑈2+ 𝑃Ω (𝑈2 − ∇𝑓 (𝑈2))󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑈1 − 𝑈2󵄩󵄩󵄩󵄩+ 󵄩󵄩󵄩󵄩𝑃Ω (𝑈1 − ∇𝑓 (𝑈1)) − 𝑃Ω (𝑈2 − ∇𝑓 (𝑈2))󵄩󵄩󵄩󵄩 ≤ 󵄩󵄩󵄩󵄩𝑈1− 𝑈2󵄩󵄩󵄩󵄩 + 󵄩󵄩󵄩󵄩(𝐼 − 𝐶) (𝑈1 − 𝑈2)󵄩󵄩󵄩󵄩 ≤ (1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩𝑈1− 𝑈2󵄩󵄩󵄩󵄩 .

(38)

Therefore,𝑁(𝑈) is also Lipschitz continuous and󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩2≤ (1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝑈1 − 𝑈2󵄩󵄩󵄩󵄩 . (39)

Thus, we get󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩2≤ (1 + ‖𝐼 − 𝐶‖)
cos 𝜃 ⟨𝑁 (𝑈1) − 𝑁 (𝑈2) , 𝑈1 − 𝑈2⟩ , (40)

where 𝜃 is the angle between 𝑁(𝑈1) − 𝑁(𝑈2) and 𝑈1 − 𝑈2. It
is easy to obtain⟨𝑁 (𝑈1) − 𝑁 (𝑈2) , 𝑈1 − 𝑈2⟩⩾ cos 𝜃(1 + ‖𝐼 − 𝐶‖) 󵄩󵄩󵄩󵄩𝑁 (𝑈1) − 𝑁 (𝑈2)󵄩󵄩󵄩󵄩 . (41)

3.2. Algorithms. Based on the above analysis, we summarize
Algorithms 1, 2, and 3 to optimize GSNMF. Firstly, the
parameters 𝐷, 𝐸, 𝐹, and 𝐺 can be derived by Algorithm 1.
Secondly, Algorithm 2 applies IPNN to optimize the CQP
problem. Thirdly, the optimization problem (9) is divided
into two CQP problems which are solved alternatively by
Algorithm 3. In the following, we analyse the time complexity
of our proposed algorithms. The main cost of our proposed
algorithms is spent on the calculation of the gradient ∇𝑓 in

Input:𝑈,𝐷, 𝐸, 𝐹, 𝐺, ℎ, 𝜆,Ω,𝐾1
Output:𝑈∗
Initialization:𝑋, 𝑈, 𝑖 ← 0
repeat
(1) ∇𝑓 ← 𝐸𝑈 − 𝑈𝐹 + 𝑈𝐺 + 𝐷𝑇
(2) 𝑈𝑖+1 ← 𝑋 ∗ ℎ + 𝑈
(3)𝑋𝑖+1 ← (−𝜆𝑋 + 𝑃Ω(𝑈 − ∇𝑓) − 𝑈) ∗ ℎ + 𝑋
(4) 𝑈 = 𝑈𝑖+1
(5)𝑋 = 𝑋𝑖+1
(6) 𝑖 ← 𝑖 + 1

until 𝑖 ≤ 𝐾1𝑈∗ = 𝑈
Algorithm 2: IPNN.

Table 1: Time complexity of GSNMF, GNMF, and NMF.

Solver Time complexity
GSNMF 𝑂(𝑚𝑛𝑘) + 𝐾1 × 𝑂(𝑚𝑘2 + 𝑛𝑘2 + 𝑘𝑛2)
GNMF 𝑂(𝑚𝑛𝑘 + 𝑚𝑘2 + 𝑛𝑘2 + 𝑘𝑛2)
NMF 𝑂(𝑚𝑛𝑘 + 𝑚𝑘2 + 𝑛𝑘2)
Algorithm 2. To optimize subproblem (10), the operation in
Algorithm 2 is thematrix product𝐸𝑈−𝑈𝐹+𝑈𝐺, which takes𝑂(𝑛𝑘2 + 𝑛2𝑘). With the cost 𝑂(𝑚𝑛𝑘) for calculating 𝐷𝑇, the
complexity of using Algorithm 2 to optimize the subproblem
(10) is 𝑂 (𝑚𝑛𝑘) + 𝐾1 × 𝑂 (𝑛𝑘2 + 𝑛2𝑘) . (42)

Similarly, the complexity of usingAlgorithm2 to optimize the
subproblem (11) is𝑂 (𝑚𝑛𝑘) + 𝐾1 × 𝑂 (𝑚𝑘2) . (43)

Hence, the overall cost to solve GSNMF is𝑂 (𝑚𝑛𝑘) + 𝐾1 × 𝑂 (𝑚𝑘2 + 𝑛𝑘2 + 𝑘𝑛2) . (44)

We summarize the time complexity of one iteration round of
GSNMF, GNMF, and NMF in Table 1. At each iteration, there
are two 𝑂(𝑚𝑛𝑘) operations, same as NMF and GNMF.

4. Numerical Examples

In this section, we exhibit the global searching ability of
GSNMF. By adjusting the inertial term 𝜆 in the neural
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Input: 𝑌 ∈ 𝑅𝑚×𝑛, 𝐴 ∈ 𝑅𝑚×𝑘, 𝑆 ∈ 𝑅𝑘×𝑛, 𝐾2
Output: 𝐴∗, 𝑆∗
Initialization: 𝑊 satifies (6),Ω1 = {𝑈 | 𝑈 ⩾ 𝑉},Ω2 = {𝑉 | 0 ≤ 𝑉 ≤ 𝑈},Ω3 = {𝑈 | 𝑈 ⩾ 0}, 𝑖 ← 0
repeat
(1) 𝑈 = max(𝑆, 0), 𝑉 = max(𝑆, 0)
(2) [𝐷, 𝐸, 𝐹, 𝐺] ← PARAMETER(𝑌, 𝐴, 𝑉,𝑊, 𝛼, 𝛽)
(3) 𝑈 ← IPNN(𝑈,𝐷, 𝐸, 𝐹, 𝐺, ℎ, 𝜆, Ω1, 𝐾1)
(4) [𝐷, 𝐸, 𝐹, 𝐺] ← PARAMETER(𝑌, −𝐴, −𝑈,𝑊, 𝛼, 𝛽)
(5) 𝑉 ← IPNN(𝑉,𝐷, 𝐸, 𝐹, 𝐺, ℎ, 𝜆, Ω2, 𝐾1)
(6) [𝐷, 𝐸, 𝐹, 𝐺] ← PARAMETER(𝑌𝑇, 𝑆𝑇, 0, 0, 0, 0)
(7) 𝐴 ← IPNN(𝐴󸀠, 𝐷, 𝐸, 𝐹, 𝐺, ℎ, 𝜆, Ω3, 𝐾1)
(8) 𝐴 ← 𝐴𝑇, 𝑖 ← 𝑖 + 1

until 𝑖 ≤ 𝐾2𝐴∗ = 𝐴, 𝑆∗ = 𝑆
Algorithm 3: GSNMF.

Table 2: 𝑌.
4.345 1.79 2.92 0.852 6.036 6.929 2.803 2.445
0.513 1.164 8.54 8.645 0.879 12.309 4.731 1.326
4.277 3.665 5.619 2.1 6.048 6.164 1.077 4.167
5.658 5.788 0.887 4.599 7.653 2.342 7.534 7.104
2.282 0.3 12.657 3.248 4.33 1.508 1.819 1.26
1.856 7.669 2.113 4.084 7.616 0.287 2.865 1.329
0.589 6.886 2.388 0.446 7.759 2.456 0.486 7.189
0.214 16.156 3.684 1.973 0.25 3.841 2.825 1.482

Table 3: 𝐴.
0.797 0.394 0.001 1.029 0.182
0.3 0.633 0.28 1.14 0.727
0.81 0.078 1.589 1.764 1.152
0.062 0.408 0.265 0.78 0.716
0.073 0.389 0.005 1.768 0.166
1.921 1.45 1.474 0.673 0.016
0.346 1.896 0.284 1.135 0.087
1.849 0.058 0.445 1.574 1.745

network, different local optimal solutions can be searched.
Let 𝑚 = 8, 𝑛 = 8, 𝑘 = 5, 1 ≤ 𝜆 ≤ 10, 𝛼 = 0, 𝛽 = 0,𝐾1 = 5,𝐾2 = 500, and ℎ = 0.2. In order to ensure the validity
of this experiment, we provide the initial 𝑌, 𝐴, and 𝑆 in
Tables 2, 3, and 4, respectively. Table 5 shows the comparison
between GSNMF and NMF. To investigate whether GSNMF
can converge, the convergence curve is depicted in Figure 1
with 𝜆 = 1.
5. Application in Image Clustering

5.1. Databases. To examine the clustering performance of
GSNMF, we present the experiment in two databases includ-
ing IRIS and COIL20. Their details are presented in the
following (see also Table 6).

(1) IRIS. It includes 150 instances with 4 features. There are 3
classes includingVersicolour, Setosa, andVirginca. Each class
includes 50 instances.

(2) COIL20.This data set is an image library which contains
1440 instances with 16 × 16 gray scale features. There are 20
different classes and each class contains 72 instances.

5.2. Compared Methods. We present the clustering perfor-
mance on two databases using GSNMF and GNMF. There
are two metrics including accuracy and normalized mutual
information [33] to evaluate the clustering performance. To
reveal the effect of the sparse constraint, different cardinalities
(the number of zero entries) of the initial 𝑆 are considered
to evaluate the clustering performance. Because NMF is a
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Table 4: 𝑆.
0.071 0.242 0.413 1.101 1.345 0.967 0.923 0.533
1.319 1.305 0.329 0.99 0.309 1.173 0.734 1.309
1.377 0.796 0.913 0.377 0.504 1.322 0.378 0.682
0.403 0.608 0.224 0.163 0.612 0.162 0.724 0.849
0.929 1.402 0.773 1.727 0.039 0.187 0.446 0.132
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Figure 1: Iteration number versus objective value for GSNMF when 𝜆 = 1.
Table 5: Comparisons between GSNMF using different 𝜆 andNMF.

GNMF NMF

Objective values
𝜆 = 1, 20.5172

20.5172𝜆 = 3, 20.7534𝜆 = 6, 21.6804
Table 6: Two data sets.

Dataset size (𝑛) Dimensionality (𝑚) Classes (𝑘)
IRIS 150 4 3
COIL20 1440 256 20

nonconvex problem, different initial 𝐴 and 𝑆 may lead to
different local optimal solutions. For the fair comparison,
we try 10 different initial 𝐴 and 𝑆 and report the aver-
age results. We compare different methods in two cases.
Firstly, 𝐴 and 𝑆 are randomly generated between 0 and 1.
Secondly, 𝐴 and 𝑆 are randomly generated between −1 and
1.

5.3. Compared Results. Tables 7 and 8 present the clustering
results on IRIS in two cases. The parameters for IRIS are ℎ =0.02, 𝐾1 = 3, 𝐾2 = 200, 𝛼 = 1, 𝛽 = 1𝑒 − 4, and 0 ≤ 𝜆 ≤ 10.
The clustering performance on COIL20 is shown in Tables 9
and 10 in two cases. The parameters for COIL20 are ℎ = 0.02,

𝐾1 = 20, 𝐾2 = 200, 𝛼 = 1, 𝛽 = 1𝑒 − 4, and 0 ≤ 𝜆 ≤ 10. These
tables reveal some interesting points:

(i) When the sparse constraint is imposed on GNMF,
the clustering performance of GSNMF is better than
NMF and GNMF.

(ii) When the initial 𝐴 and 𝑆 have some negative entries,
NMF and GNMF fail to cluster. However, GSNMF is
not affected in this case.

5.4. Parameters Selection. Our GSNMF has one essential
parameter: the inertia term 𝜆. Figures 2 and 3 depict the
average performance of GSNMF with different 𝜆.
5.5. Convergence Study. According to the BCD and IPNN
theory, the method for optimizing GSNMF is proved to
be convergent. Here we investigate whether this method
can converge to a stationary point. Figure 4 depicts the
convergence curves of GSNMF on two data sets. For each
figure, the 𝑥-axis is the iteration number and the 𝑦-axis
denotes the objective value.

6. Conclusion and Future Work

We propose a dimensionality reduction method, which can
be solved by the inertial projection neural network. Accord-
ing to the experiments, three advantages are presented.
Firstly, different local solutions can be achieved with different
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Table 7: Clustering performance on IRIS in case 1.
Cardinality (%) Accuracy (%) Normalized mutual information (%)

SGNMF GNMF NMF SGNMF GNMF NMF

0 98.27 91.60 83.87 93.09 80.66 70.58
10 98.47 77.93 69.47 93.97 55.70 48.48
20 98.27 71.93 68.67 93.09 42.23 38.86
30 98.33 61.93 62.87 93.39 28.90 28.82
40 98.27 56.93 55.80 93.15 18.89 17.59
50 98.33 53.40 53.27 93.39 13.35 12.96

Table 8: Clustering performance on IRIS in case 2.
Cardinality (%) Accuracy (%) Normalized mutual information (%)

SGNMF GNMF NMF SGNMF GNMF NMF

0 98.60 34.00 34.00 94.56 1.035 1.035
10 98.13 34.00 34.00 93.39 1.035 1.035
20 98.20 34.00 34.00 93.02 1.035 1.035
30 98.00 34.00 34.00 92.27 1.035 1.035
40 98.13 34.00 34.00 92.92 1.035 1.035
50 98.00 34.00 34.00 92.33 1.035 1.035

Table 9: Clustering performance on COIL20 in case 1.
Cardinality (%) Accuracy (%) Normalized mutual information (%)

SGNMF GNMF NMF SGNMF GNMF NMF

0 68.92 72.92 64.54 77.52 84.88 74.18
10 68.24 63.37 57.63 77.05 71.78 65.49
20 68.15 53.40 48.39 77.31 61.90 56.26
30 68.38 45.81 43.91 77.39 54.34 51.60
40 68.06 41.03 38.28 77.31 49.45 46.26
50 68.67 35.25 32.64 77.61 42.92 41.42

Table 10: Clustering performance on COIL20 in case 2.
Cardinality (%) Accuracy (%) Normalized mutual information (%)

SGNMF GNMF NMF SGNMF GNMF NMF

0 68.22 5.07 5.07 77.05 1.38 1.035
10 68.16 5.07 5.07 77.36 1.38 1.035
20 68.78 5.07 5.07 77.11 1.38 1.035
30 68.12 5.07 5.07 77.08 1.38 1.035
40 68.38 5.07 5.07 77.33 1.38 1.035
50 68.25 5.07 5.07 77.67 1.38 1.035
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Figure 2: The performance of GSNMF versus different 𝜆 on IRIS data set.

0

10

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

2 4 6 8 100
�휆

(a) Accuracy

0

10

20

30

40

50

60

70

80
N

or
m

al
iz

ed
 m

ut
ua

l i
nf

or
m

at
io

n 
(%

)

2 4 6 8 100
�휆

(b) Normalized mutual information

Figure 3: The performance of GSNMF versus different 𝜆 on COIL20 data set.
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inertial terms 𝜆. Secondly, the clustering performance cannot
be affected by the negative initial values. However, GNMF
and NMF have poor performance in clustering with negative
initial values. Thirdly, if the initial values are sparse, our
proposed method performs better than GNMF and NMF in
the clustering.

Several topics remain to be discussed in our future work:

(i) There is a parameter 𝜆 which searches the global
optimal solution of GSNMF. Thus, a suitable value of𝜆 is critical to our algorithm. It remains unclear how
to select 𝜆 theoretically.

(ii) ℎ is a step length to decide the convergence rate
in Algorithm 2. If it is assigned a small value, slow
convergence makes a bad clustering performance.
Thus, an adaptive step length should be considered.
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