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An integrated framework for ought-to-be and
~ought-to-do constraints

P. d’Altan?
J.— J.Ch. Meyer3
R.J. Wieringa*

1 Introduction

Deontic logic is the logic to reason about ideal and actual behaviour. Be-
sides the traditional role as an underlying logic for law and ethics (for a
survey see [MW93]), deontic logic has been proposed as a logic for the spec-
ification of legal expert systems [BMT87],[Sta80], authorization mechanisms
[ML85], decision support systems [KL88], [Lee88a],[Lee88b], database secu-
rity rules [GMP89], fault-tolerant software [KM87],[Coe93], and database
integrity constraints [WMW89], WWMDS91]. A survey of applications can
be found in [WM93b]. In all these areas, we must be able to reason about
the difference between ideal and actual behaviour. In many cases, it is im-
portant to distinguish ought-to-do statements (which may be interpreted as
expressing imperatives of the form “an actor ought to perform an action”)
from ought-to-be statements (which express a desired state of affairs without
necessarily mentioning actors and actions bearing relations with that state
of affairs). There are situations where we would like to relate the two oughts
with each other. For example, suppose we want to specify deontic integrity
constraints for a bank data base. From the ought-to-be constraint

(1) The balance of a bank account must be non-negative

~we would like to derive the ought-to-do statement
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(2.) If the balance of a bank account is n and n —m < 0, then
it is forbidden to withdraw m from the account.

. In addition, we would like to be able to express

(3.) If the balance of a bank account is n and n < 0, then an
action deposit(m) with n +m > 0 ought to be performed.

As several philosophers have argued, the distinction between ought-to-be
and ought-to-do is not only a matter of éynta,x. We follow Castafieda [Cas70,
page 452] in separating deontic statements into those that involve agents
and actions and support imperatives (ought-to-do) and those that involve
states of affairs and are agentless and have by themselves nothing to do
with imperatives. After introducing operators for ought-to-be and ought-
to-do we first follow up the suggestion of Geach [Gea81] and try to reduce
the ought-to-be to the ought-to-do, using a formalization of ought-to-do that
we gave earlier [Mey88, WMW89, WWMD91|. Perhaps not so surprisingly,
we will see that some rather plausible attempts at giving such a reduction
do not yield satisfactory results. We then try to circumvent the problems
encountered with this reduction by using another reduction, viz. by reducing
both ought-to-do and ought-to-be to alethic modalities and then considering
the relations between the so reduced formulas as to ought-to-be and ought-
to-do. We will work out this possibility using Meyer’s reduction of ought-
to-do to dynamic logic and using Anderson’s reduction of ought-to-be to
alethic modal logic. It will turn out that the integrated framework that we
obtain in this way, provides a sound — albeit rather minimal — basis for
giving specifications involving both ought-to-do’s and ought-to-be’s as well
as reasoning with these. ' D

The structure of the paper is as follows. In section 2, we state and
~ criticize a few plausible assumptions reducing ought-to-be to ought-to-do.
These relations will be expressed in the language of first order dynamic logic
(PD.L) with deontic operators, but without any formal semantic charac-
terization of the expressions involved. The aim of this section is that of
establishing a few intuitive constraints on the results we will later obtain by
logic. '

Section 3.1 concerns a different formalization of deontic sentences. in
terms of what in the literature is known as Anderson’s reduction. We briefly
review Anderson’s reduction of ought-to-be statements to alethic ones and
" successively Meyer’s reduction of ought-to-do statements to dynamic ones
(section 3.2). Both reductions reduce deontic modalities to alethic ones.



In section 4, we consider again the attempted reductions of ought-to-be to
ought-to-do of section 2 and analyze the failure of these attempts in the
light of the formalization in the combined Anderson-Meyer reduction. This
- will increase our understanding of the sometimes complex relations between
these two modalities. Finally, in section 5 we will show how by making* use
of both reductions it is possible.to solve the expressivity problems sketched
in the first part of this introduction. Section 6 concludes the paper witb a
number of open problems.

2 Four attempted reductions of ought-to-be to
ought-to-do

In the first section of the paper we have reviewed a few positions concerning
the relations between ought-to-be and ought-to-do. They span from Geach’s
conviction that ought-to-be does not exist independently from ought-to-do
to the position of the phenomenological school, according to which object
of our acts of will are states of affairs and not actions. Between these two
extremes we find philosophers who maintain that we can only understand
ought-to-do once we have explained what ought-to-be is and philosophers
who think that ought-to-do and ought-to-be are indeed separated and no
connection exists between them [Gar86].

What seems clear is that in no way these thinkers have conceived ought-
to-be as completely reducible to ought-to-do or vice versa; they all maintain
- either the existence of relations (implicative ones?) or the lack of any such
relation. In what follows we are going to consider to what extent it is
possible within the formalism adopted to express valid relatlons between
the two concepts. :

First of all, we will try to check whether the two concepts may be some-
how equalled by reducing ought-to-be to ought-to-do. As explained before,
the reason why we choose this direction of reduction is purely pragmatical:
we alréady have a logic for ought-to-do [Mey88], [WMW89]. We distin-
guish between the two concepts by using traditional operators for ought-to-
be (i.e., O, P, F) and the same operators but with a hat for ought-to-do
(ie., O P,F). In particular, we will propose a few definitions expressing
important semantic relations between definiens and definitum. Viewed syn-
tactically, these should be considered as equwalentzal definitions in the sense
of [Hum93].

In order to correctly understand our analysis of the semantic relations



here presented, note that we deal with formulas of classical logic, where the
implication connective lacks any feature of relevance. That is, when we state
that o implies v, all we are saying is that ¢ is a sufficient condition for .

2.1 First attempt: there is an obligatory action that leads
to

Definition 1 A state is obligatory iff it is the result of an obligatory action

Oy 4 there is an @ such that [o]e A Oa

The formula [a]y is to be read as “after any possible way of performing
action «, ¢ will hold”. The definition says that state ¢ is obligatory if and
only if there is an obligatory action o that always leads to . We refer to
the two directions of the equivalence as 1~ and 1. There are arguments
against the intuitive validity of both directions.

Counterexample 1.1 Implication 1~ asserts that a state-of-affairs can-
not be considered obligatory independently from the existence of acts for
bringing it about. Thisis simply not true, since we have often prescriptions
that do not prescribe what actions should be performed in order to’ fulfil
the prescriptions themselves. In addition, it would allow us to derive factual
consequences (the existence of an action to achieve a result) from deontic
‘antecedents (the obligatoriness of the result). This is not only philosophi-
cally suspect, it is also empirically falsified. Consider a situation in which
a robot cannot perform any action (except for idling perhaps) due to power
failure. Then it cannot establish any obligatory / desirable state-of-affairs. -

This counterexample exploits the fact that there may be obligatory states
for which there is no action to reach them. This may or may not be the case
in social systems, but it can certainly be the case in artificial systems like the -
“robot world of the example or the bank account world of the introduction.
Note that part of 1~ can be viewed as a rationality constraint on a
law-giver. We do not want a law-giver to issue a law that makes a state
obligatory, without there being at least one action that leads to that state. It
may be that abstractly, there are desirable states for which there is no action
that leads to them. For example a world without war may be desirable, but
we see no humanly possible action that would lead to such a world. However,
the norm that a world without war is desirable is not issued by a law-giver,
so we find the practical unreachabilty of this ideal state of affairs acceptable.



However, anyone who explicitly issues a law declaring a state of affairs ideal,
should make sure that there is at least one action that leads to this state of
affairs. '

" Counterexample 1.2 1~ says that if there is an obligatory action that
leads to ¢, then ¢ is obligatory. As a counterexample to this, consider the
obligation to jog («) because this is good for your health. Jogging makes
you very tired (i), so that the right-hand side of definition 1 is satisfied.
We consider this a good thing in the states reachable by jogging (it means
that you did good practice to maintain your health), but nevertheless it is
not in all states of the world a good thing that you are tired.

We may view 1 as a constructivity assumption made by law-givers. A law-
giver has the choice to declare a state of affairs ¢ to be ideal or to declare
an action a leading to ¢ to be obligatory. In the first option, a kind of
declarative, “implementation independent” law is issued that says that a
state is desirable without explicitly putting any obligation on any action
leading to that state. We have seen above that this option runs the danger
that there is no action at all that leads to ¢, putting the actors subject to
the law in a hard predicament.

In the second option, a kind of constructive law is issued, in which an
action is made obligatory. This option assumes that 1 is valid, i.e. that if
it is obligatory that o leads to ¢, then ¢ is obligatory. In this case, the mo-
tivation of making « obligatory is utilitarian, because o is made obligatory
because of its results. One danger of this option is that « is performed mind-
lessly, without regard for its consequences, as a ceremony without contents.
In more formal terms, o may have undesirable consequences in addition to
the desirable consequence ¢. The jogging example may be interpreted this
way. The problem of undesirable derived consequences is not solved by any
of the approaches presented in. this paper and we take it up again in the
discussion at the end of this paper. :

2.2 Second attempt: all actions that lead to p are obligatory

We have observed that there may be desirable states for which there is
no obligatory action o that leads to it, and that there are also obligatory
actions that may lead to a state that is not always obligatory. Perhaps we
can improve on Def.1 by requiring a closer connection between actions and
their results before we let obligatoriness of the former lead to obligatoriness



of the latter. Def.2 does this by saymg that ¢ is obligatory iff all act1ons
that lead to it are obligatory.

Definition 2 A state @ is obligatory iff all the actions that lead to the state
of affairs ¢ are obligatory :

Op ¥ for all @ we have that [e]p — Oa

This avoids the assumption that there always is an-obligatory action
that leads to a desirable state, and it also avoids the counterexample to 1,
since we now require that all actions that lead to ¢ are obligatory before we
‘regard ¢ to be desirable. However, it introduces other problems. -

Counterexample 2.1 As a counterexample to 27, suppose that it is oblig-
“atory that the balance of a bank account is greater or equal to 0 (i.e.,"
O(balance > 0)). Yet, not all actions that lead to a positive balance are
‘obligatory. If the balance is already positive, then any deposit leads to a
positive balance, but in this situation, deposits are not obligatory.

This counterexample illustrates a difference between ought-to-be and
ought-to-do: The ought-to-be statement can be valid in all possible states
of the world, but the corresponding ought-to-do statement applies only in a
state where the ought-to-be is violated. Actions that are obligatory because
they produce a desirable state of affairs, are only obligatory when that state
of affairs does not hold. In our approach we can make these conditions
explicit by spec1fy1ng e.g. a conditional ought -to-do of the form -~y — Oa
rather than just Oa

Counterexample 2.2 Suppose we have a state ¢ such that no-action leads
to . Then, vacuously, all actions that lead to ¢ are obligatory, so the right-
hand side of definition 2 is satisfied. Yet, to conclude from this that ¢ is
ideal is absurd. :

2.3 Third attempt: It is forbidden to undo state ¢

The previous attempts express some positive connection between an ought-
to-be and a corresponding ought-to-do. Perhaps we should try to find a
negative connection, that stays closer to the classical view that something is
obligated if it is forbidden to undo it. The following definition of ought-to-be
is an attempt in this dlrectlon



Definition 3 A state is obligatory iff it is forbidden to undo it
Oy 4 for all o we have that [a]-¢ — Fa

In other words, a state ¢ is obligatory iff all actions that lead to —p are
forbidden. This corresponds to the classical definition Op = F-¢p. We
have found no counterexample to 37: if a state-of-affairs ¢ is obligatory,
then every action that results in making ¢ untrue should — intuitively
speaking — indeed be forbidden. On the other hand, we can agam find a
counterexample to the other direction.

Counterexample 3.1 The direction 3 is counterintuitive in the case of
states ¢ for which there are no actions that lead to-—¢. This is a variation
on the counterexample against 2.

2.4 Fourth attempt: all actions necessary and sufficient to
‘reach state ¢ are obligatory

In all examples so far, we have seen that the connection between ¢ and the
action(s) that lead to it is not always “tight” enough, so that obligatoriness
of the one could not be justifiably be inherited by the other. As a remedy -
we might require that the acceptable actions are those and only those which
represent necessary conditions for obtaining ¢. We formalize the concept of
a necessary condition as follows:

An action « is said to be a necessary condition (o ~ ) for the obtaining
of the state-of-affairs ¢ if the following equivalence holds

o~ i [alpAlal-e®

Here the notation @ means the non-performance of a. An exact definition
of the non-performance of an action can be found in [DM90]. Thus, o ~ ¢
means o necessarily leads to ¢ and not ‘doing o necessarily leads to —p.
There is no other action than o that brings about . We use this concept
to update Def.2 as follows:

5In the present remark we limit us to necessary conditions for the obtaining of state-
of-affairs, but we could as well consider necessary conditions for actions. In that case, the
above definition has to be adapted:

Brra it [B]((e)T) ABl(e] L)

i.e., action 3 is a necessary condition for performmg action « iff o can be succesfully
performed exactly when 8 has been performed.

7



Definition 4 A state ¢ is abligatory iff all actions required to bring it about
are obligatory as well

Oyp 4l for all ala ~ ¢) — Oa

This move would rule out all cases not really necessary for obtaining a
given end. As before, the left-to-right implication seems intuitively valid to
us. However, there are troubles with 4~ just as there are troubles with 3.

Counterexample 4.1 Exactly as Def. 2, this definition cannot cope with
situations where ¢ cannot be reached by an action, so we can again use
counterexample 2.2.

2.5 Discussion

Looking at the sequence of proposéd reductions of ought-to-be to ought-
to-do, we see that the implications from left-to-right improve but that the
implications from right-to-left all are subject to counterexamples. The last
two left-to-right implications have no counterexamples at all, and in the
formal semantics given later, we will be able to prove them. Concentrating
now on the right-to-left implications, it is interesting to consider them in
a different sequence from the one they were presented above. Read in this
direction, the natural starting point is definition 3, because this is the direct
analogon to the classical SDL definition of ideal states (abbreviating “for
all” to V):
Oyp def Va( [o]-~¢ — Fa).

This is counterintuitive for the cases where there are no actions at all that
lead to —p. Definition 2 is a variation of definition 3, with —¢ replaced by
¢ and F(a) by O(a):

Oy af Va([a]p — Oa).

Here, 2 is counterintuitive when there are no actions that lead to ¢. By
combining the two definitions, we get definition 4:

Oy 4 Yo( (a~ @) = Oa).

The counterexample to 4~ again exploits the fact that there may be un-
reachable states ¢. This situation is excluded by definition 1:

def

Oy = Ja([a]p A Oq).

8



However, 1 is invalidated by the fact that, even if the results of obligatory
actions are desirable, they may not be desirable in all possible states of the
world. In addition, as we will see in the discussion at the end of the paper,
there is the problem that not all derived results of an obligatory action may
be obligatory.

We have analyzed the definitions according to our intuitive comprehen-
sion of the notions involved there, i.e., the notion of obligatory or forbidden
action and desirable state of affairs, but we have not gone so far to_the
~ point of abstracting from the logical context in which those notions had to
be related to each other, i.e., propositional logic. The relations. between
ought-to-be and ought-to-do are after all expressed by means of the stan-
dard propositional connectives and of first-order quantifiers, and we all know
that, for instance, material implication does not express any common sense
. notion of implication, at all. Undoubtedly, such problems originate in our
reluctance to abandon classical logic. The point is however that in non-
classical logics we would not be able to investigate whether there exist truth
functional relations between ought-to-be and ought-to-do, and this is in a
certain sense what we are looking for here. That is why we are going to .
elaborate a classical (from the point of view of logic) framework where we
may reason about both ought-to-do and ought-to-be without reducing the
one to the other so that, in effect, we will obtain a framework in which these
two forms of ought are integrated.

In the next section, we present Anderson’s reduction of ought-to-be and
Meyer’s reduction of ough-to-do. We then integrate the two reductions in
one logic, give a semantics and a number of axioms, and discuss the status of
some well-known paradoxes in the combined logic. After that, we return to
the attempted reductions discussed above and show that each of the above
counterexamples corresponds to a formal counterexample in our sema.ntjcs.
In addition, the two implications for which no counterexample was found,
are proven valid in the combined logic. '



3 Integrated framework for ought-to-do and ought-
to-be

3.1 Anderson reduction of ought- to-be sentences to alethic
modal ones

In this section we (re)consider Anderson’s approach to deontic logic [AM57],
based on a reduction to alethic modal logic. Anderson takes a modal logic
of type KT (in the terminology of Chellas [Che80]) with modality O, read
as “necessarily”. (In the following we also use the usual dual operator ¢
(“possibly”), defined as —0O0-.) A special atom V is employed, interpreted by
) ~ Anderson rather freely as expressing some form of ‘sanction’ or ‘something
bad’. Anderson then defines the (ought-to-be) deontic operators of obliga-
tion (O), prohibition (F') and permission (P) by the following reductions:

Definition 5
Op=0(-~¢p —V)
Fo=0O(p - V)
Py =-Fp(=CpA-V)
Thus, Anderson reduction of Oy has to be read as “necessarily, ~--|<,0 implies

a sanction (that things go wrong)”. Furthermore, Anderson assumes that
V is subject to three conditions: ’

1) ©-V is assumed (or proved) valid
2) —V cannot be proved valid
3) V cannot be proved valid

For our purposes, these conditions are less important. For instance, in a .
very restricted context, say a robot world, it may well be that there is no
“good” world, so that in this context OV (= —~0=V) is true. For Anderson
trying to give an account that, is sound for general and universal deontic
contexts (in ethics, for example), this would be unacceptable.

Viewed model-theoretically, models for the deontic system are just a
special kind of Kripke models for modal sentences. These are usually defined
as follows.

Definition 6 A Kripke model M for a modal logic L is given by M =
(W,m, R, =)

where

10



(1) W a set of possible worlds;

(2) m:IIx W — {1,0} is a function that assigns a truth value to propo-
sitional variables (II is a set of propositional variables) in a possible
world;

(3) R:W — p(W) a function that associates to world w, the set of possible
worlds accessible from w; ' '

(4) E = {(w,p)|lw € W and ¢ € II} the usual truth relation between worlds
and sentences.

Definition 7 Let M = (W, n, R, |=) be a Kripke model.

e © is true in a world w € W, denoted M,w = O, if for allw' € W
such that wRw', we have M,w' |= ¢. (Other clauses, pertaining to
the propositional connectives, are as usual.)

e A formula ¢ is valid in a model M =.(W,n, R, ), denoted M = o,
if Myw k=@ for allw e W. ' ‘

o A formula ¢ is valid, denoted |= ¢, if M |= ¢ for all Kripke models
M.

It can be shown that in this way, one obtains a deontic logic, which we
call ADL, extending the standard deontic logic SDL (the modal logic KD
in Chellas’ classification [Che80]) regarding the modality O. That is, ADL
contains all validities of SDL and more. Since ADL extends SDL, it inherits
the well-known paradoxes of SDL. However, when one reads the atom V as
violation of a norm, most of these paradoxes disappear. So, for instance, O¢p
reads “necessarily, -y implies violation”. A world where V is true might
be viewed as a “bad” or “non-ideal” world, and w world in which V is
false as a “desirable” or “ideal” world. Hence Oy can also be interpreted
as “necessarily, non-violation implies ¢” or equivalently, “necessarily, ideal
worlds satisfy ¢”. This is very close to the standard interpretation of Oy in
SDL.

However, as was shown in [McA81], ADL contains validities beyond those
of SDL, that are counter-intuitive at first sight, such as the following:

e Op — OO0y (If ¢ is obligatory, it ought to be obligatory)

e O(O¢p — Oyp) (necessarily, if ¢ is necessaruly true then it is obligatory)

11



e O(Op — OO0¢p) (Necessarily, if ¢ is obligatory, then it is necessarily
obligatory) ’ : '

We shall return to these shortly. Here it suffices to say that these, too, are
not so counterintuitive in the reading we have in mind. This is the reason
why in spite of the criticism against Anderson’s reduction in the literature,
we will nevertheless incorporate it in our system for representing ought-to-be
constraints. ‘

However, in order to be able to give a proper formalization of ought-to-do
constraints as well, we will deviate from Anderson’s formulation at least in
one important aspect. We have seen that he interprets V either in terms of
sanction or in terms of an unspecified bad thing. We propose a more specific
reading in terms of “violation”, or better, we use V as a signal that a norm
has been violated. We read Oy as “necessarily, - implies violation of the
normative system to which Oy belongs”, where with normative system we
simply intend a set of deontic constraints, thus not necessarily (or preferably

not) moral norms. There are two important reasons that justify our reading
of V:

1. It avoids the counterintuitive reading of a few derivations of ADL.
These readings are counterintuitive when V is interpretated as sanc-
tion (cfr. [Cas60]). Consider, for example, FV, ie. OV — V).
This means in Anderson’s system “sanctions are forbidden” and this
is evidently counterintuitive. In our own interpretation, it means “vi-
olations are forbidden”, i.e. “violations are violations” and this is not
counterintuitive. The formula Py = O(p A =V) also is counterin-
tuitive, as illustrated by the following example, taken from [Cas60],
46: ‘

Let V, i.e. the sanction mentioned in the Penal Code, be ‘you will
be put in jail for 10 years’; and p be ‘you will be put in jail for 9
years’. Clearly, it is logically possible to put you in jail for 9, but -
not 10 years. Thus, it follows logically that it is permitted to put
you in jail for 9 years — without ado!

Since, now, V' means the signalling of some violation within a norma-
tive system, we cannot read it as ‘you will put in jail for 10 years’.
Furthermore, ¢ cannot retain the interpretation Castaneda gives to it.
We have two cases: either (a) ¢ has to do with some violation of a
norm or (b) it has not. In both cases we have that the conjunction
¢ A—V is intuitively false. For (a) this is immediate, since we say

12



that a violation is and is not at the same time the case. For (b), we
may say that putting you in jail for not having‘ violated anything is in
violation of the human rights (obviously, we are here assuming that all
normative systems somehow share the same basic rights, in this case,
the right not to be imprisoned without conviction) — and therefore
@ A=V is again contradictory.

2. Our reading offers an almost tautological and therefore scarcely objec-
tionable reading of deontic formulas: if I do not fulfil a norm, then I
violate it, or if ¢ is not the case, then the relevant constraint has been
violated.

3.2 Meyer’s reduction of ought-to-do sentences to dynamic
ones ' '

As argued in [McA81], Anderson’s reduction to alethic modal logic is not
quite satisfactory, at least not for the representation of ought-to-do con-
straints. After analyzing the reason why this is so, Meyer [Mey88] proposed
another reduction, in this case to propositional dynamic logic. A conse-
quence of the use of dynamic logic is the distinction between propositions
(assertions) and actions (practitions, cf. [Cas81]). Meyer’s reduction uses
Anderson’s violation atom V' to indicate that an action has occurred that
violates one of the deontic constraints.

(Propositional) Dynamic Logic (PDL, cf. [Har84]) consists of a two
sorted propositional language (we have a set II of propositional variables
and a set A of actions), extended with modal operator [o] for every action
o € A We call A the alphabet of actions and keep it fixed throughout the
paper.

A formula [0]¢ is read as “the performance (execution) of the action
denoted by « leads necessarily to a state (possible world) in which ¢ holds”.
In this approach, « is forbidden (F'a), permitted (Pa), and obligated (Oa)
are reduced to dynamic formulas as follows:

Definition 8

13



Here for the reduction of the obligation operator O, we employed the
negation of an action term «, denoted @. The concept of action negation is
discussed in [Mey89], [DM90] and [WM93al; here, it will suffice to consider
@ as a term denoting any choice of actions not involving the action denoted
by a. This can be formalized as a kind of complementation operator [DM90,
Mey88)]. Since in this paper we do not need to bother about the structure
of action terms beyond negation (*) and choice (+), we only give a concise
treatment of terms @ and a; + a2. As pointed out above, we assume our
language has a fixed alphabet A4 of atomic action constants, which are names
of the basic actions that are considered relevant in a specific context. We
keep the alphabet of action names fixed throughout the paper. In addition,
we select a set A of elementary actions and associate with each atomic action
name a € A an elementary action a € A. We call A the universe of actions
and keep it fixed throughout the paper as well.

In order to give an adequate semantics of negated action terms, we inter-
pret action terms in an open sense, as explained below. The interpretation
[a] of an action term o will be given in two steps:

1. First, we interpret the action term as a so-called step of elementary
actions that it involves. We will refer to this as the step semantics of
‘action terms.

2. Next, we interpret an action term by specifying its effect on the state of
the world. We call this the state-transition semantics of action terms.

The step semantics [o]g of an action term is a set of so-called steps. A
step is a non-empty finite set of elementary actions, denoted as [ay,...,ayn)]. .
Each step is a set of actions that occur simultaneously in a state transition
of the world. A choice between steps is represented by a set of steps, where
each step in the set represents one possible option. The step semantics of an
atomic action name g € A is now defined as the set of all steps that contain
the action a € A associated with the action name a € A:

lals ={SC Ala€ S}

In other words, if the action denoted by the action term g occurs, then this
means that any step is taken in which this action occurs. The step semantics
of a can thus be paraphrased as “a occurs and any finite number of other
actions may occur simultaneously”. This agrees with the usual intention
when we say that an action occurs: by saying that we do not intend that no
other action occurs, but we leave open what other actions currently occur.

14



The step semantics of a choice oy + as is 81mply the union of the step
semantics of o and ay:

for + Q2I|s = [en] 5 U [ae]s-

This means that a3 + a2 occurs if and only if a3 or as occurs.

Finally, the step semantics of a negated action term @ is obtained as
the set-theoretic complement of the set of steps denoted by o, where the
complement is taken with respect to the set of all steps:

[al, = STEPS\ o],

where STEPS is the set of all nonempty finite subsets of .A. This means
that the negated action term @ denotes all those steps in which the action
denoted by a does not occur. This concludes our informal exposmon of the
step semantics of action terms.

Turning to the state-transition semantics of action terms, we now define
the effect of each action on the possible worlds of a Kripke structure. With
each action a € A we associate a function ef f(a ): W — W, that describes
the effect state-transforming effect of a. For convenience, we may consider
ef f as a function

A— (W - W).

So ef f (a)( ) = w' says that the event a occurring in world w results in
a world w'. Now we lift the function eff to steps as follows. For a step
= [a1,...,an) we define :

eff(S)=eff(ar) o---oef f(an),

where o denotes function composition. Again, ef f(S) is a function W — W,
describing the state-transforming effects of the step §. In order for this
definition to be meaningful, we need to impose the notion of compatible
‘steps. A step S = [ay,...,ay] is compatible if

eff(ai)o--oeff(ai,) =eff(ar)o---oeff(an)

for every permutation (7;,...,1,) of (1,...,n). This simply means that the
actions in the step may occur in any arbitrary order without changihg the
result. For non-compatible steps we simply leave ef f(S) undefined.

We lift ef f further to sets Tof steps as follows:

ef f(T)(w) = {eff(S)(w) | S € T compatible }.

15



So ef f(T') is a function of type W — (W), where p stands for powerset.
Note that if T = {S} where S is not compatible, then ef f(T)(w) =

Finally, we define the state-transition semantics of an action term «. For
any w € W,

o] (w) = ef f([o]5)(w).

Thus, [o] is a function of the type W — (W), describing the state-
transforming effect of the action denoted by «;, where there might be multiple
outcomes collected in a subset of W.

Alternatively and equivalently, we may define the effect of o by means
of an accessibility relation R, given by

Ry(w,w") & v € [a](w).

This is more in line with the way semantics is defined modal/dynamic logic.

3.3 Integration

The system that we will adopt integrates both Anderson’s and Meyer’s re-
ductions in a modal logic, where, for convenience, we take an S5-type neces-
sity operator O as a basis. This will simplify our models for the logic below,
although by taking S5 rather than KT as our basis, extra validities are ob-
tained, which in the traditional interpretation of deontic logic are generally
considered problematic. We will return to this in the sequel.

Thus, the system we are going to assume as basic is characterized as a
mixed modal-dynamic logic with the following axioms ‘

Axioms 3.1

O(p — ¥) — (Op — O%) (X)

Dp — ¢ (D

-0¢p — O-0¢p (5)

o=V (D)

[a](p — 1/1 (lofe = [a]y) (AK)

@, 0= P[P (MP)

. ©/0p (N)
‘ o/lele - (AN)
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FoeO(p—V) | (F)

Op > O(—p — V) - ©)
Py < —Fp L (P)
Fo o o]V ‘ ()
Oa « [@V ©)
Pa & -Fa (13)
Oy — [o]e (Ole)
lo] LA o8y — Dy (=)

It is important for the counterexamples given later that A is a subset of the
universe of actions A.

The rules are, as usual, necessitation for both operators (N and AN,
respectively) and modus ponens (MP). We call the system containing the
above axioms and rules PDeLAM  Propositional deontic Logic with Ander-
son’s and Meyer’s reductions.

3.4 Semantics

Definition 9 A Kripke model M for PDL is given by M = (A, W, n, [a],E -

,0pt) |

where .

(1) A C A is a set of basic actions such that for each action o € A there
is also its negation @ € A;

(2) W a set of possible worlds;

(3) m:IIxW — {1,0} is a function that assigns a truth value to proposi-
tional variables in a possible world;

(4) [a] : AXx W — (W) a function that associates to action a € A and
world w, the set of possible worlds to which the performance of a leads;

(5) == {(w,o)|w € W and ¢ € I} the usual truth relation between worlds
-and sentences; :

(6) opt C W represents the set of “best” elements of W, such that w € opt
iff w = ~VS. The set opt is assumed to be non-empty.

8See also [Aqv88], 107-113, for further details.
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Note that A contains action literals, i.e. for each action « also its nega-
tion @. Of course, there should be a relation between [o] and [&], that
depends upon the formalization of action negation. For example, we may
want to require that [a] = [o]. Action negation is studied in detail elsewe-
here [DM90, Mey88, WWMD91]. ‘

Definition 10 Let M = (A, W, [o], =) be a Kripke model.
M,w k= ¢ is inductively defined as follows.

M,wl=p
M,w e -
MwEeAy
M, w = o]y
M,wE<a>y
MuwEYV

El

$ ¢ ¢ ¢ ¢ ¢

M,w = Oy &

Validity is defined as before.

m(p,w) =1

not (M, w [= ¢)

M,w kg and M,w =y
Vu'[w' € [aj(w) = M,w' |= ¢]
Fw'[w' € [a(w) A M, v £ ]
w & opt

vu'[w' € W = M,w' ¢l

The approach of reducing standard deontic logic to dynamic logic has the
advantage of allowing integration of a logic for ought-to-be sentences a logic
for ought-to-do sentences. The integration requires no particular technical
step besides, of course, the definition of modal and dynamic ought in terms
of Anderson and Meyer reduction, respectively. Semantically we adopt an
S5-semantics adapted in order to cope with the additional axiom ¢-V for
modal formulas and retain the standard semantics of PDL for dynamic ones.

3.5 Some properties and deontic paradoxes analyzed in PDeLAM

The following proposition uses some operators that have not been defined
here but are treated in detail elsewhere [Mey88, WWMD91]. If @; and oy

are‘actions, then

® o3 + o is the process that does o or ag,

o 01 &an is the process that does a; and gy simultaneously, and

e a1; 0y is the process that first does a7 and then does as.
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Similar operators have also been studiéd by Segerberg [Seg82].

 Proposition 1 The following formulas are theorems in PDeLAM. The
dashes indicate that there is no syntactic counterpart for an ought-to-be or
ought-to-do formula.

la — 7 1 F Flog;a9) & [01)F(ag)
2a  FF(p1))AF(p2) & F(p1Ves) | 26 F Fa)AF(aa) o F(oy+as)
S F F(p)VF(p2) = FlprApa) | 36+ Flan)V P(ar) » Flaadean)
4o — ‘ 4+ O(a;09) & Ofen) A
‘ [21]O0(as)
56 FO(p1)YO(p2) = O(p1Vs) | 56 F O(a1)VO(ag) — O(ag +ag)
6a  FO(p1)AO(p2) & O(p1Ag) | 65+ O(as) AO(an) & O(an&ar)
7 FO(p—-9)—>(0p—-0y) | —
8a FO(p—y)—0O0p—0y) |8 —
9a o PFOp— Oy % —
10a F Op — OO0y 106 ¥ Oo — O@(a) but
' O(a)  O(O(a))
11a . FOp — Op 116 —
12a F Og — OO0y 126 ¥ Oa — 00a
18¢ +FOp — =0-p 18 ¥ Oa — -Oa
14a  + (0@ A O-p) 146 ¥ ~(O(a) A O(a))
156 FOp — Py 156 ¥ O(a) - Pa.
160 F-Op — 0-0p 166 1 =0a — 0-0Oa

The theorems and non-theorems in this proposition follow the interest-

ing discussion of Anderson’s reduction of deontic logic to alethic logic by
McArthur [McA81].

1-6 - The ought-to-be statements are standard theorems that should hold in
any deontic logic [McA81]. The sequential ought-to-do statements in
4b (i.e. O(a1;0a2)) have no counterpart in a language for ought-to-be.
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7a This is the K-rule that must be part of any normal modal logic (cf. [Che80]).
There is no corresponding axiom in our language for ought-to-do.
However, a possible future extension is to add an involvement op-
erator, say =, such that @« = (B means “doing « involves doing 3’
Axiomatization of this operator is a topic of current research.

8a This is the Good Samaritan paradox. An intuitive reading of the theo-
rem in a deontic language that does not distinguish actions from states

is “necessarily, if the good Samaritan helps Jones who was robbed,
then necessarily, if Jones ought to be helped, then Jones ought to be
robbed.” In PDeLAM  such a reading is incorrect, because we would
then represent actions by letters that are supposed to represent states.
We think that if [8a] is read as a statement about ideal or desirable
states, it is intuitively harmless: “necessarily, if the state ¢ obtains
only if state 1 obtains, then necessarily, if ¢ is desirable, then v is

desirable”.

9a Again, we think this theorem is intuitively harmless if read, as it should
be, as a theorem about ideal/desirable states.

10 The ought-to-be theorem Op — OO¢ says that we cannot express
“meta-ought-to-be” statements as distinct from unnested ough-to-be
statements. There is no strict ought-to-do counterpart of this, since
OOa is ungrammatical. Interestingly, we can express mixed modali-
ties, as shown in [10b)]. It is not a theorem that if « is obligatory, then
it is ideal/desirable that it is obligatory: ¥ Oa — OO(a). However, if
we can prove the validity of Oc, then this is so in all possible states

of the world, so this is so in particular in the 1dea1/des1rable states of .
the world O(a) + 0(0(a)).

11la Read as a statement about ought-to-do, Oy — Oy is counterintuitive,
but read, as it should be, as a statement about states, it is harmless:
“If © is necessarily true, then it is true in all ideal/desirable states of
the world”. '

12 [12a] says that there is only one set of ideal/desirable states. If ¢ is
an ideal state, then it is in all states of the world the case that ¢ is an
ideal state. In other words, this theorem says that we cannot revise
our idea of what is ideal depending on the current state of the world.
A similar statement holds for obligatory actions.
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13-15 The bught-to-be theorems state that.if a state is ideal, then it nof

16

at the same time ideal/desirable that the state does not hold [13a]; in
other words, desires are consistent, because it will not be the case that
a state is desirable and undesirable at the same time [14a]; and yet
another way of saying this is that if a state is desirable, it is permitted
[15a]. A consequence of our reading of O as “desirable” is that we
must read P as “compatible with the desired state of affairs” or, more
briefly, as “compatible with our desires”. There are no analogous
statements for the ought-to-do case. It is very well possible to be
in an obligation to perform « as well as its complement; and if you
ought to do ¢, there may very well be reasons why « is forbidden at
the same time. The ought-to-be theorems [13-15] all follow from the
axiom O-V. In applications where we find the ought-to-be theorems
[13-15] not satisfied, we can just drop this axiom. Take for example a
robot that must work under adverse conditions. Later in this paper,
we will introduce more than one violation state, so that this possibility
can be modeled more realistically.

Due to our choice to take S5 for the O-modality, we also “gain” the
theorem -~Qp — O-0¢. '

Proof Since in S5 we have that - O¢ — 0OO. We have as an instance

that :

FO(mp A=V) - O0(mp A V),
and so, by the fact that ¢ — 1 entails - Oy — Oy, we obtain the
following derivation:

F Q(ﬁ(p AAV) - O0(—p A=V)V V)

F=0(-p — V) — O(-0(—p — Vivy)

F-O(—p = V) > O00O(-p - V) = V)

F-O(~p — V) > O0(0p — V)

=0 — O0-0¢p.

This means that our logic for ought-to-be satisfies what Chellas calls
“Deontic S5” or KD45. This is generally thought of as too strong a
system for obligation and is rejected on those grounds [Che80]. It is.
also not true in ADL, since Anderson takes KT for O instead of our
choice of S5, for which KT t/ Oy — OO, However, as we already ar-
gued in relation with [10], we are not interested in “meta-obligations”
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(obligations of obligations), and thus we do not regard [16] as a prob-
lem. In fact, [10] and [16] together, deontic S5, yields that (negations
of) obligations of (negations of) obligations can always be reduced
to (negations of) obligations, so that “meta-obligations” simply do
‘not enter the picture. Note, moreover, that (as in [10]) again we do
not have a counterpart of 16a for ought-to-do’s, nor is the formula
=0a — 0-Oa a theorem.

4 The relation between ought-to-be and ought-
to-do revisited: a formal appraisal

We are now in a position to go back to the attempted reductions of formulas
of ought-to-be to ought-to-do listed in section 2 and evaluate them by means -
of the formal semantics of the combined system presented in the previous
section. For each counterexample to a definition in section 2, we give a
model that corresponds to it. In addition, a number of reductions to which
we did not find counterexamples in section 2, will be proven valid in our
formal semantics.

We will use models where the set A is finite (and possibly reduced to
a single action), so that a first order analysis of ‘the deﬁmtlons is feasible
without greater comphca,tlons '

4.1 First attempt: there is an obligatory action that leads
to state p

Definition 11 A state is obligatory iff it is the result of an obh’gatory action
a. Formally, this is now expressed as: For all models M = (A, W, m, [c],
k=, opt) and for all w € W:

w }= Oy iff there is an action term o € A such that w = [oJp A Oa (1)

As we have pointed out in section 2.1, this formula lacks plausibility
when interpreted as a modelling of real situations, since 1™ assumes that
given any state of affairs there is at least one action for bringing it about
and 1 assumes that actions have a range that includes all possible worlds.
Our semantics can easily cope with both cases. To counter 17, we can think
of a model where Oy is everywhere the case but where nevertheless there is
not always an action for bringing about ¢. Take, e.g., the model M defined
as follows (figure 1):

22



(1) A={a,a};

(2) W= {wO’wlawZ};

(3) for all j and k, w; Rwg;

(4) lal(wo) = {w1,w2}:

(5) wo € [a](wo);

(6) wjE=(-p—V) for j=0...2;
(7) wo, w2 = ~¢, w1 = .

w2| w2 =g, o=V I

a
a % |w1i=tp,-'<p—>V|

wWo

wo = (mp — V)
wo =~

Figure 1: Counterexample to 17.

The model yields wy [ O(—p — V) — ([ofp A [@]V) for  is a and @ is
@, thus refuting 17,

As a counterexample to 1, consider the following model (figure 2).
(1) A={a,a};
(2) W={wy,...,ws}; ‘
(3) for all j and k, w;Rwy;
(4) la](wo) = {w1,w2};
(5) ws € [a](wo);
(6) w1 = ¢ and w; = ¢;
(7) ws=V;
(8) wo |=—p AV;
(9) wi,wa, w3 =—-p—V.

And, hence, we have that wo }~ ([alpA[a]V) — O(=p — V) and a refutation
of 1. ’
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[woECen-vy ]

Figure 2: Counterexample to 1.

4.2 Second attempt: all actions that lead to ¢ are obligatory

Definition 12 A state ¢ is obligatory iff all the actions that lead to the
state of affairs ¢ are obligatory: For all models M = (A, W, ,[a], =, opt)
and for allw € W:

w = Oy iff for all @ € A we have w |= [a]p — Oa (@2

In section 2.2, we had rejected the left to right implication (27). A
formal countermodel that substantiates this rejection is a model where, for
instance, we have a world wy € [@](wo) such that wy = -V, whereas the
truth conditions for Oy and [a]p are satisfied (figure 3). This corresponds

w| wmEe (poV) |

wo = (~p — V)
wo = -V )
wo =

Figure 3: Counterexample to 27. -

exactly to our informal counterargument in section 2.2: although by not
performing o (say not doing any deposit on one’s bank account) one stays
within a desirable state of affairs (i.e., not being in the red), one cannot
conclude from this that not depositing anything is obligatory! In the coun-
termodel we indeed have that Oy and [a]p, but not Oa (= [a]V).
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In section 2.2 we have already seen how the right to left implication
(2) may be rejected: simply take an action that does not lead to ¢ and
assume that ¢ is not desirable. Formally this may be represented as follows
(figure 4).

(1) A={a}

(2) W = {wo,ur};

(3) for all j and k, wjRwg;
(4) [al(wo) = {wr};

(5) wol=-pA .—'V;_

(6) wif=—e. :
This suffices for rejecting 2. Since no action leads to ¢, the right-hand

wo = (mpA2V) w1 = g

Figure 4: Counterexample to 2~ and 4.

side of the definition is satisfied, but the left-hand side is not true. (This
example uses the fact that there are no actions at all in the model that lead
to ¢, but this is not crucial.) ‘

4.3 Third attempt: it is forbidden to undo state ¢

Definition 13 A state is obligatory iff to undo it is forbidden: Formally,
this is now ezpressed as: For all models M = (A, W, 7, [a], |5, opt) and for
allwe W:

w = Ogp iff for all @ € A we have w |= [o]~¢ — Fa - 3)

The left to right implication (37) is derivable in every model for modal
logics having (O[a]) among their axioms.

Proposition 2 For any a € A (the universe of actions),

+0p - (lo]-¢ - Fa)
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Proof

1: Op

2: O(~p = V) '  from 1 by axiom (O)’
3: [of(—~p = V) from 2 by axiom (O[a])
4: [a]~p — [a]V ' from 3 by axiom (AK)

The proposition says that of a state of affairs is ideal, then any action that
leads to its negation is forbidden. It implies that for all a € A, for all
M = (A, W,n, o], =, opt) and for all w e W,

w = 0p — ([o]~¢ — Fo)

Let’s see what we can do with proposition 2. Let h be the state of affairs
“the holder of a season-ticket and the person who uses it are the same
person”, and lend be the action “ lending one’s season-ticket to someone
else for a travel”. Clearly, [lend]—h holds. Furthermore, suppose that & is
an obligatory state of affairs, i.e., Oh holds. Then, we have by proposition
2, the following.

Oh — Va ([o]-h — Fa)

Instantiating this, we get
Oh — ([lend]-h — F(lend))

By modus ponens and interdefinability of deontic operators (i.e., F' =
—P), we obtain ~P(lend), i.e., it is not permitted to lend one’s season tlcket
to someone else for travelling.

Looking at the other direction, we can again find a model in which the
right to left implication (3*7) is false. Simply modify the countermodel for
2 by requiring that w; = ¢ (figure 5). We get thus a world wg where the

. consequent O(—¢ — V) is false and the antecedent is true (because of the-
falsity of [a]—mp) so that 3 is falsified.

26



wo |= (e A V) wi e

Figure 5: Counterexample to 3~

4.4 Fourth aftempt: all actions necessary and sufficient to
reach state ¢ are obligatory

Definition 14 A state ¢ is obligatory iff all the necessary and sufficient
actions that lead to it are obligatory as well. Formally, for all models M =
(A, W, r, [a], =, opt) and for allw € W:

w = Oy iff for all actions a € A we have w l= (a~ @) = Oa

This definition, though closely resembling 12, requires that given O,
for Oa to hold besides [a]p we should also have [@—¢. This yields that in
worlds belonging to the set [@](wp), violation V is always the case. This
explains why the left to right implication is always true in our semantics.

More formally:

Proposition 3 For any a € A,

FO0p = ((a~ ¢) = Oa)

Proof
1: Op ]
2: O(~p —= V) . from -1 by axiom (0)
3: [@j(—p — V) from 2 by axiom (O[¢])
4: [@]~¢ — [a]V from 3 by axiom (AK)
5: ([@]~¢ — [@V) — (([e]e A [@~y) — [@V) by propositional logic
6: ([o]p A [@]-) — [@V from 4, 5 by modus ponens
[ |
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An apparently counterintuive example application of this proposition is the
following. In an ideal state of affairs, John is rich. The only action in the
considered universe of actions that will make John rich is killing and robbing
his neighbour. Therefore, John must kill and rob his neighbour. Wih respect
to the fixed universe of possible actions available to John, this is indeed a
valid deduction. Of course, the conflict with intuition arises because on
moral grounds, we refuse to restrict ourselves to such a (brutally) limited
universe of possible actions. In the kind of application of the logic that we
have in mind, the specification of the behavior of computer systems, or of
the real world as reglstered or controlled by computer systems, it is true
that the system indeed does have a restricted universe of possible actions at
its disposal.

The inverse of the implication in the proposition is, of course, false. Just
take the countermodel for 2.

5 Application to normative system specification

5.1 Specification of the bank account example

We now return to the bank account example mentioned in the introduction.
We assume in this example that we can use integer arithmetic. Although
we have left this open until now, we can simply assume that first-order logic
with equality is part of our language, and that an equational theory of the
~integers has been spe(éiﬁed in this language. The theory of how this can be
done is standard [EM85]. Now, let b be a variable whose value is the balance
of an account, w(m) be the action “withdraw at least m from the account”,
and d(m) be the action “deposit at least m on the account”, and let n
and m be constants. In terms of our theory of actions, we take as atomic
action names the set A = {w;,w,,...,dy,d;,ds,. ..} and the corresponding
set of actions A = {wy,ws,...,dod;,dy,...}. Intuitively, w; is the action of
withdrawing exactly ¢ from the account, and d; is the action of depositing
exactly 7 on the account. Now the action term w(m) can be defined as a
choice Wm + wm41 + + -+, which we will write as f]:z—,;w_m This formalizes
the meaning “withdraw at least m from the account”. Analogously, d(m) is
defined as X>mdm. Following our approach of section 3, the step semantics
of the atomic action terms w; and d; is deﬁned as follows

o [wilg={SCA|weS)
e [l ={SCA|dieS}
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The effcts of the events w; and d; are given as follows: If n(b,u) = n (the
balance in state u is n), then we have

e ef f(w;)(u) = with n(b,u') =n -1,
o ef f(d;)(u) = v’ with 7(b,u') = n +1.

We know that when we are interested in the state-transition semantics of
action terms, it is sufficient to consider compatible steps only. It is easy
to see that the only compatible steps in our present universe of actions
are singleton steps of the form [w;] and [d;]. Determination of the state-
transition semantics of action terms w(m), d(m), w(m) and d(m) is now
easy: '

o fwm)](w)=efF([D wal)(w)

n>m

= ef (U [wal)(w)

n>m

U ef f(lwnl)(w)

n>m

U ef f{lwal})(w)

n>m

o [dm)](w)="J ef f([du])(x)

n>m

= U eff{ldal)(w)

n>m

o [B0m)|(w)= ef f(STEPS \ w(m))(u)

=eff(STEPS\ [} wal)(x)

n>m
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= eff(STEPS\ | [wal)(u)

n>m

= ef f([) STEPS \ [wa])(w)

n>m

ef £ {fwal} u U {ld})(w)

n<m >0

n<m >0

U ef f{lwal(@) U Uef f {1} (w).

This says that the negation of “withdraw at least m” is to withdraw

less than m or deposit anything.

o [dm)(w) = U ef f{[dalP) (@)U Jef f({[wi]})(u). This says that the

n<m i>1

negation of “deposit at least m” is to deposit less than n or withdraw

anything.

Combined with the idea that a world with b < 0 is non-ideal, we may
specify our informal constraints by means of the following axioms, which

are validated by the above semantics.
O(b>0)
(b=nAm>0)— [wim)](b<n-—m)
(b=nAm>0) - [wm)](b>n—m)

(b=nAm>0) = [dm)]b>n+m)

(b=nAm>0)— [dm)](b < n+m)

(1)
(2)
3)
(4)
(5)

Note that d(m) is defined as a deposit of at least m, but possibly more.
Thus, a deposit of 10 Guilders is also a deposit of 5 Guilders — in both cases,
we have a deposit of at least 5 Guilders. Similarly, w(m) is a withdrawal
of at most m. A consequence of these formalizations is that O(d(m)) is the
obligation to deposit at least m. This will play an important role in the -
proofs later. These formalizations are straightforward in this example. In

general we may consider other choices.

We can now prove one of the results listed in the introduction as desired,

viz. that if the balance is negative, it is forbidden to withdraw money.

30



Proposition 4 Let n,m > 0, then (1) + (2) imply the following formula.
(b=nAn-m<0)— F(w(m))

Proof

1: (b=nAn—m<0)— [wim)](b<n-m) from axiom (2) of the specification

2: (b=nAn-m<0)— [wim)](b<0) * from 1

3: (b=nAn - m < 0) — [w(m)];‘(b > 0) from 2

4.: O(=(>0)—-V) ' (*) from axiom (1) of the specification

. and Axiom (O)

5 [w(m)](=(b20)—-V) from 4 by Axiom (DO[a])
6: [w(m)](=(b 2 0)) — [w(m)]V ~ from 5 by Axiom (K),
7 (b=nAn-m<0)— [wm)V from 3,6 by double MP
8 (b=nAn—m<0)— F(wim)) from Def. 8

In addition, we can prove that if an account has a negative balance, it
'is obligatory to deposit an amount that is sufficient to make it non-negative
again.

Proposition 5 , ' R
(b=nAn<0)— O(d(—n))
Proof

Li(b=nA-n20)— [d(-n)](b <n+(-n)) from axiom (5) of the specification
2:0(—~(b>0) - V) from axiom (lA) of the specification

and Axiom (O)

3:[d(—n)](~(b>0) - V) from 2 by Axiom (O[a])
4:[d(—n)}(=(b > 0)) — [d(—n)]V from 3 by axiom K
5:(b=nA—n > 0) = [d(-n)]V from 1, 4 by MP
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We may now wonder whether it is obligatory or permitted to deposit
more than simply —n if the balance is —n. Somewhat surprisingly, neither
the obligation nor the permission to deposit more than necessary can be
derived in the current system. First, look at the following formula:

VbznAn<OAm>—n—>O(d(m)) (7a)

The derivation of the formuIa is blocked because we can only derive b =

nAn<0Am>—n— [d(m)](b < n+m), and from this we cannot derive
b=nAn<0Am>—n— [d{m)](b < 0), since from b < n 4+ m it does not
follow that b < 0 (even though n + m > 0). Hence, we cannot apply axiom
(1) of the specification in order to conclude O(d(m)). :

As an aside, we may remark that also the negation of the obligation

cannot be derived. Thus, the following formula cannot be proved either:
(b=nAn < 0) = =0(d(m)) : (7b)

We shall show this in the next section in a slightly refined setting.
Turning to permission, we note that the following formula cannot be
proved:
b=nAn<0Am>—n— P(d(m)) (7¢)

In order to derive this formula, we would have to make two extra assump-
tions, O(d(m))T and Op « O(-p « V). The former is required in order
to express that depositing is always possible and is not controversial. The
latter is required since we need —(b > 0) to be not only a sufficient condition
for the obtaining of the violation (as (*) states in proposition 4) but also a
necessary one. Since V signalizes a generic violation, it would be incorrect,
given V, to assert that this or that particular norm has been violated. For
this purpose, we need a refinement of our formalization. We give such a
refinement in the following section.

5.2 Refinement of the logic

The refinement concerns the formalization of the violation atom and con-
sequently of deontic formulas. In particular, we will relate a norm and its
violation to a certain piece of legislation where the norm is considered.

We divide the space of norms in classes, the typical representant of which
is 1. We say that two norms are of the same type ¢ if and only if their
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violations have both the form V;. The index ¢ refers to a piece of legislation,
such as a paragraph of a code of laws, which we do not specify further. We
thus specialize the idea of violation to the idea of violation of a part of the
law. Here another advantage of speaking of violation rather than of sanction
shows itself. In the case where we would interpret V as “sanction” we would
have assumed that the piece ¢ of legislation had mentioned sanctions for the
trespassing of the relevant norms. Now that we interpret V as violation,
such an assumption is not necessary.

The reason for adopting this device is more of conceptual than technical
character. As we have already pointed out earlier, until now we have spoken
of violation in a very general way. When we speak of nonfulfilment of a
norm we say that the whole normative system to which the norm belongs
has been violated. This is so only by way of approximation, since we know
exactly where the violation has arisen. We indicate this by the atom V;
but in addition keep our general atom V', which still has the meaning “a
violation has occurred”. Obviously, violation of a particular norm implies
what we might call a generic violation of the normative system to which that
particular norm belongs. Thus, in the system introduced below, we have

® - uov

We achieve this by defining V as the (finite) disjunction of all violations that
can take place within a given normative system.

Definition 15 Let i € IN refer to a generic piece of legislation in a given
normative system S. We define the following

V =get W; Vi

Note that under this rewriting of violation, for every norm (obligations
and prohibitions) of type ¢, we have a permission of the same type. This
depends upon the validity in our logic of the equivalence O(-p — V;) =
—O(=pA=V;). This implies that the piece of legislation to which 7 refers has
to be interpreted as stating both which norms fall under ought-to-be and
which under ought-to-do, and also what is permitted (or compatible) with
these norms.

The introduction of a ﬂa,gged violation atom requires a minor change in
the deontic axioms of our system.

Axioms 5.1
Fip-Op—V) ' (Fs)
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Oip < O(—p = V;) (0i)

Pip & =Fip (Pi)
Fia & [o]V; ‘ (Fy)
Oia & [@)V; (G)
Pa o ~Fa (®;)

Proposition 6 In PDeLAM with flagged violations, we have the following
(non)theorems.

1. - F(V)
2. F(V;)
3. Y F(V)

We cannot derive F;(V') because we cannot derive O(V; — V;) for i # j.
Using flagged violations, we can still derive propositions 4 and 5, but now
in a more informative way. If we replace axiom (1) with O;(b > 0), then we
can prove that under certain conditions, we have Fj(w(m)) (i.e. withdrawal
of m would cause a violation of axiom (1)) and that under other conditions,
we have O (d(—n)) (i.e. depositing of —n is obligatory under rule (1)).

We now turn to the derivation of (7c), which says that it is permitted
to deposit more than is necessary to make a balance positive:

b=nAn<0Am>—n-—>13(d(m)) - (7c)

On assumption we need for this is that if ¢ is obligatory, then O(-p < V).

“As stated earlier, this cannot be true for the general violation atom V. We
now note that, by contrast, for particular violations V;, this is a plausible
assumption. We now define an obligation operator that éays the —¢ is the
only way in which the violation flag V; can be raised. '

Definition 16

Olp def O(-p « V;)

(2

The specification of bank account behavior is now changed by replacing
(1) by

Oi(b > 0) (1)
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‘We also add the intuitively plausible axiom that money can always be de-
posited (m >0):

O(d(m))T 9)

More precisely, this formula states that in any world it is possible to
perform an action d(m), i.e. it is always possible to deposit some amount .
m > 0. This is obvious, but here we see the need for specifying this explicitly.
Now we can prove formula (7). -

Proposition 7 Let m > —n,

b=nAn<0— B(dm)) o
Proof
1: O(b > 0« ~V;) from Def. 16 and (1’)
2:b=nAn<0— [dm)](>0) from axiom (4) of the specification
3:b=nAn<0- [dm)]V; from 1,2 by Axiom (Ofa})
4: b=nAn<0- (dm))-V; from 3 by (9) '

Note how we are forced to make all assumptions explicit when we formalize
the specification of bank account behavior.
We conclude with a few remarks about the non-derivability of formula

(b=nAn<0Am>—n)— -0;(d(m)) (7b)

In order to prove this §ve should be able to prove the following (simply apply
axiom 5.1). ‘
(b=nAn<0AmM> —n)— (d(m))(b=0) (10)

We only know that [d(m)](b < n + m) holds (with n +m > 0), that is to
say that by not-depositing m we get into a state (world) where the balance .
b is less than some positive number. However, to derive (10), we need to
know whether (d(m))b > 0, i.e. despositing m may result in a state where
the balance is positive. This does not follow from the previous assertion:
[d(m)]b < n + m allows for the situation where after performing d(m) the
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balance is negative in all cases. Of course, this situation is not true in
this particular case. In order to make this explicit, we must refine our
specification with the following axioms:

b=nAm>0— (dm))(b=k), forallk>n+m
b=nAm>0—{dm))(b=k), forall k <n-+m.

These are clearly valid with respect to-our semantics, as the reader may
verify him/herself. Now we have sufficierit information to derive what we
want to derive. The second axiom gives us what we need to derive (10).
Again this need for additional specifications is not really surprising. We
should simply be aware that when we give a specification of constraints
originally expressed by means of natural language formulations, we may
easily forget a good deal of the assumptions implicit in the use of those
formulations.

6 Discussion and conclusion’

We have shown that the distinction between ought-to-do and ought-to-be is
relevant for at least some kinds of system specification and that a few can-

didates for playing the role of link between the two notions are intuitively

not valid. However, by maintaining a certain degree of generality and using
Anderson’s and Meyer’s reduction for ought-to-be and ought-to-do, respec-

tively, to an alethic modal (dynamic)’logic, we have seen that it is possible

to express both kinds of norms in one integrated system without reducing
one of them to the other. In the integrated system, no specific relations

between them are assumed other than those that follow immediately from
both reductions to alethic modal logic. We also presented a refinement of
the system, in which violations are indexed by the piece of legislation that is
violated, and in which we assume an equlvalence between the non-occurrence

of an obligatory state and the corresponding violation state.

In both integrated systems, without and with flagged violation states,
the notions of ought-to-do and ought-to-be remain rather less intrinsically
(logically) related than one might expect. The only relations that do hold
follow from Anderson’s and Meyer’s reductions to an alethic modal logic in
which a violation atom plays a prominent role, since the proposed equiv-
alential definitions are only partially valid in our system. In this sense the
relation between ought-to-be and ought-to-do remains rather extensional.
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We have used a formalism that heavily abstracts from what happens in .
real-life situations. Our system is a very general one that can cover many
concrete cases. This results in having less valid assertions about the relation-
ship between ought-to-be and ought-to-do. For example, our formalization
of the intuitive counterexamples to the definitions that reduce ought-to-be to
ought-to-do hinge on the non-availability of certain actions. In applications
where this non-availability is impossible — where all actions can always be
performed, for example — these counterexamples are not realistic. In such
applications, one of the reductions of ought-to-be to ought-to-do may be very
well be valid, even though in different contexts there are counterexamples
to it. If we restrict ourselves to such applications, we may safely add one
of the reductions we discussed in this paper without fear of inconsistency.
Our logic can thus be viewed as a basic platform on which more specific
structure can be built to specify concrete situations.

Like all logics, PDeLAM has its limitations. A number of important
issues from deontic logic remain unresolved in PDeLAM, We review some’
of these in the following paragraphs.

6.1 Conflict of duties

Consider the following example.

Suppose you are in a situation where you ought to pay a debt
but you have not enough money on your bank account to pay it.
Of course, if you pay the debt, then you are in the red (¢) but
even if paying the debt is obligatory, being in the red cannot be
desirable; in fact, it is not at all. - '

Here we see a conflict between the obligation to pay a debt and that of
being not in the red on a bank account. A kind of priority of obligations is
" needed in order to solve this conflict. This is related to a well-known topic
in the area of Al and Law, viz. of defeasible reasoning and inconsistency
handling. We do not deal with this issue in this paper.

6.2 Derived consequences of obligatory actions need not be
obligatory '

Another situation that PDeLAM is not fit to deal with consists of obligations
that imply states of affairs having not desirable consequences. Consider, e.g.,
a case as follows: doing an action « or not doing it spans the whole space of
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possible worlds (i.e., a+@ is equal to the universal action having all possible
worlds as its range); performing « necessarily results in a state of affairs ¢.
Action « is obligatory but still the result ¢ is not a desirable state of affairs.

Proposition 8 In a model where each state is reachable by o or @, we have
[a]e A Oa — Oep.

Proof

L: [a]p

2 [d(mp—-V) ‘ from 1 by modal reasoning

3: Oa

4: [@lv ' from 3 by axiom (0)

5: [@](~¢ — V) ; ' from 4 by modal reasoning

6: [a+ 6](—«,0-—-? V) . from 2,5 by dynamic logic

7: D(’—Kp - V) : from 6 by the universality
a.ssumpt‘ion fora+a

8: Oy : | from 7 by axiom (O)

A concrete example of this situation might be the following (aésuming that
fasten or not fasten the seat belts is universal in the sense given above):

Let ¢ be the state in which we have restricted freedom of move-
ment when seated in a car. There is an obligatory action, viz.
fastening your seatbelts, that leads to ¢, but from this we do
not want to conclude that ¢ is obligated. We have here a conse-
quence of fastening the seat belts that is somehow not considered
desirable. ‘

6.3 Conditional obligations

Another aspect we mentioned already in earlier counterexamples is that
obligations to do something often are conditional upon certain facts, e.g.,
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fastening the seat belts upon driving a car. This is, of course, not considered
in the definitions given above (see the short remark in section 4.2).

Viewed logically, however, the most important difficulty in our system
is that relevant relations among the occurrence of certain facts and the
holding of certain norms are simply neglected. The formula Oy — ([a]-p —
F‘a), which is provable in our system, should be understood as a sort of
justification: as a justification of saying that « is forbidden, we may argue
that a undoes a desirable state. However, our system works with material
implication, so that the above formula merely says that Oy is a sufficient
condition for the truth of [a]—~¢ — Fo. This is too weak to let Oy function
as part of a justification of Fa.

Because of the shortcomings discussed above, we might look at still other
ways to integrate ought-to-do and ought-to-be modalities. Firstly, we might
strenghten the relation between actions and state of affairs, for instance,
in the direction pointed out by Segerberg in [Seg89], explaining actions in
terms of “bringing it about that ...”. Secondly, as pointed out above, we
might opt for an implication connective different from material implication.
We plan to look at some of these possibilities in the future.
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