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1 Introduction

Deontic logic is the logic to reason about ideal and
actual behaviour. Besides the traditional role as an
underlying logic for law and ethics (for a survey see
[MW]), in the realm of computer science, deontic
logic has been proposed as a logic for the specification
of legal expert systems [BMT87],[Sta80], authorization
mechanisms [ML85), decision support systems [KL88],
[Lee88b],[Lec88a], database security rules [GMP89],
fault—tolerant software [KM87], [Coe], and database in-
tegrity constraints{ WMW89], [WWMD91]. A survey of
applications can be found in [WM]. In all these areas,
we must be able to reason about the difference between
ideal and actual behaviour. In many cases, it is impor-
tant to distinguish ought—to—do statements (which express
imperatives of the form “an actor ought to perform an ac-
tion”) from ought—to—be statements (which express a de-
sired state of affairs without necessarily mentioning actors
and actions that have a relation with that state of affairs).
There are situations where we would like to relate the two
oughts with each other. For example, suppose we want to
specify deontic integrity constraints for a bank data base.
From the ought—to—be constraint

(1.) The balance of a bank account must be
non-negative

we would like to conclude the ought-to—do statement

(2.) If the balance of a bank account is n and
n — m < 0, then it is forbidden to withdraw m
from the account.

In addition, we would like to be able to express

(3.) If the balance of a bank account is n and
n < 0, then an action deposit(—n) ought to be
performed.

*also at the Katholieke Universiteit Nijmegen
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In most systems of deontic logic, the derivation (1.) - (2.)
cannot be made and norm (3.) cannot be expressed.

In standard deontic logic (SDL) [Han71], norms are
expressed by applying a sentential operator O to sentence
letters p. Now, Op cannot be read as “p ought to be done”,
for then p would not be a sentential letter. In

(4.) deposit(m) ought to be done

deposit(m) is not a sentence. So Op must be read as an
ought—to—be statement, as in

(5.) that (balance > 0) ought to be.

So the reason why in SDL we cannot get from the ought-
to—be statement (1.) to the ought—to—do statement (2.) or
to express the ought—to—do statement (3.) is that in SDL
we cannot talk about actions.

The distinction between ought-to—be and ought—to—do
is not only a matter of syntax, as the opinions of sev-
eral philosophers clearly show. Castafieda, for instance,
asserts that

Deontic statements divide neatly into: (i) those that
involve agents and actions and support imperatives,
and (ii) those that involve states of affairs and are
agentless and have by themselves nothing to do with
imperatives. The former belong to what used to be
called the Ought—to—do and the latter to the Ought—
to-be. ([Cas70], 452)

Castaiieda’s distinction may be easily interpreted as a
rejection of SDL as a logic of normative concepts. A rad-
ical position in this sense has been assumed by P. Geach:

obligation essentially relates to an agent, it is some-
body’s obligation; if instead we try to think of the
ought—to-be-ness, Sein—sollen, of a situation involv-
ing the agent, then our thinking is going to be con-
fused; our mental vision, so to say, is prevented from
coming to a proper focus. ([Gea81], 2-3).



Geach tries accordingly to show that ought—to—be state-
ments are to be understood as ought—to—do ones!:

“There ought to be a law against smoking in buses’
(if the speaker is really thinking) will mean that the
predicable ‘— ought to make a law against smoking
in buses’ is true of some person or persons. ([Gea81],
4)

Similar ideas seem to have been already defended by W.
D. Ross and before him by A. Prichard®

Other authors, e.g., von Wright, defend a more moderate
position. Instead of eliminating one of the two terms of the
question, as Geach does, they assign to the ought—to—be an
autonomous sphere of meaning: we quote from [vW63]

There is, however, a group of norms which are im-
mediately concerned, not with action, but with things
that ought to or may or must not be. German writers
sometimes make a distinction between Tunsollen and
Seinsollen. [...] Following G.E. Moore, I shall call
norms which are concerned with being rather than
with doing, ideal rules. 1deal rules are referred to, for
example, when we say that a man ought to be gener-
ous, truthful, just, temperate, etc., and also when we
say that a soldier in the army should be brave, hardy,
and disciplined; a schoolmaster patient with chiidren,
firm and understanding; a watchman alert, observant,
and resolute; and so forth. [...] Ideal rules are closely
connected with the concept of goodness. [...] The
features which ideal rules require to be present in
good members of a class or kind of human beings can
be termed the virtues characteristic of men of that
class or kind. ([vW63], 13-14).

For certain aspects, Von Wright’s conception has al-
ready been maintained since the beginning of this cen-
tury by the phenomenological school (Brentano, Husserl,
Meinong and Mally) and reached its highpoint with
Scheler and Hartmann, who grounded ought-to—do upon
ought-to—be (a conclusion opposite to Geach’s one). Ac-
cording to these authors, not only SDL would not be a logic
of the ought—to—do but also it could not express ought—
to-be statements adequately for reasoning about what is
good and bad. The main reason is that speaking of bad
and good does not seem 1o require any notion of necessity
at all differently from what is implicit assumption in SDL.
This might better be used to reason about possible (moral
or not moral) worlds. Of course, this means also that SDL
is inadequate for representing moral norms.

However, this is no real drawback for our purposes.
For us, SDL is useful for describing desiderable states of
affairs devoid of any moral content. We are indeed going

!For a critical appraisal of Geach’s paper see [Gar86]
2Cfr. [Gar86), 276 n22. The paper of Prichard can also be found in
[SH70), 86-96.
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to use it for expressing more prosaic things like static
deontic constraints such as (1.), where the deontic operator
expresses an “ideal” necessity but no moral attitude at all
(i.e., we will indeed consider a particular kind of alethic
modalities, those that satisfy axiom D).

But we also need to extend SDL to deal with dynamic
deontic contraints like (2.) and (3.), this will be done by
using propositional dynamic logic.

We first briefly review Anderson’s reduction of ought
to be staterments to alethic ones and successively Meyer’s
reduction of ought to do statements to dynamic ones. In
the last sections we will show how by making use of both
reductions it is possible to solve the expressivity problems
sketched in the first part of this introduction.

2 Anderson reduction of ought-to—be
sentences to alethic modal ones

The deontic system Anderson considers in [And67] is von
Wright’s system M without the T-axiom (i.e., Op — p), in
the classification of Lemmon [Seg77] and Chellas [Che80]
it is called D and KD, respectively.

Anderson’s reduction may be seen as a kind of Daw-
son’s modelling [Daw59] for SDL in which O—sentences
are interpreted by means of T-formulas of the form
O(-p — V), where V is a propositional constant in-
terpreted by Anderson rather freely as either expressing
some form of sanction or a bad thing or also as stating
that “things go wrong”. Thus, Anderson reduction of Op
has to be read as “necessarily, -p implies a sanction (that
things go wrong)”. V is subject to three conditions:

1) ¢~V is assumed (or proved) valid
2) -V cannot be proved valid
3) V cannot be proved valid

Viewed model-theoretically, models for the deontic
system are just a special kind of models for modal sen-
tences. The nature of these models can be shown in a
rather straightforward way. Let L represent a logical con-
tradiction. In propositional calculus (PC) we can prove
that for every p it holds true that

p=(-p— 1)

In every normal modal system this involves also the
truth of
Op = 0(-p— 1).

As it should be apparent, we have here an analogon of An-
derson’s reduction where V is replaced by a contradiction®.

3This also represents the classical view about necessity according
to which what is necessary is by definition contrary to what implies
contradiction.



Intuitively, contradiction can be seen as a sort of logical
“things go wrong” in the sense that if p is necessarily true
then assuming it false involves a sort of logical breakdown.
The same piece of reasoning may however be applied to
the deontic case: if the state of affairs p ought to be, then
if it were not the case, something would go deontically
wrong. In other words, “things go wrong” (deontically) is
a sort of deontic contradiction. Of course, it is much less
strong qua logical nature than an alethic one, since we can-
not prove it to be a contradiction (condition 2 above). A
logical contradiction is moreover false in every accessible
possible world, so that

O-L

is derivable in every normal system. It is now evident that
necessity operators may be deontically interpreted only
where V is false. That is, if we define Op as O(—p — V),
then a sufficient condition forw = Op =Op is

Vw'(wRw' = w* | -V).

This explains why we cannot in general consider O and O
as representing the same notion of necessity.

We will deviate from Anderson’s formulation at least in
one important aspect. We have seen that he interprets V' in
terms of sanction or in terms of an unspecified bad thing.
We propose a more specific reading in terms of “viola-
tion”. We read Op as “necessarily, —p implies violation
of the normative system to which Op belongs”, where
with normative system we simply intend a set of deontic
constraints, thus not necessarily (or preferably not) moral
norms. There are principally two reasons that justify our
reading of V'

1. It avoids the counterintuitive readings of a few
derivations of SDL. These readings are counter-
intuitive when V is interpretated as sanction (cfr.
[Cas60]). Consider, for example, O(V — V) and
Pp = O(pA-V). The former formula means in An-
derson’s system “sanctions are forbidden” and this is
evidently counterintuitive. For the latter, consider
the following example taken from [Cas60}, 46:

Let V, i.e. the sanction mentioned in the Penal
Code, be ‘you will be put in jail for 10 years’;
and p be ‘you will be put in jail for 9 years’.
Clearly, it is logically possible to put you in
jail for 9, but not 10 years. Thus, it follows
logically that it is permitted to put you in jail
for 9 years — without ado!

2. Our reading offers an almost tautological and there-
fore scarcely objectionable reading of deontic formu-
las: if I do not fulfil a norm, then I violate it, or if p
is not the case, then the relevant constraint has been
violated.
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3 Reduction of ought-to—do sen-
tences to dynamic ones

Inspired by Anderson’s not so satisfactory (wrt ought—to—
do) reduction to alethic modal logic, and after analyzing
the reason why it failed, Meyer [Mey88] proposed another
reduction, in this case to propositional dynamic logic. A
consequence of the use of dynamic logic is the distinction
between propositions (assertions) and actions (practitions,
cf. [Cas81]). Meyer’s reduction uses Anderson’s viola-
tion atom V to indicate that an action has occurred that
violates one of the deontic constraints.

(Propositional) Dynamic Logic (PDL, cf. [Har84]) con-
sists of the normal propositional language, extended with
modal operator [a] for every action a in the language.
These actions are either atomic (primitive) or composed
by means of operators. An expression [a]¢ is read as
“the performance (execution) of the action « leads nec-
essarily to a state (possible world) in which ¢ holds”. In
this approach, a is forbidden (¥'a), permitted (Pa), and
obligated (Oa) are reduced to dynamic expressions as
follows:

Definition 3.1
Fa=[aV (1)
Pa=-Fa(=(a)-V) (2)
Oa = Fa(=[a]V) 3)

Here for the reduction of the obligation operator 0, we
employed the negation of an action a, denoted @, ex-
pressing refraining from the perfomance of a. The con-
cept of action negation is discussed in [Mey89], [DM90]
and [WM91].

The formal semantics is given by means of a Kripke
structure where there are accessibility relations R, asso-
ciated with each action a. In particular, PDL is character-
ized by irrreflexive frames of possible worlds.

Definition 3.2 A model M for PDL is given by M =
(p*(4), W, [a]R, )

where p* (A) represents the power set of sets of actions,
W a set of possible worlds, [a] g a function that associates
to action a and world w, the set of possible worlds to which
the performance of a leads, and |= the usual truth-relation
between worlds and sentences.

The truth—definitions for dynamic formulas are as fol-
lows:

Definition 3.3
wi(a)p iff Vu'(w' € [a]r(w) = v = ¢)

Le., sentence [a]@ is true in w iff ¢ holds true in every
world accessible from w by performing .



The approach of reducing standard deontic logic to dy-
namic logic has the advantage of allowing integration of
static deontic constraints (Seinsollen or ought—to-be sen-
tences) with dynamic deontic constraints (Tunsollen or
ought-to—do sentences). This will be the subject of the
following section.

4 Axiomatization
The system we are going to assume as basic is character-

ized as a mixed modal-dynamic logic with the following
axioms

Axiom 4.1
O(p — ¢) — (Op — Og) K
Op—p T
-Op — O-0Op 5
oV D
[e)(p — @) — ([e]p — [a]g) AK

The rules are, as usual, necessitation for both operators
(N and [N], respectively) and modus ponens (MP).

5 From ought-to—be to ought-to—do

The integration requires no particular technical step be-
sides the definition of modal and dynamic ought in terms of
Anderson and Meyer reduction, respectively. For modal
fomulas we will adopt a S5—semantics adapted in order to
cope with axiom ©—V* and retain the standard semantics
of PDL for dynamic formulas.

We consider the formal counterpart of the example pre-
sented in the introduction.

Let b means “balance”, w(m) “withdraw at least m
from the account”, and d(m) “deposit at least m on the
account”, where b is a variable, n and m constants,

We make use of the following

Definition 5.1
Fp=0D(p—-V) (a)
Op=0(-p— V) (b)
and of axioms of arithmetic.

We have a specification consisting of the following con-
straints:

4See [Aqv88), 107-113, for details.

51

Specification 5.2
O(b > 0) (1)
(b=nAm20)—>[wm)(b<n-m) (2)
(b=nAm>0)—[Wm)b>n-m) (3)
(b=nAm2>0)—[dm)](b2n+m) (4)

(b=nAm20)-[dm)b<n+m) (5

Note that we interpret not-withdrawal (m) as a with-
drawal of less than m (including depositing any amount
of money). This is a choice that is straightforward in this
example. In general we may consider other choices.

Let n,m > 0. We have to show that (1) + (2) seman-
tically imply

Proposition 5.3
(b=nAn-—m<0)— F(w(m))
Proof
(b=nAn-m<0)—
= [w(m)l(b < n—m)
from Specif. 5.2.2
(b=nAn—-m<0)— [w(m)(b<0)
(b=nAn—-m<0)— [w(m)]~(b>0)
O(=(62 0) = V)
from Specif. 5.2.1 and Def. 5.1b
(b=nAn-m<0)— [wm)V
we will refer to this formula as (6)
(b=nAn-m<0)— F(wm))

from Def. 3.1.1
[ |

In addition, we can derive the constraint about undoing
the negative account balance

Proposition 5.4
(b=nAn <0)— O(d(—n))
Proof
(b=nA-n>0)-[d(-n)](b < n+(-n))
from Specif. 5.2.5
O(=(20)-V)
from Specif. 5.2.1 and Def. 5.1b

(b=nA-n>0)— [{(=m)V



We may now wonder whether with negative balance it
is obligatory or permitted to deposit more than not simply
—n. Let’s begin with permission.

Let m > —n. Does the following formula hold?

b=nAn<0— P(dm)) (7)

Perhaps somewhat surprisingly it does not without the
addition of more information.

We have to make a few assumptions, one of which is
not plausible without notions that we will present in the
following section about refinement (cfr. As. 6.10 and As.
6.11).

Furthermore, we cannot derive the following

=nAn<0- [dm)](b<n+m)

This blocks the derivation of O(d(m)). The reason is,
of course, that from b < n + m we now cannot infer that
b < 0 and, hence, we cannot apply Specif. 5.2.1 in order
to conclude O(d(m)). This is as one may expect. But,
rather surprisingly, we cannot infer

(b=nAn <0)— -0(d(m))

cither. After the refinement of the following section, we
shall show how this can be repaired.

6 Refinement

The refinement concerns the formalization of the violation
atom. The main idea is that of indexing atoms. In par-
ticular, we will consider two different form of indexing.
The first one relates a norm and the relative violation to a
certain piece of legislation where the norm is considered.
The second one considers violation with relation to the
norm that has been violated.

6.1 Refinement I

We divide the space of norms in classes the typical repre-
sentant of which is ¢. We say that two norms are of the
same type ¢ if and only if the relative violations have both
the form V. As already pointed out, index % refers to a
piece of legislation, which we do not specify further, for
instance, a paragraph of a code of laws.

The reason for adopting such device is more of concep-
tual than technical character. We can indeed easily show
that derivation of Prop. 5.3 has not to be altered in order to
cope with the indexed violation. The justification of our
choice is hence to be sought elsewhere. In reduced SDL,
we speak of violation in a very general way, that is, when
we speaking of non fulfilment of a norm we say that the
whole normative system to which the norm belongs has
been violated. This is so only by way of approximation,
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since we know exactly where the violation has arisen. So
that relating the violation to the relevant legal trespassing
seems more adherent to the reality than not making use of
an all-purpose violation atom.

Note that under this rewriting of violation, for ev-
ery norm (obligations and prohibitions) of type i, we
have a permission of the same type. This depends
upon the validity in reduced SDL of the equivalence
O(=p — V;) = =O(-p A -=V;). This implies that the
piece of legislation to which 4 refers not only have to
state what norms fall under ought—to—be and what under
ought—to—do, but also what is permitted (or compatible)
with these norms.

This is not the only shortcoming from which indexing
suffers. The real problem is exactly that both ought—to—do
and ought—to—be have to be contemplated in the same, say,
paragraph of the code and possibly to be put in relation.
This device does not explain why the same piece of legal
text can put “it ought to be that p” and “it ought to be
brought about that p” in relation, without maintaining that
the text indeed refer to both ought to do and ought to be,
and thus that either the lawgiver has issued two different
norms under the same paragraph or he has assumed the
existence of a criterion for relating them. But whether
the latter exists and how it works is exactly what we are
interested in. That is in short why we may not be satisfied
with this kind of indexing.

6.2 Refinement II

Instead of relating violations to the norms of which they are
violation by mentioning the relevant piece of law where
the norm is printed, we may choose the straightforward so-
lution of associating the violation to its related norm. That
is, we propose to distinguish violation states according
to the cause of the violation, i.e., if a is obligatory (Oa),
then we say that refraining from performing a leads to a
violation of Oa. We represent this violation by the atom
Voo Where Oa is called a violation flag.

An important reason for adopting this device is that it
provides the possibility to undo the violation. Since we
would not want to undo a violation caused by withdrawing
too much money from an account by, say, returning an
overdue book to the library, we refine V so that it indicates
the cause of the violation and consequentely the way in
which the violation is to be undone.

Using flagged violations, applying Meyer reduction to
Prop. 5.3 would have yielded

(b=nAn—-m<0) = Wm)Veuemy  (6)

Now, (6’) is different from (6) since in the latter the vio-
lation refers to Specification 5.2.1:

(b=nAn-m<0)—[w(m)]Vor>p (6)



In order to derive Prop. 5.3 from specifications (1) +
(2), we have to relate the two violation in a plausible way.

Firstly, we adopt Segerberg’s 6~operator (cf. [Seg89])
to express consequences of actions. We simply recall the
intuitive meaning of this operator:

8p = “a choice from all actions « that bring it about that
p (make p true)”.

Secondly, we introduce the notion of involvement be-
tween actions.

Definition 6.1 Let a and 3 be actions, ¢ a state of affairs,
we define “a involves 3" (a > f3) as follows:

iff [o]r < [B]R

From definition 6.1, it follows that

a>f

Proposition 6.2
a >0 = F(B8) - F(a)

Proof From Def. 6.1 it follows that [3)¢ — [a]¢, which
by substitution (V for ¢) yields Prop. 6.2. ]

and also that

Proposition 6.3
[alpt a >6p

Proof By definition a belongs to [6p]g, and hence
[alr € [B]R, which yields the theorem. |

If we consider unflagged violation, we can easily show
that semantically the following are validities:

Proposition 6.4
[6plp

Proof Every performance of p leads to a world where p
holds, i.e., Yw'(w' € [6p]r(w) = w' |= p), hence
the thesis. |

Proposition 6.5
FpF F(ép)

Proof In every world accessible by performing &p both p
and p O V holds, hence V and F(6p). n

If we assume flagged violation Prop. 6.5 may be proved
only by defining dependence relations among flags. The
reason is that we can easily prove that

Fp [6p1Ves, (6.5

but not that

(6p]VFp — [6p]Vpsy (*)
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Of course, if we have a constraint of the kind

(9)

formula (*) would be easily proved by applying necessita-
tion to (9) and consequently modus ponens to axiom AK
(i.c., 10 [6p)(Veep — Vig,) = ((691Vip — [681Visy)).
Now, formula (9) has no clear interpretation in our system,
since Vp, should represent a violation of the normative
system to which Fp belongs (or, considering the simpler
formalization proposed by Meyer and Wieringa in, e.g.,
[WM], the system in which p is normed) and (9) would
consequentely mean that whenever the normative system
to which Fp belongs has been violated, then so it has also
the system to which F'ép belongs. We have of course to
explain how the two systems may be one and the same
system.

The problem, however, is that we may not assume re-
lations between violations as more primitive than those
norms to which the violations refer. That in our first,
simpler system we could avoid this difficulty, shows only
that we had to be careful in assuming the existence of
essential logical relations between objects (in this case
between “ought-to—do” and “ought—to—be”) but not that
these relations are detectable only at an appropriate level
of abstraction, with that implying that the flagged system
is not abstract enough.

The most valuable solution is according to us that of
taking Proposition 6.5 as an additional assumption. That
is to say, accepting that philosophical position outlined at
the end of section 1, where ought-to—do was seen as a
means in order to realize the ideality espressed by ought—
to—be.

In a certain sense, the fact that Proposition 6.5 cannot
be derived in the refined system is not surprising. Section
1 should have already shown that any decision about the
relations between ought—to—do and ought—to—be cannot
be simply taken by logic. Of course, the derivability of
Proposition 6.5 would have been a refutation of all that.

Propositions 6.4 and 6.3 are still derivable in the flagged
system, since there no flagged violation needs to occur in
their proof.

The importance of having something like Proposition
6.5 is, of course, that it allows to bring it about the
desidered derivation (i.c., from Specif. 5.2.1, to derive
the statement (2.) of section 1).

Vpp b d VF&p

Assumption 6.6
Fp'- F(ép)
Definitions 5.1 and 3.1.1 take now the form
Definition 6.7

Fp=0(p — Vryp) (a)



Op = 0O(-p — Vo,)
F(a) = [o]Vpq

(b)
(©
To them we add the standard definition

Definition 6.8
Op=F-p

We begin now to perform the derivation of Prop. 5.3,
though, as we will see, this will show itself still impossi-
ble.

(b=nAn-m<0)— [w(m)]=(b>0)

as before

F=(b>0)
from Specif. 5.2.1 and Def. 6.8)

O(=(b 2 0) = Vpos20))
from Def 6.7 a

(b=nAn-m<0)— [w(m)]Vr-s50)
(b=nAn-m<0)— (W(m)>6Vr-30)))
from Prop. 6.3

(b=nAn-m < 0) = (F(§(Vr-:20)) = F(w(m)))

from Prop. 6.2
To get the derived result we need

F(8(Vr-20)))

however, this step cannot be performed by applying
(As.6.6).

A possible solution to this impasse is considering the
relation between the violation of a particular norm and
what we might call a generic violation of the normative
system to which that particular norm belongs. The idea
is that atom V,, where = represents an arbitrary norm,
does not only express the violation of a norm belonging
to a given normative system S but, more generally, also
a violation within that very system. We can express that
by saying that violation of a norm of S is a sufficient
condition for the violation of S itself. Formally, we may
represent this fact as follows

(8)

where we define Vpy as the disjunction of all the violations
that can take place within a given normative system (here,
FV means approximatively that it is forbidden to break
norms or that violating norms is forbidden).

Vo = Vry
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Definition 6.9 Let z;, i € N, represents a generic norm
(obligation or prohibition) of a given normative system S.
We define the following

Vv =det Wi Vz,

By logic, we may indeed prove that F(Vpy) (cfr. re-
mark at the end of section 2) but not that F(V,) is a
theorem of the calculus. The latter result is exactly what
we need in order to apply As. 6.6 and Def. 6.9 enables us
to derive it.

Since in SDL the following equivalence holds

F(bvqg)=FbAFq

it is straightforward to conclude that

F(Vpv) = F(Vp30))

and hence, being able to apply As. 6.6 (remember F(Vry )
is a theorem of the calculus), we obtain

F(8(Vr-(20))
and eventually by MP and PC
(b=nAn-m<0)— F(w(m))

]
We can now go back to the problem sketched at the
end of the previous section, i.e., whether formula (7) is
derivable in our system. We observed that without more
information it could not be derived.
If we consider a generic norm, say, Op, we see that
an intuitive necessary and sufficient condition for Vp, to
hold is exactly that —p is the case.

Assumption 6.10
O(-p < Vop)

Furthermore, if we assume that we can always deposit,
we have to admit a further assumption.

Assumption 6.11
(d(m)T

Before proving formula (7), we need also to give a more
exact definition of permission than not that given as Def.
3.1.2.

Definition 6.12
Pa =

=[a]VFy

Now we can prove formula (7).



Proposition 6.13
b=nAn<0— P(d(m)) (7)
Proof
Db 2> 0 & ~Vouxa)
from As. 6.10 and Specif. 5.2.1

b=nAn<0-[dm)](b20)
from Specif. 5.2.4

b=nAn<0- [dm)]-Vopzo)
b=nAn<0— (dm))-Vouzo
from As. 6.11
]

Remark 6.14 The fact that we have to assume extra con-
ditions for deriving (7) should not be really surprising,
think, e.g., of a situation where OV would hold, we would
have as a consequence that in that situation not anything
would be permitted!

We conclude with a few annotations about the non deriv-
ability of formula

(b=nAn <0)— -0(d(m))

already considered at the end of section 5.
In order to prove it we should be able to prove the
following (simply apply As. 6.10)

(b=nAn<0)— (dm))(b20) (10)

We know that [d(m)](b < n + m) (with n + m positive)
holds. However, to derive (10), we need to know whether
positive values of b can indeed be obtained. For this
purpose we have to refine our specification by adding the
following

Specification 6.15
b=nAm>0- (dm))(b=k), forallk>n (1)
b=nAm>0-— (dm))(b=k), forallk<n (2)

7 Conclusion

We have shown that the distinction between ought—to—
do and ought—to—be is relevant for at least some kinds of
system specification and that, maintaining a certain degree
of generality, it is possible to express both kinds of norms
in one system without reducing one of them to the other or
even assuming the existence of specific relations between
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them. We have seen that by increasing the expressive
power of the language by flagging violation atoms, we
have to state relations connecting the violation of static
constraints with that of dynamic ones. In the solution
we have presented, we have chosen to relate ought—to-
be to ought—to—do considered in its broadest sense by an
assumption (As. 6.6). We still have to investigate how
this assumption can be fit into our semantic framework.

Current research includes also a characterization of
negated actions in the perspective of an application of
involvement also to obligations and a study of the logical
properties of the system sketched above (consistency and
completeness).
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