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type `1e GQ: definition and notation (I)

Let M be a non-empty set, the universe, of a model M and QM any set
of subsets of M .
Then QM is a type `1e GQ whose meaning is given by:

QM�A� iff A > QM

?
quantificational operator

of the functional type �et�t
(A is of type et)

@
@R

subset of ´�M�
(second order predicate)
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type `1e GQ: definition and notation (II)

The same written as variable-binding operator (where M à φ is the usual
satisfaction relation between a model and a formula, and Bφ�x�G

M
is the

“extension” of φ�x� in M):

M à Qxφ�x� iff Bφ�x�G
M
> QM
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Standard Quantifiers as type `1e quantifiers

This notation suggests a compositional account for the FOL formulas
with quantifiers.
It is well-known that standard universal and existential quantifiers do not
have a denotation in FOL formulas, and that, as a consequence, it is not
possible to compositionally interpret formulas in which they occur.
But, as type `1e quantifiers they denote sets of sets:�M � �M�§M � �A b M � A x g�
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compositionality in FOL

Now, we can compositionally express the meaning of a formulas
such as �xφ�x�:

M à �xφ�x� 
� Bφ�x�G
M
> B�MG
� Bφ�x�G

M
� M

The denotation of �xφ�x� is constructed out by applying the denotation
of the quantifier to the denotation of the open formula.

So conceived, standard quantifiers end up to show the same functional
property of Noun Phrases (NP) in natural languages.
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Noun Phrases as type `1e quantifiers (I)

NPs, typed �et�t, are uniformly interpreted (following Montague) as type`1e quantifiers, in their role of mapping the predicates expressed by Verb
Phrases onto �True,False�.

S
t

NP�et�t VP
et

B�every sailor�NP�drink�VPGt 
�Bevery sailorG�et�t�BdrinkGet�
�
drink > �A b M � sailor b A� � drink b
sailor

In fact, the set denoted by�every sailors�M is �A b M � sailor b A�
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Proper Names as type `1e quantifiers

The uniform treatment of NPs as type `1e quantifiers (Mostowski GQ) is
obtained by the “type-raising” of the meaning of Proper Names.B�john�NP�drinks�VPGt 
�BjohnG�et�t�BdrinkGet�
�
drink > �A b M � john > A� � john > drink
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Determiners as type `1,1e quantifiers

As a natural consequence of Lindström generalization of type `1e
quantifiers to type `n1...nke quantifiers, it is possible to semantically
analyze NPs as the result of the combination of Determiners (DET) with
common nouns (FO predicates).
DETs are interpreted as type `1,1e quantifiers, i.e. functions mapping
predicates into type `1e quantifiers.

NP�et�t
DET�et���et�t� CN

et
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type `1,1e quantifiers: definition

Let M be the universe of a model M and QM any binary relation on
subsets of M .
Then QM is a type `1,1e GQ whose meaning is given by:

QM�A,B� iff `A,Be > QM

?
quantificational operator

of type �et���et�t� ?
subset of ´�M�� ´�M�
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An exampleBthe boyG�et�t � BtheG�et���et�t��BboyGet�
Since
the�A,B�
� A b B , SAS � 1

we have that:BtheG�BboyG� �
the�boy ,B�
� boy b B , Sboy S � 1

(this is a type `1e quantifier that we can equivalently write:
the�boy�

M
� �A b M � boy b A , Sboy S � 1�)

Note that this is the singular the; for the plural case we have
thepl�A,B�
� A b B , SAS A 1
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A small list of DETs as type `1,1e quantifiers

The four quantifiers of the Aristotelian square of opposition:
all�A,B�
� A b B

no�A,B�
� A 9B � g
some�A,B�
� A 9B x g
not all�A,B�
� A �B x g�QR�M 
� SAS A SMS

2
(the Rescher quantifier for finite universe)

most�A,B�
� SA 9B S A SA �B S
the�A,B�
� A b B , SAS � 1
ten�A,B�
� SA 9B S � 10
the ten�A,B�
� SAS � 10 ,A b B

John’s�A,B�
� A 9 �b � owner�j ,b�� b B , SA 9 �b � owner�j ,b��S A 1
(in the case of plural NP, John’s bikes, while SA 9 �b � owner�j ,b��S � 1 in the
case of singular NP, John’s bike)
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Negative operations

The two negative operations (among the other boolean operations) on
GQs are the outer negation and the inner negation.
Let Q be a GQ:L  Q is the outer negationL Q is the inner negationL  Q � Qd is the dual (outer negation of the inner negation).

A quantifier, together with its outer negation, inner negation and dual
forms a natural unit, the square:

square�Q� � �Q, Q,Q ,Qd�
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Squaring type `1e and `1,1e quantifiers

For a `1e quantifier Q�A�:
i.  QM�A� � �´�M��Q�A��
ii. QM �A� � �Q�M �A��
iii. Qd�A� � �´�M��Q�M � A��

For a `1,1e quantifier Q(A,B):

i.  QM�A,B� � �´�M�2 �Q�A,B��
ii. QM �A,B� � �Q�A,M �A��
iii. Qd�A,B� � �´�M�2 �Q�A,M �A��
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Some properties of squares

These are some obvious general facts about square�Q�:L if Q is non-trivial (QM x ´�M� and QM x g), so are the other
quantifiers in its squareL if Q� > square�Q� then square�Q�� � square�Q�L square�Q� has either two or four membersL if Q� � Qd then Q and Q� are inter-definable.
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Classical vs modern square

NOT ALLei

ALLei

SOME

NO

cntrd cntrd

contrary

compat

NOT ALL

ALL

SOME

NO

outer neg outer neg

inner neg

inner neg
�

�
�

�
�@

@
@

@
@

dual

The classical square represents logical relations among propositions constructed
out from quantificational DETs.
The modern version is intended to represent the “span” of a quantifier when
undergone to the negative operations.
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The existential import

Clearly, the modern version is a generalization of the classical square of
opposition.
By interpreting the modern square in set-theoretical terms, the logical
relations holding among quantifier of the classical square are easily
reproducible, under some conditions on the set-theoretical objects
involved. The main case is that of the existential import of ALL in the
classical square.

In the modern sense, ALL is conceived without existential import, but,
given that ALLM�A,B�
� A b B and ALLM �A,B�
� A b M �B, to
ensure that they can not both be true (for reproducing the contrary
relation) is simply required that A is not empty.
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Representing a deep semantic pattern

Other consequence of the more generality of the modern square is that it
is applicable to every quantifier and thus it displays more utility for
investigating the semantics of NP. Moreover, it is well-known that, in
many natural languages, there are pairs of quantificational expressions
(DETs), but also of expressions of other categories, like adverbials
(still/already) or conjunctions (because/although), whose denotation
exhibits the pattern of duality.

This may be a sign that the square of logical duality shows some deep
and pervasive pattern of the semantics of natural languages.
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Filters

The semantic homogeneity of NPs is due to their functional homogeneity
as type `1e quantifiers. But type `1e quantifiers have different logical
properties, splitting them into three fundamental categories: ultrafilter,
filter and “intersective” quantifiers.

ultrafilter Proper Names, definite NPsg s, Pronouns
John, the boy, I, etc.

filter definite quantified NPs
every boy, no student, etc.

intersective indefinite quantified NPs
some boys, a boy, two boys, etc.
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Filters

Briefly, what distinguishes a filter Q from an intersective quantifier Q� is
that Q and Q cannot be both true (they are contrary), while Q� and
Q� do (they are compatibles).

What distinguishes an ultrafilter Q from a filter Q� is that Q and Q 
cannot be neither both true nor both false (they are contradictory), while
Q� and Q� can be both false.

(This way of putting the distinction is slightly different from the original
characterization due to Barwise and Cooper.)
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Filters on the square

This way of distinguishing filters from ultrafilters and intersective
quantifiers suggests the use of the square to figure out logical properties
of these classes of NPs.

for ultrafilter Q:

�
�

�
�@

@
@

@

Q Q  Q Qd

cntrd

eq

for filter Q:

Q Q  Q Qd

contrary

for intersective
quantifier Q:

Q Q  Q Qd

compat
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Filters and negative operations (I)

Ultrafilters are individuals, inner and outer negation having the same
effect of determining contradiction.
Filters and intersective quantifiers are “quantirelations”: they have the
so-called “isomorphism” (ISOM) property, whereas ultrafilters are
non-ISOM. ISOM means that for holding the relation expressed by the
quantifiers only the cardinality of sets involved is relevant.
The difference between filters and intersective quantifiers is due to the
different logical effect of inner negation, as set-theoretical operation.
A simple example:

For the filter Q � ALL:

ALLM�A,B� � SA �B S � 0 and

ALLM �A,B� � SA � �M � B�S � SA 9B S � 0

cannot be both true if A x g.

For the quantifier Q � SOME :

SOMEM�A,B� � SA 9B S x 0 and

SOMEM �A,B� � SA 9 �M �B�S � SA �B S x 0

can obviously be both true but not both false.
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Filters and negative operations (II)

Moreover, we can notice that if Q is a filter, Qd is an intersective
quantifier.

An example: the square for MOSTL MOSTM�A,B� � SA 9 B S A SA �B SL MOSTM �A,B� � SA 9B S � SA � B SL MOST d
M�A,B� � SA 9 B S C SA �B SL  MOSTM�A,B� � SA 9B S B SA � B S

D’Alfonso Generalized Quantifiers 26/32



Noun Phrases as Generalized Quantifiers
Squaring Generalized Quantifiers

Squaring NPs properties

Nested quantifiers

In natural language sentences is normal to have NPs both in subject and
object position. And, not surprisingly, each NP, as type `1e quantifier,
can take scope over the other.
If this scope commutability between the two NPs produces an ambiguity
or not, is a matter of “relative logical properties” of the quantifier
involved.
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Scope interaction

There are three fundamental cases:

i. self-commuting quantifiers:

Q�Q�R��� Q�Q�R�1��
all�all�R��� all�all�R�1��

ii. indipendent quantifiers:

Q1�Q2�R��� Q2�Q1�R�1��
all�the�R��� the�all�R�1��

iii. a quantifier is dominant over the other:

Q1�Q2�R��� Q2�Q1�R�1��
some�all�R��� all�some�R�1��

Ambiguity raises only in the third case.
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The logical base of ambiguity (I)

Let consider the two sentences:

(1) All boys read the books
(2) All boys read some book

For sentence (1), the object narrow scope reading and the object wide
scope reading are equivalent, as a matter of logic of set-theoretical
formulas:
(ons) all�boy��thepl�book��read�� �

boy b �x � book b �y � x read y� , Sbook S A 1�
(ows) thepl�book��all�boy��read�1�� �

book b �y � boy b �x � x read y�� , Sbook S A 1
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The logical base of ambiguity (II)

For sentence (2) (All boys read some book) (ons) and (ows) readings are
not equivalent, given that (ows) � (ons), as a matter of logic:

(ons) all�boy��some�book��read�� �
boy b �x � book 9 �y � x read y� x g�

(ows) some�book��all�boy��read�1�� �
book 9 �y � boy b �x � x read y� x g�
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Scope dominance (I)

In literature, scope dominance is defined as follows:
in finite domain Q1 is dominant over Q2 iff Q1 is an “exist” quantifier or
Q2 is a “universal” quantifier.

On the square, this condition could be expressed as follows:
Q1 is dominant over Q2 iff Q1 is an intersective quantifier or Q2 is a filter.

We can add that, if Q1 and Q2 are both intersective they are each other
scopeless quantifiers:

some�some �R��� some �some�R�1��
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Scope dominance (II)

For filters (type `1,1e) , we need a more subtle distinction between
co-intersective (let Q�A,B�: only SB �AS is relevant) and proportional
(both A 9B and SB �AS are relevant).
Thus, all�A,B� and most�A,B� are both filter, but most is dominant
over all , because of the relevance, in its meaning, of SA 9B S:
most�boy��all�book��read��� all�book��most�boy��read�1��
but

most�boy��all�book��read��� all�book��most�boy��read�1��
Thanks!
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