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Abstract. In this paper I propose a set-theoretical interpretation of the logi-
cal square of opposition, in the perspective opened by generalized quantifier
theory. Generalized quantifiers allow us to account for the semantics of quan-
tificational Noun Phrases, and of other natural language expressions, in a
coherent and uniform way. I suggest that in the analysis of the meaning of
Noun Phrases and Determiners the square of opposition may help represent-
ing some semantic features responsible to different logical properties of these
expressions. I will conclude with some consideration on scope interactions
between quantifiers.
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1. Noun Phrases as Generalized Quantifiers

Let M be a non-empty set, the universe, of a model M and QM any set of subsets
of M . Then, in the Lindström terms [3], QM is a type ⟨1⟩ Generalized Quantifier
(GQ, here and henceforth) whose meaning is given by:

QM(A) is true iff A ∈ QM (1)

where the QM on the left side of the iff-statement is meant to be a quantificational
operator of the functional type (et)t (a function mapping predicates onto truth-
values, A being a first-order predicate, of type et), and the QM on the right side is
to be interpreted as a subset of ℘(M), the power set of M (QM is a second order
unary predicate).

The type ⟨1⟩ generalized quantifier is a straightforward illustration of the “set-
theoretical” conception of quantifiers in the GQ theoretical framework: a quantifier
is conceived as a second order n-ary relation between sets (i.e. between first-order
predicates). For instance, a type ⟨k1...kn⟩ quantifier, where k1 = k2 = ... = kn =m,
is a second order n-ary relation between m-ary predicates.
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Generalized quantifiers can be written as a variable-binding operators. As
a simple case, a type ⟨1⟩ quantifiers QM can be notated in the usual way as
Q(x)φ(x). Let M ⊧ φ be the satisfaction relation between a model and a formula,
and ⟦φ(x)⟧

M
the “extension” of φ(x) in M (the set of the elements of M satisfying

φ). The following statement provides the semantics of a formula in which x is bound
by the generalized quantifier QM , as variable-binding operator:

M ⊧ Qxφ(x) iff ⟦φ(x)⟧
M
∈ QM (2)

This notation suggests a compositional account for the first-order logic for-
mulas with quantifiers. It is well-known that standard universal and existential
quantifiers do not have a denotation in the predicate calculus, and that, as a con-
sequence, it is not possible to compositionally interpret formulas in which they
occur. But, as type ⟨1⟩ quantifiers, standard universal and existential quantifiers
denote sets of sets:

∀M = {M}
∃M = {A ⊆M ∶ A ≠ ∅}

Now, we can easily express, in a “compositional fashion”, the meaning of a formulas
such as ∀xφ(x):

M ⊧ ∀xφ(x) iff ⟦φ(x)⟧
M
∈ ⟦∀M⟧ iff ⟦φ(x)⟧

M
=M (3)

The denotation of ∀xφ(x) is constructed out by applying the denotation of the
quantifier to the denotation of the open formula. So conceived, standard quantifiers
end up to show the same functional property of Noun Phrases in natural languages.

1.1. Noun Phrases as type ⟨1⟩ quantifiers

Noun Phrases (NP), typed (et)t, are uniformly interpreted (following Montague)
as type ⟨1⟩ quantifiers, in their role of mapping the predicates expressed by the
Verb Phrases onto {True,False}. The following ‘parse tree’ illustrates the point.

S
t

NP
(et)t

VP
et

This tree is the representation of the syntactic and semantic structure of the nu-
clear sentence1 (in English, but also in other natural languages). As well as a
sentence is constructed out by combining a NP with a VP, its meaning, a truth-
value, is obtained by a step of functional application of the meaning of the NP
to the meaning of the VP. In the following, is showed this process of meaning
computation, for a simple sentence like “every sailor drink”:

⟦[every sailor]NP [drink]V P ⟧t iff
⟦every sailor⟧(et)t(⟦drink⟧et) iff
drink ∈ {A ⊆M ∶ sailor ⊆ A}⇔ drink ⊆ sailor

(4)

1
S is the symbol for the syntactic category of ’sentence’, V P for ’verb phrase’.
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provided that the meaning of “every sailor” is conceived as a generalized quantifier:

⟦every sailor⟧(et)t = (every sailor)M = {A ⊆M ∶ sailor ⊆ A} (5)

The uniform treatment of NPs as type ⟨1⟩ quantifiers (Mostowski GQ, [5]) is
assured by the “type-raising” of the meaning of proper names, as showed by the
meaning computation for a sentence like “John drinks”:

⟦[john]NP [drinks]V P ⟧t iff
⟦john⟧(et)t(⟦drink⟧et) iff
drink ∈ {A ⊆M ∶ john ∈ A}⇔ john ∈ drink

(6)

provided that the meaning of “John” is conceived as a generalized quantifier:

⟦john⟧(et)t = (john)M = {A ⊆M ∶ john ∈ A} (7)

1.2. Determiners as type ⟨1,1⟩ quantifiers

As a natural consequence of Lindström generalization of type ⟨1⟩ quantifiers to
type ⟨k1...kn⟩ quantifiers, it is possible to semantically construe NPs as the result
of the combination of Determiners (DET) with common nouns (that are first-order
predicates). DETs are interpreted as type ⟨1,1⟩ quantifiers, i.e. functions mapping
predicates into type ⟨1⟩ quantifiers. As for sentences, the meaning of NPs is the
result of a compositional process, in which the meaning of a DET is applied to
that of a common noun:

NP
(et)t

DET
(et)((et)t)

CN
et

Type ⟨1,1⟩ quantifiers can be defined along the same line of the previous
definition for type ⟨1⟩ quantifiers. Let M be the universe of a model M and QM

any set of pairs of subsets of M . Then QM is a type ⟨1,1⟩ GQ whose meaning is
given by:

QM(A,B) is true iff ⟨A,B⟩ ∈ QM (8)

where QM(A,B) on the left side of the iff-statement is a quantificational operator
of type (et)((et)t) and QM(A,B) on the right side is a subset of ℘(M) × ℘(M).

Again, an example could help illustrating this definition at work. Let consider
the meaning of a definite NP like “the boy”, resulting from the application of the
meaning of “the” to the meaning of “boy”:

⟦the boy⟧(et)t = ⟦the⟧(et)((et)t)(⟦boy⟧et)

Since the meaning of the definite determiner is:

the(A,B) is true iff A ⊆ B ∧ ∣A∣ = 1 (9)
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we have the following semantic computation for deriving the meaning of the defi-
nite NP:

⟦the⟧(⟦boy⟧) iff
the(boy,B) iff
boy ⊆ B ∧ ∣boy∣ = 1

(10)

In the last line of this derivation there is a type ⟨1⟩ quantifier that can equivalently
be written as: the(boy)

M
= {A ⊆M ∶ boy ⊆ A ∧ ∣boy∣ = 1}. Moreover, note that (9)

explicates the meaning of the singular the; for the plural case we have to modify
the expression as follows:

thepl(A,B) iff A ⊆ B ∧ ∣A∣ > 1 (11)

In order to show the expressive power of GQ theory, and its wide applicability
to the analysis of the semantics of natural language determiners, a list of DETs as
type ⟨1,1⟩ quantifiers is presented. The four quantifiers of the Aristotelian square
of opposition are:

all(A,B)⇔ A ⊆ B

no(A,B)⇔ A ∩B = ∅
some(A,B)⇔ A ∩B ≠ ∅
not all(A,B)⇔ A −B ≠ ∅

(12)

Below some other well-known quantifiers are listed:

(QR)M ⇔ ∣A∣ > ∣M ∣
2
(the Rescher quantifier for finite universe)

most(A,B)⇔ ∣A ∩B∣ > ∣A −B∣
ten(A,B)⇔ ∣A ∩B∣ ≥ 10
the ten(A,B)⇔ ∣A∣ = 10 ∧A ⊆ B

John’s(A,B)⇔ A ∩ {b ∶ owner(j, b)} ⊆ B ∧ ∣A ∩ {b ∶ owner(j, b)}∣ > 1

(in the last line is represented the case of possessive construction in plural NPs,
like “John’s bikes”, while ∣A ∩ {b ∶ owner(j, b)}∣ = 1 is the GQ for the case of
singular NP, like “John’s bike”.)

2. Squaring Generalized Quantifiers

As set-theoretical entities, generalized quantifiers can be the object of application
of the boolean operations. Among the other boolean operations, in what follows
I will focus on negative operations and on the structural and logical properties
showed by quantifiers when they are undergoing those operations. The two negative
operations on GQs are the outer negation and the inner negation.

Let Q be a GQ. We adopt the following notational convention:

i. ¬Q is the outer negation of Q
ii. Q¬ is the inner negation of Q
iii. ¬Q¬ = Qd is the dual of Q (outer negation of the inner negation).
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A quantifier, together with its outer negation, inner negation and dual forms a
natural unit, the square:

square(Q) = {Q,¬Q,Q¬,Qd} (13)

Since a type ⟨1⟩ quantifier QM , on a domain M , is a subset of ℘(M), the
square of Q may straightforwardly be characterized in terms of set-theoretical
formulas as follows:

i. ¬QM(A) = {℘(M) −Q(A)}
ii. QM¬(A) = {Q(M −A)}
iii. Qd(A) = {℘(M) −Q(M −A)}

This square is naturally extensible for a type ⟨1,1⟩ quantifier Q(A,B):

i. ¬QM(A,B) = {℘(M)
2 −Q(A,B)}

ii. QM¬(A,B) = {Q(A,M −B)}
iii. Qd(A,B) = {℘(M)2 −Q(A,M −B)}

The following are some obvious general facts about square(Q):

● if Q is non-trivial (QM ≠ ℘(M) and QM ≠ ∅), so are the other quantifiers in
its square

● if Q′ ∈ square(Q) then square(Q′) = square(Q)
● square(Q) has either two or four members
● if Q′ = Qd then Q and Q′ are inter-definable.

2.1. Classical vs modern square

The debate on the difference between classical and modern square of opposition is
nowadays still on (see [7] and [6] for a wide discussion on the topic). The classical
square represents logical relations among sentences in which a single quantifi-
cational determiners occurs in subject position, the so-called “categorical judg-
ments”. The modern version is intended to represent the “span” of a quantifier
when undergoing the negative operations.

not all

all

some

no

cntrd cntrd

contrary

compat

not all

all

some

no

outer neg outer neg

inner neg

inner neg
�
�

�
�
�@

@
@
@
@

dual

Figure 1. On the left is showed the classical square of opposition,
on the right the modern interpretation. The logical relations in the
classical square involve the existential import.
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Clearly, the modern version is a generalization of the classical square of op-
position. By interpreting the modern square in set-theoretical terms, the logical
relations holding among quantifier of the classical square are easily reproducible,
under some conditions on the set-theoretical objects involved. The main case is that
of the existential import of ALL in the classical square. In the modern sense, ALL
is conceived without existential import, but, given that ALLM(A,B) ⇔ A ⊆ B

and ALLM¬(A,B)⇔ A ⊆ M −B, to ensure that they can not both be true (for
reproducing the contrary relation) is simply required that A is not empty.

Other consequence of the more generality of the modern square is that it is
applicable to every quantifier and thus it displays more utility for investigating the
semantics of NPs. Moreover, it is worth noting that, in many natural languages,
there are pairs of quantificational expressions (DETs), but also of expressions
belonging to other categories, like adverbials (still/already) or conjunctions (be-
cause/although), whose denotation exhibits the pattern of duality. This may be a
sign that the square of logical duality codifies some deep and pervasive pattern of
the semantics of natural languages expressions embodying some quantificational
feature.

3. Squaring NPs properties

The semantic homogeneity of NPs is due to their functional homogeneity as type
⟨1⟩ generalized quantifiers. But type ⟨1⟩ quantifiers have different logical proper-
ties, splitting them into three fundamental categories: ultrafilter, filter and “inter-
sective” quantifiers, as outlined in the following table:

ultrafilter Proper Names, definite NPsgs, Pronouns
John, the boy, I, etc.

filter definite quantified NPs
every boy, no student, etc.

intersective indefinite quantified NPs
some boys, a boy, two boys, etc.

Briefly, what distinguishes a filter Q from an intersective quantifier Q′ is that
Q and Q¬ cannot be both true (they are contrary), while Q′ and Q′¬ do (they
are compatibles). What distinguishes an ultrafilter Q from a filter Q′ is that Q

and Q¬ cannot be neither both true nor both false (they are contradictory), while
Q′ and Q′¬ can be both false2. This way of distinguishing filters from ultrafilters

2The distinction here introduced is slightly different from the original characterization of def-
inite NPs as filters due to Barwise and Cooper [2] and revisited by Loebner [4]. For example,

the classification here proposed has the concept of filter in common with the characterization
of NPs in Loebner [4], but the method of “squaring” logical properties of quantifiers involves
some not negligible differences. The effect of the inner negation in determining contradiction
or contrariness is here the only parameter used in distinguishing quantifiers. As a consequence,

three classes of quantifiers are proposed, while Loebner essentially distinguishes only between
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Figure 2. Using the modern version of the square, we can easily
visualize different patterns of logical relations in the square(Q)
of a quantifier Q. From left to right, the first square sketches the
logical pattern for ultrafilters (Q and Q¬ are contradictory), the
second for filters (Q and Q¬ are contrary), the third for intersec-
tive quantifiers (Q and Q¬ are compatible).

and intersective quantifiers suggests the use of the square in order to figure out
logical properties of these classes of NPs. Ultrafilters are individuals, inner and
outer negation having the same effect of determining contradiction. Filters and in-
tersective quantifiers are “quantirelations”: they have the so-called “isomorphism”
(ISOM) property, whereas ultrafilters are non-ISOM. ISOM means that for hold-
ing the relation expressed by the quantifiers only the cardinality of sets involved
is relevant.

The difference between filters and intersective quantifiers is a matter of differ-
ent logical effect of inner negation, as a set-theoretical operation. For instance, all is
a filter because allM(A,B) = ∣A−B∣ = 0 and allM¬(A,B) = ∣A−(M−B)∣ = ∣A∩B∣ =
0 cannot both be true, if A is not empty, while some is an intersective quantifier
because someM(A,B) = ∣A∩B∣ ≠ 0 and someM¬(A,B) = ∣A∩(M−B)∣ = ∣A−B∣ ≠ 0
can obviously be both true but not both false (if A is not empty). Moreover, we
can notice that if Q is a filter, Qd is an intersective quantifier. This is the case of
a GQ like mostM(A,B) = ∣A ∩B∣ > ∣A −B∣, as showed by its square:

i. mostM¬(A,B) = ∣A ∩B∣ < ∣A −B∣
ii. mostdM(A,B) = ∣A ∩B∣ ≥ ∣A −B∣
iii. ¬mostM(A,B) = ∣A ∩B∣ ≤ ∣A −B∣

By reading this square it is immediately verified that mostd and its inner negation
mostd¬ = ¬most can be both true.

filters and ultrafilters, as his main concern, in the cited article, is the semantics of definite NPs,
and not NPs overall considered as generalized quantifiers.
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3.1. Nested quantifiers

In natural language sentences is usual to have NPs both in subject and object
position. And, given the formal under-determination of natural language gram-
mar, each NP, as type ⟨1⟩ quantifier, can take scope over the other. If this scope
commutativity between the two NPs produces a semantic ambiguity or not, is a
matter of “relative logical properties” of the quantifiers involved.

Let briefly examine the “scope interaction” between quantifiers. If Q1 and Q2

are type ⟨1⟩ generalized quantifiers and R is a binary relation, we can abbreviate
the formula Q1(x)Q2(y)R(x, y) as Q1Q2R and its inversion Q2(y)Q1(x)R(y, x)
as Q2Q1R

−1. We can now distinguish three fundamental cases (for each case an
example is reported immediately below):

i. self-commuting quantifiers:
Q(Q(R))⇔ Q(Q(R−1))
all(all(R))⇔ all(all(R−1))

ii. indipendent quantifiers:
Q1(Q2(R))⇔ Q2(Q1(R

−1))
all(the(R))⇔ the(all(R−1))

iii. a quantifier is (scopally) dominant over the other:
Q1(Q2(R))⇒ Q2(Q1(R

−1))
some(all(R))⇒ all(some(R−1))

Semantic ambiguity rises only in the third case, i.e. when Q1 is dominant over
Q2. In order to illustrate this fact I will proceed with an example. Let consider
the following two sentences:

All boys read the books (14)

All boys read some book (15)

For sentence (14), the object narrow scope (ons) reading and the object wide scope
(ows) reading are equivalent, as a matter of logic of set-theoretical formulas:

(ons) all(boy)[thepl(book)[read]] =
boy ⊆ {x ∶ book ⊆ {y ∶ x read y} ∧ ∣book∣ > 1}

(ows) thepl(book)[all(boy)[read
−1]] =

book ⊆ {y ∶ boy ⊆ {x ∶ x read y}} ∧ ∣book∣ > 1

(16)

For sentence (15), (ons) and (ows) readings are not equivalent, given that (ows)
⇒ (ons), as a matter of logic:

(ons) all(boy)[some(book)[read]] =
boy ⊆ {x ∶ book ∩ {y ∶ x read y} ≠ ∅}

(ows) some(book)[all(boy)[read−1]] =
book ∩ {y ∶ boy ⊆ {x ∶ x read y} ≠ ∅}

(17)

In literature [1], scope dominance is defined as follows: in finite domain Q1 is
dominant over Q2 iff Q1 is an “exist” quantifier or Q2 is a “universal” quantifier.
On the square, this condition could be expressed as follows: Q1 is dominant over
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Q2 iff Q1 is an intersective quantifier or Q2 is a filter. For what concerns indepen-
dent quantifiers, retracing the definition in Westersth̊al [8], we can say that Q1

and Q2 are independent iff at least one of the following holds: (i) both Q1 and Q2

are intersective; (ii) both Q1 and Q2 are filters; (iii) one of the two is an ultra-
filter. Actually, this definition should be refined, in order to account for cardinal
quantifiers. In fact, cardinal quantifiers are intersective but it is easy to see that
the bidirectional entailment is not valid:

n(m(R))⇎m(n(R−1)).

However, the undirectional entailment continues to hold:

n(m(R))⇒m(n(R−1)).

In other words, in the scope interaction of two cardinal quantifiers Q1 and Q2 it
is the quantifier that takes scope over the other that is scopally dominant. Thus,
each of two cardinal quantifier can be dominant over the other, according to the
scope it takes relatively to the other. To accommodate this situation, the definition
of independent quantifiers could be refined as follows: Q1 and Q2 are independent
iff

Q1(Q2(R))⇔ Q2(Q1(R
−1))

or
Q1(Q2(R))⇒ Q2(Q1(R

−1)) ∧ Q2(Q1(R))⇒ Q1(Q2(R
−1)).

The latter disjunct is required to account for the “reciprocity” of scope dominance
characterizing cardinal quantifiers.

For filters (type ⟨1,1⟩), we need a more subtle distinction between co-inter-
sective (let Q(A,B): only ∣B −A∣ is relevant) and proportional (both ∣A ∩B∣ and
∣B − A∣ are relevant). Thus, although all(A,B) and most(A,B) are both filter,
most is dominant over all, because of the relevance, in its meaning, of ∣A ∩ B∣.
The (ons) interpretation of a sentence like “all boys read most books” implies the
(ows) reading, but the vice-versa does not hold:

most(boy)[all(book)[read]]⇒ all(book)[most(boy)[read−1]]

but
most(boy)[all(book)[read]]⇏ all(book)[most(boy)[read−1]]

To sum up, in the paper I tried to apply the square of opposition, conceived
as the explication of the logical dualities among quantifiers, to characterize some
semantic features of natural language NPs. A strong hypothesis, to be validated,
could be that all quantificational NPs fall into one of the three categories (ultrafil-
ters, filters, intersective quantifiers) depending on the logical pattern they give rise
when subjected to negative operations, i.e. depending on the “collocation” they
find in the square.

Generally, the methodology of “squaring” logical relations of quantificational
operators can reveal some utility, for various purposes, and this utility is un-
doubted in the analysis of the semantic and logical properties of natural language
expressions such as NPs, in the Generalized Quantifier framework.
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