
UNCERTAINTY AND DEPENDENCE IN CLASSICAL AND

QUANTUM LOGIC ^ THE ROLE OF TRIANGULAR NORMS1

1. THREE TYPES OF UNCERTAINTY

In the statistical description of real systems, we often encounter the following
three types of uncertainty.

1. Probabilistic uncertainty. This uncertainty occurs in considerations
a¡ected by unknown circumstances.

2. Quantum uncertainty. This type of uncertainty occurs when the observa-
tions of the system cause irreversible changes of states. A typical example
is a quantum experiment.

3. Fuzzy uncertainty. This uncertainty occurs when we study sets of events
whose truth values are not necessarily only true or false.

Various mathematical structures have been invented and pursued in the
study of systems with these three types of uncertainties. In this note, we take
up the Boolean logics for the probabilistic uncertainties, the quantum logics for
quantum uncertainties, and the fuzzy logics for fuzzy uncertainties. Obviously,
the quantum logics and the fuzzy logics are both generalizations of Boolean
logics. A common generalization of the quantum and fuzzy logics seems to be
desirable and, to our knowledge, does not seem to be available in a straightfor-
ward way [4, 11, 19].We raise the question of dependence/independence of two
events in the respective logics. The three above-mentioned types of uncertainty
correspond to three types of dependence in these structures.

2 . PRELIMINARIES ^ TRIANGULAR NORMS

Triangular norms are usually viewed as fuzzy generalizations of the Boolean
conjunction. However, they were studied in the early sixties in the area of
probabilistic metric spaces (see [22]), and some of them even earlier. Let us
recall their basic properties relevant to our considerations.

A t-norm (triangular norm) is an operation T : �0; 1�2 ! �0; 1� which is
commutative, associative, monotone in each component, and which satis¢es
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the boundary condition T�1; u� � u (see e.g. [3,22]). The function : : u 7!1ÿ u
is the standard fuzzy negation. The dual t-conorm to T is the operation S :
�0; 1�2 ! �0; 1� de¢ned by the (de Morgan) formula S�u; v� � :T�:u;:v�
� 1ÿ T�1ÿ u; 1ÿ v�.

The Frank family of t-norms Ts, s 2 �0;1�, will play an essential role in the
sequel. For s 2 �0;1� n f1g, the Frank t-norms are de¢ned by the formula

Ts : �u; v�7! logs 1� �suÿ1��svÿ1�sÿ1�
� �

The limit cases coincide with the most frequently used t-norms:

T0 � TM : �u; v�7! min�u; v� �minimum t-norm�;
T1 � TL : �u; v�7! max�u� vÿ 1; 0� �Lukasiewicz t-norm,�;
T1 � TP : �u; v�7!u � v �product t-norm�:

The following property, characteristic for the Frank t-norms, was proved in
[7].

Theorem 2.1 : Let T be a t-norm and S its dual t-conorm. The equality

T�u; v� � S�u; v� � u� v

is satis¢ed for all u; v 2 �0; 1� i¡ T belongs to the Frank family of t-norms.
We shall need also the following property of Frank t-norms.

Theorem 2.2 : For each s 2 �0;1� and each u; v 2 �0; 1�, the following equality
holds:

T1=s�1ÿ u; v� � vÿ Ts�u; v�:

Remark 2.3: We also take into account the limit case fs; 1=sg � f0;1g. The
latter theorem gives also one of the implications in Th. 2.1 as an easy
consequence:

Ts�u; v� � vÿ T1=s�1ÿ u; v� � vÿ �1ÿ u� � Ts�1ÿ u; 1ÿ v� � v� uÿ Ss�u; v�;

where Ss is the dual t-conorm to Ts.

proof : The cases of s 2 f0; 1;1g are trivial. In the remaining cases, we
obtain:
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T1=s�1ÿ u; v� � log1=s 1� �s
ÿ�1ÿu� ÿ 1��sÿv ÿ 1�

sÿ1 ÿ 1� �
�

� ÿ logs
1ÿ s�suÿ1 ÿ 1��sÿv ÿ 1�

sÿ 1

� �
� ÿ logs

sÿ 1ÿ suÿv � s1ÿv � su ÿ s
sÿ 1

�

� ÿ logs sÿv � ÿs
v ÿ su � s� su�v

sÿ 1

� �
� vÿ logs

ÿsv ÿ su � s� su�v

sÿ 1
�

� vÿ logs 1� �s
u ÿ 1��sv ÿ 1�

sÿ 1

� �
� vÿ Ts�u; v�

The following property of the Frank family of t-norms was proved by Frank
(see [7]).

Theorem 2.3 : For ¢xed u; v 2 �0; 1�, the function

Fu;v : s 7!Ts�u; v�

is continuous and strictly decreasing. It is a bijection of �0;1� and
�TL�u; v�;TM�u; v��.

3 . UNCERTAINTY IN CLASSICAL LOGIC

In the classical logic, the event structure is described by a Boolean algebra L.
(Countable operations will not be of interest in this paper because we will only
deal with ¢nite subalgebras.)

A state on L is a mapping m : L! �0; 1� such that:
(s1) m�0� � 0; m�1� � 1
(s2) 8x; y 2 L : m�x _ y� �m�x ^ y� � m�x� �m�y� (the valuation prop-

erty).

Let a; b 2 L. The (Boolean) subalgebra La;b of L generated by a; b is a
homomorphic image of the free Boolean algebra FBA with 2 free generators
(FBA is isomorphic to 24). In order to describe the state space of La;b, it is
su¤cient to characterize the state space of FBA. We denote by x; y the free
generators of FBA.

Let m be a state on FBA. An easy calculation shows that m is uniquely
determined by its values on x, y, and x ^ y. While m�x�, m�y� can be arbitrary
numbers from �0; 1�, the value m�x ^ y� is constrained by some inequalities.
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Proposition 3.1. Let FBA be the free Boolean algebra with 2 free generators x; y.
1. If m is a state on FBA, then

TL�m�x�;m�y�� � m�x ^ y� � TM�m�x�;m�y��:
2. If u; v;w 2 �0; 1� such that

TL�u; v� � w � TM�u; v�;
then there is a state m on FBA such that m�x� � u, m�y� � v, m�x ^ y� � w.

proof : 1. As

�x ^ y� _ �x ^ y0� � x;

�x ^ y� ^ �x ^ y0� � 0;

we obtain

m�x ^ y� �m�x ^ y0� � m�x� �m�0� � m�x�
and m�x ^ y� � m�x�. Similarly, m�x ^ y� � m�y�. Thus

m�x ^ y� � min�m�x�;m�y�� � TM�m�x�;m�y��:
As

m�x� �m�y� ÿm�x ^ y� � m�x _ y� � 1;

we get

m�x ^ y� � m�x� �m�y� ÿ 1:

This, together with m�x ^ y� � 0, gives

m�x ^ y� � TL�m�x�;m�y��:

2. We de¢ne m�x ^ y� � w, m�x ^ y0� � uÿ w, m�x0 ^ y� � vÿ w, m�x0 ^ y0� �
1ÿ uÿ v� w, and extend m uniquely to a state on FBA. &

We see that the minimum t-norm TM gives the best upper estimate of m�x ^
y� corresponding to the case of maximal positive dependence between x and y.
The Lukasiewicz t-norm TL gives the best lower estimate corresponding to the
maximal negative dependence. Also the product t-norm is found to play an
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important role: The events x; y are stochastically independent i¡ m�x ^ y� �
m�x� �m�y� � TP�m�x�;m�y��.
Suppose that values m�x�;m�y� of a state m on FBA are given. If m�x� 2

f0; 1g or m�y� 2 f0; 1g, then m is uniquely determined. If m�x�;m�y� 2 �0; 1�,
there remains one degree of freedom. Obviously, the value m�x ^ y� is su¤cient
to determine the state m uniquely. However, it is reasonable to search for a
parameter which attains its extreme values exactly at the bounds given by Prop.
1 and which changes its sign when an event is replaced with its complement.
Let us suggest the following notion.

De¢nition 3.2: A degree of probabilistic dependence, p, is a mapping which
assigns a value pm�x; y� to each state m and events x; y such that
m�x�;m�y� 2 �0; 1�, and which is subject to the following axioms:

(p1) pm�x; y� � pm�y; x�,
(p2) pm�x0; y� � ÿpm�x; y�,
(p3) if m�x1� � m�x2�, m�y1� � m�y2� and m�x1 ^ y1� < m�x2 ^ y2�, then

pm�x1; y1� < pm�x2; y2�,
(p4) pm�x; y� � 0 i¡ m�x ^ y� � TP�m�x�;m�y��,
(p5) pm�x; y� � 1 i¡ m�x ^ y� � TM�m�x�;m�y��,
(p6) pm�x; y� � ÿ1 i¡ m�x ^ y� � TL�m�x�;m�y��.

Let us comment on the above notion. If m�x� 2 f0; 1g or m�y� 2 f0; 1g, then
pm�x; y� is unde¢ned. The axioms express the following requirements: The value
pm�x; y� is zero if and only if x; y are stochastically independent. For ¢xed
m�x�;m�y� 2 �0; 1� and m�x ^ y� ranging in �TL�m�x�;m�y�; TM�m�x�;m�y��,
the values pm�x; y� cover the whole interval �ÿ1; 1�. Moreover, pm�x; y�
increases with the increase of m�x ^ y�. If one of the arguments is replaced by
its complement, the degree of probabilistic dependence changes its sign. The
axiom (p2) has the following motivation: Let x1;x2; y1; y2 satisfy the assump-
tion of (p3) and let

m�x2 ^ y2� ÿm�x1 ^ y1� � ":
Then

m�x02 ^ y2� ÿm�x01 ^ y1� � ÿ";

m�x2 ^ y02� ÿm�x1 ^ y01� � ÿ";

m�x02 ^ y02� ÿm�x01 ^ y01� � ":
Therefore an increase " of the degree of probabilistic dependence of x; y should
be considered as a decrease of the degree of probabilistic dependence of x0; y.
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The axiom (p2) makes the role of x; x0 `antisymmetric'. As a consequence of
(p2), we obtain a weaker condition

(p2^) pm�x0; y0� � pm�x; y�.

It seems plausible that these axioms for a degree of probabilistic dependence
are well motivated and natural. Obviously, a question arises whether such a
mapping always exists.

The most natural idea is to try a correlation-like parameter. The correlation
of two random variables �; � on L is

corr��; �� � E�� � �� ÿ E� � E���������������������������������������������������
E�� ÿ E��2 � E�� ÿ E��2

q
;

where E denotes the mean value. If �; � attain only the values 0,1 and if we
identify E�;E�;E�� � �� with m�x�;m�y�;m�x ^ y�, resp., we obtain the formula

corrm�x; y� � m�x ^ y� ÿm�x� �m�y������������������������������������������������������
m�x� �m�x0� �m�y� �m�y0�p

:

The parameter corr (taken for p) satis¢es (p1)^(p4). However, (p5) and (p6) are
not satis¢ed unless m�x� � m�y�. Therefore, a modi¢ed parameter is desirable.

Another attempt ^ a linear interpolation of the bounds from Prop. 1 ^ gives
us the formula

linm�x; y� � 2 �m�x ^ y� ÿ TM�m�x�;m�y�� ÿ TL�m�x�;m�y��
TM�m�x�;m�y�� ÿ TL�m�x�;m�y��:

The parameter lin satis¢es (p1)^(p3) and (p5)^(p6), but it does not satisfy (p4).
We see that a more involved formula for the degree of probabilistic

dependence is needed. In view of the fact that the values of m on FBA are
uniquely determined by m�x�, m�y� and m�x ^ y�, we can express the intended
degree of probabilistic dependence in the form

pm�x; y� � f �m�x�;m�y�;m�x ^ y��;

where f is a suitable function (called the generating function of p). The function
f is de¢ned for all triples of arguments u; v;w such that u; v 2 �0; 1� and
w 2 �TL�u; v�;TM�u; v��. The axioms (p1)^(p6) for a degree of probabilistic
dependence p are then equivalent to the following conditions for f :
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(f1) f �u; v;w� � f �v; u;w�,
(f2) f �1ÿ u; v; vÿ w� � ÿf �u; v;w�,
(f3) w1 < w2�)f �u; v;w1� < f �u; v;w2�,
(f4) f �u; v;TP�u; v�� � 0,
(f5) f �u; v;TM�u; v�� � 1,
(f6) f �u; v;TL�u; v�� � ÿ1.

The property (p2^) corresponds to
(f2^) f �1ÿ u; 1ÿ v; 1ÿ uÿ v� w� � f �u; v;w�.

Let us suggest to construct the degree of probabilistic dependence as follows:
Let the contours of the degree of probabilistic dependence be the graphs of
Frank t-norms. In other words, let pm�x; y� attain a constant value g�s�
(depending only on s but not on x; y;m) for all arguments satisfying
m�x ^ y� � Ts�m�x�;m�y��. In terms of the generating function f of p, it is
required that f �u; v;Ts�u; v�� � g�s� for all u; v 2 �0; 1�. Using the inverse, Fÿ1u;v ,
of the function Fu;v from Th. 2.3, we can substitute s � Fÿ1u;v �w�, w � Ts�u; v�.
We obtain

(F) f �u; v;w� � g�Fÿ1u;v �w��.

The following theorem tells us when the latter formula gives rise to (the
generating function of) a degree of probabilistic dependence.

Theorem 3.1:The function f de¢ned by (F) is a generating function of a degree of
probabilistic dependence i¡ g : �0;1� ! �ÿ1; 1� is a decreasing bijection such that

(g2) g�1=s� � ÿg�s�

for all s 2 �0;1�. The corresponding degree of probabilistic dependence, d, is
de¢ned by setting

dm�x; y� � g�Fÿ1m�x�;m�y��m�x ^ y���:

Alternatively, dm�x; y� � g�sx;y�, where sx;y is the unique element of �0;1� such
that Tsx;y�m�x�;m�y�� � m�x ^ y�.

proof : 1. Let g be a function satisfying the conditions of the theorem and let f
be de¢ned by (F).We shall verify conditions (f1)^(f6).

Condition (f1) follows from the commutativity of Ts. As g is a decreasing
bijection of �0;1� onto �ÿ1; 1�, g�0� � 1 and g�1� � ÿ1, which ensures (f5),
(f6). Taking s � 1 in (g2), we obtain g�1� � ÿg�1� � 0, which implies (f4). The
functions g, Fu;v and Fÿ1u;v are strictly decreasing, so f being a composition of
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two of them is strictly increasing in its third argument ^ condition (f3) is
veri¢ed.

It remains to check the validity of (f2), i.e., it remains to verify the equality

g�Fÿ11ÿu;v�vÿ w�� � ÿg�Fÿ1u;v �w��:

In the equality from Th. 2.2, we substitute w � Ts�u; v�, s � Fÿ1u;v �w�, and obtain

T1=s�1ÿ u; v� � vÿ w;

Fÿ11ÿu;v�vÿ w� � 1=s;

g�Fÿ11ÿu;v�vÿ w�� � g�1=s� � ÿg�s� � ÿg�Fÿ1u;v �w��;

which we were to prove.

2. Let (F) de¢ne a generating function of a degree of probabilistic dependence.
To prove that the properties of g are necessary, it is su¤cient to compare them
with the considerations from the ¢rst part of the proof. &

Remark 3.4: Let h : �0; 1� ! �0; 1� be a decreasing bijection. We may de¢ne g :
�0;1� ! �ÿ1; 1� by the formula

g�s� � lllh�s�if s � 1;ÿh�1=s�if s > 1:f

Then g satis¢es the conditions of Th. 3.1 and formula (F) de¢nes a generating
function of a degree of probabilistic dependence. Thus, Th. 3.1 gives a family of
degrees of probabilistic dependence which di¡er by a nonlinear transformation
of the range �ÿ1; 1�.

However, Th. 3.1 probably does not give all solutions of (p1)^(p6). (No other
examples are known to us at this moment.) If a degree of probabilistic
dependence is de¢ned by means of (F), the Frank t-norms cannot be replaced
by any other family of t-norms. Indeed, (f2^) implies

Fÿ11ÿu;1ÿv�1ÿ uÿ v� w� � Fÿ1u;v �w�:

Denote this value by s. This means that

Ts�u; v� � w;

Ts�1ÿ u; 1ÿ v� � 1ÿ uÿ v� w:

Using the dual t-conorm, Ss, in the latter equality,
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Language, Quantum, Music Chapter Chap23
output on 9 April 99 at 14:49 # Kluwer Academic Publishers page 8 of 13



1ÿ Ss�u; v� � 1ÿ uÿ v� w;

we obtain the formula

Ts�u; v� � Ss�u; v� � u� v:

This is characteristic for the Frank t-norms (Th. 2.1).

4 . UNCERTAINTY IN QUANTUM LOGICS

In quantum logic, the phenomenon of noncompatibility requires a more
general structure than Boolean algebras. Recall that two events are called
noncompatible if they are not simultaneously observable. In the corresponding
mathematical model, two events are noncompatible if they do not belong to a
Boolean subalgebra of the event structure (for more detailed exposition, see [1,
9]).

The event structure of a quantum system is often supposed to be an
orthomodular lattice (OML), L. In comparison with a Boolean algebra, in
OMLs we relax the absorption laws

a ^ �a0 _ b� � a ^ b; a _ �a0 ^ b� � a _ b

as well as the distributivity law.We replace them by the orthomodular law

a � b�)b � a _ �a0 ^ b�:

Formally, an OML is a bounded lattice L with a unary operation 0 : L! L
(orthocomplementation) such that it satis¢es the following conditions

1. a00 � a,

2. a � b�)b0 � a0,

3. a _ a0 � 1

and the orthomodular law. A state on an OML can be de¢ned by conditions
(s1), (s2) in the same way as in Section 3. Thus, we say that s : L! �0; 1� is a
state if

(s1) m�0� � 0; m�1� � 1
(s2) 8x; y 2 L : m�x _ y� �m�x ^ y� � m�x� �m�y�

(It should be noted that these ``modular-like`` states have been investigated by
several authors, see e.g. [2, 14, 18, 20, 23], etc.).
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We shall make use of free algebras. Let L be an OML and let a; b 2 L. The
subalgebra (sub-OML) La;b of L generated by a; b is a homomorphic image of
the free OML FOML with 2 free generators. In order to describe the state space
of La;b, it is su¤cient to characterize the state space of FOML. Let us denote by
x; y the free generators of FOML. The structure of FOML is described in [1, 9].
The commutator,

c�x; y� � �x _ y� ^ �x _ y0� ^ �x0 _ y� ^ �x0 _ y0�;

plays an important role in the description. (In a Boolean algebra, the
commutator is always zero.) It is known that FOML is isomorphic to the direct
product B �M, where B � fz 2 FOML: z � c(x,y)0g and M � fz 2 FOML:
z � c(x,y)g. (The intervals B;M are given the natural OML structure inherited
from L.) The factor B is a Boolean algebra isomorphic to 24, freely generated
by x ^ c(x,y) 0, y ^ c(x,y) 0. The factor M is the modular ortholattice
f0; c(x,y); x ^ c(x,y); x0 ^ c(x,y); y ^ c(x,y); y0 ^ c(x,y)g, known as MO2. (Its
maximal element is 1M � c(x,y).)

Let m be a state on FOML. It is of the form

m�z� � �1ÿ qm�x; y�� �mB�z ^ c�x; y�0� � qm�x; y� �mM�z ^ c�x; y��

for some qm�x; y� 2 �0; 1� and states mB;mM, on B;M, resp. As mB is a classical
state, mM can be interpreted as a ``purely non-Boolean state''. A nonzero value
of the commutator c�x; y� indicates the presence of quantum e¡ects in the
observations of x and y, and m�c(x,y)� represents their probability. As the
projections x ^ c(x,y); y ^ c(x,y) (of x; y to M) have the same probability
proportional to m�c(x,y)� (see the theorem below), we may consider the
parameter qm�x; y� � m�c(x,y)� as the degree of quantum dependence between x
and y at state m.

Theorem 4.1 (see also [5,10,14,21]) The OML M (i.e. MO2) admits only one
state, mM. This state attains the value 1=2 on all the elements x ^ c(x,y),
x0 ^ c(x,y), y ^ c(x,y), y0 ^ c(x,y).

proof : Let u; v be arbitrary two di¡erent elements of fx ^ c(x,y); x0 ^ c(x,y);
y ^ c(x,y); y0 ^ c(x,y)g �M n f0; 1g. We apply the valuation property (s2) to u,
v. As u _ v � 1M, u ^ v � 0, we obtain

m�u� �m�v� � m�1M� �m�0� � 1:

This equality for all combinations of u; v 2M n f0; 1g implies that m attains
1=2 on all these elements. &

Let us comment on the previous result. If we require the condition (s2) to be
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satis¢ed only for x � y0, we obtain a weaker de¢nition of a state. This de¢nition
is, however, often adopted in quantum mechanics (see [8,17]). In the case of
Boolean algebras, both de¢nitions coincide. With this weaker de¢nition, the
values m�x ^ c(x,y)�, m�y ^ c(x,y)�, may be any numbers from the interval
�0;m�c(x,y)�� and we obtain two more degrees of freedom for weaker states.
The state mB is a classical state subject to the characterization in the preceding
section. As a consequence, each state m on FOML is uniquely determined by
m�x�, m�y�, m�x ^ y� and m�c(x,y)�. The parameter m�c(x,y)� � qm�x; y� is the
degree of quantum dependence. Again, the parameter m�x ^ y� can be replaced
by a more appropriate degree of probability dependence, pm�x; y�, de¢ned now
as the degree of probability dependence of the classical state mB. Explicitly,
pm�x; y� � pmB�x ^ c(x,y)0; y ^ c(x,y)0�.

5 . UNCERTAINTY IN FUZZY LOGIC ^ A PERSPECTIVE

Despite many studies in recent years, the notion of fuzzy logic does not seem to
be standardized. Various mathematical structures ^ MV-algebras [12], T-tribes
[3], fuzzy quantum spaces [6, 16], etc. ^ are suggested to represent events in a
fuzzy logic. Also states on fuzzy logics ^ fuzzy measures ^ allow for di¡erent
generalizations (some of them being analogous to the de¢nition of Section 3).
Therefore our basic question on degrees of dependence leads us to a series of
questions on various de¢nitions of fuzzy logics and states. What is typical for
most of them is the absence of the law of contradiction and the excluded middle
law. Thus

a ^ a0 � 0; a _ a0 � 1

need not hold. (Even if these laws are satis¢ed in some mathematical models,
all fuzzy models admit that there is a nonzero element a such that a � a0. This
is, however, excluded in both classical and quantum logic.) For most of the
de¢nitions of fuzzy measure, m, the value m�a ^ a0� may be nonzero. If this is
the case, the values of m on a fuzzy sublogic generated by a; b depend on new
degrees of freedom (expressed, e.g., by m�a ^ a0� and m�b ^ b0�) which are
typical for a fuzzy logic.

Among the mathematical structures describing fuzzy logic, only few are
equational classes (e.g., MV-algebras). Hence not all fuzzy logics allow for the
existence of a ``free fuzzy logic with 2 free generators` .̀ Those fuzzy logics which
do ^ like e.g. MV-algebras ^ could be treated analogously to our previous
analysis. In general, the question of dependence of two events in a fuzzy logic
needs a further study. It is conceivable that it may help to clarify some
properties of various concepts of fuzzy logic. Also, a contribution to the
investigation of fuzzy quantum logics, which are common generalizations of
quantum and fuzzy logics ^ see [4, 11, 19], could be achieved.
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6. CONCLUSION

In a classical (=Boolean) logic, we have de¢ned a degree of probabilistic
dependence between two events, a; b. It corresponds to one degree of freedom
in the description of a state mwith ¢xed values m�a�;m�b�. A reasonable degree
of dependence can be obtained using the Frank family of t-norms ^ a family of
connectives which were typical for fuzzy logical considerations but were not
applied yet in classical or quantum logics.

In a quantum logic, a new degree of freedom appears, corresponding to a
degree of quantum dependence. Thus, two events in a quantum logic have two
independent degrees of dependence ^ probabilistic and quantum.

In fuzzy logic, new degrees of dependence may appear. They seem to require
another generalization of the degree of probabilistic dependence. This is largely
open to further research.
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[5] de Lucia, P., Ptäk, P.: 1992, `Quantum Probability Spaces That Are Nearly Classical'', Bulletin

of the Polish Academy of Sciences ^ Math, 40, 163^173.
[6] Dvurecï enskij, A., Riecï an, B.: 1991, `On Joint Distribution of Observables for F-Quantum

Spaces'', Fuzzy Sets and Systems, 39, 65^73.
[7] Frank, M.J.: 1979, `On the Simultaneous Associativity of F�x; y� and x� yÿ F�x; y�'',

Aequationes Math, 19, 194^226.
[8] Gudder, S.P.: 1979, Stochastic Methods in Quantum Mechanics. North Holland, New York.
[9] Kalmbach, G.: 1983, Orthomodular Lattices. Academic Press, London.
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[15] Navara, M., Ptäk, P.: 1993, `P-Measures on Soft Fuzzy �-Algebras', Fuzzy Sets and Systems,
56, No. 1, 123^126.

[16] Piasecki, K.: 1985, `Probability of Fuzzy Events De¢ned as Denumerable Additivity Measure',
Fuzzy Sets and Systems, 17, 271^284.

[17] Ptäk, P., Pulmannovä, S.: 1991, Orthomodular Structures as Quantum Logics. Kluwer
Academic Publishers, Dordrecht/Boston/London.
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