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Abstract Backtracking counterfactuals are problem cases for the standard, simi-
larity based, theories of counterfactuals e.g., Lewis (Noûs 13.4, 455–476, 1979).
These theories usually need to employ extra-assumptions to deal with those cases
(e.g., Lewis’ “standard resolution of vagueness”). Hiddleston (Noûs 39(4), 632–657,
2005) proposes a causal theory of counterfactuals that, supposedly, deals well with
backtracking. The main advantage of the causal theory is that it provides a unified
account for backtracking and non-backtracking counterfactuals (no extra-assumption
is needed). In this paper, I present a backtracking counterfactual that is a problem
case for Hiddleston’s account. Then I propose an informational theory of counterfac-
tuals, which deals well with this problem case while maintaining the main advantage
of Hiddleston’s account (the unified account for backtracking and non-backtracking
counterfactuals). In addition, the informational theory offers a general theory of back-
tracking that provides clues for the semantics and epistemology of counterfactuals. I
propose that backtracking is reasonable when the (possibly non-actual) state of affairs
expressed in the antecedent of a counterfactual transmits less information about an
event in the past than the actual state of affairs.
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1 Introduction

Backtracking counterfactuals admit counterfactual reasoning that claims that if things
had been different at some time t1, they would also have been different at some ear-
lier time t0 (“backtracking”). Consider the following situation, described by Jackson
(1977): you see your friend Smith on the ledge of a 20-story building. You are afraid
that he is going to jump, but (thankfully) Smith steps down and exits the building
safely. You note that there was nothing underneath him besides the solid concrete
of the sidewalk and conclude: “if Smith had jumped, he would have died.” This is
a non-backtracking counterfactual. Your friend Beth saw everything and disagrees
with you. She argues that Smith is “a very rational person” and, had he jumped, there
would have been a net underneath him to catch him safely. She concludes: “if Smith
had jumped, he would have lived.” This is a backtracking counterfactual. When it is
reasonable to backtrack from a counterfactual is an issue for both the semantics and
epistemology of counterfactuals.

Hiddleston (2005) proposes a causal theory of counterfactuals that, supposedly,
deals well with backtracking. The main advantage of the causal theory is that it pro-
vides a unified account for backtracking and non-backtracking counterfactuals. In
this paper, I present a backtracking counterfactual (case 3) that is a problem case for
Hiddleston’s account (Section 2). Then I propose an informational theory of coun-
terfactuals, which deals well with this problem case while maintaining the main
advantage of Hiddleston’s account (the unified account for backtracking and non-
backtracking counterfactuals, Section 3).1 In Section 4, I propose a general theory of
backtracking that provides clues for the semantics and epistemology of counterfac-
tuals. I propose that backtracking is reasonable when the (possibly non-actual) state
of affairs expressed in the antecedent of a counterfactual transmits less information
about an event in the past than the actual state of affairs.

2 The Causal Theory of Counterfactuals

Hiddleston (2005) develops a theory of counterfactuals using causal models of
roughly the same sort as those used in Pearl (1988) and Spirtes et al. (2000). In evalu-
ating a counterfactual of the type “if φ had been, thenψ would have been” (φ�→ ψ),
Hiddleston starts building a causal model of the actual situation (“actual model”).
Then he introduces minimally altered models where φ is true (“counterfactual mod-
els”). The counterfactual models are built by introducing minimal causal breaks in
the actual model and following the causal consequences of the breaks. If ψ is true in
all counterfactual models, then the counterfactual φ�→ ψ is true in the actual model.

1In the following, “the causal theory” denotes Hiddleston’s causal theory of counterfactuals and “the
informational theory” denotes the informational theory of counterfactuals proposed here. The theory in
Shannon (1948) is referred as “information theory.”
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A causal model M is a triple 〈G, E, A〉. The first element of a model, G, is a
direct acyclic graph composed of nodes representing variables for events and edges
representing causal relations.2 Let the parents of a node X in M (paM(X)) be the set
of nodes with edges into X. The second element of a model, E, is a set of equations
of the form (Y1 = y1 ∧ ... ∧ Yn = yn) ⇒ p(X = x) = z, where the Yi are all the
members of paM(X), the yi are their respective values in the model (see A), z is the
objective probability of X having the value x, and ⇒ is a strict conditional. The set E
must contain equations relating all possible values of all variables in G to all possible
combinations of values for all of their parents. The third element of a model, A, is an
assignment of values for all variables in G. The assignment A must be possible given
the equations in E.3

Hiddleston offers a notion of direct positive influence that is used to character-
ize the notions of a causal break and of a minimally altered model. Let M be an
actual model with A containing actual values for all variables in G. Let M ′, M ′′, ...
be counterfactual models that differ from M only in having A′, A′′, etc. with non-
actual values for some variables in G′ = G, G′′ = G, etc. (also, E′ = E,E′′ = E,
etc.). The notion of direct positive influence would therefore be:

Definition 1 (Direct positive influence) Let M be a model in which X = x is a
parent of Y = y and the other parents of Y = y are in �Z = �z. Let M ′ be identical to
M except that X = x ′ in M ′. Then X = x has direct positive influence on Y = y in
M relative to M ′ iff p(Y = y|X = x, �Z = �z) > p(Y = y|X = x′, �Z = �z).

Let the positive parents of Y = y in M be the set ppaM(Y ) = {X : X = x have
direct positive influence on Y = y in M}. Then the notion of a causal break is the
following:

Definition 2 (Causal break) A causal break in M ′ relative to M is a variable Y such
that A′(Y ) 	= A(Y ) and, for every X ∈ ppaM(Y ), A′(X) = A(X).

In other words, a causal break occurs in a counterfactual model M ′ relative to an
actual model M when a variable Y has a non-actual value in M ′ whereas all of its
positive parents maintain their actual value inM ′.4 In this context, Hiddleston defines
two sets:

Break(M ′, M) = {Y : Y is a causal break in M ′ relative to M}.
Intact (M ′, M) = {Y : A′(Y ) = A(Y ) and for all X ∈ ppaM(Y ), A′(X) = A(X)}.
The next step is the characterization of the notion of a minimally altered model. Let a
φ-model be a model in which φ is true, where φ is either atomic (X = x) or a complex

2A directed acyclic graph is a collection of nodes and directed edges in which the edges connect nodes
such that it is impossible to start at a node n and follow a sequence of edges that loops back to n.
3In other words, A cannot assign a value A(X) to a variable X ∈ G if, according to E,
p(A(X)|A(paM(X))) = 0.
4It follows that if Y has no parents, then any change in Y is a causal break.
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(negation, conjunction, etc). Break(M ′, M) is minimal among φ-models iff there
is no φ-model M ′′ such that Break(M ′′, M) ⊂ Break(M ′, M). Intact (M ′, M) is
maximal among φ-models iff there is no φ-model M ′′ such that Intact (M ′, M) ⊂
Intact (M ′′, M).5 Then the notion of a φ-minimal model is the following:

Definition 3 (φ-Minimal model) M ′ is φ-minimal relative to M iff

(a) M ′ is a φ-model;
(b) for Z, the set of variables that are not descendants of φ, Intact (M ′, M) ∩ Z is

maximal among φ-models;6 and
(c) Break(M ′, M) is minimal among φ-models.

If φ is true in M , then M is the φ-minimal model relative to M and {} is the
minimal Break. Finally, this is Hiddleston’s causal theory:

Definition 4 (Causal theory of counterfactuals) A counterfactual φ �→ ψ is true in
a model M iff ψ is true in all φ-minimal models M ′.

A counterfactual φ �→ ψ is true of a case C iff φ �→ ψ is true in M and M

is an adequate model of C. M is an adequate model of C when (i) the properties
represented in M are instantiated by the objects in C, (ii) the causal laws used in M

are accurate (enough) for C, and (iii) M is complete enough to accurately represent
the causal relations between the events of C that appear in M (Hiddleston 2005, p.
648). In the following, I will not discuss the adequacy of models to cases, but only
Hiddleston’s theory for when a counterfactual is true in a model.

Case 1

Suppose that the boss will randomly draw the name of an employee a, b, c, or d

from a jar and write that name in a memo for a promotion. Suppose that a will
randomly bet that the name of a specific colleague will appear in the memo.
Suppose that c was drawn from the jar, c is written in the memo, a bet on d,
and a lost the bet.

The question is: “if d were in the memo, then a would win the bet?” (Memo =
d�→ Win = 1?). Hiddleston’s answer is “yes” and I think that this answer is correct.
This answer is depicted in Fig. 1. M1 is an actual model of case 1 and M1′ is the
only (Memo = d) minimal model allowed. Break(M1′, M1) = {Jar} is the only
minimal Break possible because Jar needs to be in Break; otherwise, Memo = d

would be impossible. Intact (M1′, M1) ∩ Z = {Bet} is the only maximal Intact

possible because Bet and Jar are the only members of Z and Jar must be in Break.
As a consequence, M1′ is the only (Memo = d) minimal model allowed. Win = 1

5“Minimal” and “maximal” are measured using set-inclusion rather than the number of breaks/intacts.
In this context, two different Break/Intact (M ′,M) and Break/Intact (M ′′,M) may be both mini-
mal/maximal.
6A child is a descendant; a child of a descendant is a descendant.
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Fig. 1 M1 is an actual model of case 1 and M1′ is the only (Memo = d) minimal model allowed, where
x ∈ {a, b, c, d}. Break(M1′,M1) = {Jar} and Intact (M1′,M1) ∩ Z = {Bet}.

is true in M1′. Then Memo = d �→ Win = 1 is true in M1. This answer involves
backtracking from Memo = d to Jar = d (in M1′).

I think that this answer is correct for two reasons. The first reason, I think, is that
the answer seems to be correct: since Win = 1 iff Bet = Memo, it seems to be
true that if Memo had the same value that Bet actually has, then Win would be 1
(Memo = d �→ Win = 1). The second reason is that there is a symmetry between
Memo = d �→ Win = 1 and Bet = c �→ Win = 1: since Win = 1 iff
Bet = Memo, asking whether Win would be 1 if Memo had the same value that
Bet actually has (Memo = d �→ Win = 1) and asking whether Win would be 1 if
Bet had the same value that Memo actually has (Bet = c �→ Win = 1) seem to be
two different ways of asking the same question. Both Memo = d �→ Win = 1 and
Bet = c �→ Win = 1 are true in Hiddleston’s account and this is a good result.

Case 2

Suppose that the boss will randomly draw the name of an employee a, b, c, or
d from a jar and intends to write that name in a memo for a promotion. But the
boss has dyslexia. If c is drawn, she will write c with probability .01 or d with
probability .99. If d is drawn, she will write d with probability .01 and c with
probability .99. Suppose that a will randomly bet that the name of a specific
colleague will appear in the memo. Suppose that d was drawn from the jar, c is
written in the memo, a bet on d, and a lost the bet.

Fig. 2 M2 is an actual model of case 2 and M2′ is the only (Memo = d) minimal model allowed, where
x ∈ {a, b, c, d} and y ∈ {a, b}. Break(M2′,M2) = {Memo} and Intact (M2′,M2) ∩ Z = {Bet, Jar}
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The question is: “if d were in the memo, then a would win the bet?” (Memo =
d �→ Win = 1?). Hiddleston’s answer is “yes” and I think that this answer is correct.
This answer is depicted in Fig. 2. M2 is an actual model of case 2 and M2′ is the only
(Memo = d) minimal model allowed. Break(M2′, M2) = {Memo} is minimal
because either Memo or Jar needs to be in Break; otherwise, M2′ would not be
a (Memo = d) model. Intact (M2′, M2) ∩ Z = {Bet, Jar} is the only maximal
Intact possible because Bet and Jar are the only members of Z and both are in
Intact (M2′, M2) ∩ Z. If Jar were in a Break(M2′′, M2), then Jar would not be
in Intact (M2′′, M2) ∩ Z and Intact (M2′′, M2) ∩ Z would not be maximal. As a
consequence, M2′ is the only (Memo = d) minimal model allowed. Win = 1 is true
in M2′. Then Memo = d �→ Win = 1 is true in M2. This answer does not involve
backtracking.

I think that this answer is correct for two reasons. The first reason, I think, is that
the answer seems to be correct: since Win = 1 iff Bet = Memo, it seems to be
true that if Memo had the same value that Bet actually has, then Win would be 1
(Memo = d �→ Win = 1). The second reason is that there is a symmetry between
Memo = d �→ Win = 1 and Bet = c �→ Win = 1: since Win = 1 iff
Bet = Memo, asking whether Win would be 1 if Memo had the same value that
Bet actually has (Memo = d �→ Win = 1) and asking whether Win would be 1 if
Bet had the same value that Memo actually has (Bet = c �→ Win = 1) seem to be
two different ways of asking the same question. Both Memo = d �→ Win = 1 and
Bet = c �→ Win = 1 are true in Hiddleston’s account and this is a good result.

Case 3

Suppose that the boss will randomly draw the name of an employee a, b, c, or
d from a jar and intends to write that name in a memo for a promotion. But the
boss has dyslexia. If c is drawn, she will write c with probability .01 or d with
probability .99. If d is drawn, she will write d with probability .01 or c with
probability .99. Suppose that a has an infallible method to know which name
was drawn from the jar. She will bet that this name is in the memo. Suppose that d
was drawn from the jar, c is written in the memo, a bet on d, and a lost the bet.

The question is: “if d were in the memo, then a would win the bet?” (Memo =
d �→ Win = 1?). Hiddleston’s answer is “yes” and I think that this answer is

Fig. 3 M3 is an actual model of case 3 and M3′ is the only (Memo = d) minimal model allowed, where
x ∈ {a, b, c, d} and y ∈ {a, b}. Break(M3′,M3) = {Memo} and Intact (M3′,M3) ∩ Z = {Bet, Jar}
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incorrect. This answer is depicted in Fig. 3. M3 is an actual model of case 3 and M3′
is the only (Memo = d) minimal model allowed. Break(M3′, M3) = {Memo} is
minimal because either Memo or Jar needs to be in Break; otherwise, M3′ would
not be a (Memo = d) model. Intact (M3′, M3) ∩ Z = {Bet, Jar} is the only
maximal Intact possible because Bet and Jar are the only members of Z and both
are in Intact (M3′, M3) ∩ Z. If Jar were in a Break(M3′′, M3), then Jar would
not be in Intact (M3′′, M3) ∩ Z and Intact (M3′′, M3) ∩ Z would not be maximal.
As a consequence, M3′ is the only (Memo = d) minimal model allowed. Win = 1
is true in M3′. Then Memo = d �→ Win = 1 is true in M3. This answer does not
involve backtracking.

I think that this answer is incorrect for two reasons. The first reason, I think, is that
this counterfactual seems to admit backtracking: if Memo = d, then, most probably,
Jar = c, which entails that Bet = c and Win = 0. I think that this is good reasoning
because Memo = d is a good reason (as good as any non-conclusive reason) for
Jar 	= d and for Jar = c (p(Jar = d|Memo = d) = .01 < p(Jar 	= d|Memo =
d) = p(Jar = c|Memo = d) = .99). Hiddleston defends a similar line of reasoning
in discussing his example #4:

Example #4: Alice offers Ben a bet on a coin toss, but this time Alice can
influence its outcome. Ben bets tails. Hoping to win, Alice flips the coin so that
it has a higher chance (.8, say) of landing heads. It does land heads. She says to
Ben, “If you had bet heads, then you would have won.” That seems false.

The second reason has to do with the symmetry between Memo = d �→ Win =
1 and Bet = c �→ Win = 1. In Hiddleston’s account, Memo = d �→ Win = 1 is
true, butBet = c�→ Win = 1 is false.7 However, sinceWin = 1 iffBet = Memo,
asking whether Win would be 1 if Memo had the same value that Bet actually has
(Memo = d �→ Win = 1) and asking whether Win would be 1 if Bet had the
same value thatMemo actually has (Bet = c�→ Win = 1) seem to be two different
ways of asking the same question. This is a bad result.

3 The Informational Theory of Counterfactuals

The causal theory fails in case 3 because, in this case, there is a relevant positive
influence between Memo and Bet that is different from Hiddleston’s direct positive
influence. However, while Memo and Bet are not positive parents of each other, they
are dependent nevertheless. Two variables X and Y are independent (X ⊥ Y ) iff
their joint probability equals the product of their probabilities (i.e., X ⊥ Y iff p(X =
x, Y = y) = p(X = x)p(Y = y)). In case 3, p(Memo = c, Bet = d) = .247 	=
p(Memo = c)p(Bet = d) = .062. Then Memo 	⊥ Bet . This is what generates the
problem for Hiddleston’s account. In order to evaluate case 3 correctly, a theory needs

7If Bet = c, then Jar must be c. Then there are two (Bet = c) minimal models: one in which Memo = c

and another in which Memo = d (Break and Intact are equal in both models because the value of Jar

has changed). The value of Win is 1 in the first model, but 0 in the second. Then Bet = c �→ Win = 1
is false in M3.
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to take into account the dependence relation. In this section, I propose a theory of
counterfactuals based on information theory which takes into account the dependence
relation.

Information theory (Shannon 1948) provides a measure of how much information
is associated with a given state of affairs. The amount of information associated with
a proposition X = x (i(X = x)) is calculated as follows:8

i(X = x) = −log2(p(X = x)).

Pointwise mutual information (PMI) is a measure of the mutual information between
two propositions, which accounts for dependence. The PMI between two proposi-
tions X = x and Y = y (pmi(X = x; Y = y)) is calculated as follows:

pmi(X = x;Y = y) = i(X = x) + i(Y = y) − i(X = x, Y = y)

= −log2(p(X = x)) − log2(p(Y = y)) + log2(p(X = x, Y = y)).

The PMI between X = x and Y = y is such that −∞ ≤ pmi(X = x; Y = y) ≤
min(i(X = x), i(Y = y)). If pmi(X = x; Y = y) < 0, then X = x and Y = y

are negatively correlated. If pmi(X = x; Y = y) = 0, then X = x and Y = y are
independent. If pmi(X = x; Y = y) > 0, then X = x and Y = y are positively
correlated. The PMI between two propositionsX = x and Y = y conditional to some
propositions �Z = �z (pmi(X = x; Y = y| �Z = �z)) is calculated as follows:

pmi(X = x; Y = y| �Z = �z) = − log2(p(X = x| �Z = �z)) − log2(p(Y = y| �Z = �z))
+ log2(p(X = x, Y = y| �Z = �z)).

In this context, the informational theory is as follows:

Definition 5 (Informational theory of counterfactuals) Let M be an actual model
with the actual values X = x and Y = y. Consider a counterfactual X = x′

�→ Y =
y′. The evaluation of a counterfactual is as follows:

1. Check whether the antecedent X = x′ is true in M (whether x′ = x).

(a) If yes, check whether Y = y′ is also true in M (whether y′ = y). If yes,
return “true”; otherwise, return “false.”

(b) If not, do the following:

i. For every Z = z in M (Z 	= X), check whether pmi(X =
x′; Z = z| �W = �w) ≥ pmi(X = x; Z = z| �W = �w), where
�W = �w are the parents of Z = z that are in Holdf ix. If yes,
add Z to the set Holdf ix. If not, do nothing.

ii. Build all (X = x ′) models that are consistent with the equations
in M and in which all variables in Holdf ix maintain their actual
values.

iii. If Y = y′ is true in all of these models, return “true”; return
“false” otherwise.

8All the definitions in this section may be adapted to complex propositions (negations, conjunctions, etc.).
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Fig. 4 M3 is an actual model of case 3. M3′′ is the only (Memo = d) counterfactual model allowed
according to the informational theory (Holdf ix = {Win})

Case 3 again

The question was: “if d were in the memo, then a would win the bet?” (Memo =
d �→ Win = 1?). The answer from the informational theory is “no” and I think
that this answer is correct. This answer is depicted in Fig. 4. M3 is an actual model
of case 3 and M3′′ is the only (Memo = d) counterfactual model allowed. Jar is
not in Holdf ix because pmi(Memo = d; Jar = d) = −4.634 < pmi(Memo =
c; Jar = d) = 1.985. Bet is not in Holdf ix because pmi(Memo = d; Bet =
d) = −4.634 < pmi(Memo = c; Bet = d) = 1.985. Win is in Holdf ix because
pmi(Memo = d; Win = 0) = pmi(Memo = c; Win = 0) = .971. Then
Holdf ix = {Win}. M3′′ is the only (Memo = d) counterfactual model compatible
with the equations in M3 and in which all variables in Holdf ix maintain their actual
values. Win = 1 is false in M3′′. Then Memo = d �→ Win = 1 is false in M3.
This answer involves backtracking from Memo = d to Jar = c.

I think that this answer is correct for two reasons. The first reason, I think, is that
this counterfactual seems to admit backtracking: if Memo = d, then, most probably,
Jar = c, which entails that Bet = c and Win = 0. I think that this is good reasoning
because Memo = d is a good reason (as good as any non-conclusive reason) for
Jar 	= d and for Jar = c (p(Jar = d|Memo = d) = .01 < p(Jar 	= d|Memo =
d) = p(Jar = c|Memo = d) = .99). This backtracking reasoning is represented
in model M3′′. The second reason is that there is a symmetry between Memo =
d �→ Win = 1 and Bet = c �→ Win = 1: since Win = 1 iff Bet = Memo,
asking whether Win would be 1 if Memo had the same value that Bet actually has
(Memo = d �→ Win = 1) and asking whether Win would be 1 if Bet had the
same value that Memo actually has (Bet = c �→ Win = 1) seem to be two
different ways of asking the same question. From the perspective of informational
theory, Memo = d �→ Win = 1 and Bet = c �→ Win = 1 are both false.9 This
is a good result.

9Jar is not in Holdf ix because pmi(Bet = c; Jar = d) ≈ −∞ < pmi(Bet = d; Jar = d) = 2.
Memo is not in Holdf ix because pmi(Bet = c;Memo = c) = −4.634 < pmi(Bet = d;Memo =
c) = 1.985. Win is in Holdf ix because pmi(Bet = c;Win = 0) = pmi(Bet = d;Win = 0) = .971.
Then M3′′ is the only (Memo = d) model compatible with the equations of M3 and with actual values
for all variables in Holdf ix. Win = 1 is false in M3′′. Therefore Bet = c �→ Win = 1 is false in M3.
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The Other Cases

The causal and the informational theories evaluate a counterfactual φ�→ ψ following
roughly the same steps: first, check whether there is a change in the actual value
of φ; if yes, execute a procedure to check whether the uncertainty regarding that
value propagates to other variables; finally, build all allowed φ models given the
equations in the actual model. The counterfactual φ �→ ψ is true iff ψ is true in all
such models. Propagation may be forward (from ancestor to descendant) or backward
(from descendant to ancestor) and may occur via deterministic or nondeterministic
relations.10

Almost all propagation in the causal theory is forward. The reason is that the only
causal influence considered in Hiddleston’s account is positive parenthood, which is
forward. The cases of forward propagation in the causal theory are exactly the cases
of forward propagation in the informational theory. The cases of forward propagation
in the causal theory are cases in which X = x is a positive parent of Y = y. If X = x

is a positive parent of Y = y, then p(Y = y|X = x, �Z = �z) > p(Y = y|X =
x′, �Z = �z) (Definition 1). The following equivalences hold:

p(Y = y|X = x, �Z = �z) > p(Y = y|X = x ′, �Z = �z) ⇔
> p(Y = y,X = x′, �Z = �z)/p(X = x′, �Z = �z) ⇔
> [p(Y = y,X = x′| �Z = �z)p( �Z = �z)]/[p(X = x′| �Z = �z)p( �Z = �z)] ⇔
> −log2(p(X = x′| �Z = �z)) + log2(p(X = x′, Y = y| �Z = �z)) ⇔
> −log2(p(X = x′| �Z = �z)) − log2(p(Y = y| �Z = �z))

+log2(p(X = x′, Y = y| �Z = �z)) ⇔
pmi(X = x;Y = y| �Z = �z) > pmi(X = x ′;Y = y| �Z = �z) ⇔

¬(pmi(X = x ′;Y = y| �Z = �z) ≥ pmi(X = x;Y = y| �Z = �z)).

Then p(Y = y|X = x, �Z = �z) > p(Y = y|X = x′, �Z = �z) iff ¬(pmi(X = x′; Y =
y| �Z = �z) ≥ pmi(X = x; Y = y| �Z = �z). In the informational theory, Y is not in
Holdf ix iff ¬(pmi(X = x′; Y = y| �Z = �z) ≥ pmi(X = x; Y = y| �Z = �z)). These
are the cases of forward propagation in the informational theory (Definition 5). As
a consequence, the cases of forward propagation in the causal theory are exactly the
cases of forward propagation in the informational theory.

There is some backward propagation in the causal theory. This backward prop-
agation, however, only occurs through deterministic relations. The reason is that,
in Hiddleston’s account, backward propagation does not happen directly because of
any causal influence considered in the theory (e.g., positive parenthood), but rather
because of the procedure for selecting the allowed counterfactual models given the
equations in the actual model.11 Since this procedure is the same in both the causal
and informational theories, the cases of deterministic backward propagation in the
causal theory are exactly the cases of deterministic backward propagation in the infor-
mational theory. Then the causal and the informational theories agree in all cases

10The ancestors of a node X are the nodes Y such that X is a descendant of Y .
11If the relation between parent and child is deterministic, a change in the child may force a change in the
parent because, otherwise, the resulting model may not be allowed given the equations in the actual model.
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Fig. 5 Left, examples 4 and 7 (Hiddleston 2005). Right, a case discussed in Hiddleston (2005)

of forward propagation on uncertainty and in all cases of deterministic backward
propagation.

The two theories may disagree in cases of backward propagation through non-
deterministic relations. These cases occur in the informational theory, but do not
occur in the causal theory. For example, the informational (but not the causal) theory
considers backward propagation from Memo = d to Jar = c in case 2. The con-
sequence of this disagreement is that the causal and the informational theories may
return different results about backtracking. For example, the informational (but not
the causal) theory advises backtracking from Memo = d to Jar = c in case 2. The
divergence regarding backward propagation, however, does not necessarily generate
different results. For example, in case 2, the theories agree that the counterfactual
Memo = d �→ Win = 1 is true.

The theories return different results for two groups of cases. The first group is
composed of counterfactuals that are manifestly backtracking (the antecedent of the
counterfactual is a descendant of the consequent, e.g., Memo = d �→ Jar = d

in case 2), but it seems reasonable to backtrack when evaluating a manifestly back-
tracking counterfactual. Since the theories may disagree in cases of nondeterministic
backward propagation, they may also disagree in cases of forward-backward and
backward-forward propagation when the backward propagation is nondeterminis-
tic.12 These cases may occur in situations of nondeterministic siblings (this is the
second group of cases).13 In these cases, the theories may return different results
even for non-manifestly backtracking counterfactuals. These are the least consensual
cases. At least in some of these cases, I think that the informational theory is cor-
rect. For example, I think that the informational theory is correct in case 3, which is
a case of backward-forward propagation where Memo and Bet are nondeterministic
siblings.

It is difficult to assess the general situation of these two theories regarding cases
involving nondeterministic siblings because these cases are not common in the liter-
ature. For example, there is not a single case of nondeterministic siblings among the
examples discussed in Hiddleston (2005). Examples 1−7 do not present siblings. In
examples 4 and 7, Coin/Dice and Win share a common ancestor Bet , but they are
not siblings because Coin/Dice is a parent of Win (Fig. 5). There is a case that Hid-
dleston discusses outside the main examples that present siblings (Fig. 5). In this case,

12Backward-forward propagation is propagation from a node to an ancestor and then to another descendant
of the ancestor. Forward-backward propagation is propagation from a node to a descendant and then to
another ancestor of the descendant.
13A common ancestor of X and Y is an ancestor of both X and Y . X and Y are siblings iff they share a
common ancestor, but are not ancestors of each other.
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F lash and Bang are siblings, but the relations between Explosion and F lash and
between Explosion and Bang are deterministic. This feature alone makes the causal
theory deals correctly with this case, but this would not happen if some relations were
not deterministic (as in case 3).

4 General Theory of Backtracking

Backtracking counterfactuals admit counterfactual reasoning that claims that if things
had been different at some time t1, they would also have been different at some ear-
lier time t0. When it is reasonable to backtrack is an issue for both the semantics
and epistemology of counterfactuals. My initial idea is that backtracking is reason-
able when the (possibly non-actual) state of affairs expressed in the antecedent of a
counterfactual transmits less information about an event in the past than the actual
state of affairs. The informational theory states that, in evaluating a counterfactual
X = x′

�→ Y = y, we should consider a change in the value of some variable Z

when the (possibly non-actual) value X = x′ transmits less information about the
actual value of Z than the actual value X = x (possibly, x = x ′)—given the actual
values for �W , which are the parents of Z that are not subject to change (Definition
5). From that definition, it follows that:

Definition 6 (General theory of backtracking) A counterfactual X = x ′
�→ Y = y

admits backtracking when the (possibly) non-actual value X = x′ transmits less
information about the actual value of Z (an ancestor X) than the actual value X = x

(possibly x = x ′)—given the actual values of �W , which are the parents of Z that
are not subject to change, in other words, when it is the case that pmi(X = x ′; Z =
z| �W = �w) < pmi(X = x; Z = z| �W = �w).

The first thing to note is that the general theory of backtracking may express my
initial idea because the relation of parenthood represents the causal relation and,
consequently, if Z is an ancestor of X, then Z is prior to X in time.14

In the following, I will defend that the informational theory and the general theory
of backtracking are reasonable. An intuitive reading of pmi(X = x; Y = y) is “the
amount of information that X = x transmits about Y = y.” This interpretation is
used in Dretske (1981, pp. 15–16, my emphasis):

We are now asking about the informational value of situation r , but we are not
asking about I (r). We are asking how much of I (r) is information received
from or about s. I shall use the symbol Is(r) to designate this new quantity. The
r in parentheses indicates that we are asking about the amount of information
associated with r , but the subscript s is meant to signify that we are asking about
that portion of I (r) that is information received from s. ...Is(r) is a measure of
the information in situation r about situation s.

14Supposing that a cause is prior to its effect.
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Then the general theory of backtracking and the informational theory state that
we should consider a change in the value of a variable in a counterfactual situation
when the state of affairs expressed in the antecedent of the counterfactual transmits
less information about the actual value of the variable than the corresponding actual
state of affairs.

In some situations, almost all information about a variable is shared with another
variable. For example, in case 3, the variable Memo transmits almost all existing
information about Jar . The amount of information associated with Memo or Jar is
2 bits (i(Memo) = 2, i(J ar) = 2).15 The amount of information shared between
Memo and Jar is 1.96 bits (i(Memo; Jar) = 1.96).16 ThenMemo transmits almost
all existing information about Jar . Therefore, it is reasonable to form beliefs about
Jar from the observation of Memo. In a counterfactual situation in which a non-
actual antecedent X = x′ is true, the only source of information about the value
of some other variable Z is the value of X itself (and the causal structure of the
model). Then loosing information about the value of Z from X is, in fact, loosing
information about which value Z holds. Loosing information about which value Z

holds is loosing information about whether Z maintains its actual value. Loosing
information about whether Z maintains its actual value is loosing justification for the
belief that Z maintains its actual value. In this situation, it seems to be reasonable to
consider a change in the value of Z. Given this, I think that the informational theory
and the general theory of backtracking are reasonable.

The main advantage of the causal theory is to provide a unified account for both
backtracking and non-backtracking counterfactuals. The fact that the general the-
ory of backtracking follows as a special case of the informational theory shows that
this theory also provides a unified account for both non-backtracking and backtrack-
ing counterfactuals. When we should backtrack is a special case of when we should
consider changing the value of a variable in general.

5 Conclusions

In this paper, I have presented a backtracking counterfactual that is a problem case
for Hiddleston’s theory and proposed an informational theory that deals with this
problem case while maintaining Hiddleston’s correct results for the other problem
cases. The main advantage of Hiddleston’s theory was the elimination of the asym-
metry between the treatment of backtracking and non-backtracking counterfactuals.
The informational theory maintains this advantage and eliminates the last asymme-
try of Hiddleston’s theory: the qualitatively different treatment for deterministic and
indeterministic relations.

15The amount of information in a variable X (i(X)) is the expected value of the amount of information in
each value X = x. Formally, i(X) = ∑

x i(X = x)p(X = x).
16The mutual information between two variables X and Y (mi(X;Y)) is the expected value of the point-
wise mutual information between each pair of value X = x and Y = y: mi(X;Y) = ∑

x,y pmi(X =
x;Y = y)p(X = x, Y = y).
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There are counterfactual theories of causality (Lewis 1973) and causal theories of
counterfactuals (Hiddleston 2005). There are counterfactual theories of information
(Cohen and Meskin 2006) and informational theories of counterfactuals. These three
notions seem to be related. In my opinion, information is the primitive notion from
which causality and counterfactuality are derivable. However, this is an issue for
further research.
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