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Abstract

We apply the “wisdom of the crowd” idea to human category learning, using a simple approach

that combines people’s categorization decisions by taking the majority decision. We first show that

the aggregated crowd category learning behavior found by this method performs well, learning

categories more quickly than most or all individuals for 28 previously collected datasets. We then

extend the approach so that it does not require people to categorize every stimulus. We do this

using a model-based method that predicts the categorization behavior people would produce for

new stimuli, based on their behavior with observed stimuli, and uses the majority of these pre-

dicted decisions. We demonstrate and evaluate the model-based approach in two case studies. In

the first, we use the general recognition theory decision-bound model of categorization (Ashby &

Townsend, 1986) to infer each person’s decision boundary for two categories of perceptual stim-

uli, and we use these inferences to make aggregated predictions about new stimuli. In the second,

we use the generalized context model exemplar model of categorization (Nosofsky, 1986) to infer

each person’s selective attention for face stimuli, and we use these inferences to make aggregated

predictions about withheld stimuli. In both case studies, we show that our method successfully

predicts the category of unobserved stimuli, and we emphasize that the aggregated crowd deci-

sions arise from psychologically interpretable processes and parameters. We conclude by dis-

cussing extensions and potential real-world applications of the approach.

Keywords: Categorization; Category learning; Wisdom of the crowd; General recognition theory;

Generalized context model

1. Introduction

Imagine that a team of trainee doctors views a set of skin patches and must categorize

them as being malignant or benign. These doctors receive feedback about their responses
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and, over time, learn to classify skin patches accurately. Presumably they learn which

skin patch dimensions, such as color, size, or shape, are important. In addition, they may

learn which levels of these dimensions indicate malignancy. A large skin patch that has a

light color and a smooth outline might be benign, whereas a small skin patch that has a

dark color and a jagged outline might be malignant. It is likely there will be differences

in exactly which patches each doctor sees, or at least the sequence in which they see

them. It is also likely that there will be individual differences in how well and how

quickly the doctors learn to categorize.

The “wisdom of the crowd” is the phenomenon in which an aggregated group answer

to a problem is more accurate than the answer of individuals in the group (Surowiecki,

2004). There are at least two ways an aggregate answer can improve upon an individual

answer. One way is signal amplification, in which combining answers amplifies the com-

mon signal and reduces noise. For example, if a skin patch is malignant, that ground truth

provides a common signal that competent doctors will reliably detect, while newer doc-

tors may be less consistent in their categorizations. The net result is that the group overall

will favor the ground truth of malignancy, even if some individuals believe it to be

benign. A second way is jigsaw completion, in which different individuals solve different

parts of the problem. For example, if there are various types of malignant patches, differ-

ent doctors may specialize in different types. Relying on the categorizations of the doc-

tors who specialize in each individual patch will maximize the accuracy of the group

classification across all patches.

Surowiecki (2004) identifies four requirements for a wise crowd. The first is diversity:
The individuals need to have a range of different opinions and backgrounds. As the doc-

tor example makes clear, this will often be true of categorization problems, because of

individual differences in learning. In general, some people may learn more quickly than

others and some people may achieve eventual levels of categorization accuracy that are

higher than other people’s. It is also possible that not just the rate and final level of learn-

ing will differ, but the nature of the learning itself will differ, with some people learning

incrementally and gradually improving their accuracy, and others switching between

strategies, leading to sudden changes in accuracy. The second is decentralization: The

individuals need to draw on different information sources. The doctor example again

makes clear that categorization often satisfies this requirement. In general, the doctors

will learn from different sets of skin patches or experience them in a different order. The

third is independence: The individuals cannot know too much about what others think, so

that they provide additional or different information to the group. If doctors are trained in

an individual setting, or are otherwise unaware of the categorizations of the other trai-

nees, this requirement will also be met.

Given that categorization satisfies these three requirements, applying the wisdom of

the crowd idea hinges on satisfying Surowiecki’s fourth requirement. This is aggrega-
tion: There must be a method for aggregating individual decisions into a group deci-

sion. Since categorization decisions are discrete (usually binary), the simplest method

of aggregation is to take the majority decision. There is evidence, despite its simplicity,

that the majority can lead to accurate and robust decisions, for both low-level
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perceptual and higher order cognitive stimuli (Hastie & Kameda, 2005; Sorkin, Hays,

& West, 2001).

In this paper, we study the wisdom of the crowd for category learning using majority

decisions. We tackle this challenge in two ways: first, empirically, and then, using cogni-

tive models. In the first part of the paper, we test empirically the accuracy of group learn-

ing curves produced by aggregating individual categorization decisions for a number of

existing category learning datasets. We find that, in general, these aggregate learning

curves perform as well or better than the learning curves of most individuals. This is per-

haps not surprising, given the empirical success of aggregation in other behavioral tasks,

including estimation (Herzog & Hertwig, 2009; Vul & Pashler, 2008), problem solving

(Yi, Steyvers, Lee, & Dry, 2012), ranking and voting (Lee, Steyvers, & Miller, 2014;

Selker, Lee, & Iyer, 2017), and competitions (Lee, Zhang, & Shi, 2011). Most of these

tasks, however, involve sets of largely independent decisions, whereas category learning

involves sequences of repeated decisions, sometimes with structure at the individual level

based on the progress of learning. Thus, our finding of a wisdom of the crowd effect for

category learning extends the generality of the empirical effect.

In the second half of the paper, we build on the empirical finding using cognitive mod-

els. The modeling approach allows the wisdom of the crowd to be extended to the cate-

gorization of new stimuli, for which behavioral data do not exist. The key idea is to use

models to make predictions of the categorizations an individual would have produced for

the new stimuli. The group majority can then be formed across these predictions. We

demonstrate this approach in two case studies, involving two different models of catego-

rization and two different stimulus sets. We conclude by discussing potential extensions

and applications of the approach.

2. Behavior-based wisdom of the crowd

To test the accuracy of majority group decisions, we examine 28 existing experimental

datasets from a set of previous category learning studies. These datasets were collected

with ethical approval from the relevant academic institutions. Table 1 details the studies,

including information about the total number of participants, the number of stimuli, the

number of blocks (a set of trials typically presenting each stimulus once), the nature of the

stimuli, and the number of experimental conditions. It is the total number of experimental

conditions that totals the 28 datasets. These studies were chosen because they were the only

ones for which we could find behavioral data at the level of individual participants and

individual trials, and the true category membership of each stimulus is known.

As Table 1 shows, the datasets vary widely in all of these properties, especially in the

nature of the stimuli. The stimuli include rectangular shapes of different sizes (Kruschke,

1993a), shapes varying in size and color (Lewandowsky, 2011), adult faces categorized in

terms of gender, hair color, and trust (Navarro, Lee, & Nikkerud, 2005), Gabor patches

varying in frequency and orientation (Zeithamova & Maddox, 2006), shapes varying in

color and form (Lee & Navarro, 2002), Shepard circles of varying size and radial line

I. Danileiko, M. D. Lee / Cognitive Science (2017) 3



angle (Bartlema, 2013; Bartlema, Lee, Wetzels, & Vanpaemel, 2014), and nonsense

words (Smith & Minda, 1998).

Fig. 1 shows the results for one dataset coming from the Kruschke (1993a) study. The

x-axis shows the eight blocks of learning trials, and the y-axis shows categorization accu-

racy. Because there are two categories, an accuracy of 0.5 corresponds to chance perfor-

mance. The thin gray lines show the performance of each individual participant, plotting

their proportion of correct categorization decisions in each block of the experiment. The

average of these individual participant accuracies is shown by the dashed blue line.

Fig. 1 also shows the performance of the wisdom of the crowd aggregate. The aggre-

gated decisions categorize a stimulus on each trial, just as individual participants did. The
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Fig. 1. Learning curves for one experimental condition from the Kruschke (1993a) dataset. The thin gray

lines show each individual’s proportion of correct answers for each block of the experiment. The dashed blue

line shows the average of the individual participant accuracies. The single thick red line shows the catego-

rization accuracy of the aggregated crowd majority decision.

Table 1

Details of the experimental category learning datasets

Dataset np ns nb nc Stimuli

Kruschke (1993a) 160 8 8 4 Rectangles

Lewandowsky (2011) 113 8 12 6 Shapes

Navarro et al. (2005) 40 25 8 4 Faces

Zeithamova and Maddox (2006) 170 80 5 4 Gabor patches

Lee and Navarro (2002) 22 9 Varied 4 SHAPES

Bartlema (2013) 34 8 40 1 Shepard circles

Bartlema et al. (2014) 31 8 40 1 Shepard circles

Smith and Minda (1998) Exp. 1 32 14 7 2 Nonsense words

Smith and Minda (1998) Exp. 2 32 14 10 2 Nonsense words

Note. np: number of participants across all conditions of the experiment; ns: number of stimuli; nb: number

of blocks; nc: number of conditions.
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difference is that the aggregate decision is based on the majority of the observed participant

behaviors for that stimulus. The single thick red line shows the categorization accuracy

of these aggregated majority decisions over the course of the experiment. The learning

curve for the crowd achieves perfect accuracy as early as the second block of the experi-

ment. This contrasts favorably with individual performance since only a few participants

do slightly better in the first block, and clearly it is superior to the average performance

of people.

Fig. 2 shows the same analysis for all of the conditions in all of the datasets from

Table 1. Some experimental conditions are easier to learn, while others are harder. For

example, the Bartlema et al. (2014) conditions are difficult because of the perceptual con-

fusability of the stimuli, whereas the fourth Navarro et al. (2005) condition is difficult
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Fig. 2. Learning curves for 28 category learning experiments from eight datasets. As in Fig. 1, the gray lines

show individual participant accuracy, the dashed blue lines show the average of the individual participant

accuracies, and the red line shows the accuracy of the aggregated crowd majority decisions.
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because the stimuli were randomly assigned to categories. In addition, some experimental

conditions show clear evidence of individual differences. For example, in several of the

Zeithamova and Maddox (2006) conditions, there appears to be two groups of partici-

pants, one learning the category structures and reaching high accuracy, and another fail-

ing to learn and remaining at poor accuracy throughout the experiment. Despite this

variability, the red lines in Fig. 2 show that the crowd performs well. For nearly all of

the experimental conditions, the crowd outperforms most or all of the individuals, and

almost always outperforms the individual average. The basic result is that taking the

majority decision is an effective aggregation method for category learning tasks.

3. Model-based wisdom of the crowd

Imagine now that there is a new skin patch that has not been categorized by any of the

trainee doctors. In this case, it is not possible to aggregate observed categorization deci-

sions, and so the behavior-based wisdom of the crowd approach does not apply. If it is

possible to predict what each doctor would decide, however, these predictions can be

aggregated as if they were behavioral decisions.

In this section, we develop a model-based approach for extending wisdom of the

crowd categorization to new stimuli. The idea is to infer a cognitive model of each indi-

vidual’s categorization process based on their decisions for stimuli they have seen and to

use that model to predict their decisions for new stimuli. We present two examples of this

approach, using two different prominent models of categorization, and involving two dif-

ferent types of stimuli. The first uses general recognition theory (GRT: Ashby & Town-

send, 1986) and simple perceptual stimuli, while the second uses the generalized context

model (GCM: Nosofsky, 1984, 1986) and face stimuli.

3.1. An application using GRT

3.1.1. Stimuli and data
This application is based on two of the experimental conditions reported by Zei-

thamova and Maddox (2006). These are the two conditions without memory load: the

unidimensional condition, which involves 41 participants, and the information-integration

condition, which involves 34 participants. In Fig. 2, these two conditions are the top-right

and bottom-right panels in the “Zeithamova & Maddox” section. In both of these condi-

tions, each participant completed five blocks of 80 trials, categorizing Gabor patch stimuli

that varied on two dimensions of spatial frequency and spatial orientation. Both condi-

tions gave corrective feedback after every trial, so that the participants could learn to

make more accurate categorizations. This application uses data from only the fifth and

final block, when participants were the most informed about the category structures.

The two conditions varied in the way the category structures were defined. In the uni-

dimensional condition, stimuli could be accurately categorized solely in terms of their

spatial frequencies. In the information-integration condition, both spatial frequency and
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spatial orientation were important for determining the correct categorization. Formally,

the stimuli belonging to each category were defined using a multivariate normal distribu-

tion over the stimulus space. These distributions allow for the generation of new stimuli

from each of the categories for both conditions. Thus, Zeithamova and Maddox (2006)

provide behavioral decisions for the 80 stimuli in their conditions, but it is possible to

generate any number of new stimuli, which participants did not see, but for which their

true category membership is known.

3.1.2. GRT model
General recognition theory is a decision-bound model of categorization. It assumes that

decisions are based on a decision boundary that divides the stimulus space into two cate-

gories. Each stimulus is represented as a point that defines its location in this space. In

this application, the point xj = (x1j, x2j) represents the spatial frequency and spatial orien-

tation of the jth Gabor patch. GRT assumes that there is variability in the perceptual

information associated with each stimulus point on each trial. To account for this, the

representation is adjusted to include perceptual noise, so that xpj = xj + ep. Categorization
decisions are based on which side of a decision bound this point lies.

The decision bound is a discriminant function of the two dimensions that satisfies the

implicit line equation h(x1, x2) = b1x1 + b2x2 + c, with the three parameters, b1, b2, and
c. GRT assumes that there is criterial noise ec added to the discriminant function to

account for variations in how the participants remember the bound. It also allows for cat-

egory bias d, which can be conceived as shifting the decision bound to favor one cate-

gory over the other. Putting these assumptions together, the probability a participant will

choose category A is given by Pr(h(xpj) + ec < d).

3.1.3. Implementation
The GRT has been implemented in a Bayesian framework as a graphical model (Dani-

leiko, Lee, & Kalish, 2015). Graphical models are a formalism that makes it straightfor-

ward to implement individual differences using hierarchical structures (Lee, 2011, in

press; Lee & Wagenmakers, 2013). In graphical models, parameters and data are repre-

sented by nodes, and the structure of the graph indicated the processes by which parame-

ters are assumed to generate data. Unshaded nodes typically indicate latent parameters,

while shaded nodes typically indicate observed data or other known values. Circular

nodes indicate continuous values while square nodes indicate discrete values. Nodes with

a double border represent deterministic variables that are defined as a function of other

variables. Finally, rectangular plates indicate replications within the model.

Fig. 3 shows the implementation of the GRT that we applied to model individual cate-

gorization behavior for the Zeithamova and Maddox (2006) data. The node yij is a count

of the number of times the ith participant categorized the jth stimulus into category A.

The node xj is the point that represents the jth stimulus in the stimulus space. The proba-

bility hij is the probability that the ith participant categorizes the jth stimulus into cate-

gory A, and it is calculated using the cumulative normal distribution Φ(�). Following

GRT, this categorization probability is determined by the decision bound the participant

I. Danileiko, M. D. Lee / Cognitive Science (2017) 7



uses and the criterial and perceptual noise for the trial on which the jth stimulus was pre-

sented. Our model assumes that the criterial and perceptual noise are combined into the

value eij which is drawn from a Gaussian distribution with mean 0 and a participant-spe-

cific standard deviation ri. Our model also assumes that the category bias d is equal to 0,

since the number of stimuli in each category are equal, and we expect people to be unbi-

ased under these circumstances.

We assume there are, however, individual differences in the decision bounds that peo-

ple use. In particular, we allow for simple unidimensional categorization strategies corre-

sponding to strictly horizontal or vertical decision bounds, as well as more general

diagonal bounds that involve both stimulus dimensions. This is implemented using a

latent-mixture approach in which horizontal, vertical, and diagonal bounds are the mix-

ture components. The parameter zi functions as an indicator variable controlling which

type of decision bound the ith participant uses. Because we use a latent-mixture

approach, the zi parameter is inferred for each participant. Depending on the type of deci-

sion bound, parameters that position that boundary in the stimulus space also need to be

inferred. If the ith participant is inferred to use a horizontal bound, it is positioned at a

spatial frequency value of bHi . If they use a vertical bound, it is positioned at a spatial

orientation value of bVi . If they use a more general diagonal bound, it has a slope of aDi
and an intercept of bDi .

For all of these possibilities, we assume that stimuli are probabilistically categorized

according to which side of the decision boundary they lie. Stimuli closer to the boundary

are categorized more probabilistically, with some probability they are categorized on the

other side of the bound. Stimuli further from the boundary are categorized near determin-

istically. How quickly probabilistic categorization becomes deterministic is controlled by

a participant-specific scale parameter ki, as part of a probit-link model of probabilistic

responding.

Fig. 3. Graphical model representation of the general recognition theory, as applied to the model individual

categorization behavior for the Zeithamova and Maddox (2006) data.
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The model in Fig. 3 also allows for three types of contaminant behavior, motivated by

the clear presence of a group of participants exhibiting little learning and responding near

chance, as discussed earlier. The first corresponds to the case in which a participant

guesses, choosing category A and category B equally often regardless of the stimuli. The

second corresponds to the case in which a participant almost always chooses category B

regardless of the stimulus. The third corresponds to the case in which a participant almost

always chooses category A regardless of the stimulus. Contaminant behaviors can be

thought of as alternative response strategies to those coming from GRT, and so are natu-

rally implemented by extending the latent-mixture approach (Zeigenfuse & Lee, 2010).

Thus, overall, the parameter zi indexes six possibilities for each participant: three possible

GRT strategies based on different types of decision bounds, and three possible contamina-

tion strategies.

To complete the Bayesian implementation, we set equal prior probabilities on each

participant using each of the six possible categorization strategies. We also set uniform

prior distributions for the possible range of decision bound locations and for the noise

variability and determinism parameters.

3.2. Categorization modeling results

We implemented the graphical model in Fig. 3 in JAGS (Plummer, 2003). Our results

are based on six independent chains with 10,000 samples each after discarding the first

50,000 burn-in samples from each chain and thinning by collecting only every third sam-

ple. The chains were assessed for convergence using the standard R̂ statistic (Brooks &

Gelman, 1997).

The posterior distribution of the zi parameter provides the probability that the ith par-

ticipant is using each of the six possible strategies. We make the simplifying practical

assumption that they use the most likely strategy, corresponding to the mode of the poste-

rior distribution. Similarly, for the GRT-based strategies, we assume they use the decision

bound given by the posterior mean of the relevant parameters for the horizontal, vertical,

and diagonal cases.

These results are summarized in Fig. 4, which shows the 80 stimuli as points, colored

by their true category. The shading of each point corresponds to the proportion of correct

categorizations, with darker shades correspond to more accurate decisions. The decision

bounds for the participants—36 in the unidimensional condition and 33 in the informa-

tion-integration condition—inferred to be using GRT-based strategies are shown as gray

lines. In the unidimensional condition, most participants use a vertical decision bound.

However, in the information-integration condition, there is a group of participants who

use a vertical decision bound and another group who use a diagonal decision bound. In

addition to these individual differences in the type of decision bound, there are also indi-

vidual differences in the location of the bounds themselves. For example, different partic-

ipants use vertical decision bounds that correspond to different thresholds of spatial

frequency.

I. Danileiko, M. D. Lee / Cognitive Science (2017) 9



Fig. 5 highlights the behavior of three selected participants from both the unidimen-

sional and the information-integration conditions. Each of these participants corresponds

to a pair of panels. The “observed” panels show the presented stimuli, with color corre-

sponding to the categorization decision and the marker shape corresponding to the true

category. The inferred boundary for the participant is shown by the gray line. This single

boundary represents each participant’s most likely boundary strategy, either vertical, hori-

zontal, or diagonal, as well as the inferred location of that boundary in the stimulus

space. The GRT is able to describe observed behavior to the extent that the decision

bound separates the stimuli (i.e., that different colors lie on different sides of the bound).

The selected participants vary as to whether they use a vertical bound, a diagonal bound,

or one of the contaminant strategies.

The “new” panels in Fig. 5 show how the inferred strategies are applied to make pre-

dictions about how each participant would categorize the newly generated set of stimuli.

For GRT-based strategies, new stimuli are simply categorized according to which side of

the bound they lie. Otherwise, the stimuli are categorized according to the inferred con-

taminant strategy. It is these predictions that allow us to apply the wisdom of the crowd

method to new stimuli.

3.2.1. Wisdom of the crowd results
Fig. 6 summarizes our wisdom of the crowd analysis for the unidimensional and infor-

mation-integration conditions. For the observed stimuli, the gray bars show the distribu-

tion of the categorization accuracy across participants. This is based on their behavioral
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Fig. 4. Categorization behavior and inferred decision boundaries for the Zeithamova and Maddox (2006)

data. The left panel corresponds to the “unidimensional without memory load” condition, and the right panel

corresponds to the “information-integration without memory load” condition. In each panel, the true category

structure is shown by the marker color, and the proportion of correct categorization decisions is shown by

shading. The gray lines show the inferred decision bound for each participant.
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responses in the experiment. The broken line shows the average of individual accuracy.

The black dot shows the accuracy of the majority of these observed categorization deci-

sions.

The “new” panels of Fig. 6 involve 1,000 sets of newly generated stimuli. For these

new sets, the gray bars show the distribution of accuracy for the predicted categorization

decisions across participants. The broken line is again the average accuracy. The black

dot is the average accuracy of the majority predicted categorization across all of the new

sets, and the error bar shows its 95-percentile range. There is more variability in the error

bar of the information-integration condition because the inferred boundaries used are

themselves more variable and prone to suboptimal behavior of using vertical boundaries,

as seen in the right panel of Fig. 4.

The observed results mirror those presented in Fig. 2, showing that the majority deci-

sion is generally very accurate compared to individual performance. The similarly good

performance for the new stimuli shows the effectiveness of the model-based approach.

The majority of the predicted decisions, where the predictions are generated by models of

individual categorization behavior, is able to categorize accurately stimuli that have never

been observed.
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Fig. 5. Observed and new categorization decisions for a subset of the participants from the Zeithamova and

Maddox (2006) dataset. Panels on the left correspond to the “unidimensional without memory load” condi-

tion, and panels on the right correspond to the “information-integration without memory load” condition.

Rows correspond to individual participants, and columns correspond to observed and predicted behavior. In

all of the panels, the marker shape represents the true category. In observed panels, the marker color repre-

sents participant behavior in the experiment. In the new panels, the marker color represents predicted behav-

ior of the newly generated stimuli, based on the inferred categorization strategy. For both conditions, the first

two participants are inferred to use the decision bounds shown by the gray line, while the third participant

uses either a guessing or repetitive contaminant strategy.
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3.3. An application using the GCM

3.3.1. Stimuli and data
This application is based on one of the four conditions in the category learning experi-

ment reported by Navarro et al. (2005). This experiment involved a set of 25 faces. The

four conditions differed in the way these faces were assigned to two categories. We con-

sider only the category structure that divided the faces in terms of hair color. In Fig. 2,

this condition is the top-right panel in the “Navarro et al.” section. In this condition, 10

participants completed eight testing blocks in which each stimulus was presented once

with corrective feedback.

Fig. 7 shows each of the faces, labeled A–Y, in terms of their representation in a

two-dimensional stimulus space. The space was derived using the individual-differences

multidimensional scaling method presented by Okada and Lee (2016), based on

previously collected similarity data involving 14 participants rating each pair of faces on
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Fig. 6. The left panels show the individual and crowd accuracy for the Zeithamova and Maddox (2006) “uni-

dimensional without memory load” condition. The right panels show the individual and crowd accuracy for

the Zeithamova and Maddox (2006) “information-integration without memory load” condition. For both

observed and new stimuli, the gray bars show the distribution of individual accuracy, the dashed line shows

the average of these individual accuracies, and the black dot shows the accuracy of the majority crowd deci-

sion.
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a 5-point scale. A key feature of this multidimensional scaling method is that it derives

stimulus spaces with psychologically interpretable dimensions. The dimensions in Fig. 7

can be interpreted as corresponding to gender and hair color.

The category structure for the hair color condition is indicated in Fig. 7 by the black

and white coloring of the stimulus labels. Unlike the Zeithamova and Maddox (2006)

experiment, there is no rule for generating new stimuli with known category assignments.

Accordingly, we removed eight faces from the Navarro et al. (2005) dataset. The
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Fig. 7. Dimensional representation of the face stimuli from the Navarro et al. (2005) dataset. The true cate-

gory structure is shown by filled and unfilled alphabetic labels. The red squares underneath the labels indicate

the eight faces that were removed.
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removed faces are highlighted in Fig. 7 by red squares beneath the stimulus labels. We

treat these faces as if they were new stimuli, never seen by the participants.

3.3.2. GCM model
The GCM is an exemplar-based model of categorization that uses selective attention

and similarity comparison processes to categorize stimuli. There are several variants of

the GCM designed to accommodate specific categorization situations. These situations

include some stimuli being presented more frequently than others, category assignment

being inherently probabilistic, or the use of stimuli for which perceptual learning is possi-

ble (Nosofsky, 1992).

We use a variant of the GCM that we think is appropriate for the Navarro et al.

(2005) categorization task. Formally, the ith stimulus is represented as a two-dimensional

coordinate location xi = (xi1, xi2), as shown in Fig. 7. The attention-weighted distance

between the ith and jth stimuli is then dij = w | xi1 � xj1 | + (1 � w) | xi2 � xj2 | , where
w is a parameter controlling how much attention is given to the first dimension. This

means that a dimension receiving more attention will be more influential in determining

distances than the one receiving less attention. We assume that there may be individual

differences in attention, and so there are individual-level w parameters. The similarity

between these stimuli is sij = exp(�cdij), where c is a parameter controlling the general-

ization gradient. Because we assume individual differences perceptual learning for the

face stimuli are unlikely, the same generalization parameter is used for all participants.

We do, however, allow c to vary over blocks, allowing for the possibility the degree of

generalization is adapted to the learned category structures. The similarity of the ith stim-

ulus to category A is then the sum of the similarities to all the stimuli in the category:

siA ¼ Rj2A sij. Finally, the probability of a category response placing the ith stimulus in

category A is piA = bsiA/(bsiA + (1 � b)siB), where b is a parameter controlling the

response bias to category A. Because the categories are fixed, we do not include a

response-determinism parameter in the category response model. We do, however, allow

for individual bias, consistent with the assumption that there may be individual differ-

ences in the way participants learn the unequal category sizes.

3.3.3. Implementation
The GCM has also been implemented as a graphical model (Lee & Wagenmakers, 2013;

Vanpaemel, 2009). Fig. 8 shows the implementation of the GCM that we applied to model

individual categorization behavior for the Navarro et al. (2005) data. Unlike the GRT appli-

cation, we consider every block in the category learning experiment. Since the GCM does

not model learning, we did this by applying it cumulatively over the sequence of blocks.

In the graphical model, the yij node counts the number of times the ith participant cate-

gorizes the jth face into category A. The cumulative approach means that this count

includes the current block as well as all previous blocks, and n counts how many times it

has been presented over these blocks. Following the GCM, the category A response prob-

ability rij is determined from the similarities sij for the kth participant, which in turn are

determined from the distances djk between the stimulus representations x. The response
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probabilities depend upon individual bias bi, and the similarities depend upon the general-

ization gradient c and individual attention weights wi.

We assume there are individual differences in the attention weights that people use,

and we give theoretical weight to the use of simple attention strategies that focus on just

one stimulus dimension. We implement this using a latent-mixture approach in which the

mixture components are the attention weight wi values of 0, 1, or drawn from a uniform

distribution. An attention weight of 0 corresponds to a person attending only to dimension

2 in Fig. 7. An attention weight of 1 corresponds to a person attending only to dimension

1 in Fig. 7. A person inferred to be using an attention weight drawn from a uniform dis-

tribution devotes attention to both dimensions, but possibly not equally. Similar to our

GRT latent-mixture model, the zi parameter functions as an indicator variable controlling

which attention weight value the ith participant uses.

To complete the Bayesian implementation, we set a prior on the generalization gradi-

ent consistent with the distribution of distances in the MDS representation, and a prior

for bias that corresponds to expecting any deviation from unbiased responding to be

smaller rather than larger. We also set equal prior probabilities on each of the six possible

categorization strategies.

3.3.4. Categorization modeling results
We again implemented the graphical model in JAGS. Our results are based on three

independent chains with 1,000 samples each after discarding the first 5,000 burn-in sam-

ples from each chain. The chains were again assessed for convergence using the standard

R̂ statistic.

Fig. 8. Graphical model representation of the generalized context model, as applied to the model individual

categorization behavior for the Navarro et al. (2005) data.
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The top panel of Fig. 9 shows the most likely model for each participant in each

block. It is clear that some participants change their attention weights over time, and that

there are individual differences in these patterns of change. The most common attentional

strategy is to attend just to the second dimension. The first two participants always attend

to the second stimulus dimension, and the next two participants do the same from the

second block onwards. Other participants show guessing contaminant behavior on many

of the blocks. It is relatively rare for participants to attend to both dimensions. In general,

the patterns of change are interpretable, such as participant 7 who initially attends to the

first dimension, then distributes their attention for a few blocks, and finishes by guessing

for the remainder of the experiment.

The bottom-left panel of Fig. 9 shows the inferred similarity gradients, over the dis-

tances in the MDS representation of the faces, based on the posterior of the c parameter.

The histogram shows the distribution of distances between all pairs of faces. The eight
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Fig. 9. Most likely model for all 10 participants for all eight blocks shown via color-coding (top panel).

Inferred similarity gradients over all stimuli distances in the MDS representation (bottom-left panel). Inferred

bias parameter for all 10 participants over the eight blocks (bottom-right panel).
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gradients shown correspond to the eight blocks, and the first and last blocks are labeled.

The gradient narrows over the course of the experiment, consistent with some form of

adaptation. Comparing the gradients to the distribution of distances shows that in the first

block, there is broad generalization from one face to all other faces, but in later blocks,

what is known about one face generalizes only to relatively nearby faces. This is consis-

tent with the principle of semi-distributed representation (Kruschke, 1993b).

The bottom-right panel shows the inferred pattern of change in bias for each of the 10

participants over the course of the experiment, with error bars representing 95% credible

intervals. A few participants show some small initial bias, but the general result is that

most participants on most blocks do not favor one category response over the other.

3.3.5. Wisdom of the crowd results
We used the GCM, with inferred individual differences in attention and bias, to make

categorization predictions for each of the withheld faces from Fig. 7. As before, the pre-

diction is the most likely category response and the crowd categorization decision is the

majority of the individual-participant predictions. For each individual, we used the most

likely strategy that the model inferred they were using to generate their categorization

decision for the withheld stimuli. When that most likely strategy involved the GCM, we

used attention and bias parameters corresponding to the inferred posterior mean for the

individual. We then took the modal predicted categorization decision from the non-con-

taminant participants for each withheld face for each block of the experiment. This final

step generated the crowd categorization decision.

Fig. 10 summarizes the wisdom of the crowd analysis. It shows the average categoriza-

tion accuracy for the withheld faces for the individual participants (i.e., the categorization

decisions actually made by the participants before we removed them for modeling
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show each individual’s proportion of correct answers for each block of the experiment. The dashed blue line

shows the average of the individual participant accuracies. The single thick red line shows the categorization

accuracy of the aggregated crowd majority decision.
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purposes), the average of these individual accuracies, and the crowd category decisions.

It is clear that from the first block, the crowd is more accurate than any individual and

maintains this superiority over the subsequent blocks. The crowd is always more accurate

than the average of the individuals. The performance of the aggregate decision is espe-

cially impressive, given the difficulty of the withheld faces in terms of the category struc-

ture, as evidenced by the average of individual accuracy decreasing even with feedback.

4. Discussion

In this paper, we have developed and demonstrated a wisdom of the crowd approach to

categorization. The basic idea is to use the majority categorization decision over a set of

individuals as the crowd decision. We showed that this approach leads to accurate crowd

decisions for a number of existing category learning datasets, varying widely in the size of

the crowd, the difficulty of the category structures, and the nature of the stimuli. We also

developed a model-based extension of this idea, using categorization models that allow for

individual differences in categorization behavior. We showed that individual-level models

can be inferred from available categorization decisions and then used to predict how that

individual would categorize an unseen stimulus. Our results show that the majority of

these predictive decisions continues to produce relatively accurate crowd decisions.

The two case studies we presented highlight the potential generality of the approach.

One involved GRT and decision-bound categorization, while the other involved the GCM

and similarity-based exemplar categorization. One involved low-level perceptual Gabor

patch stimuli, while the other involved more complicated and holistic face stimuli. One

focused on individual differences in the form of different decision strategies, such as hori-

zontal, vertical, and diagonal decision bounds, while the other focused on individual dif-

ferences in the form of selective attention to different stimulus dimensions. The basic

approach simply needs a predicted decision for each individual for a new stimulus, and

any model of categorization decisions and individual differences is potentially applicable.

The particular versions of the GRT and GCM we used worked effectively, but we do

not claim they are the best possible models. In both case studies, we made a number of

modeling decisions, about the inclusion or exclusion of parameters in the GRT and

GCM, about the existence of contaminant subgroups, and so on. These decisions usually

had some basis in theory or the specific nature of the category learning task. For exam-

ple, we allowed the generalization parameter in the GCM to vary across blocks but not

across people, because that would imply some individual variation in perceptual learning

over the course of the experiment, which we think is unlikely for the face stimuli. Simi-

larly, our GRT model did not include a category bias parameter, because the number of

Gabor stimuli in each category was equal, consistent with what we would expect partici-

pants to assume, but we did include such a parameter in the GCM model, because the

number of face stimuli in each category was unequal, and we expect individual differ-

ences in participants learning this imbalance.
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Despite these sorts of justifications, however, it would be possible to explore a large

number of alternative GRT and GCM models by combinatorially varying the assumptions

we made. This would be interesting theoretically to test which assumptions are key to

good performance, and useful practically to optimize performance. We noted some inter-

esting possibilities in constructing our case studies but did not attempt a systematic inves-

tigation. For example, in the GCM analysis, we observed that crowd performance was

significantly worse before we included the contaminant behavior mixture components.

Without allowing for these individual differences, the crowd performance did not go

above an accuracy of 75%. Removing contaminants reduces the number of decisions con-

tributing to the majority, but evidently this deficit is more than compensated by identify-

ing those participants who are learning the category structure. In this case, the additional

theoretical complicated of including contaminant behavior was worthwhile. It might also

be that sometimes a simpler model is a better account of people’s behavior, and improves

performance. For example, even though the possibility of individual differences in cate-

gory bias for the GCM case study was well motivated, the inferences in Fig. 9 suggest

that assuming unbiased responding for all participants might describe the data well, and it

could potentially lead to better crowd performance. Exploring these sort of possibilities is

an interesting direction for future research. It will be challenging territory to navigate,

because of possible tensions between modeling assumptions that follow from established

theory, those that are required to describe the current behavioral data, and those that best

achieve the applied goal of crowd accuracy. Ultimately, we need to understand poten-

tially complicated relationships between the quality of a cognitive model of individual

categorization behavior, the quality of a model of individual differences in that behavior,

and the quality of the crowd performance it underpins.

Moving forward, one attraction of our approach is its generality. It is possible for both

the current case studies, and for other case studies—involving other stimuli or category

structures—that quite different categorization models will be appropriate. For example,

some category structures will need nonlinear decision bounds in the GRT, and individual

differences in generalization gradients in the GCM will be needed for stimuli that allow

for perceptual learning. Beyond the GRT and GCM there are many other theories and

models of categorization, including ALCOVE, COVIS, RULEX, SUSTAIN, and hybrid

models (Ashby, Alfonso-Reese, Turken, & Waldon, 1998; Busemeyer, Dewey, & Medin,

1984; Kruschke, 1992; Love, Medin, & Gureckis, 2004; Nosofsky & Palmeri, 1998;

Smith & Minda, 2000), that could be used as the underlying psychological models in our

wisdom of the crowd framework.

As well as considering other models of categorization, our approach would benefit

from extended models of categorization decisions and category learning. For example, it

is possible that people change strategies during the course of learning a category struc-

ture. In the GCM case study, Fig. 9 shows that some participants change how they attend

to the different stimulus dimension over the course of learning. These changes are not

formally part of the GCM model that we used, nor is it a common capability in most

established psychological models of category learning. It would also be possible to extend

the modeling approach to allow for individual differences in terms of which
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psychological model each person uses. It may be that some people use decision bounds

while others use exemplar-based similarity, and it may even be that some people start

with an exemplar strategy and switch to a decision bound strategy as the number of pre-

sented stimuli increases. Both of these extensions could be naturally accommodated by

hierarchical and latent-mixture extensions within the graphical modeling approach we

have used and could continue to be applied to data using Bayesian methods.

Turning to applied possibilities, a challenge for our approach is determining how to

represent the stimuli. The simple perceptual nature of the Gabor patch stimuli is not true

of all stimuli, and the representation of the faces that we used was based on independent

similarity data collection and multidimensional scaling analysis. Even then, the represen-

tation of the face stimuli only applied to 25 faces, and we have no method for determin-

ing how a new face should be represented in this same space. What is needed for real-

world application is a formal method for determining an appropriate representation of

any possible stimulus. To return to our motivating example of doctors learning to diag-

nose skin patches, it seems possible, but far from trivial, that image processing methods

could automatically map a visual skin patch stimulus into a dimensional psychological

representation. In general, the applicability of our approach to real-world situations hinges

on finding such a representational method. When such methods are available, our

approach has the attractive property of requiring relatively limited effort on the part of

people to categorize large numbers of stimuli. Once a categorization model has been

inferred for each individual, it can be applied to any number of new stimuli. The accu-

racy of the crowd categorizations should increase as both more individuals are included

in the group, and as individuals categorize more stimuli.

One way to interpret our wisdom of the crowd approach comes from machine learning

where it would be called boosting (Hastie, Tibshirani, & Friedman, 2001). Under this

interpretation, the model of each individual functions as a weak classifier and there is a

simple majority rule for aggregation of the categorization decision. In fact, the GRT is

closely related to decision-bound methods like support vector machines, and the GCM is

closely related to radial basis classifiers, nearest-neighbor, and other clustering methods

(Gomes, Welinder, Krause, & Perona, 2011; Welinder, Branson, Belongie, & Perona,

2010). From a machine learning perspective, the contribution of our approach is to help

identify useful weak classifiers, by recognizing that the classification problem is a prob-

lem of human categorization, and so domain-specific cognitive models should be effective

in ways that more domain-general statistical methods may not. Nevertheless, it is almost

certainly possible to improve categorization accuracy in the case studies we have pre-

sented using established and successful machine learning techniques. In particular, it is

likely that discriminative machine learning methods could outperform the generative

approach to probabilistic modeling we have used. The strength of the psychological nat-

ure of our approach comes not from relative accuracy, but from significantly greater

interpretability. A recognized challenge for machine learning methods relates to issues of

interpretability and trust (Ribeiro, Singh, & Guestrin, 2016). While a deep neural net may

only be able to give a sequence of connection weights as a justification for a decision, it

is generally easy to give complete and meaningful accounts of how and why our
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aggregated crowds decided to categorize a new stimulus a certain way. These explanations

will reference interpretable decision strategies and individual differences in those strate-

gies. This should not only increase the probability that people trust the crowd decision,

but also make training and remediation of individuals possible, especially by comparing

their categorization strategies to others.

In terms of psychological understanding, our approach is a good example of what

Watts (2017) calls “solution-oriented” social science. The general goal is to seek to solve

a practical problem, using existing theories and models where possible, and identifying

gaps where they exist. In our case, the wisdom of the crowd problem demands that the

modeling of individual differences be taken seriously, and both of our case studies incor-

porated different sorts of categorization strategies as well as allowing for different types

of contaminant behavior. This is relatively new theoretical territory for the modeling of

human category learning, and there certainly is not wide exploration or agreement on the

number and type of these individual differences. In this way, our results provide new

empirical evaluation and are relevant to the development of theory. More tellingly, the

results for the faces case study, shown in Fig. 10, identify the need for models of how

people change or adapt their categorization strategies over the course of learning. There

are few such theories, and no established categorization models that include this capabil-

ity. In these sorts of ways, our case studies not only demonstrate the applicability of cur-

rent categorization models to have a useful real-world application, but highlight the role

of applications in focusing attention of important theoretical and modeling problems that

need to be solved to understand how categorization works.
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