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Bi-velocity (Darken) method, which includes material drift and diffusion
fluxes, is for the first time applied to describe mass transport in multiphase
materials. The respective model is formulated in details and then applied for a
ternary diffusion couple in which a two-phase zone can grow during isothermal
diffusion. Thanks to the use of a phase-field order parameter, identified here
with volume fraction of a chosen phase, the mass transport throughout both
phases within a two-phase zone can be considered. The model allows smooth
crossing of the type 1 boundary, which makes the mass transport equations
valid in both single- and two-phase regions. The solution obtained for 1D
geometry provides: (1) a diffusion path in the concentration triangle, (2)
element-concentration profiles, (3) volume fractions of the phases in the two-
phase zone and (4) drift-velocity distribution along x axis parallel to the mass
transport. As an example, the interdiffusion in the ðaþ bÞjðaþ bÞ diffusion
couple of Type 0 boundary is modelled. The zigzag diffusion path is predicted
and the profiles of the element concentrations are simulated. For the first time,
the drift velocity for the diffusion in two-phase system is determined and
correlated with the changes in volume fractions of the phases.

Keywords: bi-velocity method; multiphase system; diffusion path;
interdiffusion; drift velocity

1. Introduction

Interdiffusion in a multicomponent-multiphase material, with associated evolving
morphology, presents a considerable problem in many applications, like coatings, brazing,
diffusion bonding, soldering and oxidation – just to name a few. In binary systems, a
formation of sequential layers of solid solutions and intermediate phases by isothermal–
isobaric diffusion is predicted. This is in agreement with Gibbs’ phase rule which
provides one degree of freedom for single stable phase and zero degrees of freedom at the
two-phase isothermal equilibrium. Thus, when the two-component diffusion couple, type
ajb, ajðaþ bÞ or ðaþ bÞjðaþ bÞ, is considered, the following can take place:
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(1) The sequential layers of single-phase solid solutions and intermediate phases can
grow;

(2) In ajðaþ bÞ system, as long as α single phase is not saturated the two-phase
zone may dissolve. A jump in the composition at the ajðaþ bÞ interphase
boundary occurs.

In ternary systems, the situation is more complex. There is one degree of freedom in
the two phase region (when T, p= const) and chemical potential gradients are possible.
The diffusion forced by chemical potential gradients can lead to the formation of the
spatial two-phase zone of complex morphology. A type of the final morphology
depends on the initial conditions, that is, terminal compositions of the diffusion
couple and diffusivities of the components. For the ajb diffusion couple, possible
consequences of the mass transport include [1]:

(1) Migration of the ajb interphase boundary in either direction and a jump in the
concentration at it;

(2) Growth of the two-phase zone, ðaþ bÞ, and vanishing of the ajb interphase
boundary, with or without jump in volume fractions of the phases;

(3) Formation of the precipitate zone and the interphase boundary migration;
(4) Growth of sequential single-phase and two-phase layers of various morphologies.

Note that three-phase zones cannot grow in the ternary system by isothermal diffusion
(zero degrees of freedom). If the three-phase sample was coupled with unsaturated a- ,
b- or ðaþ bÞ- phase material then one of the phases would dissolve.

The diffusion effects in the ternary system can be graphically represented at the
concentration triangle (precisely at the isothermal section of the equilibrium phase
diagram) as a diffusion path. It is a curve which connects terminal compositions of the
diffusion couple and traces the changes in average composition of the diffusion zone
perpendicular to the initial interphase boundary. The diffusion path can go across
single- and two-phase regions (just as through the three-phase region) in the ternary
diagram but not all phases which stability is predicted by the phase diagram can grow
in real space (in the specimen). In the two-phase region, the direction of the diffusion
path with respect to the conodes is critical. When the diffusion path enters the
two-phase field at the ends of the same conode, the two-phase zone does not grow. In
the spatial region, the interphase boundary between the two phases at the equilibrium
(of the compositions indicated by the conode ends) occurs. When the diffusion path
crosses the conodes, the two-phase zone can grow. The points of the intersection of the
diffusion path with the phase boundaries in the phase diagram serve as a basis to
identify the sequential single- and two-phase layers present in the diffusion zone.

The diffusion path is very useful in the predicting and explaining morphology of the
diffusion zone but it says nothing about the thicknesses of the sequential layers. It is
often time invariant which means that its shape does not change with processing time,
on condition the terminal concentrations are constant. In order to predict the thickness of
the sequential layers in the real space, one has to compute the element distribution
profiles in the spatial diffusion region and compare them with the diffusion path shape.

All this means that the studies on the diffusion in ternary (and generally in
multi-phase) systems, and in particular the diffusion throughout the two phase zone,
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present a true modelling challenge. In the known approaches, the mass transport in the
two-phase zone is described with neglecting the diffusion through the phase of lower
fraction. The presence of this phase in the diffusion zone is included by introducing
average Fickian fluxes of the components in the other, high fraction, phase. In such a
case, the mass conservation law for average concentrations reduces to the diffusion
equation which can be solved using known methods (for example see Ref. [2–5]). Some
of the known solutions will be outlined in the next part of this work.

In this paper, we present a consistent model of mass transport in three-component,
two-phase system which expands the previous approaches, Table 1. A main idea of the
model is to describe the mass transport with the use of bi-velocity (generalized Darken)
and to include the diffusion and drift fluxes in all phases present in the system. Such
approach is presented for the first time. In the present model, a phase-field order param-
eter, identified with phase fraction of one of the phases, is introduced. It has simple
physical meaning and can be used in the discussion concerning a phase composition
and microstructure of the diffusion zone.

2. Diffusion in two-phase region

In the modelling of the interdiffusion in ternary systems, it is common to classify various
types of the interphase boundaries, according to a change in the number of the phases
when such interphase is crossed [11]. In most models, formulated for diffusion couples,
the boundaries Type 0, ðaþ bÞjðaþ bÞ, with a characteristic discontinuity in the α- and
β-phases volume fractions, or Type 1, ajðaþ bÞ, with a change in the number of the
phases at the initial contact are considered. In the first case, a diffusion leading to the
growth of the two-phase zone is mainly predicted but the emergence of the single-phase
layer cannot be excluded. For the diffusion in the couple with the boundary Type 0, both
the diffusion in the single phase and the diffusion across the two-phase region must be
included. The diffusion in single phase (say α) is treated in the usual manner in which
the diffusion fluxes of two from the three components are considered:

ðJaÞ ¼ �½Da� @ðcaÞ
@x

ð1Þ

where ðJaÞ2x1 is a one-column flux matrix, ½Da�2x2 is 2� 2 diffusivity matrix and
ðcaÞ2x1 ¼ ðcaðx; tÞÞ2x1 is a one-column concentration matrix. Equation (1) treats the
present system as one-dimensional, pseudobinary one in which the concentration of the
third component can be calculated.

The mass conservation and the assumption of constant diffusivity further give:

@ðcaÞ
@t

¼ ½Da� @
2ðcaÞ
@x2

ð2Þ

A common computational method used to describe mass transport in the two-phase
zone (treated as the two-phase mixture, say aþ b) is provided by transport equations
expressed in the terms of overall (average) composition of the system. The average
concentrations of the ith components (�ci for i ¼ 1; 2; 3) are determined from a mass
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balance, as phase-fraction-weighted sums of the concentrations of this component in
both phases [2,12,13].

At the phase diagram, the overall concentration lies on the conode and the opposite
ends of this conode represent the compositions of the phases at the equilibrium. Thus,
the relation between the average concentration of the ith component in the two-phase
region and the concentrations of this component in α and β phases can be defined [14]:

�ci ¼ f ðci;a; ci;bÞ; i ¼ 1; 2 ð3Þ

The mass conservation gives [14]:

@ð�cÞ
@t

¼ @

@x
½Deff �@ð�cÞ

@x

� �
ð4Þ

where �c ¼ ðð�cÞ1x2Þ is a one-column average concentration matrix.
The effective diffusivity, ½Deff �, is a product of diffusivity in the α phase (the

diffusion through b phase is neglected); and transformation matrix, ½cTM � [14]:

cTMik ¼ @ci;a
@�ck

; i; k ¼ 1; 2 ð5Þ

The above derivatives can be calculated from Equation (3). Each of them describes a
change of the composition of the ith component with regard to the change of the
average concentration of the kth component in the two-phase mixture.

For constant ½Deff � ¼ ½Da�, the explicit form of (4) is [14]:

@�c1
@t

¼ D11;a
@c1;a
@�c1

þ D12;a
@c2;a
@�c1

� �
@2�c1
@x2

þ D11;a
@c1;a
@�c2

þ D12;a
@c2;a
@�c2

� �
@2�c2
@x2

@�c2
@t

¼ D21;a
@c1;a
@�c1

þ D22;a
@c2;a
@�c1

� �
@2�c1
@x2

þ D21;a
@c1;a
@�c2

þ D22;a
@c2;a
@�c2

� �
@2�c2
@x2

ð6Þ

Solutions of the above equations describe the diffusion in the two-phase zone. The
diffusion in the single-phase zone follows from the solutions of Equation (2).

In the model presented by Wu, Morral, Wang [15], both phases and interfaces are
considered simultaneously. The results show that there is significant difference between
the diffusion path when the mass transport through both phases is considered and the
diffusion path when the precipitates are neglected. The simulation of the microstructure
shows the migration of the precipitates and Type 0 boundary due to Kirkendall effect.

The model proposed herewith is a next step of such treatment. It not only considers
the simultaneous diffusion through both phases present in the phase zone but also
includes drift next to diffusion flux – following with bi-velocity method.

3. Drift and diffusion in two-phase region

We will further consider a closed ternary system, at constant temperature, that is
represented by the one-dimensional diffusion couple, of Type 0 boundary (i.e. ajb or
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ðaþ bÞjðaþ bÞ) or Type 1 (i.e. ajðaþ bÞ or bjðaþ bÞ). In such system, a two-phase
zone can grow by diffusion and we assume that the mass transport takes place through
the both phases. It is also assumed that the mass transport through the external bound-
aries of the diffusion couple does not occur, thus the diffusion fluxes of the components
vanish at the boundaries. The mass flux includes two contributions: drift and diffusion
fluxes – as follows from the bi-velocity method [6,9,16,17]. In particular, the flux of
the ith component (i= 1, 2, 3) in the j phase j ¼ a; b equals:

Ji; j ¼ J d
i; j þ J drift

i; j ; ð7Þ

The diffusion flux in (7), Jdi; j, is given by a proper constitutive formula. In this work,
we define it using the Nernst–Planck equation or by the first Fick’s law, when
simplified with a substitution of the concentration instead of activity ai; j ¼ ci; j:

J d
i; j ¼ �Bi; jci; j

@li; j

@x
¼ �Di; j

@ci; j
@x

ð8Þ

where Bi;j and li;j are mobility and diffusion potential of the ith component in the j
phase.

The overall (average) flux of the ith component will be further represented as:

�J i ¼
X
j¼a;b

ujJ
d
i;j þ �J

drift
i ð9Þ

where �Jdrifti is the average drift flux of the ith component.
In the single-phase region, the first sum in the above equation reduces to one

contribution, either for α or for β phase. In the two-phase region, it includes two
contributions, for the diffusion in α and in β phases.

We further assume that the diffusion flux in the two-phase region satisfies ‘the rule
of mixtures’ and we identify ua and ub with the respective phase volume fractions
satisfying the mass balance. In this case:

/a þ /b ¼ 1 ð10Þ

or ua ¼ u and ub ¼ 1� u, 0 6 u 6 1

It means that ϕ can be interpreted as the order parameter and the set of its values over
the whole system defines the phase field. The continuous variation of the order parame-
ter correlates with the changes of the phase composition across the diffusion zone. The
parameter ϕ can assume values from [0,1] range: 1 within the region where only one
chosen phase exists (say α), 0 when the other phase is stable (the phase β), and it is
between 0 and 1 within the two-phase spatial region. The average composition of the
system in the spatial region is a weighted average of the compositions of the phases in
the equilibrium, that is, the compositions described by the conode ends (the points
where the conode meets the margins of the single-phase regions). The mass balance
expressed for each component says:

�ci ¼ u ci;a þ ð1� uÞ ci;b; i ¼ 1; 2; 3 ð11Þ

Philosophical Magazine 2049

D
ow

nl
oa

de
d 

by
 [

A
ka

de
m

ia
 G

or
ni

cz
o 

H
ut

ni
cz

a]
 a

t 0
8:

44
 0

1 
Ju

ly
 2

01
3 



In the one-phase region there is simply:

�ci ¼ ci;a or �ci ¼ ci;b ð12Þ

depending on the phase.
The mass conservation applied to Equation (9) results in:

@�ci
@t

¼ �@�J i

@x
; i ¼ 1; 2; 3 ð13Þ

regardless whether the mass transport is in single phase or in the two-phase zone.
Assuming that

�J
drift
i ¼ �ci �t

drift ð14Þ

and introducing it together with (8) into (13), one obtains:

@�ci
@t

¼ @

@x
�Di
@�ci
@x

� �ci �t
drift

� �
; i ¼ 1; 2; 3 ð15Þ

where:

�Di ¼ Di;a
�ci � ci;b
ci;a � ci;b

þ Di;b
ci;a � �ci
ci;a � ci;b

@ci;b
@ci;a

� �
@ci;a
@�ci

ð16Þ

The drift flux is generated by non-compensated diffusion fluxes and its velocity in
(14) and (15) can be calculated as

�t drift ¼ �
X
j¼a;b

X
i¼1;2;3

/j�i; jJ
d
i; j ð17Þ

or for the single phase region

�tdrift ¼ tdriftj ¼ �
X
i¼1;2;3

�i; jJ
d
i; j; j ¼ a; b ð18Þ

where �i; j a is molar volume of the ith component in the j phase.
The set of Equations (15), together with (11), (16) and (17), can be solved when

initial conditions and thermodynamics of the system are known. It is enough to have
the isothermal section of the phase diagram for a given constant temperature, that is,
the margins of the single and two-phase regions (phase boundaries) and the conodes in
the two phase-region (tie-lines connecting the compositions of α and β at the
equilibrium). Moreover, the diffusion coefficients of the components and their partial
molar volumes must be specified.

The solution of Equation (15) gives time - spatial dependence of the average
concentration of each component, �ciðx; tÞ, i ¼ 1; 2; 3, and the drift velocity in the
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diffusion zone �t drift. For the defined processing time, it gives spatial distribution of
the elements and drift velocity along x–axis parallel to the mass transport direction.
Obviously, spatial changes of the order parameter, here volume fraction of one of the
phases, can be also calculated. When the spatial variable is treated like a hidden
variable and the successive �ci are drawn on the composition triangle, one obtains the
diffusion path.

Equations (16) have been solved numerically. The respective procedure has been
implemented into CADiff2p software [18]. The differential equation solver is based on
the Runge-Kutta-Fehlberg (RKF) method with adaptive step-size control.

4. Diffusion path in (α+β)|(α+β) diffusion couple

A model ternary diffusion couple has been considered as an example to illustrate the
present method. In calculations, the interdiffusion in the (α + β)|(α + β) diffusion couple
has been modelled. It is assumed that equilibrium conditions for the system at constant
temperature T ¼ T0 are known and represented by the isothermal section of the phase
diagram in the rectangular, molar-fraction dependent, form, that is, N2 vs. N1,P

i¼1;2;3 Ni; j ¼ 1 for j ¼ a; b (Figure 1). Thus, the phase boundaries, gaðN1;N2Þ and

gbðN1;N2Þ, and the set of conodes gajbðN1;N2Þ are specified. In calculations, the partial
molar volumes of all three components are the same, and consistently the volume
occupied by the diffusion couple is time invariant. The diffusion coefficients of two of
the three components (here 1 and 2) are the same in the same phase but vary between
the phases: D1;a ¼ D2;a – D1;b ¼ D2;b. The third component has the diffusion coeffi-
cient different: D3;a – D3;b and D3;a – D1;a, D3;b – D1;b. The terminal concentrations
of the diffusion couple have been taken arbitrarily and are given in Table 2 next to
other data. The processing time is 100 h.

Figure 1. (colour online) Isothermal section of the ternary phase diagram with the diffusion path
calculated in this work (solid line). The data used in the calculations are shown in Table 2. L and
R refer to the left and right terminal compositions.

Philosophical Magazine 2051

D
ow

nl
oa

de
d 

by
 [

A
ka

de
m

ia
 G

or
ni

cz
o 

H
ut

ni
cz

a]
 a

t 0
8:

44
 0

1 
Ju

ly
 2

01
3 



The results of the calculations performed with CADiff 2p software [18] are pre-
sented in Figures 1–4. A characteristic zig-zag diffusion path composed of three seg-
ments and connecting initial compositions of the diffusion couple (L-left and R-right) is
a key result [14]. Small deviation from the ideal zig-zag can be seen which appears as
a single inward horn between the first zig-zag segment (adjacent to the L end) and
directed from the α to β phase. [15,19]. We allow the diffusion in both phases present
in the system, whilst, in earlier works, only the mass transport in the matrix phase has
been considered.

The shape of the diffusion path correlates with the spatial variations of the volume
fractions of the phases (Figure 2). In the neighbour of the initial contact (0.05 cm), a

Figure 2. (colour online) Spatial changes of the α-phase volume fraction in the ðaþ bÞjðaþ bÞ
ternary diffusion couple. Initial contact is drawn with dotted line.

Table 2. The data used to simulate interdiffusion in the ðaþ bÞjðaþ bÞ ternary diffusion couple.

Component, i 1 2 3

Phase, j Diffusion coefficients, cm2/s
α 10�9 10�9 5·10�9

β 10�10 10�10 5·10�10

Molar volume, cm3/mole
α, β 10 10 10

Ends Terminal compositions, at.%
Left 7 45 48
Right 10 57 33

Other data

Time, h 100
Sample thickness, cm 0.1
Initial contact, cm 0.05
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rapid change is seen. This should be related to the middle diffusion path segment which
goes along the conode. Note, that the volume fraction of α phase goes down from 0.85
at the left end of the diffusion couple to 0.2 – at the right end. Respectively, the
β-phase volume fraction increases from 0.15 to 0.8. The effects for the microstructure
are obvious and can be described with a use of percolation theory. It predicts that
critical concentration for bonds in 3D system for random close packing equals 0.27.
When packing density is close to 100% then, for volume fraction of minor phase
exceeding 0.27, both phases should be continuous. This means that, in the modelled
system, only within the internal region, 0.01 cm thick (from 0.045 to 0.055 cm in
Figure 2), both phases are continuous. In the outer regions, either β or α phase is
dispersed. The other phase forms a matrix.

Figure 3. (colour online) Concentration profiles along mass transport direction in the
ðaþ bÞjðaþ bÞ ternary diffusion couple. Initial contact is drawn with dotted line.

Figure 4. (colour online) Drift-velocity spatial changes along mass transport direction in the
ðaþ bÞjðaþ bÞ ternary diffusion couple. Initial contact is drawn with dotted line.
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In Figure 3, the spatial distributions of the three components are shown. A sharp
change of the composition falls next to the initial contact, similarly as the volume
fraction changes. A small uphill diffusion effect is observed for the component 2, at
the right side of the initial contact, which is compensated by shallow minimum of the
concentration at the other side.

More attention needs to be paid to the drift velocity and its spatial distribution
(Figure 4). It is positive along the entire sample which means the vacancy movement
from right to the left. The drift velocity reaches maximum slightly shifted to the right
side and vanished at the sample ends. A characteristic asymmetry is seen due to various
diffusion coefficients of the components.

5. Summary

Interdiffusion in multicomponent systems leads to the formation of the diffusion
zone of complex morphology that comprises both intermediate phases and multi-
phase regions. The problem has considerable meaning in many applications, like
coatings and gradient materials design, welding, brazing or studies on material
degradation by internal oxidation. That is why an intensive effort has been made to
understand and model diffusion in such systems. Most of them reduce the problem
and consider the diffusion throughout one phase of higher volume fraction. The
unsolved issue concerns the modelling of mass transport throughout the whole diffu-
sion zone, in particular across both phases being in equilibrium in the two-phase
region. In this work, we have presented an approach which fulfils this requirement.
The theoretical basis of the proposed method has been embedded within bi-velocity
method, in which the mass conservation equation takes into account drift and diffu-
sion fluxes. Thanks to the application of the phase-field parameter (here volume
fraction) a smooth transition from one to two-phase field, without separate treating
of these two cases, is possible, and all presented equations are valid throughout all
concentration triangle. The derived set of equations allows calculating the average
concentrations of the elements in the system as well as composition of the phases.
In 1D geometry, the respective solutions are generally time-spatial dependent
�ciðx;tÞi¼1;2;3. For constant time, they represent the element distribution profiles
�ciðxÞi¼1;2;3;t¼const . When x is a hidden variable, then the average concentrations,

�ciji¼1;2;3;t¼const , describe the diffusion path. The method also allows computing

drift velocity across the whole diffusion zone which is of considerable interest in
predicting the Kirkendall effect.

The diffusion path calculated for the interdiffusion in the model three-component
two-phase diffusion couple, ðaþ bÞjðaþ bÞ lies entirely within the two-phase region. It
does not cross the phase boundary, thus a formation of single-phase layer in the studied
diffusion couple is not confirmed. It is not, however, well understood what is an origin
of some singularities in the diffusion path appearing as single inward horn. Some
further studies are needed.

The exemplary results that have been obtained for a facultative ðaþ bÞjðaþ bÞ
diffusion couple can be easy applied to the real systems. In particular, a dependence of
the intrinsic diffusivities on the chemical compositions can be included. The present
method can be also generalized to the 3D geometry.

2054 M. Danielewski et al.

D
ow

nl
oa

de
d 

by
 [

A
ka

de
m

ia
 G

or
ni

cz
o 

H
ut

ni
cz

a]
 a

t 0
8:

44
 0

1 
Ju

ly
 2

01
3 



List of symbols

ðcaÞ – one-column concentration matrix in a phase, i.e.
c1;a
c2;a

� �
ci;a – concentration of the ith component in a phase
ci;b – concentration of the ith component in b phase
ð�cÞ – one-column average concentration matrix, i.e.

�c1
�c2

� �
�ci – average concentration of the ith component

½cTM � – 2� 2 transformation matrix, i.e.
cTM11 cTM12
cTM21 cTM22

� �
where cTMik ¼ @ci;a

@�ck

ðJaÞ – one-column flux matrix in a phase, i.e.
J1;a
J2;a

� �
Ji; j – flux of the ith component in j phase
Jdi; j – diffusional flux of the ith component in j phase

Jdrifti; j
– drift flux of the ith component in the jth phase

�J i – average overall flux of the ith component
�Jdrifti

– average drift flux of the ith component

½Da� – 2� 2 diffusivity matrix in a phase, i.e.
D11;a D12;a

D21;a D22;a

� �
Di; j – diffusivity of the ith component in the jth phase
�Di – average diffusivity of the ith component

½Deff � – 2� 2 effective diffusivity matrix, i.e.
Deff

11 Deff
12

Deff
21 Deff

22

" #

�tdrift – average drift velocity of the ith component
Bi; j – mobility of the ith component in the jth phase
li; j – diffusion potential of the ith component in the jth phase
/j – volume fraction of the jth phase at local equilibrium
�i; j – molar volume of the ith component in j phase
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