
fevo-10-796413 April 28, 2022 Time: 14:48 # 1

REVIEW
published: 04 May 2022

doi: 10.3389/fevo.2022.796413

Edited by:
Giorgio Matassi,

FRE 3498 Ecologie et Dynamique des
Systèmes Anthropisés (EDYSAN),

France

Reviewed by:
Andrea Roli,

University of Bologna, Italy
Marcin J. Schroeder,

Tohoku University, Japan

*Correspondence:
Antoine Danchin

antoine.danchin@normalesup.org;
adanchin@hku.hk

Specialty section:
This article was submitted to

Models in Ecology and Evolution,
a section of the journal

Frontiers in Ecology and Evolution

Received: 16 October 2021
Accepted: 14 March 2022

Published: 04 May 2022

Citation:
Danchin A and Fenton AA (2022)

From Analog to Digital Computing: Is
Homo sapiens’ Brain on Its Way

to Become a Turing Machine?
Front. Ecol. Evol. 10:796413.

doi: 10.3389/fevo.2022.796413

From Analog to Digital Computing: Is
Homo sapiens’ Brain on Its Way to
Become a Turing Machine?
Antoine Danchin1* and André A. Fenton2,3

1 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, Hong Kong SAR,
China, 2 Neurobiology of Cognition Laboratory, Center for Neural Science, New York University, New York, NY, United States,
3 Neuroscience Institute at the NYU Langone Medical Center, New York, NY, United States

The abstract basis of modern computation is the formal description of a finite state
machine, the Universal Turing Machine, based on manipulation of integers and logic
symbols. In this contribution to the discourse on the computer-brain analogy, we discuss
the extent to which analog computing, as performed by the mammalian brain, is like
and unlike the digital computing of Universal Turing Machines. We begin with ordinary
reality being a permanent dialog between continuous and discontinuous worlds. So
it is with computing, which can be analog or digital, and is often mixed. The theory
behind computers is essentially digital, but efficient simulations of phenomena can be
performed by analog devices; indeed, any physical calculation requires implementation
in the physical world and is therefore analog to some extent, despite being based on
abstract logic and arithmetic. The mammalian brain, comprised of neuronal networks,
functions as an analog device and has given rise to artificial neural networks that
are implemented as digital algorithms but function as analog models would. Analog
constructs compute with the implementation of a variety of feedback and feedforward
loops. In contrast, digital algorithms allow the implementation of recursive processes
that enable them to generate unparalleled emergent properties. We briefly illustrate
how the cortical organization of neurons can integrate signals and make predictions
analogically. While we conclude that brains are not digital computers, we speculate on
the recent implementation of human writing in the brain as a possible digital path that
slowly evolves the brain into a genuine (slow) Turing machine.

Keywords: recursion, cortical layers, micro-columns, learning, memory, algorithm

INTRODUCTION

The present essay explores key similarities and differences in the process of computation by
the brains of animals and by digital computing, by anchoring the exploration on the essential
properties of a Universal Turning Machine, the abstract foundation of modern digital computing.
In this context, we try to explicitly distance XVIIIth century mechanical automata from modern
machines, understanding that when computation allows recursion, it changes the consequences of
determinism. A mechanical device is usually both deterministic and predictable, while computation
involving recursion is deterministic but not necessarily predictable. For example, while it is possible
to design an algorithm that computes the decimal digits of π, the value of any finite sequence
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following the nth digit, cannot (yet) be computed, hence
predicted, with n sufficiently large. This implies that the
consequences of replacing feedback (a common principle in
mechanics) with recursion (a much deeper process, using a
program that calls itself) are not yet properly addressed because
they do not belong to widely shared knowledge. It is remarkable
that recursion, associated with appropriate energy management,
creates information (Landauer, 1961; Hofstadter et al., 1979).
How this happens has been illustrated by Douglas Hofstadter in
his book Gödel, Escher, Bach, An Eternal Golden Braid, as what he
named a “strange loop,” illustrated by a painting in an art gallery
representing a person contemplating the painting in that very
gallery. This illustration shows how a completely open new world
where paradoxes are the rule is emerging (Hofstadter, 2007).

However, this happens on condition that a material support
is involved, introducing a certain level of analogical information
even in electronic computers. This involvement of the basic
currencies of Reality other than information (mass, energy, space
and time) opens up computing to another universe. This has
consequences very similar to the result of Gödel’s demonstration
that arithmetic is incomplete: nothing in the coded integers used
in the demonstration can say, within the number system, that
there is a contradiction that can never be solved. It is only by
going outside the coded system (so as to be able to observe it) that
one can see the incompleteness. The very fact that the outcome
of the demonstration can only be understood outside the frame
of its construction—namely in a world where judgments exist—
introduced a certain level of analogical information into the
picture. The meaning of Gödel’s last sentence (I cannot be
proved) is not valid within the framework of the axioms and
definitions of Number Theory, but only when one looks at
Number Theory from the outside. Recursion is possible even in a
world where analogical computing dominates, and the structure
of the brain, organized in cortical layers, and through feedforward
and feedback loops, may well allow the development of this
procedure. However, the introduction of language, and of writing
in particular, could well allow the modern human brain to behave
like a Turing Machine, thus explaining how Homo sapiens could
generate demonstrations of the type of Gödel’s incompleteness
theorems (Hofstadter et al., 1979).

ANALOG AND DIGITAL COMPUTING

We use “digital” to describe information and computation
involving explicit numerical representations and manipulations,
no matter how the numbers are themselves represented.
In contrast, “analog” as it refers to neuronal information
representation and computation, means a biological or other
physical process like an action potential, that has another (i.e., is
analogous to some) representational meaning or manipulation.
In order to know whether thinking of the “brain as a computer”
is more than a metaphor, we need to agree on a description
of computing. We generally assume that computing involves an
abstract process, the manipulation of integers with the standard
rules of arithmetic. In this context the number three lies in an
abstract world, beyond the way it is denoted: trois in French,

drei in German, τρıα in Greek, in Chinese, etc. It belongs
to the abstract domain of “information.” This conception is
based on the assumption that information is a true physical
currency of reality (Landauer, 1996), along with mass, energy,
space and time, allowing us to work in the abstract domain
of digital computing. We must recognize, however, that the
very concept of information, although widely used as a word,
is not usually considered by biologists as an explicit physical
entity, although some synaptic physiologists may conjecture that
neural information is embodied in synaptic “strengths.” As a
consequence, when it comes to describing the role of the cell
or the brain in computation, we have to oscillate between deep
abstraction and concrete physiology. With a little more insight,
when we use electronic computers, we combine Number Theory
(Rosen, 2011) with the rules of logic, in particular Boolean logic
(Sikorski, 1969). The vast majority of computing approaches
are simply based on manipulation of bits. Computer users
create algorithms, by subsuming a binary frame of reference,
usually referred to as “digital” as a consequence of the way we
calculate in the decimal system. However, the construction of
relevant digital processing units asks for the understanding of
the consequences of recursion and therefore Number Theory.
Indeed, the consequences of Gödel’s theorems makes that it
remains impossible to design a processor which would be
“hacking-free.” This requirement is visible in constructs such as
those belonging to the class of Verifiable Integrated Processor
for Enhanced Reliability [VIPER, (Brock and Hunt, 1991)]. This
vision remains a very crude abstract view of what computing
is. It is based entirely on a discontinuous, discrete conception
of physical reality. In contrast, the material world behaves as
if it were continuous. In biology, the biochemical networks
used in synthetic biology constructs are based on processes that
amplify, synchronize, integrate signals and store information
in a continuous way. Even computers are not exempt from
the constraints imposed by the material world. The computer
you are using to read this text is a material machine, made
of components that have mass and obey the laws of physics.
For example, the rules of logic are implemented as thresholds
operating on continuous parameters, and even the very definition
of a threshold cannot be entirely digitized. For example, it
displays an inherent variability due to thermal noise. The history
of digital computing acknowledges that, in parallel with an
authentic shift toward a digital world possibly beginning with
the ENIAC in 1946, computing kept being developed with analog
devices (Misa, 2007).

In that sense, computation can be seen as both analog and
digital. The idea of analog computation is not new. It seems
to have been present very early, even in the ancient Greek
civilization. In Greek, αvάλoγoς means “proportionate” with
the notion that the due proportions associated with solving
a certain problem can be used to solve that same problem
via its simulation, not necessarily requiring understanding. The
efficiency of analog computing is strikingly illustrated by an
extraordinary device built more than 2,000 years ago, which
seems to work like an analog computer to calculate a large
number of properties of meteors in the sky, planets and stars, the
Antikythera Mechanism (Freeth et al., 2021).
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Today, the central processing unit that runs computers
manipulates electrons, not cogs, in an organized way. It does
not directly manipulate logical bits. How does the modern
computer, which is constructed with components that have mass
and space, perform its digital calculations? This may be a key
question in our quest for the interaction between the analog
world (that of matter with mass) and the digital world (that of the
abstract genomic sequences manipulated by bioinformaticians
for example) when we want to understand how the brain works.
The question is indeed at the heart of what life is all about. How
do we articulate the analog/digital interaction? We can recognize
at least two different physical processes taking place in the
electronic circuits of a digital computer. Continuous signals are
transformed into digital (in fact usually Boolean) computation
by: (1) exploiting the non-linearity of the circuits (transistors
are either off or saturated, capacitors are either empty or fully
charged). This entails that changes are rapid and large when
compared to thermal fluctuations and means that we introduce
thresholds such that a digital coding becomes reasonably robust.
(2) Error correction mechanisms, such as redundancy, to
overcome possible errors due to thermal electronic fluctuations.
Essentially, this is the result of combining careful design of the
basic electronic and physical phenomena with a coarse shaping
(in a sense, a “clustering”) and “constraining process” of the
physical observables.

A frightening example illustrates the dichotomy between
analog and digital information, not in the brain, but when we
see cells as computers making computers, with their genetic
program both analog, when it has to be accommodated within
the cell’s cytoplasm, and digital when it is interpreted as an
algorithm for the survival of a cell and construction of its
progeny. Viruses illustrate this dichotomy. Smallpox is a lethal
virus. The sequence of its genome (digital information) is
available, and can be exchanged via the Internet without direct
action on the analog setup of living organisms, hence harmless.
However, synthetic biology techniques (gene synthesis) allow this
digital information to “transmute” into the analog information of
the chemistry of nucleotides, regenerating an active virus. This
coupling makes the digital virus deadly (Danchin, 2002). The
difference between the textual information of the virus sequence
and the final information of the finished material virus illustrates
the complementarity between analog and digital computation.
The analog implementation is extremely powerful, and we will
have to remember this observation when exploring the way the
brain appears to compute.

Physiological experiments meant to illustrate the first steps
of computing in living systems are based on discrete digital
designs but implemented in continuous properties of matter,
such as concentration of ingredients. Typically, an early synthetic
implementation of computing in cells, the toggle switch,
consisted of the design of a pair of coding sequences of two genes,
lacI and tetR, with relevant regulatory signals where the product
of each gene inhibits the expression of the other (Gardner et al.,
2000). This is possibly the simplest circuit capable of performing
a calculation in a cell, in this case the ability to store one bit
of information. Other digital circuits have been built since, and
recent work has highlighted the level of complexity achieved by

digital biological circuits, where metabolic constraints blur the
picture. A deeper understanding of what happens in the cells
where this construct has been implemented shows that their
behavior is not fully digital (Soma et al., 2021). Cells, however,
can still be seen as computers making computers and this
performance can be described in a digital way (Danchin, 2009a).
When we discuss the algorithmic view of the cell, we implicitly
assume a digital view of reality. This is how we can introduce
information, through “bits,” i.e., entities that can have two states,
0 and 1. This is very similar to the way physics describes states as
specific energy levels, for example (and this can be seen when an
atom is illuminated, in the form of optically detected lines, which
allows researchers to characterize the nature of that particular
atom). However, because this oversimplified vision overlooks the
analog dimension of computation, it omits taking into account
material processes, such as aging for example, which requires
specific maintenance steps involving specific functions that are
rarely considered in digital machines [see (Danchin, 2015) and
note that, in computers, processors also do age indeed, with
important consequences on the computing speed and possibly
accuracy (Gabbay and Mendelson, 2021)].

Unlike digital circuits, where a species has only two states,
analog circuits represent ranges of values using continuous
ranges of concentrations. In cases where energy, resources and
molecular components are limited, analog circuits can allow
more complex calculations than digital circuits. Using a relatively
small set of components, Daniel et al. (2013) designed in cells
a synthetic circuit that performs analog computations. This
matches well with the common vision of synthetic biology, that
of a cell factory which allows the expression of complex programs
that can answer many metabolic engineering questions, as well
as the development of computational capabilities. The take-home
message of this brief discussion on the difference between analog
and digital computing is that, in order to calculate, it is not
necessary to do so numerically. Nature, in fact, appears as a dialog
between continuous and discontinuous worlds. Some reject the
idea of discontinuity. Forgetting about Number Theory, the
French mathematician René Thom emphasized the continuous
nature of the Universe and rejected the discontinuous view
proposed by molecular biology, such as the way in which the
genetic program is written as a sequence of nucleotides, acting
as letters in a linear text written with a four-letter alphabet.
He insisted on continuity even in the evolution of language
(Thom et al., 1990), a point of view that we will discuss at
the end of this essay. In summary, there are many facets of
natural computing that we need to be aware of if we are to
explore the brain computing metaphor (Kari and Rozenberg,
2008). We have seen how the Antikythera Mechanism was an early
attempt using analog computing, and this line of engineering
has been pursued over centuries. For example in 1836 a way
was proposed to solve differential equations using a thread
wrapped around a cylinder (Coriolis, 1836), and more recently
using analog computers (Hartree, 1940; Little and Soudack, 1965;
Barrios et al., 2019). Finally, after simulations of the behavior of
the neuronal networks hardware was created that implemented
analog computing into microprocessors (Wijekoon and Dudek,
2012; Martel et al., 2020).
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VARIATIONS ON THE CONCEPT OF THE
TURING MACHINE

Our digital computers are built according to an abstract vision,
the Turing Machine (TM), elaborated by Alan Turing in the
1930s and developed in descriptions intended to make it more
concrete by Turing and John von Neumann after the Second
World War. The “machine” is often seen as a device reading a
tape-like medium triggering specific behaviors, as we see them
performed by computers. This view is rather superficial. It does
not capture the key properties of the TM that created a general
model of logic and computation, including the identification
of impossibilities (Copeland, 2020). The machine is an abstract
entity and, as in all other cases where we consider information
as a genuine currency of physics, its implementation in objects
with mass will create a considerable number of idiosyncratic
constraints that can only be solved by what are sometimes called
“kludges” in hardware machines, i.e., clumsy but critical solutions
to a specific problem1 [(Danchin, 2021b)]. This necessary overlap
between information and (massive/spatial) matter creates the
immense diversity of life, explaining why we witness so many
“anecdotes” that interfere with our efforts to identify basic
principles of life. Examples range from various solutions to the
question opened by the presence of proline in the translation
machinery, because proline is not an amino acid (Hummels and
Kearns, 2020), to the need for a specific protease that cleaves off
the first nine residues of the ribosomal protein L27 in the bacterial
clade Firmicutes (Danchin and Fang, 2016), to macroscopic
extraordinary display of color and behavior in birds of paradise
(Wilts et al., 2014). It is important to remember that the way in
which machine states could be concretely implemented, which
marks the analog world, had no impact on the way the TM was
used to contribute to the mathematical field of Number Theory
(Turing, 1937). The “innards” of the machine were not taken
into consideration.

The TM is a finite-state machine. In manipulating an abstract
tape, it performs the following operations (the operations
performed by computers are conceptually the same, although
they appear to the general observer to be performed in a very
detailed and therefore less comprehensible manner):

• Changing a symbol in a finite number of places, after
reading the symbols found there (note that changing more
than one symbol at a time can be reduced to a finite number
of successive basic changes).
• Changing from the point which is being read to other

points, at a given maximum distance away in the message.
• Changing the state of the machine.

All this can be summarized as specified by a series of
quintuples, which each have one of the three possible following
forms:

pαβLq or pαβRq or pαβNq
where a quintuple means that the machine is in configuration
p, where symbol α is read, and is replaced by β to enter into

1https://www.theatlantic.com/technology/archive/2016/09/the-appropriately-
complicated-etymology-of-kluge/499433/

configuration q, while displacing the reading toward the (L)eft,
the (R)ight, or staying at the same (N)eutral place.

Several points need to be made here. The machine does
not just read, it reads and writes. The machine can move
forward, backward, and jump from one place to another. Thus,
despite the impression that it uses a linear strip marked by
sequences of symbols, its behavior is considerably more diverse.
This is important when considering genomes as hardware
implementations of a TM tape. For example, we tend to think
of the processes of transcription, translation and replication
as unidirectional, when in fact they are designed to be able
to backtrack and change the building blocks that they had
implemented in the forward steps, a process that is essential to
their activity. More complex processes such as splicing and trans-
splicing are also compatible with the TM metaphor. Furthermore,
the above description corresponds to the Universal Turing
Machine (UTM), which Turing showed to be equivalent to
any construction using a finite multiplicity of tapes in parallel.
A highly parallel machine can be imitated by a single-tape
machine, which is of course considerably slower, but with exactly
the same properties in terms of computational performance.

An essential point of the machine is that it is a finite-state
machine. Despite its importance, this point is often overlooked,
and it is here that the analogy between the cell or brain and a TM
needs to be critically explored. What are and where are the states
of the cell- (resp. brain-) machine located? Allosteric proteins
have well-defined states, usually an active and an inactive state,
and synapses are turned on or off, depending on the presence of
effective neurotransmission. Their activity depends on the state
of specific post-synaptic receptors, and often allosteric proteins
(Changeux, 2013). More complex views may also take space into
account, with the state of a protein or a complex defined by their
presence at specific locations such as mid-cell or at the cell’s poles
for bacteria, or particular dendritic compartments of neurons
(Hsieh et al., 2021). How do they evolve over time as the cell
(resp. brain) “computes”? Of course, the same question can be
asked of the hardware that makes up a computer, but in this
case this is generally a key function of its memory parts, with
specific addressing functions. We must also try to identify the
vehicles that carry the information. In standard electronics, this
role is played by electrons (with a specific role for the electric
potential, which can move extremely quickly with an effect at
long distance, whereas the physical movement of individual
electrons is always slow). In optoelectronics, photons are used
as information carriers, rather than electrons. What about cells?
One could assume, in fact, that in most cases the information
carriers are protons, which travel mainly on water molecules
(forming hydrogen bonds) and on the surface of macromolecules
and metabolites, also in forming hydrogen bonds (Danchin,
2021a). Part of the difficulty we have in visualizing what is going
on in the cell is that we do not know well how water is organized,
particularly around macromolecules, and how this might provide
a series of hydrogen-bond channels carrying information from
one place to another.

At this point the question becomes: how are the states of
the cell fixed locally, i.e., what type of memory is retained, for
how long and with which consequences? When we come to the
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way the brain computes, we will have to answer all these same
questions. In the case of neurons, the carriers of information
are primarily transmembrane potentials involving ionic currents
that are initiated from dendrites, accumulate at the soma of
neurons and after initiating action potentials propagate along the
axons. But this is only part of the story: at synapses (except for
electrical synapses), information is carried forward by specific
neurotransmitters that trigger both ionotropic and metatropic
neurotransmission, which introduces a strong coupling between
information transfers and cellular metabolism (Chen and Lui,
2021), a feature that may be difficult to reconcile with the actual
functioning of computers. It should be noted, however, that this
organization creates de facto a range of relevant time frames that
are considerably slower than the movements and state changes of
the entities subject to thermal noise. This allows even short-term
memories to be available for creation and recall without too much
interference from temperature (recall that thermal vibrations
typically occur in the femto-/pico-second range, while diffusion
of a neurotransmitter occurs in the micro-millisecond range).

To transpose the TM concept into biology, further
developments are needed in physics (what is information,
how to represent it, etc.) and perhaps in mathematics (is there a
need for mathematical developments other than number theory
and logic, which are the basis of the formal description of TM and
its parallel equivalents), in order to be able to embody it explicitly
in soft matter. It is worth noting that, despite progress, there has
not been much recent developments in Information Theories
since the time of Elements of Information Theory (Cover and
Thomas, 2006) and Decoding Reality: The Universe as Quantum
Information (Vedral, 2012). The main problem is simple: in
Turing’s description, nothing is said about the machine, which is
purely abstract, whereas it needs to be given some “flesh,” with
management of space, mass, time and energy.

Indeed, this tells us that there is a huge conceptual opportunity
for recording the informational state of the cell as a TM (not
only the transsynaptic cell membrane, cytoplasm, etc., but also
the conformation of the chromosome, for example), which is
much larger than the information carried by the genetic program
as described as a sequence of abstract nucleotides (Danchin,
2012). Therefore, the transcription/translation machinery of the
cell, as the concrete implementation of the mechanical part of
the TM, the one that decides to move the program forward
or backward, to read and write it, has enough opportunity to
store and modify its states (its information). This is probably
where the information retained by natural selection operates
when cells multiply (and no longer just survive). Living systems
can therefore act as information traps, storing for a time some
of the most common states of the environment. Indeed, one
might expect that what is involved in the machine’s “decision”
to progress (explore and produce offspring) is only a tiny subset
of its information. From this point of view, natural selection
seems to have a gigantic field of possibilities. We shall see that
the problem is even more difficult to solve if we consider the
brain. However, among the many features that characterize the
TM, including the fact that it is a finite-state machine, it seems
essential for systems that would ask to be recognized as a TM, to
present distinct physical entities between the data/program set,

and the machine that will interpret it into actions that modify the
states of the machine.

BESIDES ENZYMES AND TEMPLATES:
LEARNING AND MEMORY IN THE BRAIN

In 1949, Donald Hebb proposed that changes in the effective
strength of synapses could explain associative learning (or
conditioning, the process by which two unrelated elements
become connected in the brain when one predicts the other).
The idea was that the strength of a synapse could increase
when the use of that synapse contributed to the generation
of action potentials in the postsynaptic neuron (Hebb, 2002).
With the intention of representing by an adequate formalism
the learning phenomenon in the vertebrate central nervous
system, based on Hebb’s postulate, we have developed a theory
of learning in the developing brain. This theory, implemented
according to the axiomatic method, is placed within the general
theory of systems where the nervous system is represented by
a particular automaton. It is based on the idea of selective
stabilization of synapses, depending on their activity (Changeux
et al., 1973), phenomena that have been validated (Bliss and
Collingridge, 1993; Bear and Malenka, 1994). The key to this
vision (CCD model) is an epistemological premise: we seek
to account for the properties of neural systems by means of
a selective theory [in contrast with instructive theories, see
discussion in Darden and Cain (1989)].

Based on families of experimental observations, this work
restricted the study of memory and learning to neural networks
(thus neglecting neuroglia and other features of the nervous
system) and more specifically to the connections between
neurons, the synapses. It proposed that, in addition to the now
classic properties of networks traversed by impulses as found
in computers (with the numerical logic rules that this imposes,
as well as the feedback and feedforward loops), there is an
original characteristic of neural networks, namely the possibility
of a qualitative (and not only quantitative) evolution of synapses
according to their activity. For simplicity, the model postulated
that a synapse evolves, changing its state, in the graph:

where it passes during growth from a virtual state (V) to an
unstable, labile state (L), then, depending on its local activity and
the general activity of the posterior neuron, can either regress and
disconnect (D) or stabilize in an active form (S).

With these very general premises, it was shown that a neural
network is able to acquire the stable associative ability to
recognize the form of afferent signals after a finite time. This
memory and learning capacity comes from a transformation
of the connectivity during the operation of the network. Thus,
a temporal pattern is stored in the nervous network as a
geometric spatial form. Besides quantitative involvement of
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synapse efficiency, the main originality of the approach lies
in the fact that learning comes from the loss of connectivity.
Learning carves a figure in the brain tissue that is memorized
as a neural network. Moreover, even if the genetic constraints
necessary to code for the implementation rules of this learning
were very small, the system would nevertheless lead to the
storage of an immense amount of information: each memorized
event corresponds to a particular path traveling among the 1015

synapses of the network, so that the number of possible paths
(and thus of memorized events) is combinatorially infinite. The
only limit to our ability to learn—but it is a terribly constraining
limit—is the slow access to our brain by our sensory organs, as
well as the slow speed of the brain activity (as compared to that of
modern computers, for example).

The CCD model explored the role of selective stabilization in
learning and memory in the nervous system. This exploration
preceded the fashion for neural networks, but with a twist rarely
highlighted: living brain synapses evolved in such a way that they
could regress and irreversibly disconnect from their downstream
dendrite, making memorization irreversible at least for a time.
In contrast, in most artificial neural networks, the state of the
synapses is actually a quantitative feature that can revert to the
initial values if the training set is noisy [see for example the
initial model of the Perceptron (Lehtiö and Kohonen, 1978)].
As quantity is favored over quality, the latter has an important
consequence: the outcome of the learning process is considerably
sensitive to the length of the training period. The positive learning
outcome first increases in parallel with the training period, then
stabilizes and then gradually decreases if the training continues.

The role of neural networks has been and still is the subject
of a considerable amount of work. An important sequel was the
idea of Neural Darwinism proposed by Gerald Edelman (1987).
The central idea of this work is that the nervous system of each
individual functions as a selective system composed of groups or
neurons evolving under selective pressure as selection operates in
the generation of the immune response and in the evolution of
species. By providing a fundamental neural basis for categorizing
things, the aim of this hypothesis was to unify perception
(network inputs), action (network outputs) and learning. The
theory also revised our view of memory as a dynamic process of
re-categorization rather than a replicative storage of attributes.
This has profound implications for the interpretation of various
psychological states, from attention to dreams, and of course,
for the brain’s computational capacity. Many other models of
the links between memory, learning and computation have
been proposed in recent decades. Most of them are based on
neural networks, showing individual and collective behaviors
with interesting properties that are not discussed here [see some
eclectic examples in a vast literature (Dehaene and Changeux,
2000; Miller and Cohen, 2001; Mehta, 2015; Chaudhuri and Fiete,
2016; Mashour et al., 2020; Tsuda et al., 2020)].

To return to our question, can the brain be described
as a computer, the basic idea behind these developments is
that groups of neurons can allow the emergence of global
behaviors while respecting the local organization of specific
brain architectures. However, in general, this is mere conjecture,
as there is no explicit demonstration of the behavior of

the postulated structures. Nevertheless, this has triggered the
emergence of a multitude of artificial neural networks (ANNs)
that have developed metaphorically, independently of our
knowledge of the brain. It is therefore interesting to see briefly
how computation with neural networks has been implemented,
which may now lead to a re-evaluation of their renewed link
to brain behavior.

NEURAL NETWORKS

Simulation vs. Understanding
The work just mentioned is all centered on the interconnections
of neurons, with the key view that neural networks are the
objects that we should prioritize, before understanding the cell
biology of neurons. In an ANN, a neural program is given which
takes into account the “genetic” data (the “genetic envelope”) of
the phenomenon, the geometric data (essentially the maximum
possible graph of all connections compatible with the genetic
program, as well as, in some cases, the length of the axons in
the form of propagation delays of the nerve impulse between
one synapse and the next) and the operating data. Each neuron
displays an integration function which, depending on the multi-
message (afferent via the neuron dendrites), specifies the efferent
message and the evolution function which, for each synapse,
specifies its evolution toward a stable functional state which can
be quantified. Again, in the CCD model a key property was that
functioning under a genetically-programmed threshold led the
synapse to evolve toward a degenerated non-functional state,
thus disappearing as a connection. These processes depended on
the afferent multi-message, as well as on a temporal law taking
growth into account, i.e., the emergence of a new synapse in a
functional state. During the operation of the system, a realization
of the neural program is obtained at each time, which represents
the effective anatomy of the network at that instant as well as its
internal functioning.

Since it is quite difficult to understand the internal behavior
of networks, especially when they consist of a large number of
individual elements, neural networks have been studied mainly
by modeling. In the absence of precise biological data, it has
been necessary to propose hypotheses on the neural program
data, especially regarding the function and structure of synapses.
It has not yet been possible to create a detailed model of the
synapse based on plausible physicochemical assumptions, so very
approximate assumptions have been proposed for the integration
and evolution functions of the neuron. The consequence is
that, in general, the path followed is the development of ANNs
that do not really mimic authentic neural networks. They are
implemented as algorithms and then used with fast computers.
It should be noted that ANNs can be trained to perform
arithmetic operations with significant accuracy. Models of neural
arithmetic logic units keep being continuously improved (Schlör
et al., 2020). Whether such structures can be explicitly observed
in authentic neural circuits remains to be seen. They often
produce remarkably interesting results, but at a cost: it is not
possible to understand how they achieved their performance.
Many achievements made headlines, especially after AlphaGo
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beat European Go champion Fan Hui in 2015 and then Korean
champion Lee Sedol in 2016. This demonstrated that deep
learning techniques are extremely powerful. They continue to be
developed by improving the structures and functioning of various
networks (Silver et al., 2018; Czech et al., 2020). The use of these
neural networks is currently limited to image or shape analysis
or related diagnostic methods based on recognition of generally
imperceptible patterns. As classic examples, these networks are
used for making classes of objects, protein function prediction,
protein-protein interaction prediction or in silico drug discovery
and development (Muzio et al., 2021).

Unfortunately, successful predictions do not provide
an explanation of the underlying phenomena, but only a
phenomenological simulation of the process of interest, i.e., a
process aimed at reproducing the observables we have chosen of
a given phenomenon. These approaches, while extremely useful
for diagnostic purposes, are unable to distinguish correlation
from causation. To make the most of ANNs and use them
as an aid to discovery, the result of their operation must be
traceable in a causal chain. This restriction explains why legal
regulators, in particular in the European Union, now require
creators of AI-based models, often based on ANNs, to be able
to demonstrate the internal causal chain of their successful
models. This is understood as a way to associate prediction
with understanding [2 for an example of the way understanding
can be visualized in an AI model, see for example Prifti et al.
(2020)]. A major reason for the difficulty in tracing causality
is the sheer size of networks required to perform simple tasks.
For example, a simple visual image involves at least a million
neurons in object-related cortex and about two hundred million
neurons in the entire visual cortex (Levy et al., 2004). In this
context, understanding causal relationships is often related to the
ability of ANNs to generate systematic errors [see e.g., (Coavoux,
2021)], while error identification and correction is also important
as it relates to intrinsic vulnerabilities against attacks, with the
concomitant generation of spurious results (Comiter, 2019).

Neural Networks Organization: Cortical
Layers
The fundamental organization of the cerebral cortical circuit of
vertebrates remains poorly understood. In particular, it is not
fully clear whether the considerable diversity of neuron types
(Hobert, 2021) always form modular units that are repeated
across the cortex in a way similar to what is observed in the
cerebellum for example [Brain Initiative Cell Census Network
[BICCN], 2021; Farini et al., 2021; Kim and Augustine, 2021].
The cortex of mammals has long been perceived as different
from that of birds, in particular because in birds the folding of
the cortical surface is particularly marked, but it now appears
that the general organization in neuronal layers is quite similar
in both phyla (Ball and Balthazart, 2021). This may be related
to similar aptitudes in cognition/computation. There are so
many models and conjectures about the role of the brain tissue
organization that we had to make a choice for this essay. We will
use the description/conceptualization proposed by Hawkins and

2https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52021PC0206

Blakeslee in their book On Intelligence. How a New Understanding
of the Brain Will Lead to the Creation of Truly Intelligent Machines
(Hawkins and Blakeslee, 2005) because it provides a compelling
description of how the brain might work, notwithstanding
the identification of new or alternative brain structures and
functions over time. The title of the book comes from the
idea that the cerebral cortex is composed of repeated micro-
columns of microcircuits stacked side by side that cooperate to
generate cognitive capacity. The book proposes that each of these
columns has a good deal of innate capacity (“intelligence”), but
only very partial information of the overall context. Yet, the
cortical columns work together to reach a consensus about how
the world works.

Hawkins and Blakeslee pictured the cortex: as a sheet of cells
the size of a dinner napkin, and thick as six business cards, where
the connections between various regions give the whole thing a
hierarchical structure. An important feature in this description
is its hierarchical organization, a feature identified as critical
since the early work of Simon (1991). The cerebral cortex of
mammals comprises six layers of specific neurons organized
into columns. Layers are defined by the cell body (soma) of
the neurons they contain (Shamir and Assaf, 2021). About two
and a half millimeters thick, they are composed of repetitive
units (Wagstyl et al., 2020). The strongest connections are
vertical, from cells in the upper layers to those in the lower
layers and back again. Layers seem to be divided into micro-
columns, each about a millimeter in diameter, which function
semi-independently, as we discuss below. The outermost layer
of the neocortex, Layer I, is highly conserved across cortical
areas and even species. It is the predominant input layer for
top-down information, relayed by a rich and dense network of
long-range projections that provide signals to the branches of
the pyramidal cell tufts (Schuman et al., 2021). Layer II, is an
immature neuron reservoir, important for the global plasticity
of the brain connections. Within the view of the CCD model,
it is an important place where synapses are expected to emerge
from a virtual to a labile state. This layer contains small pyramidal
neurons and numerous stellate neurons but seems dominated
by neurons that remain immature even in adulthood, being a
source of considerable plasticity (La Rosa et al., 2020). Pyramidal
cells of different classes are predominant in layer III. In addition,
multipolar, spindle, horizontal, and bipolar cells with vertically
oriented intra-cortical axons are present in this layer. It also
contains important inhibitory neurons and receives connections
from adjacent and more distant columns while projecting to
distant cortical areas. This layer has been explicitly implicated in
learning and aging (Lin et al., 2020). Layers I-III are referred to as
supragranular layers.

Layer IV is another site of cortical plasticity. It contains
different types of stellate and pyramidal cells, and is the main
target of thalamocortical afferents that project into distinct
areas of the cortex, with, at the molecular level, specific
involvement of phosphorylation regulatory cascades (Zhang
et al., 2019). The major cell types in cortical layer V form a
network structure combining excitatory and inhibitory neurons
that form radial micro-columns specific to each cell type.
Each micro-column functions as an information processing
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unit, suggesting that parallel processing by massively repeated
micro-columns underlies various cortical functions, such as
sensory perception, motor control and language processing
(Hawkins and Blakeslee, 2005; Hosoya, 2019). Interestingly, the
micro-columns are organized in periodic hexagonal structures,
which is consistent with the planar tiling of a layered
organization (Danchin, 1998). Individual micro-columns are
organized as modular synaptic circuits. Three-dimensional
reconstructions of anatomical projections suggest that inputs
of several combinations of thalamocortical projections and
intra- and trans-columnar connections, specifically those from
infragranular layers, could trigger active action potential bursts
(Sakmann, 2017). Layer VI contains a few large inverted and
upright pyramidal neurons, fusiform cells and a specific category,
von Economo neurons, characterized by a large soma, spindle-
like soma, with little dendritic arborization at both the basal
and apical poles, suggesting a significant role of bottom up
inputs (González-Acosta et al., 2018). This layer sends efferent
fibers to the thalamus, establishing a reciprocal interconnection
between the cortex and the thalamus. These connections are both
excitatory and inhibitory and they are important for decision
making (Mitchell, 2015).

Integrating Inputs and Outputs
The brain is connected to the various organs of the body. The
sense organs provide it with information about the environment,
while the internal organs allow it to monitor the states of
the body, both in space and in time. This family of inputs is
distributed in different areas of the brain, connected to cortical
layers organized to integrate these inputs and allow them to
drive specific outputs, in particular motor outputs (O’Leary
et al., 2007). In this general structural signal processing, signals
that reach a specific area of the brain connected to a given
receptor organ pass through other areas, with feedback signals to
connect to other sense organs. Locally, the integration structures
of the brain are the micro-columns covering the six layers just
described. The layered organization results in a limited number
of neurons that integrate signals from other layers and parallel
columns. In many cases signal integration may end up in a
single cell, giving rise to the disputed concept of “grandmother
cell,” individual neurons that would memorize complex signals,
such as the concept of one’s grandmother or famous individuals
like Halle Berry and Jennifer Aniston (Hawkins and Blakeslee,
2005; Quiroga et al., 2005, 2008; Bowers et al., 2019). To place
this controversy in perspective, note that even complex brains
can assign vital functions to individual neurons. For example,
the deletion of a single neuron in a vertebrate brain abolishes
essential behavior forever: the giant Mauthner cell, the largest
known neuron in the vertebrate brain, is essential for rapid
escape, so its loss means that rapid escape is also lost forever
(Hecker et al., 2020).

The details of the integration of the input signals have been
explored by Hawkins and Blakeslee, who provided an overview
with a plausible scenario. The idea is that the individual columns
are trained by experience via selective stabilization to represent
and memorize particular families of environmental features.
This implies that they encode invariant properties that can be

used as a substrate to store and make invariant “predictions”
(i.e., anticipation of future behavior) related to those particular
features, from top to bottom (layer I to layer VI). Now, when
the brain receives a particular input that matches one of these
predictions, rather than triggering the activity of all the columns
that represent similar features, it can be prompted to make
an explicit individual prediction via a feedforward input that
feeds the columns from the bottom up, consistent with the
anatomy of cortical layer VI (Figure 1). This view is illustrated by
Hawkins with the following image that shows how convolution
of top/down and bottom/up inputs may result in a meaningful
output. Imagine two sheets of paper with many small holes in
them. The holes on one paper represent the columns that have
active layer II or layer III cells, marking invariant predictions.
The holes on the other paper represent columns with partial
inputs from below. If you place one sheet of paper on top of
the other, some holes will line up, others will not. The holes
that line up represent the columns that should be active in
making a specific prediction. This mechanism not only allows
specific predictions to be made, but also resolves ambiguities in
sensory input. This bottom/up top/down matching mechanism
allows the brain to decide between two or more interpretations
and to anticipate events that it has never witnessed before.
Further developments of the modular organization of the animal
brain may have developed with the emergence of Homo sapiens,
resulting in specific amplification of new connection modules
(Changeux et al., 2021). This important behavior results from
an organization that combines the columns into layers with
overlapping lateral connections, a feature we explore later.

Synchronization
Finally, a critical feature for computation is the need for
synchronization of processes. Understanding how cortical
activity generates sensory perceptions requires a detailed
dissection of the function of time in cortical layers (Adesnik and
Naka, 2018). This is the case, for example, of the eye saccade
movement that controls vision, allowing proper positioning of
the retina to keep proper focus while the eye moves (Girard and
Berthoz, 2005). Synchronization is important not only with single
computing units but especially important when computing is
developed in parallel. For this reason it seems relevant, before
understanding whether brain computing can become digital,
to identify at least some families of synchronization processes.
Many regular waves, spanning a wide time frame, have been
identified in the brain, witnessing large scale synchronization
processes, particularly important for information processing in
virtually all domains including sensation, memory, movement
and language (Buzsáki, 2010; Meyer, 2018). Time keeping can
be achieved for example via coupling two autonomous dynamic
systems (Pinto et al., 2019). Recent work follows older work
where small populations with a feedback loop were shown to
mimic the behavior of authentic neural networks (Zetterberg
et al., 1978). In addition, the need to make use of the states that
have been stored requires a scanning process that is essential
to enable functions such as memory recall that is distinct from
encoding the information from experience (Dvorak et al., 2018).
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FIGURE 1 | Redrawn from Hawkins and Blakeslee (2005). Formation of a specific “prediction” in the cortex. The cortex is represented by six layers connecting
micro-columns. Generic “predictions” result from memories entered in the columns of the supragranular layers (see text) and triggered by interaction with the
environment in a top-down manner. To obtain a specific “prediction” that will result in a specific output, a family of anticipatory feedforward signals is input from the
lower layers in a bottom-up manner. The convolution of the descending and ascending signals produces the specific output.

Indeed, the neural oscillations observed in local field potentials
that result from spatially and temporally synchronized excitatory
and inhibitory synaptic currents (Buzsáki et al., 2012) provide
powerful network mechanisms to segregate and discretize neural
computations operating within a hierarchy of time scales such
as theta (140 ms) cycles, within which (30 ms slow gamma
and (14 ms fast gamma oscillations are nested and theta
phase organized. This temporal organization is intrinsic, arising
from the biophysical properties of the transmembrane currents
through ion-conducting channel proteins. The information
processing modes within and between cortical processing
modules that these oscillations enable are themselves controlled
by top-down synchronous inputs such as medial entorhinal
cortex-originating dentate spike events (Schomburg et al., 2014;
Dvorak et al., 2021). By hierarchically synchronizing synaptic
activations, the intrinsic biophysics of neural transmission
accomplishes a remarkable form of digitization. Continuous
inputs at the level of individual neurons are converted
into oscillation-delineated population synchronized activity
with digital features of a syntax for discretized information
processing (Buzsáki, 2010), disturbances of which result in
mental dysfunction (Fenton, 2015).

AN AUTOMATIC SCANNING PROCESS,
THE UNEXPECTED BENEFIT OF
FUZZINESS

As described above, large parts of the animal brain are organized
as an association of local micro-networks of similar structure,
arranged along planar layers and micro-columns. It is therefore
of interest to identify the basic units that might play a role in
this organization. Phylogenetic analyses are important in trying
to identify functions of neuronal structures that appear for the
first time in a particular lineage. Typically, at the onset of the
emergence of animals, a neuron was a kind of relay structure
that couples a sensory process to a motor process. At the very
beginning of the development of such structures during the
evolution of multicellular organisms, the role of neurons was
simply to couple sensing with the movement produced by distant

organs. However, this simple process is bound to have a variety
of undesirable consequences if it does not resolve its role within
a well-defined spatial and temporal framework. This means that
the sequence associating the presence of a signal to its physiologic
or motor consequence must be delimited in time and space.
A relevant design to ensure the quality of this process is to divert a
small part of the output to inhibit the effect of the upstream input,
in short, to achieve a homeostat (Cariani, 2009).

Homeostasis: The Negative Feedback
Loop
In his Neural Darwinism Edelman developed the concept of
“reentry,” a key mechanism for the integration of brain functions
(Edelman and Gally, 2013). This concept is based on the
idea that a small part of the output signal of a network is
diverted to the input region and fed back into the network
with a time delay. This phenomenon belongs to the family
of signals that ensure homeostasis. A central theme governing
the functional design of biological networks is their ability to
maintain stable function despite intrinsic variability, including
noise. In neural networks, local heterogeneities progressively
disrupt the emergence of network activity and lead to increasingly
large perturbations in low frequency neural activity. Many
network designs can mitigate this constraint. For example,
targeted suppression of low-frequency perturbations could
ameliorate heterogeneity-induced perturbations in network
activity. The role of intrinsic resonance, a physiological
mechanism for suppressing low-frequency activity, either by
adding an additional high-pass filter or by incorporating a slow
negative feedback loop, has been successfully explored in model
neurons (Mittal and Narayanan, 2021).

The cerebellum, with its highly regular organization and
single-fiber output from Purkinje cells, is a good example
of repetitive networks. Mutual inhibition of granule cells,
mediated by feedback inhibition from Golgi cells—much
less numerous than their granule counterparts—prevents
simultaneous activation. Granule cells differentiate by their
priming threshold, resulting in bursts of spikes in a “winner
take all” sequential pattern (Bratby et al., 2017). Taken together,
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the local implementation of networks with embedded feedback
loops as a strong output used to re-enter relevant cortical large
networks resulted in a pattern that was proposed to explain the
origins of consciousness and its scanning properties (Edelman
et al., 2011), and further extended into the Global Neuronal
Workspace hypothesis that attempts to account for key scientific
observations regarding the basic mechanisms of conscious
processing in the human brain (Mashour et al., 2020). These
views, where inhibition is crucial, are strongly supported by
the considerable importance of circuits comprising inhibitory
neurons. Inhibition in the cortical areas is implemented by
GABAergic neurons, which comprise about 20–30% of all
cortical neurons. Witnessing the importance of this negative
function, this proportion is conserved across mammalian species
and during the lifespan of an animal (Sahara et al., 2012).

Finally, the role of inhibition, which typically occurs locally
but is typically triggered by inputs from distant areas of the
brain, is particularly important for the discrimination of classes
of processes. When neural network excitatory inputs are both
mutually excitatory and also recruit inhibition globally, the motif
generates winner-take-all dynamics such that the strongest and
earliest neural inputs will dominate and suppress weaker and
later inputs, which in turn causes further enhancement of the
dominant inputs. The net result is not merely a signal-to-noise
enhancement of the dominant activity, but a network selection
and discretization of what would be otherwise continuously
variable activity. This motif is learned, improves with experience
and in the entorhinal cortex-hippocampal circuit is responsible
for learning to learn (Chung et al., 2021). The study of child
brain development shows that there is a progressive overlap of
organized responses to specific inputs (in the way objects and
then numbers are identified) with other types of input from,
for example, visual areas. The consequence of this overlap is
that “intuitive” conceptions, resulting from prior anchoring in
a particular environment, are barriers to conceptual learning.
This implies that the inhibition of these inputs is important
to allow the development of rationality (Brault Foisy et al.,
2021). Interestingly, this duality between intuition and rational
reasoning can be attributed to a difference between heuristics
and algorithmic reasoning (Roell et al., 2019), a feature that may
support the transition from a purely analog to a digital process.

Consequences of Imperfect Feedback:
Endogenous Scanning of Brain Areas
The phenomenon of consciousness suggests that the brain
generates an autonomous process that allows it to continuously
scan the network, extracting information to promote action,
at least during the waking period. It is therefore important to
propose conjectures about how this process is generated. Many
connection schemes using feedback or feedforward signaling are
well suited to enable homeostasis, but there is a particularly
simple one that seems to have interesting properties for
producing scanning behavior. Suppose that at some level sensory
inputs are split and thus follow parallel paths, only to be re-
associated and, for example, because one of the cells in one
path activates an inhibitory neuron, negatively controlling the

downstream neuron, and then activates the neurons in the other
path, subtracting one from the other only at the level of a specific
class of cells, with a XOR-like local network (Kimura et al., 2011;
Michiels van Kessenich et al., 2018). Measuring fine differences
is a way to extract subtle information from the environment
and make it relevant. Cells of the latter class are then assumed
to return one of the duplicated sensory inputs or intermediate
inputs corresponding to “modifications” of these inputs (see a
metaphoric illustration in Figure 2). If the difference read by the
cell integrating the commands from the two parallel pathways is
very small, the feedback inhibition command will have no effect;
if the difference is large, this command may cancel or reinforce
one of the upstream pathways, so as to cancel the difference,
thus resulting in homeostatic behavior. If the cell in the last
layer remains activated, it tends on the one hand to produce an
action via its connection to a motor center, and on the other
hand to correct the influence of the input system that leads it to
command the action.

Now, consider how these structures are built during brain
development. Living matter, unlike standard inorganic matter,
is soft matter. This intrinsic flexibility must be taken into
account when considering the fine architecture of authentic
neural networks. When we describe columns of cells organized
into a hexagonal planar structure, it cannot consist of structures
with precisely defined boundaries (Tecuatl et al., 2021). In
another level of fuzziness, involving time, the effectiveness of
individual synapses is not strictly defined, resulting in pervasive
synaptic noise (Kohn, 1998). Moreover, the individuality of each
synapse can only be programmed exceptionally as such: this
would require at least one gene per synapse, and remember that
there are at least 1015. This implies that there is considerable
variation in the temporal and spatial dependence of neuronal
connectivity. Rather than being an obstacle, this weakness gives
rise to a new strength: it is because neural networks cannot be
programmed exactly to create precise homeostatic structures that
they lead to the repetition of approximate structures that are
quasi-homeostatic, creating interactions with their neighbors that
can be used to implement emerging functions.

Indeed, such networks have the interesting property of being
able to trigger an automatic network scanning process. When an
input signal triggers a homeostatic response from one column
meant to inactivate it after a time, it inevitably activates the
response of adjacent columns to which it is connected because
of inevitable variation in dendrites and axons connections. In
turn, this initiates a homeostatic response evolved to silence
them. In so doing they now activate adjacent columns, thus
initiating a local scan of the memorized information stored in
those columns, progressing by contiguity as a wave. In line
with the notion of reentry, why not propose this process at the
origin of consciousness? This metaphoric vision developed into
a dialog between biology and the formal properties of syntactic
structures proposed by Noam Chomsky [see Danchin/Marshall
exchange in Modgil and Modgil (1987)]. Of course, an infinite
number of variations on this theme, playing on the differences
between nearly identical signals can act as a scanning process
that will recall memories via the sequential activation followed
by the inactivation of parallel structures. Since this process is
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FIGURE 2 | A representation of a unit cell for a quasi-homeostat. An input cell is connected to an array of duplicated column cells that inputs in a microcircuit
behaving as an XOR logic gate (blue) subtracting signals from the two parallel columns. A fraction of the network output is diverted to activate an inhibitory neuron
(red) that feedbacks to the origin of the duplicated columns. Since the corresponding connections cannot be coded individually, they will also connect to adjacent
columns and trigger their activity, initiating a scanning process.

spatially constrained by contiguity, it will give the recall of
memories a spatial component, such as we all experience when
we have to retrace our steps to find a memory that has just
escaped our attention.

THE COMPUTING BRAIN

A TM must separate the machine and the data/program
physically, noting that the data/program entity cannot be split
into specific entities but belongs to a single category, that is
processed by the machine to modify its state. Where does the
brain fit in this context? Can we distinguish between a set
of data/programs and the state machine that manages it? An
interesting observation from an interview by the Edge Magazine
with Freeman Dyson in 2001 gives us a hand in broadening our
discussion3. Freeman Dyson, as usual, is an extraordinary mind:
The two ways of processing information are analog and digital.
[.]. We define analog-life as life that processes information in
analog form, digital-life as life that processes information in digital
form. To visualize digital-life, think of a transhuman inhabiting
a computer. To visualize analog-life, think of a Black Cloud
[reference to the novel of Fred Hoyle (1957)]. The next question
that arises is, are we humans analog or digital? We don’t yet know
the answer to this question. The information in a human is mostly
to be found in two places, in our genes and in our brains. The
information in our genes is certainly digital, coded in the four-
level alphabet of DNA. The information in our brains is still a
great mystery. Nobody yet knows how the human memory works.
It seems likely that memories are recorded in variations of the
strengths of synapses connecting the billions of neurons in the
brain with one another, but we do not know how the strengths

3https://www.edge.org/conversation/freeman_dyson-is-life-analog-or-digital

of synapses are varied. It could well turn out that the processing
of information in our brains is partly digital and partly analog. If
we are partly analog, the down-loading of a human consciousness
into a digital computer may involve a certain loss of our finer
feelings and qualities.

An important feature that can be added to the question
posed by Dyson is that the brain, through its learning process,
constructs a hierarchical tree structure and symbolic links from
the data submitted to it (basically, it throws away most of
the data, condenses it into another form at a higher level of
abstraction to sort and order it). Capturing the involvement
of elusive information is difficult (we still do not have a
proper formalism to describe what it is). The most common
approach to tie information to energy has been proposed by
Rolf Landauer and Charles Bennett, with the understanding that
during computation, creation of information is reversible (hence
does not dissipate energy) while erasing memory to make the
result of computation stand out against the background costs
kTln2 per bit of information (Landauer, 1961; Bennett, 1988b). It
is well established that the brain consumes a considerable amount
of energy, but the relationships with information processing have
not been investigated in-depth.

The word “program,” often used loosely to describe the
concrete implementation of a TM, implies the anthropocentric
requirement of a goal. However, a TM does not have an objective,
it is “declarative,” i.e., it functions as soon as a tape carrying
a string of data is introduced into its read/write machinery.
Understanding how it works is therefore better suited to the
idea of data not program manipulation. The distinction between
data and program opens a difficult scene in the concept of
information. Data has no meaning in itself, whereas the program
depends on the context (Danchin, 2009b). This distinction is
evident in the cell where genetic information duplicated during
the process of DNA replication starts as soon as a DNA double
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helix meets a DNA polymerase machinery. This process does
not see the biological significance of the encoded genes or other
features of the DNA sequence. This has been well established
with Bacillus subtilis cells transformed with a cyanobacterial
genome that is faithfully replicated but not expressed, whereas
it drives the synthesis of an offspring when present in its parent
host (Watanabe et al., 2012). This distinction between Shannon-
like information (meaningless) and information with “value”
has been discussed for a long time under the name “semantic”
information [(Bar-Hillel and Carnap, 1953; Deniz et al., 2019;
Lundgren, 2019; Miłkowski, 2021), see also emphasis on the
requirement for recursive modeling to account for information
in the brain (Conant and Ashby, 1970)]. However, with the
exception of the idea of logical depth, proposed by Bennett in
1988 (Bennett, 1988a), there is still no well-developed theory
on the subject. We will restrict our discussion to the role
of data in the TM.

The possibility of moving from one set of data to a smaller
set, as illustrated in the functioning of cortical layers, is quite
similar to the measure proposed by Bennett when he illustrated
Landauer’s principle by the process of arithmetic division. In
this illustration, Bennett showed that this operation could be
implemented in a reversible way, leaving the remainder of the
division as its result (Bennett, 1988b). However, in order to bring
out the division remainder, to make it visible, it is necessary
to erase all the steps that led to the result: this is what costs
energy. What is indeed important is the sorting that allows the
relevant data to be isolated from the background. To carry out
a sorting, a choice, it is necessary to carry out a measurement,
as Herbert Simon pointed out in his decision theory (Simon,
1974). In living cells, this process is fairly easy to identify in the
process of discriminating between classes of entities, for example
young and old proteins. In this case, the question is how to verify
that the cell is measuring something before “deciding” to degrade
a protein. Many ways of achieving this discrimination can be
proposed. In a cell, the cleaning process could simply be a prey-
predator competition between proteins and peptidases. It could
be the result of spatial arrangement with producing or moving
proteins in a place where there are few degrading enzymes, or the
fact that when the proteins are functioning, they form a block, an
aggregate, that is difficult to attack. All these processes dissipate
energy at steps that specifically involve information management
(Boel et al., 2019). But what about neural networks?

There is no doubt that the brain manipulates information
and computes. But where are its states stored and how are they
managed? Discrimination processes can easily be identified in
the way the brain tackles its environment, but where do we find
specific energy-dependent processes underlying discrimination?
Furthermore, there does not seem to be any data/program entity
that can be exchanged between brains. Homo sapiens is perhaps
an exception, when true language has been established. Animal
communication may also make use of the same observation, but
less obviously, and certainly not if we follow the Chomskian
definition of language (Hauser et al., 2002). Sentences can be
exchanged between different brains, in a way that alters the
behavior of the machine that carries the brain: this is particularly
visible with writing, which is the metaphor used by Turing, but

it is certainly true as soon as writing is established, which makes
writing the benchmark of humanity.

WRITING: TOWARD A TURING
MACHINE?

We enter here a very speculative section of this essay, meant
to help generate new visions of the brain’s competence and
performance. In fact, while von Neumann and others invented
computers with mimicking the brain in mind, the brain does
not appear to behave as a TM. Table 1 compares the key
features of a Turing Machine, a computer, and the human brain
(Table 1). In case we accept that the brain could work as a
digital computer, several features of the digital world should be
highlighted as they should have prominent signatures. Among
those that have unexpected but recognizable consequences, we
find recursion (Danchin, 2009a) and this fits with the concept
of reentry. An original feature of the TM is that it allows
recursion. Recursion is built into numerical worlds when a
routine executes a program that calls itself. A consequence
of recursion, which was addressed by Hofstadter in his Gödel
Escher Bach (Hofstadter, 1999), is that it produces inherently
creative behavior (i.e., giving rise to something that has no
precedent), a feature commonly observed in the role of the
brain. This happens in cells, even before they multiply (especially
when they repair their DNA, during the stationary phase). The
digital life of the cell provides a recursive way to creatively
explore its future. Creation is also a key feature of TMs,
and brains. Consider the wiring diagram of the mammalian
brain comprised as it is of parallel cortico-striatal-thalamo-
cortical loops each specialized for motor, visual, motivational,
or executive functions (Alexander et al., 1986; Seger, 2006).
These canonical loops provide the essential circuitry for recursive
information processing, as observed in the creation of complex
abstract rules from simple sensory motor sequences (Miller and
Buschman, 2007). An elegant study stimulated the mossy fiber
component of the cerebellar circuity within the additional parallel
cortico-cerebellar-thalamo-cortical loop to causally demonstrate
recursion in the formation of a classically conditioned eyeblink
response (Khilkevich et al., 2018). Indeed, such recursion-
implementing circuity is widespread and characteristic of the
mammalian brain (Alexander et al., 1986).

Among the characteristics necessary to identify a TM is the
physical separation of the data/program from the machine that
interprets it. The data/program entity is illustrated as a string of
symbols, a purely digital representation. The metaphoric string
of the Universal TM can be embodied into a variety of strings
(parallelization is allowed). A brain, on the other hand, seems to
work with a completely different approach. There is no separate
program involved in its operation. It is simply “programmed”
by the interconnections between its active components, neurons.
The brain does not appear to fetch instructions or data from
a memory located in a well-defined area, decode and interpret
instructions etc. Neurons get input data from other neurons,
operate upon these data and generate output data that are fed to
receiving neurons. Memory is distributed all over the brain tissue.
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TABLE 1 | Some specific features of a Turing Machine, a computer, and
the human brain.

Turing
Machine

Computer Brain

Separation
data/machine

Yes Yes No in general
Yes for grammatical
language
performance and
numbering

Declaration Yes No (not yet) Yes

Prescription No Yes Yes in social
organisms

Digital Yes Yes Limited to
numbering and
language
performance

Analog No Yes for the
machine

Yes

Recursive Yes Yes Yes

States Finite Many finite states Unlimited, poorly
defined

Organizational
granularity

Two separate
levels

Multilevel Multilevel

Memory Past state RAM and ROM Distributed, limited
only by lifespan

Computation Algorithmic Algorithmic
(heuristics can be
implemented via
algorithms)

Heuristic and
algorithmic

This view is a bit oversimplified but it is enough to bring us to
the following questions. Do we find entities that can be separated
from the brain, extracted and reintroduced, in the way it works?
In an animal brain, the question is to understand what might play
the role of strings of symbols.

Separation has a considerable consequence: it requires some
kind of communication and exchange, which could occur
between parts of the brain. This feature was discussed in an
interesting essay by Julian Jaynes, where he surmised that
consciousness emerged from a dialog between coded sequences
between the brain hemispheres [our ancestors had “voices”
(Jaynes, 2000)]. While this vision is now obsolete, it points out
how this could be the first step of a pre-TM where the brain
exchanges strings of signals between hemispheres (contemporary
views consider areas rather than hemispheres, with particular
emphasis on inhibition) to generate novel information. In
fact, such phenomena have been experimentally demonstrated
by interhemispheric transfer and interhemispheric synthesis of
lateralized engrams, studies that exploited the ability to reversibly
silence one and then the other of the brain’s bilateral structures
(Nadel and Buresova, 1968; Fenton et al., 1995). This organization
of the cortex is also used by animals to map future navigation
goals (Basu et al., 2021). Alongside this evolution of information
transfer within the brain, strings of symbols could be exchanged
between brains, implying that the social brain is at the heart of
what is needed for a brain to become a TM. When language
comes into play (probably first through grammatically organized
phonemes and then through writing), part of the brain may

behave as a digital device, with important properties derived from
the corresponding TM scenario. This is what is happening now,
when you read this text: your brain behaves like a TM, and you
can modify the text, exchange it via someone else’s brain, etc.
In fact, some of this may already be true in the ability to see.
The images seen by the retina are in a way digitized via the
very construction of the retina as layers of individual cells, that
“pixelize” the image of the environment. It is not far-fetched to
assume that the processing of the corresponding information by
brain neural networks has retained some of the characteristics of
this digitization.

Before the invention of writing, making reusable tools would
also represent a primitive way of implementing a TM. Homo
sapiens is one of the very few animals to do so. In birds, tools
can be made, but tool reuse and tool exchange have rarely been
observed. It may therefore be that the genus Homo began to
build a TM-like brain, but that its actual implementation as
an important feature only appeared with complex languages
(i.e., with grammatical properties linked to a syntax of the
type described by Noam Chomsky) and, most importantly, with
the invention of writing. Looking again at the network layer
organization of the cortex, we can see that there is a certain
analogy between the simplest elements of syntactic structures and
this neural structure. The afferent pathways (and not the cells), all
constructed in the same way (but not identical), would represent
the nominal syntagm (with all that the numerous variants of
afferents, interferences, modifications can bring to meaning) and
the cells integrating their output commands, the verbal syntagm
(with all that this implies in terms of motor actions, including
imaginary ones, since by construction the verbal syntagm acts
on the nominal syntagm.) This is a gradual evolution, which
will certainly undergo further stages in the future. Invention of
language with its linear sequences of phonemes, when spoken,
and letters when written, would mark, in Homo sapiens the
transition moment when it behaved as a Turing Machine and
separate human beings from other animals. One caveat, though.
The emphasis here has been on one of the characteristics of the
TM, namely the physical separation of the data from the machine,
where data can be replaced by other data without changing
the specific nature of the machine. However, there is a second
essential characteristic of a TM: it is a finite state machine. It
would be difficult to accept that the brain behaves like such a
machine. Even its states are quite difficult to identify (although
progress in identifying the functioning of various areas may
provide some insight into the localized features of specific states).
It would be necessary to validate the hypothesis discussed here, to
couple the way writing is used with specific states. This remains
quite futuristic.

IN GUISE OF CONCLUSION: THE BRAIN
IS NOT A DIGITAL COMPUTER, BUT IT
COULD EVOLVE TO BECOME ONE

This essay is not intended to review the vast amount of work
exploring the computational capacity of the human brain. We
have extracted from the literature leads that have allowed us
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to find new answers to the question: is the brain a digital
computer? As a final clue, we could ask whether we can be
infected by a computer virus. It may sound far-fetched, but
yes, it is apparently possible, as we see with fake news or
memes that spread via social media. Both are, however, linked
to the language processing ability of the human brain. Social
media manage information with an explicit separation of data
and a machine. This observation is reminiscent of the way
the mind/body problem is asked: there is no “ghost in the
machine” (Ryle, 2009), but nobody would doubt that brain
manages information in a very efficient way. However, this
affirmation does not tell us whether this is made in an analog or
digital way. Nevertheless, the consequences for pedagogy of the
algorithmic vision are considerable. Learning to read by “gazing”
at written words is a matter of the brain’s as an analog device
vision, while reading by breaking words down into syllables is a
matter of digital vision. Forgetting the algorithmic nature of the
corresponding processes must have deep consequences in terms
of the organization of the brain, and possibly jeopardize long
term cognition abilities. It has been proposed that cells may act
as computers making computers, with an algorithmic description
of the cell’s behavior based on the way macromolecules are
synthesized, with the key role of the genetic code with the
algorithmic description of decoding (Danchin, 2009a). With the
view that the human brain might be on its way to become
a TM, Nature would have discovered twice the importance of

coding and recursion, in the emergence of cell life with the
discovery of the genetic code, first, and in the emergence of
writing, quite recently.
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