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Abstract 

Models based on causal capacities, or independent causal influences/mechanisms, 

are widespread in the sciences. This paper develops a natural mathematical 

framework for representing such capacities by extending and generalizing 

previous results in cognitive psychology and machine learning, based on 

observations and arguments from prior philosophical debates. In addition to its 

substantial generality, the resulting framework provides a theoretical unification 

of the widely-used noisy-OR/AND and linear models, thereby showing how they 

are complementary rather than competing. This unification helps to explain many 

of the shared cognitive and mathematical properties of those models. 

 

  



1. Introduction 

In many scientific domains, one finds models focused on causal influences that function (at 

least somewhat) independently of one another. For example, cognitive models are typically 

expressed in terms of distinct cognitive processes that have no direct influence on one another’s 

functioning, and so can proceed independently, whether sequentially or in parallel. As just one 

instance, many theories of categorization posit that people first perceive the relevant stimulus, 

then judge its similarity to various known categories, and finally use those similarity judgments 

to generate a behavioral response. These processes obviously matter for one another; the output 

of the perceptual process, for example, is the input to the similarity judgment process. But in 

essentially all similarity-based cognitive theories of categorization, the functioning of one 

process is assumed to be largely independent of the functioning of the other processes. The 

“inner workings” of the perceptual process are assumed to be irrelevant to the way that similarity 

judgments are made; the only influence of the former on the latter is the particular information 

that it outputs. 

 More generally, scientific models and theories frequently divide the world into distinct 

processes (typically, causal ones) such that the operation of one process has minimal dependence 

on—in the best case, true independence from—the operations or states of other processes. 

Probably the clearest articulation of this picture is based on the notion of causal capacities 

(Cartwright 1989, 1999, 2007; Martin 2008; see also Heil 2005), but similar ideas can be found 

in many writings on mechanisms (in the spirit of Machamer, Darden, & Craver, 2000). In this 

paper, I focus on such independent causal influences; for convenience, I will refer to them as 

‘capacities’, but this term should be understood broadly. The basic idea is that capacities are just 

those causal powers that a cause C has purely by virtue of being a C; causal capacities are 



“something they [the causes] can be expected to carry with them from situation to situation” 

(Cartwright 1989, 145). That is, capacities inhere in C rather than arising from the particular 

situation, and so their operation should be relatively unaffected by other processes in the system. 

This (almost) independence is exactly what enables the construction of “nomological machines” 

(Cartwright 1999, 2007) that generate the regularities—some contingent, some law-like—that we 

observe and manipulate.  

The philosophical literature on causal capacities and mechanisms has largely focused on 

questions that are metaphysical (e.g., are they basic/fundamental features of the world?) or 

epistemological (e.g., can we discover capacities from observational or experimental data?). I 

here consider a representational question: is there a natural, privileged representational 

framework for systems in which the causal influences1 are independent2 of one another (i.e., each 

does not depend on the values, operations, or status of the others)? There is enormous variety in 

the world, and so any representational framework inevitably simplifies or is sometimes not 

applicable. My interest here is in a representational framework that applies to the “standard” or 

“ordinary” cases, and so can function as a default framework; I use the terms ‘natural’ and 

‘privileged’ to refer to such a framework. One might think that there obviously can be no such 

                                                
1 For simplicity, I assume that each independent influence corresponds to a single cause, as 

multiple (interactive) causes can be merged into a single, multidimensional, factor. 

2 This independence should not be confused with (a) statistical independencies that can be used 

to (sometimes) infer causal structures from data (Spirtes, Glymour, and Scheines 2000); or (b) 

the idea of ‘modularity’ to refer to causal connections that can be separately intervened upon 

(Hausman and Woodward 1999, 2004; Cartwright 2002). 



privileged representation, as the independence property seems too weak for this task, but that 

response turns out to be mistaken.  

 

2. The Mathematics of (a Special Case of) Causal Capacities 

2.1. The Noisy-OR/AND Model 

Assume that we have a set of (possible) causes C1, …, Cn and a target effect E. The 

functioning of Ci’s capacity is supposed to inhere in Ci, and so the causal strength or influence of 

Ci should be representable without reference to the states of the other variables. In particular, Ci’s 

impact on E should not depend on the state or causal strength of Cj, and it should be monotonic 

in Ci; in particular, even if the quantitative impact is not constant across values of E (due to, e.g., 

saturation of E), the valence should not depend on E’s value. Finally, for mathematical 

tractability, I assume that each variable’s possible values can be represented as numbers, though 

each variable can have its own scale; this is a trivial assumption when the variables are binary 

(i.e., two-valued), but is non-trivial in other cases (e.g., there is no privileged way to map red, 

green, and blue to numbers). 

Consider the special case situation in which all factors—causes and the effect—can be 

represented as binary variables. For this case, a privileged mathematical framework (with origins 

in 19th century mathematics) has been developed in machine learning and cognitive psychology 

(Good 1961; Srinivas 1993; Heckerman and Breese 1994, 1996; Cheng 1997; Glymour 1998; 

Cozman 2004). Suppose that we have a single generative (binary) cause C1 of the (binary) effect 

E, and so E occurs when (and only when) C1 is present and the capacity of C1 is active, where w1 

is the strength of that capacity. Thus, we immediately derive P(E) = w1 × δ(C1), where δ(X) = 1 if 

X is present, 0 if X is absent. If we have a second generative cause C2 of E, then E occurs when 



(and only when) either C1 or C2 generates it, where the ‘or’ is non-exclusive. Thus, we have P(E) 

= w1δ(C1) + w1δ(C2) – w1δ(C1)w2δ(C2); that is, the probability of E is just the sum of the 

probabilities that it is caused by one cause, minus the probability that both caused it (in order to 

account for that case being “double-counted” in the sum of the first two terms). More generally, 

if we have n distinct, independent generative causes, then the resulting expression for P(E) is the 

“noisy-OR” model (Good 1961; Kim and Pearl 1983; Pearl 1988; Srinivas 1993; Heckerman and 

Breese 1994; Cheng 1997; Glymour 1998): 

  (1) 

In a noisy-OR model, E is an OR-function of the different causes, but with cause-specific 

“noise” (understood instrumentally) that probabilistically makes that cause’s capacity inactive. 

Thus, the probability that E occurs is just the probability that at least one present cause has an 

active capacity. Moreover, equation (1) is uniquely privileged: it is the only equation for purely 

generative binary causes with distinct causal capacities (i.e., independent causal influences) that 

satisfies various natural properties (Cozman 2004). 

Of course, not all causes are generative; we are often interested in causes that prevent the 

effect from occurring. If a preventive cause P interferes with the functioning of only one specific 

generative cause G,3 then P has the (mathematical) impact of reducing G’s causal strength and so 

we can combine their causal capacities. We cannot do the same for preventers that apply to all 

generators equally; such preventers operate as (noisy, probabilistic) “switches” that control 

whether any generative cause can be active at all. That is, E occurs when (and only when) at least 

                                                
3 An ambiguity lurks here between “prevention as blocking” and “prevention as reducing,” but I 

postpone discussion of this ambiguity until later in this section. 



one generative cause’s capacity is active and none of the preventive causes’ capacities is active. 

This relationship is captured by a “noisy-OR/AND” model, since the generative causes combine 

in a noisy-OR function, whose result is then combined with a noisy-AND function for the 

preventive causes (i.e., the effect occurs only if a generator is active AND P1 is not active AND 

… Pm is not active):  

  (2) 

This equation provides (arguably) the most natural representation of causal capacities, both 

generative and preventive, that exert independent causal influence (Srinivas 1993; Heckerman 

and Breese 1994, 1996; Lucas 2005). Moreover, there is substantial empirical evidence that 

humans preferentially represent causal systems as functioning according to equation (2) (Cheng 

1997; Holyoak and Cheng 2011; Danks 2014).4 

 

2.2. Resolving Ambiguities 

Although there is great value in this mathematical framework, the restriction to binary 

variables is significant, as there are many cases in which the influence of a causal capacity 

depends in part on the factor’s magnitude or intensity, or the effect can exhibit fine degrees of 

meaningful variation. Before generalizing the noisy-OR/AND model to many-valued variables, 

however, we must clarify two key conceptual (though not mathematical) ambiguities.  

                                                
4 The connection between psychological theory and capacities is unsurprising, as Cheng’s (1997) 

causal power theory in cognitive psychology was explicitly modeled on Cartwright’s (1989) 

capacity account of causation. 



Mathematically speaking, binary variables are simply those with two possible values. When 

talking about causal capacities, however, a more specific interpretation is typically intended: 

factors can be “present” vs. “absent” or “on” vs. “off”; capacities can be “active” vs. “inactive”. 

These interpretations provide a natural value ordering, as shown by the standard practice of 

mapping “present” to the value of 1 and “absent” to the value of 0.5 More generally, we typically 

understand the “absent” or 0 value to be the lower bound of the possible values for that variable. 

At the same time, the zero value in the context of causal capacities almost always serves as the 

baseline value: it is the value that E would have if nothing influenced it. This second role of the 

zero value is clear in the mathematics of the noisy-OR/AND model, as P(E = 0 | all generative 

causes are absent) = 1. That is, the standard model of (binary) causal capacities assumes that 

absence is the appropriate “uncaused” state for E.6  

These two different roles for zero—lower bound and baseline value—are conceptually 

distinct and empirically distinguishable. For example, in most terrestrial environments, the 

baseline value for Oxygen in Room (i.e., the value it has when represented causes are all inactive) 

is “present,” not “absent.” We can represent this different baseline value in the noisy-OR/AND 

model, but only through a mathematical trick (namely, a very strong, always-present generative 

cause). A better solution would be to allow the lower bound and baseline to diverge. This 

                                                
5 This particular mapping could obviously be reversed without any change in substantive content, 

though ‘lower bound’ and ‘upper bound’ would need to be swapped in what follows.  

6 One might worry that “uncaused states” are impossible. However, if causes function 

independently, then it is at least theoretically possible for none to be active at a moment in time. 

More generally, any model with independent causal influences yields a baseline value, even if it 

is only ever theoretically (rather than empirically) realized. 



generalization does not matter for cases with only binary variables, as any model with variables 

whose baseline is 1 can be translated into a model in which all baselines are 0. Outside of this 

special case, however, the baseline value plays a distinct mathematical role, and so any model of 

causal capacities that allows for more-than-binary variables (such as the one developed in 

Section 3) must distinguish conceptually between the lower bound value and the baseline value.  

The multiple roles played by zero point towards the other important ambiguity in the 

standard noisy-OR/AND model of causal capacities. Because the zero value is both the lower 

bound and the baseline, there are two different ways to prevent, or make E less likely. First, the 

preventer could stop generative causes from exerting their usual influence. These blockers serve 

to keep the effect variable closer to its baseline value, as they (potentially) eliminate causal 

influences that drive the effect away from baseline. Preventive causes in the noisy-OR/AND 

model are usually understood in this way. A second way of “preventing” is to move E towards its 

lower bound. These reducers are the natural opposite of standard generative causes, as they shift 

E downwards while generators shift E upwards. The important distinction here is whether the 

preventer influences the effect directly (i.e., is a reducer), or indirectly through the elimination of 

other causal influences (i.e., is a blocker).  

As a practical example, suppose Heart Rate is our effect variable. There are many generative 

causes that increase heart rate, such as stress or exercise. Beta blockers and other anxiety-

reducing medications function as blockers, as they prevent (some of) those generative causes 

from having any influence while not suppressing Heart Rate below its natural baseline (for that 

individual). In contrast, most anesthetics are reducers of Heart Rate, as they actively slow the 

heart, potentially even below its natural baseline, depending on exactly which causes are active. 

Of course, if we model Heart Rate as simply “low” or “high” (where “low” is the baseline), then 



these two different types of drugs will appear indistinguishable. The importance of 

distinguishing reducers from blockers becomes apparent only when we move to situations in 

which the lower bound and baseline values need not coincide. 

Before turning to the fully general mathematical framework for causal capacities, we must 

address a potential ambiguity about a capacity’s “causal strength” wi. The standard interpretation 

in the noisy-OR/AND model is that wi expresses the probability that the capacity is “active,” 

where an active cause deterministically produces the effect (unless a suitable blocker is also 

active). This interpretation is inappropriate when causes are more than binary, as “probability of 

activation” neglects the (presumed) importance of the magnitude of the cause variable.7 Instead, 

we will understand wi (for generators and reducers) for a capacity Ci to be the expected change in 

E’s value when Ci increases by one unit and every other factor is at its baseline value. That is, wi 

is computed by starting in the state in which every causal factor is at baseline, and then 

determining the expected change in E when C increases by one unit.8 This interpretation implies 

that wi depends on Ci’s scale, but this should be expected given the predictive function of causal 

strengths. Notice that, if all causes and the effect are binary, then the expected change and 

probability of activation interpretations of wi are mathematically identical. The expected change 

                                                
7 We can retain the “probability of activation” interpretation if the effect is the only many-valued 

variable, in which case the natural representations are noisy-ADD or noisy-MAX functions 

(Heckerman and Breese 1996). 

8 If causal strength depends on C’s value, then the choice to measure from C’s baseline is 

potentially a substantive one. However, since we assume causes have independent monotonic 

influences, we can always transform the scale for C so that E is a linear function of C’s value.  



interpretation, however, also naturally applies to systems in which some factors can take on 

more-than-two values, and so I use it in the next section. 

 

3. A General, Privileged Mathematical Representation 

Now that we have done the necessary conceptual clarification, we can develop a general, 

privileged mathematical representation of causal capacities when the causes and effect need not 

be binary. Throughout, I use lower-case letters to denote the value of a variable; for example, e is 

the value of the effect E. Without loss of generality, we can assume E’s baseline value is zero 

and e ∈ [–L, U], where at least one of L, U is greater than zero (else E is always zero). Note that 

the baseline can be the same as the lower bound (L = 0, U > 0); same as the upper bound (L > 0; 

U = 0); or a strictly intermediate value (L, U > 0). As noted above, three different types of causal 

capacities must be incorporated into the mathematical framework: generators Gi and reducers Rj 

that (probabilistically) increase and decrease the value of E, respectively; and blockers Bk that 

(probabilistically) prevent any other causal capacities from influencing E. For all three types of 

causes, their values must also be able to range over more than just {0, 1}. For mathematical 

convenience, we represent the “inactive” state of each cause by 0, so that the influence on E 

(when only C is active) is the product of C’s magnitude (i.e., its distance from zero) and its 

causal strength (i.e., the expected change in E given that the cause increased by one unit).9 

Consider first the case with only generators Gi with values gi. In this situation, E can only be 

pushed upwards from the baseline, and so e ∈ [0, U]. The natural mathematical framework 

                                                
9 Recall from fn. 8 that the independent causal influences have all been transformed so that they 

are linear (in C) influences of E, and so this product for a single generator or reducer is always 

less than the relevant upper or lower bound, respectively. 



simply uses normalization to convert this case to (a continuous version of) the noisy-OR model: 

(i) “normalize” E and the causal strengths to the [0, 1] interval; (ii) use the uniquely privileged 

(Cozman 2004) noisy-OR model; and then (iii) transform the result back to the [0, U] interval. 

The noisy-OR/AND model was defined in equations (1) and (2) in terms of the probability of E 

given its causes, but we can (and should, in the present context) instead regard those equations as 

providing the expectation of E. The natural, privileged mathematical representation for the 

expectation of E in this situation is thus:10 

 

Since reducers are naturally understood as “negative generators,” we can model the impact of a 

set of reducers Rj with values rj in the same way, though their “normalization” is relative to L 

rather than U. The resulting expectation of E is simply the difference between these (normalized 

and combined) influences: 

 

Finally, blockers Bk with values bk fill the role of preventers in the noisy-OR/AND model of 

equation (2): the (probabilistic) activation of their causal capacities prevents the expression of 

any other causal capacities, and so they act as a probabilistic “switch” on the previous equation. 

The causal strengths of the blocking capacities are thus best understood as “increase (per unit 

change in the blocker) in probability of complete blocking.” The resulting full mathematical 

equation is: 

                                                
10 I show below that this equation is well-behaved even when U = +∞.  



  (3) 

Equation (3) is the natural generalization of the noisy-OR/AND model to cases with many-

valued variables and distinct baseline and lower bound for E. It thus provides the privileged 

mathematics of causal capacities for precisely the same reasons as the noisy-OR/AND model for 

the special case of binary variables. To see that it provides such a generalization, consider the 

special case that was the focus of the previous section: L = 0, U = 1, and all of the causal factors 

are restricted to {0, 1}. Since L is equal to the baseline, there are no “reducing” causal capacities: 

for any putative reducer R, the expected change in E from a unit change in R (when all other 

causes are absent) is always zero, and so wR is always zero. And since the causal factors are 

restricted to {0, 1}, the bk and gi variable values can be replaced with delta functions. The 

resulting equation (when we substitute in U and L) is simply equation (2), the noisy-OR/AND 

model. That is, the equations and claims of the previous section are all special cases of the 

generalization provided here. 

Equation (3) provides a privileged mathematics for arbitrary variable ranges and causal 

capacities, in the sense (previously articulated) that it captures the plausible, intuitive features of 

“standard” cases, and therefore can serve as a natural default representational framework. It is 

particularly interesting to consider another special case. Suppose E ∈ [–∞, +∞] and (for the 

moment) that there are no blockers. It is not obvious how to use equation (3) in this situation, 

since direct substitution of L and U yields infinities throughout the equation. If we instead 



consider the limit of equation (3) as L and U go to infinity, we find that the expectation of E is 

given by:11 

  (4) 

That is, the natural mathematical equation for (the expectation of) E in this special case is simply 

a linear function of the causal capacities. Having seen equation (4), it is straightforward to 

incorporate blockers, as that initial product term will simply act to globally attenuate the linear 

impact (on the expectation of E) of the generators and reducers. 

Equation (3) provides a measure of unification to equations (2) and (4): despite their 

substantial mathematical differences, both noisy-OR/AND and linear models are special cases of 

the more general, privileged mathematical characterization of causal capacities. That is, this 

framework suggests that noisy-OR/AND and linear models have the same conceptual and 

mathematical basis, and the different models arise simply based on whether the variables are 

binary or continuous/real-valued. In particular, this unification helps to explain why so many 

mathematical results that hold for linear models also hold for noisy-OR/AND models, and vice 

versa. For example, the conditions for model parameter identifiability are essentially the same 

for noisy-OR/AND models (Hyttinen, Eberhardt, and Hoyer 2011) and linear models (Hyttinen, 

Eberhardt, and Hoyer 2012). Similarly, we find basically the same conditions and statistical tests 
                                                
11 Proof sketch: For the generators in equation (3), separate the fraction terms into differences 

and expand the product to yield: U [1 – (1 – ∑(wigi / U) + C)] = [∑wigi – UC], where C is the 

rest of the product expansion. Every term in C has at least U2 in the denominator, and so as U → 

+∞, UC → 0. Thus, as U → +∞, we are left with only the sum. The same reasoning yields the 

sum for reducers. 



for discovering an unobserved common cause of multiple observed effects given either a noisy-

OR/AND model (Danks and Glymour 2001; Pearl 1988) or a linear model (Spirtes et al. 2000). 

This overlap in the models’ mathematical properties is much less surprising given that they 

(arguably) derive from a single, more general equation (though their properties are not identical, 

since the different variable value ranges do sometimes matter). 

This mathematical connection can also provide us with insights into human cognition. I 

earlier noted that the noisy-OR/AND model emerged partly from work in cognitive psychology 

on one “natural” way that people seem to represent causal strengths in the world, at least when 

we have binary causes and effects (Cheng 1997; Danks 2014; Holyoak and Cheng 2011). At the 

same time, there are competing theories of human causal learning—variants of the Rescorla-

Wagner model and its long-run counterpart, the conditional ΔP theory (Danks 2003)—in which 

people represent causal capacities as combining linearly (Danks 2007). Relatedly, there is a long 

history of psychological research on function approximation that has shown that people find 

linear functions easier to learn (e.g., McDaniel and Busemeyer 2005; DeLosh, Busemeyer, and 

McDaniel 1997; and references therein), and even have a significant bias in favor of 

understanding the world in terms of linear functions (Kalish, Griffiths, and Lewandowsky 2007). 

Equation (3) provides a measure of theoretical unification for these disparate psychological 

results: noisy-OR/AND and linearity are not theoretical competitors, but rather different aspects 

of the same general assumptions or preferences about causal capacities. That is, we need not ask 

whether noisy-OR/AND or linearity is correct, since each is the natural representation for a 

particular domain of variable values.12 

                                                
12 This observation suggests that people in causal learning experiments might systematically shift 

between noisy-OR/AND and linearity based solely on the variable value ranges. Unfortunately, 



4. Conclusions 

The philosophical literature on causal capacities has principally asked metaphysical and 

epistemological questions, rather than representational ones. At the same time, the psychological 

and machine learning literature on causal capacities has largely focused on the special case of 

binary causal factors and a binary effect. By generalizing beyond that special case, we thereby 

obtain a natural, privileged framework for representing causal capacities that independently 

influence some effect.13 Moreover, this generalized framework provides further conceptual 

clarification about causal capacities, as it reveals distinctions (e.g., between the lower bound and 

the baseline value) that have previously been relatively little-explored in the psychological and 

machine learning literatures. This mathematical framework also has significant practical and 

theoretical impacts, as it provides a natural way to unify disparate equations—in particular, the 

noisy-OR/AND and linear models—that have previously been viewed (in machine learning and 

cognitive science) as competitors, or at least independent of one another. The widespread use and 

value of such models is eminently explainable when we understand them as deriving from the 

                                                                                                                                                       
cover stories for those experiments almost never explicitly provide value ranges, and we do not 

know what participants infer about the possible variable values. Anecdotally, though, this type of 

switching would explain some otherwise puzzling empirical data. 

13 One open question is whether there are also privileged equations for P(E). As a promising first 

step, we can prove: if there is one generative cause and the initial P(E) is uniform over [–L, U], 

then the “update” equation  naturally satisfies 

all of the desiderata provided throughout the paper (including the desired expectation). It is 

unknown whether other results of this type can be obtained. 



same fundamental framework and equation. This privileged framework provides a precise, 

formal representation that can significantly constrain and inform our attempts to better 

understand causal capacities.  

 

  



References 

Cartwright, Nancy. 1989. Nature's Capacities and Their Measurement. Oxford: Oxford 

University Press. 

———. 1999. The Dappled World: a Study of the Boundaries of Science. Cambridge: 

Cambridge University Press. 

———. 2002. “Against Modularity, the Causal Markov Condition, and Any Link Between the 

Two: Comments on Hausman and Woodward.” The British Journal for the Philosophy of 

Science 53: 411–53. 

———. 2007. Hunting Causes and Using Them: Approaches in Philosophy and Economics. 

Cambridge: Cambridge University Press. 

Cheng, Patricia W. 1997. “From Covariation to Causation: a Causal Power Theory.” 

Psychological Review 104: 367–405. 

Cozman, Fabio G. 2004. “Axiomatizing Noisy-OR.” In Proceedings of the 16th European 

Conference on Artificial Intelligence. 

Danks, David. 2003. “Equilibria of the Rescorla-Wagner Model.” Journal of Mathematical 

Psychology 47: 109–21. 

———. 2007. “Causal Learning from Observations and Manipulations.” In Thinking with Data, 

edited by Marsha C. Lovett and Priti Shah, 359–388. Mahwah, NJ: Lawrence Erlbaum. 

———. 2014. Unifying the Mind: Cognitive Representations as Graphical Models. Cambridge, 

MA: The MIT Press. 

Danks, David, and Clark Glymour. 2001. “Linearity Properties of Bayes Nets with Binary 

Variables.” In Proceedings of the 17th Annual Conference on Uncertainty in Artificial 

Intelligence, edited by Jack Breese and Daphne Koller, 98–104. San Francisco: Morgan 



Kaufmann. 

DeLosh, Edward L., Jerome R. Busemeyer, and Mark A. McDaniel. 1997. “Extrapolation: the 

Sine Qua Non for Abstraction in Function Learning.” Journal of Experimental Psychology: 

Learning, Memory, & Cognition 23 (4): 968–86. 

Glymour, Clark. 1998. “Learning Causes: Psychological Explanations of Causal Explanation.” 

Minds and Machines 8: 39–60. 

Good, I. J. 1961. “A Causal Calculus (I).” British Journal for the Philosophy of Science 11 (44): 

305–18. 

Hausman, Daniel M., and James Woodward. 1999. “Independence, Invariance and the Causal 

Markov Condition.” The British Journal for the Philosophy of Science 50: 521–83. 

———. 2004. “Modularity and the Causal Markov Assumption: a Restatement.” The British 

Journal for the Philosophy of Science 55 (1): 147–61. 

Heckerman, David, and John S. Breese. 1994. “A New Look at Causal Independence.” In 

Proceedings of the 10th Annual Conference on Uncertainty in Artificial Intelligence, 286–

92. Morgan Kaufmann. 

———. 1996. “Causal Independence for Probability Assessment and Inference Using Bayesian 

Networks.” IEEE Transactions on Systems, Man, and Cybernetics: Part a Systems and 

Humans 26 (6): 826–31. 

Heil, John. 2005. From an Ontological Point of View. New York: Oxford University Press. 

Holyoak, Keith J., and Patricia W. Cheng. 2011. “Causal Learning and Inference as a Rational 

Process: the New Synthesis.” Annual Review of Psychology 62: 135–63. 

Hyttinen, Antti, Frederick Eberhardt, and Patrik O. Hoyer. 2011. “Noisy-or Models with Latent 

Confounding.” In Proceedings of the 27th Conference on Uncertainty in Artificial 



Intelligence. 

———. 2012. “Learning Linear Cyclic Causal Models with Latent Variables.” Journal of 

Machine Learning Research 13: 3387–3439. 

Kalish, Michael L., Thomas L. Griffiths, and Stephan Lewandowsky. 2007. “Iterated Learning: 

Intergenerational Knowledge Transmission Reveals Inductive Biases.” Psychonomic Bulletin 

& Review 14: 288–294. 

Kim, Jin H., and Judea Pearl. 1983. “A Computational Model for Causal and Diagnostic 

Reasoning in Inference Systems.” In Proceedings of the 8th International Joint Conference 

on Artificial Intelligence, 190–93. San Francisco: Morgan Kaufmann. 

Lucas, Peter J. F. 2005. “Bayesian Network Modeling Through Qualitative Patterns.” Artificial 

Intelligence 163: 233–63. 

Machamer, Peter, Lindley Darden, and Carl F. Craver. 2000. “Thinking About Mechanisms.” 

Philosophy of Science 67 (1): 1–25. 

Martin, C. B. 2008. The Mind in Nature. Oxford: Oxford University Press. 

McDaniel, Mark A., and Jerome R. Busemeyer. 2005. “The Conceptual Basis of Function 

Learning and Extrapolation: Comparison of Rule-Based and Associative-Based Models.” 

Psychonomic Bulletin & Review 12 (1): 24–42. 

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 

iInference. San Francisco: Morgan Kaufmann Publishers. 

Spirtes, Peter, Clark Glymour, and Richard Scheines. 2000. Causation, Prediction, and Search. 

2nd ed. Cambridge, MA: The MIT Press. 

Srinivas, Sampath. 1993. “A Generalization of the Noisy-OR Model.” In Proceedings of the 9th 

Annual Conference on Uncertainty in Artificial Intelligence, 208–15. 


