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A VALUATION THEORETIC CHARACTERIZATION

OF RECURSIVELY SATURATED REAL CLOSED

FIELDS

PAOLA D’AQUINO, SALMA KUHLMANN, AND KAREN LANGE

Abstract. We give a valuation theoretic characterization for a
real closed field to be recursively saturated. This builds on work in
in [KKMZ02], where the authors gave such a characterization for
κ-saturation, for a cardinal κ ≥ ℵ0. Our result extends the char-
acterization of Harnik and Ressayre [HR] for a divisible ordered
abelian group to be recursively saturated.

1. Introduction

Recursive saturation was introduced by Barwise and Schlipf in [BS76].

Definition 1.1. ([BS76]) A structure M for a computable language L
is recursively saturated if given a computable set of L-formulas τ(x, v̄)
and a tuple ā in M appropriate to substitute for v̄ such that every finite
subset of τ(x, ā) is satisfied in M, then the whole τ(x, ā) is satisfied in
M.

In [DKS10] a characterization of countable recursively saturated real
closed fields was obtained in terms of their integer parts. κ- saturation
(for an arbitrary infinite cardinal κ) has been investigated in terms
of valuation theory for divisible ordered abelian groups in [Ku90], real
closed fields in [KKMZ02], and more generally for o-minimal expansions
of real closed fields in [CDK]. In this paper we extend the above valu-
ation theoretical characterizations to recursively saturated real closed
fields, thereby extending results of [HR] for divisible ordered abelian
groups.

2. Preliminaries

2.1. Scott sets. A subset T ⊂ 2<ω is a tree if every substring of an
element of T is also an element of T . If σ, τ ∈ 2<ω, we let σ ≺ τ denote
that σ is a substring of τ . A sequence f ∈ 2ω is a path through a tree T
if for all σ ∈ 2<ω with σ ≺ f , the string σ is an element of T . For any
string σ ∈ 2<ω, the length of σ, denoted by length(σ), is the unique
n ∈ ω satisfying σ ∈ 2n.

Definition 2.1. A nonempty set S ⊂ R is a Scott set if
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(1) S is computably closed, i.e., if r1, . . . rn ∈ S and r ∈ R is
computable from (the Turing join of) r1, . . . rn, then r ∈ S.

(2) If an infinite tree T ⊂ 2<ω is computable in some r ∈ S, then
T has a path that is computable in some r′ ∈ S.

Fact 2.2. Any Scott set S is an archimedean real closed field.

2.2. Some valuation theoretic notions. We summarize the required
background (see [Ku00] and [Ku90]). Let (G,+, 0, <) be a divisible or-
dered abelian group. Given A ⊂ G, we let 〈A〉Q denote the smallest
divisible ordered subgroup of G containing A. For any x ∈ G let
|x| = max{x,−x}. For non-zero x, y ∈ G we define x ∼ y if there
exists n ∈ N such that n|x| ≥ |y| and n|y| ≥ |x|. We write x << y
if n|x| < |y| for all n ∈ N. Clearly, ∼ is an equivalence relation, and
we let [x] denote the equivalence class of any non-zero x ∈ G. Let
Γ := G− {0}/ ∼= {[x] : x ∈ G− {0}}. We can define an order on <Γ

in terms of << as follows, [y] <Γ [x] if x << y (notice the reversed
order). Given a linear ordering (A,<) and A1, A2 ⊂ A, we use the
notation A1 < A2 to indicate that a1 < a2 for all a1 ∈ A1 and a2 ∈ A2.

Fact 2.3. (a) Γ is a totally ordered set under <Γ, and we will refer to
it as the value set of G.
(b) The map

v : G −→ Γ ∪ {∞}

0 7→ ∞

x 7→ [x] (if x 6= 0)

is a valuation on G as a Z-module, i.e. for every x, y ∈ G:
v(x) = ∞ if and only if x = 0, v(nx) = v(x) for all n ∈ Z, n 6= 0, and
v(x+ y) ≥ min{v(x), v(y)}.

(c) For every γ ∈ Γ the Archimedean component associated to γ is
the maximal Archimedean subgroup of G containing some x ∈ γ. We
denote it by Aγ. For each γ, Aγ is isomorphic to an ordered subgroup of
(R,+, 0, <). Furthermore, we can calculate the isomorphism type of Aγ

in terms of any x ∈ γ. Given x, y ∈ γ, we let y

x
= sup{r ∈ Q | rx < y},

and let Aγ,x = { y

x
| y ∈ γ} ∪ {0}. Then, Aγ

∼= Aγ,x.

(d) Since G is a divisible abelian group, we may view G as a vector
space over Q. We focus on the case where G is finite dimensional as a
vector space, as we will use the next notion of valuation independence
exclusively in that context. A set {g1, . . . , gn} ⊂ G is called valuation
independent if for all q1, . . . qn ∈ Q,

v(q1g1 + . . .+ qngn) = min{v(gi) | qi 6= 0}

A basis {g1, . . . , gn} for G is called a valuation basis if it is a valuation
independent set. A theorem by Brown [Br] states that every vector
space of countable dimension with a valuation admits a valuation basis.
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Definition 2.4. Let λ be an infinite ordinal. A sequence (aρ)ρ<λ con-
tained in G is said to be pseudo Cauchy (or pseudo convergent) if for
every ρ < σ < τ < λ we have

v(aσ − aρ) < v(aτ − aσ).

Fact 2.5. If (aρ)ρ<λ is pseudo Cauchy sequence then for all ρ < σ < λ
we have

v(aσ − aρ) = v(aρ+1 − aρ).

Definition 2.6. Let (aρ)ρ<λ be a pseudo Cauchy sequence in G. We
say that x ∈ G is a pseudo limit of S if

v(x− aρ) = v(aσ − aρ) = v(aρ+1 − aρ) for all ρ < σ < λ.

If (R,+, ·, 0, 1, <) is an ordered field then it has a natural valuation
v, that is the natural valuation associated with the ordered abelian
group (R,+, 0, < ). We will denote by G the value group of R with
respect to v, i.e., G = v(R). If (R,+, ·, 0, 1, <) is a real closed field
then G is divisible, and we will refer to the linear dimension of G as
a Q-vector space as the rational rank of G, denoted rk(G). For the
natural valuation on R, we use the notations OR = {r ∈ R : v(r) ≥ 0}
and µR = {r ∈ R : v(r) > 0} for the valuation ring and the valuation
ideal, respectively. The residue field k is the quotient OR/µR, and we
recall that it is isomorphic to a unique subfield of R. When convenient,
we identify k with this unique subfield of R. Given any a ∈ R with
v(a) ≥ 0, we denote the residue of a by a ∈ k, i.e., a is the unique
element in k such that v(a− a) > 0. Notice that in the case of ordered
fields there is a unique archimedean component up to isomorphism, and
if the field is real closed, the archimedean component is the residue field.

If R is a real closed field, given X ⊂ R, we let RC(Q(X)) denote
the real closure of Q(X) in R. A notion of pseudo Cauchy sequence is
easily extended to any ordered field as in the case of ordered abelian
groups.

3. Background on κ-saturated structures

We now recall the characterization of ℵα-saturation for divisible or-
dered abelian groups given in [Ku90]. We need the notion of ηα-sets
(see [R]). An ηα-set is a linear ordering (A,<) such that, whenever
A1, A2 ⊂ A have cardinality less than ℵα and A1 < A2, then there is
an a ∈ A such that A1 < a < A2. Observe that an η0-set is simply a
dense linear ordering without endpoints.

Theorem 3.1. [Ku90] Let G be a divisible ordered abelian group, and
let ℵα ≥ ℵ0. Then G is ℵα-saturated in the language of ordered groups
if and only

(i) the value set of G is an ηα-set,
(ii) all the archimedean components of G are isomorphic to R, and
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(iii) every pseudo Cauchy sequence in a divisible subgroup of G with a
value set of cardinality less than ℵα has a pseudo limit in G.

Notice that in the case of ℵ0-saturation the necessary and sufficient
conditions reduce only to (1) and (2).

The following characterization of ℵα-saturated real closed fields was
obtained in [KKMZ02].

Theorem 3.2. [KKMZ02, Theorem 6.2] Let R be a real closed field,
v its natural valuation, G its value group and k its residue field. Let
ℵα ≥ ℵ0. Then R is ℵα-saturated in the language of ordered fields if
and only if

(i) G is ℵα-saturated,
(ii) k ∼= R,
(iii) every pseudo Cauchy sequence in a subfield of R of absolute tran-

scendence degree less than ℵα has a pseudo limit in R.

In the proof of Theorem 3.2 the dimension inequality (see [EP]) is
crucially used in the case of ℵ0-saturation. This says that the rational
rank of the value group of a finite transcendental extension of a real
closed field is bounded by the transcendence degree of the extension.

4. Recursively saturated divisible ordered abelian

groups

Harnik and Ressayre state the following result in [HR] and sketch a
proof just for the necessity of condition (ii). We include here a complete
proof.

Theorem 4.1. Let G be a divisible ordered abelian group. Then G is
recursively saturated in the language of ordered groups if and only if

(i) the value set of G is an η0-set, and
(ii) all archimedean components of G equal a common Scott set S.

Proof. Suppose G is recursively saturated. We show that (i) and (ii)
hold.
(i) Let g, g′ ∈ G such that g, g′ > 0 and v(g) < v(g′). The partial type

β(x, g, g′) = {ng′ < x | n ∈ N} ∪ {x < ng | n ∈ N}

is computable and finitely satisfiable (since v(g) < v(g′)). By recursive
saturation, there is some h ∈ G such that β(h, g, g′) holds in G, and
v(g) < v(h) < v(g′).
(ii) We first show that A[g],g = A[g′],g′ for all nonzero g, g′ ∈ G. Let
r ∈ A[g],g. Let δ(x, y, g, g′) be the partial type consisting of all formulas
with q, q′ ∈ Q and q < q′ of the form

qg < y < q′g → qg′ < x < q′g′.

Since r ∈ A[g],g, there exists some h ∈ G so that h
g
= r. The set of

formulas δ(x, h, g, g′) is computable and finitely satisfiable in G since
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G is divisible, so there is some h′ ∈ G so that δ(h′, h, g, g′) holds in
G. Then h′

g′
= r, so r ∈ A[g′],g′. We have that A[g],g = A[g′],g′ by a

symmetric argument. Hence, it is well defined to refer to A[g],g simply
as A[g].

Let g ∈ G. We show that A[g] is a Scott set. Suppose r1, . . . , rn ∈ A[g]

and r ∈ R is computable in r1, . . . , rn via some Turing reduction Ψ.
Take gi ∈ G such that ri =

gi
g

for 1 ≤ i ≤ n. For each n-tuple of pairs

of rationals (qi < q′i)
n
i=1, each stage s ∈ N, and another pair of rationals

p̂ < p̂′, compute whether Ψ, using only the knowledge that arbitrary
input reals r̃1, . . . , r̃n satisfy qi < r̃i < q′i for 1 ≤ i ≤ n, halts in s
steps and outputs a real between p and p′. If Ψ halts in this situation,
enumerate the formula

(q1g < g1 < q′1g ∧ . . . ∧ qng < gn < q′n) → pg < x < p′g

into the partial type ζ(x, g1, . . . , gn). The partial type ζ(x, g1, . . . , gn)
is computably enumerable and finitely satisfiable since G is divisible.
By recursive saturation, there is some h ∈ G such that ζ(h, g1, . . . , gn)
holds in G. Since Ψ in fact computes r from r1, . . . , rn, we have that
r = h

g
∈ A[g], as desired.

Let T ⊂ 2<ω be an infinite tree computable in some r ∈ A[g]. We
show that T has a path computable in some r′ ∈ A[g]. Fix a computable
function

f : 2<ω −→ {(a, b) ∈ Q2 | a < b}(1)

σ −→ Iσ = (aσ, bσ)(2)

satisfying the following properties for σ, τ ∈ 2<ω:

(a) bσ − aσ = 2−length(σ),
(b) Iσ ∩ Iτ = ∅ if σ 6≺ τ and σ 6≻ τ , and
(c) Iσ ⊂ Iτ if σ ≻ τ .

Let T ⊂ 2<ω be a tree that is computable from some r ∈ A[g] via a
Turing reduction Λ. Let T (k) be the set of nodes in T of length k ∈ ω,
and let IT (k) = ∪σ∈T (k) Iσ. Fix some nonzero g ∈ G. Since r ∈ A[g],

there is some h ∈ G such that r = h
g
.

For each pair of rationals q < q′ and s, k ∈ N, compute whether
Turing reduction Λ, using only the information that an arbitrary input
real r̃ satisfies q < r̃ < q′, halts in s steps and outputs a (finite) set of
nodes A ⊂ 2k. If Λ halts in this situation, enumerate the formula

qg < h < q′g →
x

g
∈ ∪σ∈A Iσ

into the partial type κ(x, h, g). Note that x
g
∈ ∪σ∈A Iσ can be expressed

as a quantifier free formula in the language of divisible ordered groups.
The partial type κ(x, h, g) is computably enumerable and finitely satis-
fiable since G is divisible. By recursive saturation, there is some h′ ∈ G
such that κ(h′, h, g) holds in G. Since Λ computes T from r, for each
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k ∈ N, there is some stage s ∈ N such that Λ computes T (k) from r.
Hence, for each k ∈ N, there is some q, q′ ∈ Q with r ∈ (q, q′) such that
the formula

qg < h < q′g →
x

g
∈ ∪σ∈T (k) Iσ

is in κ(x, h, g). Since r = h
g
, the real r′ = h′

g
∈ A[g] is in ∪σ∈T (k) Iσ for

all k ∈ N. Then, the set P = {σ ∈ T | r′ ∈ Iσ} is a path through
T . Moreover, P is computable from r′ since the assignment function f
of nodes to intervals is a computable function and if r′ ∈ Iτ for some
τ ∈ T , then r′ is in Iτ0 or Iτ1 and it is computable to determine which
one. We have finished showing that A[g] is a Scott set, and the necessity
portion of the theorem.

Now, let G be a divisible ordered abelian group. We show that if G
satisfies (i) and (ii), then G is recursively saturated. Let S ⊂ R be the
Scott set such that S = A[g],g for all g ∈ G by (ii). The proof follows
the structure of the proof of Theorem 3.1 for the case of ℵ0-saturation.
The proof differs, however, in that its most interesting aspect is finding
(using S) a complete extension of the given computable partial type
that is finitely satisfiable with the given parameters.

Let ḡ = (g1, . . . , gn) be an n-tuple from G. Let τ ′(x, ȳ) be a com-
putable partial type so that τ ′(x, ḡ) is finitely satisfiable in G. We first
extend τ ′(x, ȳ) to a complete type τ(x, ȳ) so that τ(x, ḡ) is also finitely
satisfiable in G. We define an intermediate extension τ ′′(x, ȳ) of τ ′(x, ȳ)
first.

Set G′ = 〈ḡ〉Q. We may assume that ḡ = (g1, . . . , gn) is a valuation
basis for G′. Otherwise, we could replace the parameters ḡ by a valu-
ation basis ḡ′ by substituting every occurrence of gi in τ ′(x, ḡ) with its
definition over ḡ′ in an effective way. Similarly, we may assume that
0 < g1 < g2 < . . . < gn.

Let h1, . . . , hl ∈ {g1, . . . , gn} satisfy

(a) 0 < h1 << h2 << . . . << hl, and
(b) for each gi with 1 ≤ i ≤ n, there is exactly one ji with 1 ≤ ji ≤ l

such that gi ∈ [hji].

Let rji =
gi
hji

. By assumption (ii), rji ∈ A[hji
] = S. Since S is a Scott

set, there is some r′ ∈ S (e.g., r′ = rj1 ⊕ . . .⊕ rjn, the join of the rji)
that computes each of the rji.

Let τ ′′(x, ḡ) be a partial type that contains all formulas in τ ′(x, ḡ) as
well as the formulas described below (written in terms of the appropri-
ate parameters in ḡ).

(a′) For all i satisfying 1 ≤ i < l and n ∈ ω, include the formula
0 < hi ∧ nhi < hi+1.

(b′) For all q ∈ Q and all i satisfying 1 ≤ i ≤ n, if q < rji, include
the formula qhji < gi in τ ′′(x, ḡ). Similarly, if q > rji, include
the formula gi < qhji in τ ′′(x, ḡ).
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Claim 4.2. A formula holds of ḡ in G if and only if this formula is in
any extension of τ ′′(x, ḡ). Moreover, τ ′′(x, ḡ) is computable from r′.

Proof. Since divisible ordered abelian groups admit quantifier elimi-
nation and τ ′(x, ḡ) is computable, it suffices to show we can deduce
the order of any two terms in ḡ from formulas in τ ′′(x, ḡ) computably
from r′. Note that the formulas added to τ ′(x, ḡ) by condition (a′) are
computable from r′ since knowing the order of elements h1, . . . , hl is
only finite information. Consider a linear combination s1g1 + . . .+ sngn
where s1, . . . , sn ∈ Z. Ordering any two non-equal terms in ḡ is the
same as determining whether such a non-trivial linear combination is
positive or negative. Suppose ik is the largest index in the linear combi-
nation for which sik 6= 0. Let h = hjik . To determine whether a nonzero
term is positive or negative, we simply need to determine whether the
sum of all monomials in this term with non-zero si and valuation h is
positive or negative. Suppose si1gi1 + . . . + sikgik is this sum. Since
ḡ is a valuation basis, this new linear combination is nonzero and is
positive if and only if si1rji1 + . . . + sikrjik > 0 (See [H], Propositions

12 and 13). Hence, we can compute from r′ the ordering between any
two terms in ḡ. �

Since τ ′(x, ḡ) is finitely satisfiable in G, the claim guarantees that
τ ′′(x, ḡ) is finitely satisfiable in G as well as computable in r′. Hence,
there is an r′-computable infinite tree T such that any path through T
encodes a complete consistent type τ(x, ḡ) extending τ ′′(x, ḡ). Since S
is a Scott set and T is computable in r′ ∈ S, there is some r ∈ S such
that r computes a complete extension τ(x, ḡ) of τ ′′(x, ḡ).

Recall that G′ = 〈ḡ〉Q, and let Γ′ be the value set for G′. We let

B = {b ∈ G′ | τ(x, ḡ) ⊢ b ≤ x}

C = {c ∈ G′ | τ(x, ḡ) ⊢ x ≤ c}

By quantifier elimination for divisible ordered abelian groups, to realize
the type τ(x, ḡ), it suffices to realize the partial type (also computable
in r ∈ S)

(3) {b ≤ x | b ∈ B} ∪ {x ≤ c | c ∈ C}.

If τ(x, ḡ) ⊢ x = b for any b ∈ B, then the type in (3) is realized by
b ∈ B ⊂ G, and similarly for x = c with c ∈ C, so suppose there are no
such equalities. Let G′′ ≻ G be such that there is some x0 ∈ G′′ such
that G′′ |= τ(x0, ḡ). Consider the set ∆ = {v(d − x0) | d ∈ G′}. We
examine three cases regarding the structure of ∆.
Case 1 (Immediate Transcendental) - ∆ has no largest element.

We observe that this case does not occur in our context as 〈ḡ, x0〉Q ⊇ G′

has finite rank. Thus, ∆ is finite and has a maximum element.
For the remaining two cases, we fix d0 ∈ G′ such that v(d0 − x0) is

the maximum of ∆. We suppose that d0 ∈ B. The argument in the
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case that d0 ∈ C is symmetric. Consider the partial type (which is also
computable in r ∈ S)

(4) {b− d0 < x′ | b ∈ B} ∪ {x′ < c− d0 | c ∈ C}.

It is clear that if x′ satisfies this cut, then x′+d0 satisfies (3). We show
that this cut is realized in G in the remaining two cases.
Case 2 (Residue Transcendental) - ∆ has a largest element, which is
in Γ′

We can show as in the proof of Theorem 3.1 in [Ku90] the following
claim.

Claim 4.3. There exist b0 ∈ B and c0 ∈ C such that for all b ∈ B and
c ∈ C with b0 ≤ b and c ≤ c0,

v(b− d0) = v(x0 − d0) = v(c− d0) and, hence,

v(b− x0) = v(x0 − d0) = v(c− x0).

By the claim, we have that for all b ∈ B and c ∈ C with b ≥ b0 and
c ≤ c0,

b− d0
b0 − d0

<
x0 − d0
b0 − d0

<
c− d0
b0 − d0

.

Hence, the following partial type (also computable in r ∈ S)

(5) {
b− d0
b0 − d0

< x′ | b ∈ B & b ≥ b0}∪{x′ <
c− d0
b0 − d0

| c ∈ C & c ≤ c0}

is a cut of R filled by some r̂ ∈ R. Since r ∈ S computes the cut for r̂,
we have that r̂ ∈ S. Thus, by assumption (ii), there is some ĝ ∈ G such
that ĝ

b0−d0
= r̂ (since r̂ ∈ S = A[b0−d0]). Since r̂ fills the cut described

in (5), by definition of A[b0−d0], the element ĝ fills the cut described in
(4), as desired.
Case 3 (Group Transcendental) - ∆ has a largest element, which is not
in Γ′

Consider the sets

∆1 = {v(c− d0) | c ∈ C} and ∆2 = {v(b− d0) | b ∈ B & b > d0}.

As in the proof of Theorem 3.1 in [Ku90], we can show the following.

Claim 4.4. ∆1 < v(d0 − x0) < ∆2.

Since G′ has finite rank, ∆1 and ∆2 are finite and form a cut in the
value set Γ. By (i), Γ is a dense linear ordering without endpoints, so
there is some y ∈ G with y > 0 that fills this cut in Γ. Then, for all
c ∈ C and b ∈ B with b > d0 we have v(b − d0) > v(y) > v(c − d0)
so b − d0 < y < c − d0. Hence y fills the cut given in (4), finishing
the case where ∆ has a largest element, which is not an element of Γ′.
This completes the proof that the properties stated are sufficient to
guarantee that G is recursively saturated.

�
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5. Recursively saturated real closed fields

Definition 5.1. Let r ∈ R. Let R be a real closed field. Let d̄ be
a tuple of parameters in R. We say a length ω sequence of elements
(ai)i<ω ⊂ RC(Q(d̄)) is computable in r if there is an r-computable se-
quence of formulas (θi(x, d̄))i<ω such that θi(x, d̄) defines ai in R for all
i < ω.

Theorem 5.2. Let R be a real closed field, v its natural valuation, G
its value group and k its residue field. Then, R is recursively saturated
in the language of ordered fields if and only if there is a Scott set S
such that

(i) G is recursively saturated with archimedean components all equal
to S,

(ii) (k,+, ·, 0, 1, <) ∼= (S,+, ·, 0, 1, <),
(iii) every pseudo Cauchy sequence of length ω in a subfield of R of

finite absolute transcendence degree over Q that is computable in
an element of S has a pseudo limit in R.

(iv) every type realized by some n-tuple ā in R is computable in an
element of S.

Proof. We first suppose that R is recursively saturated. We show that
there is a Scott set S such that conditions (i), (ii), (iii), and (iv) hold
with this S.
(ii) Since R is recursively saturated as an ordered field, (R,+, 0, <) is
recursively saturated as a divisible ordered abelian group. By Theorem
4.1, there is some Scott set S such that the archimedean components
A[r],r of (R,+, 0, <) equal S for all nonzero r ∈ R. In particular, we
have that A[1],1 = S. Hence, (k,+, 0, <) ∼= (S,+, 0, <). Since R is a
real closed field, k is a real closed field as well. Hence, there is a subset
K ⊂ R that is a real closed field isomorphic to k and an isomorphism φ
from (S,+, 0, <) to (K,+, 0, <). By Hölder’s Theorem, φ(x) = rx for
some r ∈ R. We show that there is a field isomorphism from S to K.
Since S is a Scott set, S is a real closed subfield of R. Since 1 ∈ S ∩K,
we have r ∈ K and 1

r
∈ S. Since S and K are in fact sets of reals

that form fields, r, 1
r
∈ S ∩K. Hence, S = K (given s ∈ S, s

r
∈ S so

φ( s
r
) = s ∈ K, and the other containment is similar). So, the identity

function from S to K is a field isomorphism, giving the desired result.
(iv) Let γ(x̄) be a type realized by the tuple ā in R. Let r ∈ R have the
same Turing degree as γ, and let Ψ be the Turing reduction computing
r from γ. It suffices to show r ∈ S. Let (θi(x̄))i∈ω be a fixed effective
enumeration of all formulas in the language of ordered fields. Given
σ ∈ 2<ω, let θσ(x̄) denote the conjunction of the formulas θi(x̄) such
that σ(i) = 1 and the formulas ¬θi(x̄) such that σ(i) = 0.

We enumerate the formula

θσ(ā) → q < x < q′
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into the partial type γ̃(ā, x) if Ψ computes that its output real must
be between q and q′ for q < q′ ∈ Q from σ. The partial type γ̃(ā, x) is
computably enumerable and finitely satisfiable. Since R is recursively
saturated, there is some r̃ so that γ̃(ā, r̃) holds in R. Since γ(ā) holds
in R and Ψ computes r from γ, we have r = r̃ ∈ A[1],1 = S.
(i) We first show that all the archimedean components of G equal S.
Let r ∈ S. Since S = A[1],1 where A[1],1 is an archimedean component
of (R,+, 0, <), there is some a ∈ R such that r = a

1
∈ A[1],1. Let g be

a nonzero element of G so v(ag) = g for some ag > 0 in R. We show
r ∈ A[g],g. Note that A[g],g is an archimedean component of (G,+, 0, <).
The group (G,+, 0, <) is isomorphic to a section of the multiplicative
group (R>0, ·, 1, <) as opposed to the additive group (R,+, 0, <). If
r ∈ Q, then r ∈ A[g],g since G is divisible, so we may suppose r 6∈ Q.

Let δ(x, a, ag) be the partial type in the language of real closed fields
consisting of all formulas with q, q′ ∈ Q>0 and q < q′ of the form

q < a < q′ → aqg < x < aq
′

g

The set of formulas δ(x, a, ag) is computable and finitely satisfiable
in R since R is real closed. Since R is recursively saturated, there is
some a′ ∈ R so that δ(a′, a, ag) holds in R. Let g′ = v(a′) ∈ G. Then,
g′

g
= r, so r ∈ A[g′],g′.

Now, let r ∈ A[g],g, so there is some g′ ∈ G such that r = g′

g
. Let

ag′ , ag ∈ R be positive elements such that v(ag′) = g′ and v(ag) = g. If
r ∈ Q, then it is clear r ∈ S as all rationals are computable. Otherwise,
let δ′(x, ag′ , ag) be the partial type in the language of real closed fields
consisting of all formulas with q, q′ ∈ Q>0 and q < q′ of the form

aqg < ag′ < aq
′

g → q < x < q′

As before, the set of formulas δ′(x, ag′ , ag) is computable and finitely
satisfiable in R, so there is some a ∈ R so that δ′(a, ag′, ag) holds in R.
Then, r = a

1
∈ k = S. Hence, we have A[g],g = S = k for all g ∈ G, so

we can simply refer to A[g] instead of A[g],g.
We now show that G is recursively saturated. Let ḡ = (g1, . . . , gn)

be an n-tuple from G. Let β ′(x, ḡ) be a computable partial type in the
language of ordered abelian groups so that β ′(x, ḡ) is finitely satisfiable
in G. By the argument found at the beginning of the sufficiency proof
for Theorem 4.1, we can find an r ∈ S such that r computes a complete
extension β(x, ḡ) of β ′(x, ḡ) that is finitely satisfiable in G. Since r ∈
S = k, there exists some a ∈ R such that a

1
= r.

Set G′ = 〈ḡ〉Q. If β ⊢ x = g for any g ∈ G′, then we are done.
Otherwise, let

B = {b ∈ G′ | τ(x, ḡ) ⊢ b < x}

C = {c ∈ G′ | τ(x, ḡ) ⊢ x < c}
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As in Theorem 4.1, it suffices to realize the partial type (also com-
putable in r ∈ S) in G

(6) {b < x | b ∈ B} ∪ {x < c | c ∈ C}

that describes a cut in G. We translate realizing this cut in G into
realizing a particular partial type (in the language of ordered fields) in
R.

Let R′ = RC(Q(ḡ)). Take d1, . . . , dn ∈ R′ so that d1, . . . , dn > 0,
{v(di) | 1 ≤ i ≤ n} is a basis for G′, and the multiplicative subgroup

{
n
∏

i=1

dqii ∈ R′ | qi ∈ Q for 1 ≤ i ≤ n}

is a section for G′ in R′. We show that there is a computably enu-
merable partial type in the language of ordered fields β̃(x, d1, . . . , dn, a)
(with parameters in R) that corresponds to the cut described by β(x, ḡ)
over G′. Note that

B =
{

n
∑

i=1

qiv(di) ∈ G′ |
n

∑

i=1

qiv(di) < b & b ∈ B & q1, . . . , qn ∈ Q
}

and

C =
{

n
∑

i=1

qiv(di) ∈ G′ | c <
n

∑

i=1

qiv(di) & c ∈ C & q1, . . . , qn ∈ Q
}

.

Given some (q1, . . . , qn) ∈ Qn, the statement that determines whether
∑n

i=1 qiv(di) is in B or C can be computably located in an effective list-
ing of all formulas. Since r ∈ S computes the complete type β(x, ḡ),
there is some Turing reduction Υ that computes from r whether a given
(q1, . . . , qn) ∈ Qn satisfies

∑n

i=1 qiv(di) ∈ B or
∑n

i=1 qiv(di) ∈ C.

We now describe β̃(x, d1, . . . , dn, a). For each pair of rationals (q < q′),
each stage s ∈ N, and (q1, . . . , qn) ∈ Qn, compute whether Turing
reduction Υ, using only the information that some real r̃ satisfies
q < r̃ < q′, halts in s steps and outputs whether

∑n
i=1 qiv(di) is in

B or C. If Υ halts in this situation, enumerate the formula

q < a < q′ →
n
∏

i=1

dqii < x if Υ computes that

n
∑

i=1

qiv(di) ∈ C or

q < a < q′ → x <

n
∏

i=1

dqii if Υ computes that

n
∑

i=1

qiv(di) ∈ B

into β̃(x, d1, . . . , dn, a).

The partial type β̃(x, d1, . . . , dn, a) is finitely satisfiable in R because

R is a dense linear ordering without endpoints. Since β̃(x, d1, . . . , dn, a)
is a computably enumerable and R is recursively saturated, there exists
some d ∈ R so that β̃(d, d1, . . . , dn, a) holds in R. By our choice of a

and definition of β̃, we have that B < v(d) < C. So, β(v(d), ḡ) holds
in G, as desired.
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(iii) Let (ai)i<ω ⊂ R′ be a pseudo Cauchy sequence in a subfield R′ of
R of finite absolute transcendence degree over Q. Moreover, suppose
that (ai)i<ω is computable in r ∈ S = k. By definition, there is an
r-computable sequence of formulas (θi(x, ȳ))i<ω and tuple d̄ from R′

such that θi(x, d̄) defines ai in R, where R′ = RC(Q(d̄)). Let Φ denote
the Turing reduction from r to this sequence. Since r ∈ S = k, there
exists some a ∈ R such that a

1
= r.

For each pair of rationals q < q′ and any i, s ∈ N, compute whether
Turing reduction Φ, using only the information that some real r̃ satisfies
q < r̃ < q′, halts in s steps and outputs indices for formulas θi(x, ȳ)
and θi+1(x, ȳ)). If Φ halts in this situation, enumerate the following
formula into the partial type κ(x, d̄, a)

q < a < q′ → [(∃zi, zi+1)(θi(zi, d̄)∧ θi+1(zi+1, d̄)) ∧ n|x−zi+1| < |zi−zi+1|]

for each n ∈ ω. Note that κ(x, d̄, a) is computably enumerable and
finitely satisfiable in R. Given a finite set of formulas D ⊂ κ(x, d̄, a), let
j < ω be the largest number such that θj(x, d̄) appears as a subformula
of an element in D. Then, aj+1 ∈ R satisfies all formulas in D since
(ai)i<ω is pseudo Cauchy. Since R is recursively saturated, there is some
ã ∈ R such that κ(ã, d̄, a) holds in R. This implies that v(ã− ai+1) >
v(ai+1−ai) for all i < ω. From v(ã− ai) ≥ min{v(ã− ai+1), v(ai+1 − ai)}
it follows that v(ã− ai) = v(ai+1 − ai) for all i < ω. Hence, ã is a
pseudo limit of (ai)i<ω, as required, and the four conditions (i), (ii),
(iii), and (iv) are necessary if R is recursively saturated.

Let R be a real closed field. We assume that there is a Scott set S
for which conditions (i), (ii), (iii), and (iv) hold for R and S. We show
that R is recursively saturated.

Let ā = (a1, . . . , an) be a finite tuple from R, and let τ ′(x, ā) be
a computable set of formulas that is finitely satisfiable in R. We
first extend τ ′(x, ȳ) to a complete type τ(x, ȳ) so that τ(x, ā) is also
finitely satisfiable in G. We first make an intermediate extension
τ ′′(x, ȳ) of τ ′(x, ȳ). Let γ(ȳ) be the complete type of ā in R. We
then let τ ′′(x, ȳ) = τ ′(x, ȳ) ∪ γ(ȳ). By condition (iv), the type γ(ȳ) is
computable in some r′ ∈ S, so τ ′′(x, ȳ) is as well. Moreover, τ ′′(x, ā)
is finitely satisfiable in R. Hence, there is an r′-computable infinite
tree T such that any path through T encodes a complete consistent
type extending τ ′′(x, ā). Since S is a Scott set and T is computable in
r′ ∈ S, there is some r ∈ S such that r computes a complete extension
τ(x, ā) of τ ′′(x, ā).

Set R′ = RC(Q(ā)). We set

B = {b ∈ R′ | τ(x, ā) ⊢ b ≤ x} and

C = {c ∈ R′ | τ(x, ā) ⊢ x ≤ c}.

Real closed fields, like divisible ordered ablian groups, have quantifier
elimination. Hence, to realize the type τ(x, ā), it suffices to realize the
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partial type (also computable in r ∈ S)

(7) {b ≤ x | b ∈ B} ∪ {x ≤ c | c ∈ C}.

If τ(x, ā) ⊢ x = b for any b ∈ B, then the type in (7) is realized by
b ∈ B ⊂ R, and similarly for x = c with c ∈ C, so suppose there are
no such equalities. Let R′′ ≻ R be such that there is some x0 ∈ R′′

satisfying R′′ |= τ(x0, ā). Consider the set ∆ = {v(d − x0) | d ∈ R′}.
We examine three cases for the structure of ∆, as we did in Theorem
4.1 in the group case.
Case 1 (Immediate Transcendental) - ∆ has no largest element. In this
case, for all d ∈ R′ there is a d′ ∈ R′ such that v(d− x0) < v(d′ − x0).
We construct a pseudo Cauchy sequence (ai)i<ω that is computable in
some element of S and has a pseudo limit a ∈ R satisfying B < a <
C. By effective quantifier elimination for real closed fields, there is a
computable enumeration of formulas {ψi(x, ā)}i<ω such that

(a) every element in R′ is defined by exactly one formula in this se-
quence and

(b) if ai and aj are defined by ψi(x, ā) and ψj(x, ā) respectively, then
determining whether ai < aj and whether ai ∈ B or ai ∈ C in R′

is r-computable.

Let ai denote the element in R′ that satisfies the definition ψi(ai, ā).
We define a tree T ⊂ 2<ω computable in r. For any σ ∈ 2<ω, we put
σ ∈ T if the following two properties hold.

(I) For all i < length(σ), set a′ equal to 0 if for all j ≤ i, σ(j) = 0,
and otherwise, set a′ equal to aj′ where j′ = max{j ≤ i | σ(j) = 1}.
Then,

(∀j ≤ i)(aj ∈ B =⇒ aj ≤ a′) & (aj ∈ C =⇒ a′ ≤ aj))

(II) (∀ i < j < k < n = length(σ))
(σ(i) = σ(j) = σ(k) = 1 =⇒ n|ak − aj | < |aj − ai|)

It is clear T is a tree by definition. We now show T is infinite. Since ∆
has no largest element, there exists a cofinal sequence in ∆. Moreover,
since R′ is countable and B < x0 < C in R′′, we can take this cofinal
sequence to have the form (v(ail − x0))l<ω and to satisfy the following
two properties.

(a) The sequences (il)l<ω and (v(ail − x0))l<ω are increasing.
(b) For each n < ω, if we set a′ equal to 0 if no j ≤ n equals some il

and we set a′ equal to ail′ where index il′ = max{il ≤ n} otherwise,
then
(∀ j ≤ n)(aj ∈ B =⇒ aj ≤ a′) & (aj ∈ C =⇒ a′ ≤ aj))

Let P ′ ∈ 2ω be defined so that P ′(j) = 1 if and only if j = il for
some l ∈ ω. We show that P ′ is a path through T , so T is infinite.
Let σn = P ′ ↾ n. It is clear that σn satisfies (I) by definition. We show
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that σn satisfies (II). Suppose i < j < k < n with

σn(i) = σn(j) = σn(k) = 1,

i.e., i = il, j = il′ and k = il′′ with l < l′ < l′′. It suffices to show that
v(aj − ai) < v(ak − aj). We have that

v(ail − x0) < v(ail′ − x0) < v(ail′′ − x0)

and

v(aj − ai) = min(v(ail′ − x0), v(ail − x0)) = v(ail − x0)

v(ak − aj) = min(v(ail′′ − x0), v(ail′ − x0)) = v(ail′ − x0) so

v(aj − ai) < v(ak − aj) as desired.

Hence, T is an infinite tree computable in r. Since S is a Scott set,
there exists a path P through T computable in some t ∈ S. Since B
and C form a proper cut in R′, there are infinitely many j < ω such
that P(j) = 1 by property (I) of T . We then can compute in t, for each
l < ω, the index kl such that P(kl) = 1 and |{j ≤ kl | P(j) = 1}| = kl.
By property (II) of the definition of T , the sequence (akl)l<ω is pseudo
Cauchy. Since (ψkl(x, ȳ))l<ω is computable in t, the sequence (akl)l<ω

(defined by this sequence of formulas over ā) has a pseudo limit a ∈ R
by assumption (iii).

We show that B < a < C holds in R, and so a realizes the type in
(7). Let b ∈ B ⊂ R′. We claim that b < a. Otherwise, a ≤ b < x0. By
definition of T , there exists some l < ω such that a ≤ b ≤ akl < akl+1

.
Then, v(a− akl+1

) ≤ v(a− akl). Since a is a pseudo limit for (akl)l<ω,

v(a− akl+1
) = v(akl+2

− akl+1
) > v(akl+1

− akl) = v(a− akl),

a contradiction, so we have shown b < a. The argument that a < c for
any c ∈ C is similar.
Case 2 (Residue Transcendental) - ∆ has a largest element g ∈ v(R′)

Assume that ∆ has a largest element g ∈ v(R′). Let a > 0 be such
that a, d0 ∈ R′ and v(d0 − x0) = g = v(a).

Claim 5.3. There exists b0 ∈ B and c0 ∈ C such that for all b ∈ B
with b ≥ b0 and for all c ∈ C with c ≤ c0, we have

v(b− d0) = g = v(a) = v(c− d0) and, hence,

v(b− x0) = g = v(a) = v(x0 − d0) = v(c− x0).

Like the corresponding Claim 4.3, its proof is a straightforward adap-
tation of the proof of the analogous statement in Theorem 3.1 in [Ku90].

Consider the partial type (also computable in r):

(8)
{b− d0

a
< x | b ∈ B & b ≥ b0

}

∪
{

x <
c− d0
a

| c ∈ C & c ≤ c0

}

If some x′ realizes the type in (8) then x = a ·x′+d0 realizes the type
in (7). So, it suffices to find such an x′ ∈ R. Again, suppose d0 ∈ B,
as the case where d0 ∈ C is symmetric.
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By the claim, for all b ∈ B and c ∈ C with b0 ≤ b < c ≤ c0

v
(b− d0

a

)

= v
(x0 − d0

a

)

= v
(c− d0

a

)

= 0

Furthermore, if we take the residues of these elements, we have

b− d0
a

<
x0 − d0

a
<
c− d0
a

.

All inequalities in the line above are strict since otherwise g = v(x0−d0)
is not the maximum of ∆. Hence, the two sets

{q ∈ Q | q <
b− d0
a

& b ∈ B & b ≥ b0}

{q ∈ Q |
c− d0
a

< q & c ∈ C & c ≤ c0}

form a cut in R that is computable in r. Let r′ ∈ R fill this cut. Since
r′ is computable in r, we have r′ ∈ S ∼= k by assumption (ii). Thus,
there is some x′ ∈ R that realizes the partial type in (8), as desired.
Case 3 (Group Transcendental) - ∆ has a largest element g 6∈ v(R′)

Let d0 ∈ R′ such that v(d0 − x0) = g is the maximum of ∆. We
suppose that d0 ∈ B; the case that d0 ∈ C is similar.

Consider the sets

∆1 = {v(c− d0) | c ∈ C} and ∆2 = {v(b− d0) | b ∈ B & b > d0}.

Claim 5.4. ∆1 < g < ∆2.

As for the corresponding Claim 4.4 in the group case, the proof of
the above claim can be found in Theorem 3.1 in [Ku90].

By the claim,

η(y) = {v(c− d0) < y | c ∈ C} ∪ {y < v(b− d0) | b ∈ B & b > d0}

is a type in G with parameters in G′ = v(R′) that describes a cut in
G. The real closed field R′ has finite absolute transcendence degree, so
G′ has finite rational rank (see [SZ], Section 10). Take d1, . . . , dn ∈ R′

so that {v(di) | 1 ≤ i ≤ n} is a basis for G′ and the multiplicative
subgroup

{
n
∏

i=1

dqii ∈ R′ | qi ∈ Q for 1 ≤ i ≤ n}

is a section for G′ in R′. We show that there is a computably enumer-
able partial type η̃(y, v(d1), . . . , v(dn), h) (with parameters in G) that
describes the same cut over G′ as η(y).

Note that

∆1 =
{

n
∑

i=1

qiv(di) ∈ G′ |
n
∏

i=1

dqii < c− d0 & c ∈ C & qi ∈ Q
}

and

∆2 =
{

n
∑

i=1

qiv(di) ∈ G′ | b− d0 <

n
∏

i=1

dqii & b ∈ B & b > d0 & qi ∈ Q
}

.
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Recall that r ∈ S computes the complete type τ(x, ā) extending the
computable partial type τ ′(x, ā) we wish to realize in R. Moreover,
given some (q1, . . . , qn) ∈ Qn, the statement that determines whether
∑n

i=1 qiv(di) is in ∆1 or ∆2 can be computably located in τ . Hence,
there is some Turing reduction Υ that computes from r whether a given
(q1, . . . , qn) ∈ Qn satisfies

∑n

i=1 qiv(di) ∈ ∆1 or
∑n

i=1 qiv(di) ∈ ∆2.
Take a nonzero g ∈ v(R); such a g exists by (i) and Theorem 4.1.

Since r ∈ S = A[g],g by assumption (i), there exists some gr ∈ v(R)
such that gr

g
= r.

We now describe η̃(y, v(d1), . . . , v(dn), gr). For each pair of rationals
(q < q′), each stage s ∈ N, and (q1, . . . , qn) ∈ Qn, compute whether
Turing reduction Υ, using only the information that some real r̃ satisfies
q < r̃ < q′, halts in s steps and outputs whether

∑n

i=1 qiv(di) is in ∆1

or ∆2. If Υ halts in this situation, enumerate either the formula

qg < gr < q′g →
n

∑

i=1

qiv(di) < y if computation says

n
∑

i=1

qiv(di) ∈ ∆1

or the formula

qg < gr < q′g → y <

n
∑

i=1

qiv(di) if computation says

n
∑

i=1

qiv(di) ∈ ∆2

into η̃(y, v(d1), . . . , v(dn), gr). The partial type η̃(y, v(d1), . . . , v(dn), gr)
is computably enumerable, and it is finitely satisfiable in G because G
is a divisible group. By assumption (i), G is recursively saturated and
this implies there exists some h ∈ G so that η̃(h, v(d1), . . . , v(dn), gr)
holds in G. By our choice of gr and definition of η̃, we have that
∆1 < h < ∆2.

Let ah ∈ R satisfy v(ah) = h and a > 0. Then,

(∀c ∈ C)(∀b ∈ B)(b > d0 =⇒ v(c− d0) < v(a) < v(b− d0)

and, hence, (∀c ∈ C)(∀b ∈ B)(b > d0 =⇒ b− d0 < a < c− d0).

Thus, B < a + d0 < C, so a + d0 realizes the type given in (7), as
required.

Therefore, in each of the three cases, we satisfied the type τ . Hence,
R is recursively saturated. This completes the sufficiency direction of
the proof. �

It is unclear whether condition (iv) follows from the other three con-
ditions listed in Theorem 5.2. In Theorem 4.1, we used a valuation
basis for G to avoid the need for such a condition. However, a real
closed field of finite absolute transcendence degree need not admit a
valuation transcendency basis; see [Kuh] for a precise definition of val-
uation transcendency basis and counterexamples.
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