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Abstract

The aim of this article is to study the notion of derivability and its
semantic counterpart in the context of non-transitive and non-reflexive
substructural logics. For this purpose we focus on the study cases of
the logics ST and TS. In this respect, we show that this notion doesn’t
coincide, in general, with a nowadays broadly used semantic approach
towards metainferential validity: the notion of local validity. Following
this, and building on some previous work by Humberstone, we prove that
in these systems derivability can be characterized in terms of a notion
we call absolute global validity. However, arriving at these results doesn’t
lead us to disregard local validity. First, because we discuss the conditions
under which local, and also global validity, can be expected to coincide
with derivability. Secondly, because we show how taking into account
certain families of valuations can be useful to describe derivability for
different calculi used to present ST and TS.

Keywords: derivability, non-reflexive logics, non-transitive logics, local va-
lidity, absolute global validity

1 Background and aim

In the past decade, a considerable amount of substructural accounts of the para-
doxes have been in the spotlight. Allegedly, their main advantage lies in their
involvement with the more abstract and general features of logical consequence.
Instead of proposing to abandon this or that feature of a logical expression or
connective in order to accommodate the paradoxical phenomena, these alterna-
tives provide a more encompassing solution that affects the features of logical
consequence itself.

Among the substructural options we can find the so-called strict-tolerant
approach championed by Cobreros, Égré, Ripley and van Rooij, and the so-
called tolerant-strict approach defended by French. The literature classifies
these as, respectively, non-transitive and non-reflexive approaches to paradox
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as the first invalidates the rule of Cut and the second invalidates the rule of
Identity—in a sense to be made precise below. These sort of substructural
approaches to paradox, embodied in the paradigmatic cases of the logics ST
and TS, respectively, will be the focus of our article.1

Substructural takes on paradoxical phenomena are crucially said to inval-
idate some metainferences that are valid in Classical Logic. These can be
understood by analogy to the ground level inferences: while the latter con-
cern relations between formulas, the former concern relations between inferences
themselves. Since these logics are often presented through both proof-theoretic
and semantic means (in particular, through sequent calculi and trivaluations,
respectively) one ought to consider what standards for metainferential validity
are available in these contexts.

On the proof-theoretic side, it is important to highlight that sequent calculi
have two different standards in what pertains to metainferential validity: these
correspond to the relations of admissibility and derivability. Roughly speaking,
the former corresponds to the question of whether the conclusion of a metainfer-
ence can be derived in the calculus if all the premises of said metainference are
derivable; whereas the latter corresponds to the question of whether the conclu-
sion of a metainference can be derived in the calculus resulting from adding all
the premises of the metainference as axioms.

On the semantic side, researchers have so far focused on two different stan-
dards for metainferential validity: these correspond to the relations of global
and local validity. To understand them, assume a given concept of counterex-
ample for an inference. Local validity means that any counterexample to the
conclusion is a counterexample to one of the premises as well. Global validity
means that if there is a counterexample to the conclusion, there must also be
a counterexample to one of the premises (where the two counterexamples need
not be the same).

The aim of this article is to study the notion of derivability and its seman-
tic counterpart in the context of non-transitive and non-reflexive substructural
logics. In this regard, we provide both negative and positive results. The nega-
tive result concerns the fact that derivability doesn’t coincide, in general, with
local validity. The positive results are three-fold. First, we prove that in non-
transitive and non-reflexive systems derivability can be characterized in terms
of a notion we call “absolute global validity”. Secondly, we show that arriving
at these results doesn’t lead us to disregard local validity, because there are cer-
tain conditions under which local, and also global validity, can be expected to
coincide with derivability. Thirdly, we show that—taking into account certain
families of valuations—local validity can indeed be useful to describe derivability

1Both the notion of logical consequence associated with ST and TS were presented in [5].

In this regard [4], [5], [6], [7], [25], [26] and [12] are articles where Cobreros, Égré, Ripley
and van Rooij, and French—respectively—embrace these approaches. It should be mentioned
that the general framework allowing to define logics of the kind of ST is presented in [11],
whereas the general framework allowing to define logics of the kind of TS is presented in [21].
Furthermore, as remarked by an anonymous reviewer, the ST setting is already presented in
full detail in [15].
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for different calculi used to present ST and TS.
With this purpose, the article is structured as follows. In Section 2 we intro-

duce some technical preliminaries that we will assume throughout the article. In
Section 3 we present the two most developed standards for metainferential va-
lidity, the global and the local notion, and show a negative result, i.e. that none
of them is the semantic counterpart of the proof-theoretical notion of deriv-
ability. In Section 4 we prove the first positive result: that in non-transitive
and non-reflexive logics the semantic counterpart of derivability is the notion
of absolute global validity. Next, in Section 5 we present our second positive
result, regarding some sufficient conditions for collapsing the different notions
of validity. In this way, although local validity doesn’t coincide in general with
derivability, it does in some special cases. Actually, in Section 6 we introduce
our final positive result, regarding the coincidence of local validity with deriv-
ability, in the context of the logics ST and TS. In Section 7 we conclude with
some final remarks and directions for future work.

2 Technicalities

In this section, we present some technical notions that we will use below. We
will be working with a propositional language L which contains a denumer-
able set V ar of propositional variables p, q, r, . . . and with logical connectives
¬,∧,∨—intended to represent negation, conjunction, and disjunction, respec-
tively. Thus, FOR(L) is the set of well-formed formulas, as usually construed.
Lower case Greek letters ϕ,ψ, χ, . . . will be considered as schematic formulas,
whereas upper case Greek letters Γ,∆,Θ, . . . will be considered as schematic
sets of formulas.

As we mentioned earlier, our aim is to discuss certain aspects of certain
substructural logics. These are to be understood as systems where some of the
metainferences usually associated with the properties of Reflexivity, Monotonic-
ity, and Transitivity of a consequence relation fail.2 Just like regular inferences
hold between (collections of) formulas, metainferences can be regarded infor-
mally as inferences between inferences. More formally, these can be described
as in the definitions below.

Definition 1. An inference token ρ of a language L is a pair 〈Γ,∆〉, where
Γ,∆ ⊆ FOR(L); a simple inference schema ρ is the set of all and only the
inference tokens that can be obtained from one of its members—its “basic
instance”—by uniformly substituting some propositional variables pi in it by
some formulas ϕi. Given a simple inference schema ρ an inference schema
with contexts is the union of ρ together with some (possibly all) of the sets

2In the context of this article, we won’t be discussing Contraction or Exchange, as we will
be working with sets of formulas.
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{〈Γ ∪ Σ,∆ ∪Π〉 : 〈Σ,Π〉 ∈ ρ}, where Γ,∆ are arbitrary sets of formulas.3

In what follows, we will divide the premises and the conclusion of the cor-
responding inferences by a double-lined arrow ⇒. For the sake of clarity, let
us exemplify the previous definitions with regard to different incarnations of
Disjunctive Syllogism. While ¬p, (p ∨ (p ∧ q)) ⇒ p ∧ q is an inference token,
¬ϕ, (ϕ ∨ ψ) ⇒ ψ is a simple inference schema, whereas Γ,¬ϕ, (ϕ ∨ ψ) ⇒ ψ,∆
is an inference schema with contexts. Also, when it generates no ambiguity, we
will indistinctly refer as “schemas” to both simple schemas and to those with
contexts.

Definition 2. A metainference token P of a language L is a pair 〈A, ρ〉, where
A is a set of inference tokens and ρ is an inference token of L; a simple metain-
ference schema P of a language L is the set of all and only the metainference
tokens that can be obtained from one of its members—its “basic instance”—by
uniformly substituting some propositional variables pi in it by some formulas
ϕi. As before, given a simple metainference schema P a metainference schema
with contexts is the union of P together with some (possibly all) of the sets
{〈{Γi ∪ Σi ⇒ ∆i ∪ Πi},Ξ ∪ Θ ⇒ Υ ∪ Ω〉 : 〈{Σi ⇒ Πi},Θ ⇒ Ω〉 ∈ P}, where
Γi,∆i,Ξ,Υ are arbitrary sets of formulas.4

In order to exemplify these notions, let us examine what the literature refers
to as meta Explosion—see [1] and [3]. From left to right below, the first is a
metainference token, the second is a simple metainference schema, and the third
is a metainference schema with contexts.

⇒ p ∧ q ⇒ ¬(p ∧ q)
⇒ r ∨ s

⇒ ϕ ⇒ ¬ϕ
⇒ ψ

Γ1 ⇒ ϕ,∆1 Γ2 ⇒ ¬ϕ,∆2

Ξ⇒ ψ,Υ

The substructural systems that we will focus mostly on—Cobreros, Égré,
Ripley and van Rooij’s logics ST and TS (the latter defended by French)—are
respectively of a non-transitive and non-reflexive kind, and so it is important to
present them clearly. When introducing these logics proof-theoretically, usually
their advocates appeal to a Gentzen-style sequent calculus. In this context,
calculi are just sets of metainference schemas, where metainference schemas

3A few clarifications about these definitions are in order. First of all, it should be high-
lighted that they are pretty much aligned with the way in which Humberstone approaches
inferences and schematic versions thereof in [19]. Regarding inference tokens there seems
to be no misunderstanding, whereas the literature has it that what we call simple inference
schemas are usually referred to as sequential formula-to-formula rules. In this regard, also,
let us notice that these don’t have a unique basic instance, but instead have infinitely many
such instances as discussed in [19, p. 123]. Furthermore, regarding inference schemas with
contexts, although this notion isn’t discussed by Humberstone, he states that arriving at such
entities through a detour via simple inference schemas (sequential formula-to-formula rules,
in his terminology) is “clear enough”—see [19, p. 123].

4Once again, a few clarifications are in order. First, what we call metainference tokens
are nothing more than members of what are called application-sets of a sequent-to-sequent
rule—see [19, pp. 588-589]. In this regard, metainference schemas with or without contexts
can be identified with such application-sets.
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with empty premises are also called axioms.5 Before introducing the sequent
calculi we will work with, we need first to present some definitions:

Definition 3. A set of inference tokens A is closed under a metainference token
〈B, ρ〉 if and only if either some inference of B isn’t in A, or the conclusion ρ is
in A. A set of inference tokens A is closed under a metainference schema if and
only if it is closed under all of its instances.

Definition 4. Given a set of metainference schemas S the set of S-provable
inferences pr(S) is the smallest set of inferences closed under S. So, we will say
that an inference ρ is provable in S if and only if ρ ∈ pr(S).

Both in the case of ST and TS, some modification of the sequent calculus
LK, appearing in Figure 1, is usually employed.6

ϕ⇒ ϕ [Id ]

Γ ⇒ ∆
Γ,Σ ⇒ ∆

[KL]
Γ ⇒ ∆

Γ ⇒ Π,∆
[KR]

Γ ⇒ ϕ,∆ Σ, ϕ⇒ Π

Γ,Σ ⇒ ∆,Π
[Cut ]

Γ ⇒ ϕ,∆

Γ,¬ϕ⇒ ∆
[¬L]

Γ, ϕ⇒ ∆

Γ ⇒ ¬ϕ,∆ [¬R]

Γ, ϕ⇒ ∆ Γ, ψ ⇒ ∆

Γ, ϕ ∨ ψ ⇒ ∆
[∨L]

Γ ⇒ ϕ,ψ,∆

Γ ⇒ ϕ ∨ ψ,∆ [∨R]

Γ, ϕ, ψ ⇒ ∆

Γ, ϕ ∧ ψ ⇒ ∆
[∧L]

Γ ⇒ ϕ,∆ Γ ⇒ ψ,∆

Γ ⇒ ϕ ∧ ψ,∆ [∧R]

Figure 1: The calculus LK

In some of their works, the aforementioned authors describe the logic ST in
terms of the set of inferences determined by LK\Cut (resulting from removing
the Cut rule from LK) whereas in some other works this role is played by the set

LK
\Cut
INV (resulting from adding to LK\Cut all its inverted rules).7 Wary of these

5Notice also that what is usually called rule here is a metainference schema with contexts,
and what is usually called sequent here is an inference.

6Following [10], we call this calculus LK although it differs from (but it is equivalent to)
Gentzen’s original calculus in some respects (e.g. Contraction and Exchange are absorbed
since we are working with sets).

7To be more specific, while Ripley employs the former in [27] and [26], he uses the latter
in the more recent [24].
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distinctions, in [12] French looks at two ways to describe the logic TS in terms

of calculi. For the most part he focuses on LK\Id (resulting from removing the

Identity rule from LK) and later he entertains the set determined by LK
\Id
INV

(resulting from adding to LK\Id all its inverted rules).
Interestingly, whether we choose to work with the calculi with or without

inverse rules doesn’t have any effect on the set of provable inferences. As we will

discuss in detail in Section 6, pr(LK
\Cut
INV ) = pr(LK\Cut) = pr(LK), whereas

pr(LK
\Id
INV ) = pr(LK\Id) = ∅. There are, however, two different ways of lifting

the notion of provability from inferences to metainferences (for the second one,
as we will see in Section 6, it does make a difference which sequent calculus one
chooses):

Definition 5. A metainference token 〈B, ρ〉 is A-admissible in a set of inferences
A if and only if A is closed under 〈B, ρ〉. A metainference schema is A-admissible
if and only if all its instances are.

Definition 6 ([18]). A metainference token 〈B, ρ〉 is S-derivable from a set of
metainference schemas S if and only if every set of inferences A which is closed
under S is closed under 〈B, ρ〉. A metainference schema is S-derivable if and
only if all its instances are.

Let us pause to state some remarks about the connection between both
concepts. First, derivability involves a relation with a set of metainference
schemas S, while admissibility—as it stands—involves a relation with a set of
inferences. However, we can also say that, given a certain S, a metainference
is admissible in S if it is admissible in the smallest set closed under S (i.e., it
is pr(S)-admissible). In this way, derivability is a sort of “super admissibility”,
as they both are certain types of closure conditions. Second, notice that a
metainference token 〈B, ρ〉 is pr(S)-admissible if and only if 〈∅, ρ〉 is S-derivable
or 〈∅, ρ′〉 isn’t S-derivable, for some ρ′ ∈ B. Third, a metainference without
premises as 〈∅, ρ〉 is S-derivable if and only if it is pr(S)-admissible (if and only
if ρ ∈ pr(S)). For this reason, and when no confusion arises we will identify
the metainference token 〈∅, ρ〉 with the inference token ρ. This is especially
pertinent for the case of Identity.

Coming back to our target systems ST and TS, they are also defined in
a semantic way. For this, three-valued valuations of a special kind are usu-
ally employed, and a particular definition of logical consequence is taken into
consideration to describe which inferences are valid in these logics. For future
reference, let us introduce the following definitions.

Definition 7. A valuation is a function from FOR(L) to a set of truth-values.
We will work here with two different valuational spaces:

1. the set of bivaluations V2, which range over {1, 0}

2. the set of trivaluations V3, which range over {1, i, 0}
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With regard to these sets of valuations, we can think about four different
standards for validity. In the literature, these are called strict-strict, tolerant-
tolerant, strict-tolerant, and tolerant-strict accounts—from these, we will focus
mainly on the last two, but see [5] for more.

Definition 8. A formula ϕ is s-satisfied by a valuation v in V if and only if
v(ϕ) = 1. On the other hand, a formula ϕ is t-satisfied by a valuation v in V if
and only if 0 < v(ϕ) ≤ 1.

Definition 9. An inference token Γ ⇒ ∆ is xy-satisfied in a valuation v in V
if and only if it is not the case that this valuation x-satisfies γ for every γ ∈ Γ,
and at the same time it does not y-satisfy δ for any δ ∈ ∆, where x, y ∈ {s, t}.
An inference token Γ ⇒ ∆ is xy-valid in the set of valuations V if and only if
it is satisfied by all valuations v in V . Similarly, a schema is xy-valid in the set
of valuations V if and only if all of its instances are.

Furthermore, these bivaluations and trivaluations can of course be restricted
to some subsets thereof respecting certain constraints. Strong Kleene trivalua-
tions Vsk are a subset of general trivaluations that respect the compositionality
constraints induced by the strong Kleene truth-tables, appearing in Figure 2.
Similarly, we will refer to Boolean bivaluations Vb as the bivaluations belonging
to V2 which respect the compositionality constraints induced by the {1, 0}-
reduct of such truth-tables.

¬
1 0
i i
0 1

∧ 1 i 0
1 1 i 0
i i i 0
0 0 0 0

∨ 1 i 0
1 1 1 1
i 1 i i
0 1 i 0

Figure 2: The strong Kleene truth-tables

With all these clarifications in mind, let us recall that ST is semantically
induced by focusing on the set of inferences that are st-valid in Vsk, and TS
results from focusing on the set of inferences that are ts-valid in Vsk. We will also
refer to the logics characterized by the set of inferences that are, respectively,
ss-valid and tt-valid in Vsk, in Section 6. Finally, Classical Logic CL can be
semantically identified with the set of inferences that are ss-, tt-, st-, or ts-valid
in Vb. For the sake of readability, when it doesn’t make a difference which
standards we choose for validity (such as in the case of bivaluations), we will
drop reference to standards altogether.

In the next section, we discuss two different semantic standards for metain-
ferential validity, showing that, even in the case of non-transitive and non-
reflexive logics, none of them can be taken as the semantic counterpart of deriv-
ability.
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3 Global and local validity

In this section, we present and analyze the two most developed standards for
metainferential validity, namely the global and the local notions, and show our
first negative result. That is, that neither of them coincides with the proof-
theoretical notion of derivability. Although this was proven by Humberstone
in [18] for the case of bivaluations, we generalize his results and prove this for
the case of trivaluations. Later, we focus on our two case studies ST and TS,
showing why some scholars have focused on the local notion.

Let us, then, review global validity first. In a nutshell, this account tells us
that a metainference is valid whenever it preserves validity from its premises to
its conclusion. Below we give a general account, which can be then instantiated
for any of the notions of validity discussed:

Definition 10. A metainference token 〈A, ρ〉 is globally xy-valid in a set of
valuations V if and only if, if the premises in A are xy-valid in V , the conclusion
ρ is xy-valid in V , where x, y ∈ {s, t}. A metainference schema is globally xy-
valid in V if and only if all its instances are.

It should be pointed out that a certain coincidence between global validity
and admissibility can be highlighted. To see this, let V al(xy, V ) be the set of
inferences which are xy-valid in V , where x, y ∈ {s, t}. The connection be-
tween global validity and admissibility can be clearly stated by saying that a
metainference is globally xy-valid in V if and only if it is V al(xy, V )-admissible.
Furthermore, when one is given a calculus S which is sound and complete with
respect to xy-validity in V—i.e., such that pr(S) = V al(xy, V )—it can be ob-
served that the admissible metainferences in pr(S) are those that are globally
xy-valid in V . In short, granted soundness and completeness, admissibility and
global validity coincide.

There is an alternative to this approach, given by the notion of local validity
for metainferences. Briefly, this means that metainferences should preserve
satisfaction by a valuation instead of preserving validity—as usual, a valuation
satisfies an inference if and only if it is not a counterexample to it. Below
we present this notion with full generality, without making reference to any
particular set of valuations:

Definition 11. A metainference token 〈A, ρ〉 is locally xy-valid in V if and only
if, if a valuation in V xy-satisfies all the premises in A, then it xy-satisfies the
conclusion ρ, where x, y ∈ {s, t}. A metainference schema is locally xy-valid in
V if and only if all its instances are.

Given that global validity has a natural tie to the property of admissibility,
then, one may wonder if local validity has a similar connection with derivability.
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Shortly, we will see that this isn’t generally the case.8 However, in order to
precisely formulate the sort of correspondence one might expect between these
two notions, one should find a way to select a set of valuations that captures
at the semantic level the content of the set of metainference schemas whose
Derivability relation is in question. A first (though unsuccessful) attempt in
this direction is provided by the notion of local range.

Definition 12. The local xy-range in V of a set of metainferences S is the
maximum set of valuations Vi ⊆ V such that all members of S are locally
xy-valid in Vi, where x, y ∈ {s, t}.

With this notion at hand, one could hypothesize that the following correla-
tion holds: a metainference 〈A, ρ〉 is S-derivable if and only if 〈A, ρ〉 is locally
xy-valid in the local xy-range in V of S, for some appropriate xy standard, and
some appropriate V .

Nevertheless, as an anonymous reviewer points out, the question remains of
how to select such standards and such valuations. In this respect, given the
characterization results proved in [13, Corollary 1] (which will be discussed in
the next section) we can state the following. Since reflexive, monotonic and
transitive sets of inferences can be characterised by bivaluations, for the deriv-
ability relation of sets of metainferences containing [Id ], [KL], and [KR] and
[Cut ], the natural choice would be to take the local xy-range in V2, with respect
to any standard xy. On the other hand, since reflexive and monotonic sets of
inferences can be characterised by trivaluations with an st-standard, for the
derivability relation of sets of metainferences containing [Id ], [KL], and [KR],
the natural choice would be to take the local st-range in V3. Finally, since mono-
tone and transitive sets of inferences can be characterised by trivaluations with
a ts-standard, for the derivability relation of sets of metainferences containing
[KL], [KR] and [Cut ], the natural choice would be to take the local ts-range
in V3. In what follows, we will show that these three claims fail, and we will
provide counterexamples to them.

Regarding the first claim, consider a set containing [Id ], [KL], [KR], [Cut ],

8Let us highlight in passing that local validity is somewhat included in global validity, and
sometimes this inclusion is strict. This happens when the premise-inferences of a metainference
are invalid, which is easier seen when we consider metainference tokens. For instance, take
the set of Boolean bivaluations Vb and consider the following metainference token:

⇒ p
⇒ q

There are of course valuations satisfying p but not q. But, since p is invalid, the metainference
becomes globally valid in Vb. When we move on to schemas, though, examples cannot be taken
from Boolean bivaluations, because both approaches to metainferential validity coincide for
such a family of valuations. That is to say, global validity in Vb and local validity in Vb

coincide with regard to metainference schemas—a proof of this fact can be found in [30]. We
will expand on this point in Section 5.
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and the following set of simple metainference schemas, which we will call S1:9

⇒ ϕ

⇒ ϕ ∨ ψ
⇒ ψ

⇒ ϕ ∨ ψ
ϕ⇒ ⇒ ϕ ∨ ψ

⇒ ψ

It is straightforward to check that the valuations belonging to the local range
of S1 in V2 are all those satisfying the following conditions:

• If v(ϕ) = 1 or v(ψ) = 1, then v(ϕ ∨ ψ) = 1

• If v(ϕ) = v(ψ) = 0, then v(ϕ ∨ ψ) = 0

Now, consider the following simple metainference schema:

ϕ⇒ ψ ⇒
ϕ ∨ ψ ⇒ P1

Its local range is determined by the following weaker restrictions:

• If v(ϕ) = v(ψ) = 0, then v(ϕ ∨ ψ) = 0.

This means that the local range in V2 of S1 is included in the local range in
V2 of P1, which in turn means that P1 is locally valid in the local range of S1

in V2. Regarding the underivability of P1 from the set S1, in Section 5 we will
prove it using semantical tools and appealing to the main result of the Section
4.

For the non-transitive case, take the following metainferential schemas with-
out context, and add them to a set containing [Id ], [KL] and [KR]:

ψ ⇒ ⇒ ϕ ∨ ψ
⇒ ϕ

ϕ⇒ ⇒ ϕ ∨ ψ
⇒ ψ

⇒ ϕ ϕ⇒ ⇒ ψ ψ ⇒ ⇒ ϕ ∨ ψ
⇒

Let us call this set S2. The valuations in the local st-range of S2 in V3 are
all those satisfying the following restrictions:

• If v(ϕ) = 0 and v(ψ) ∈ {0, i}, then v(ϕ ∨ ψ) = 0.

• If v(ψ) = 0 and v(ϕ) ∈ {0, i}, then v(ϕ ∨ ψ) = 0.

• If v(ϕ) = v(ψ) = i, then v(ϕ ∨ ψ) = 0.

Then consider again the following metainference schema:

ϕ⇒ ψ ⇒
ϕ ∨ ψ ⇒ P1

Its local st-range in V3 is determined by the following weaker restrictions:

9This example builds on the one provided by Humberstone in [18]. We present this modified
version because his example only works in a SET-FMLA setting (i.e. the conclusion of an
inference is a formula), while in this article we’re working in a SET-SET framework (i.e. the
conclusion of an inference is a set of formulas). We’d like to thank an anonymous reviewer for
pointing this out to us.
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• If v(ϕ) ∈ {0, i} and v(ψ) ∈ {0, i}, then v(ϕ ∨ ψ) ∈ {0, i}.

This means that the local st-range in V3 of S2 is included in the local st-
range in V3 of P1, which in turn means that P1 is locally st-valid in V3 according
to S2. Once again, a formal argument concerning the underivability of P1 will
have to wait until later in the article.

For the non-reflexive case, take instead a set S3 with [KL], [KR], and [Cut ]
and the following metainference schemas without context:

⇒ ϕ ∨ ψ
ψ,ϕ⇒ ϕ,ψ

ψ ⇒ ⇒ ϕ ∨ ψ
ϕ⇒ ϕ

ϕ⇒ ⇒ ϕ ∨ ψ
ψ ⇒ ψ

ϕ⇒ ψ ⇒
ϕ ∨ ψ ⇒

The valuations in the local ts-range in V3 of S3 are all those satisfying the
following restrictions :

• If v(ϕ) = v(ψ) = i, then v(ϕ ∨ ψ) ∈ {0, i}.

• If v(ϕ) = i and v(ψ) = 0, then v(ϕ ∨ ψ) ∈ {0, i}.

• If v(ψ) = i and v(ϕ) = 0, then v(ϕ ∨ ψ) ∈ {0, i}.

• If v(ϕ) = v(ψ) = 0, then v(ϕ ∨ ψ) = 0.

The metainference schema which is S3-underivable is in this case the follow-
ing:

⇒ ϕ ∨ ψ
⇒ ϕ,ψ

P2

whose local ts-range in V3 is determined by:

• If v(ϕ) ∈ {0, i} and v(ψ) ∈ {0, i}, then v(ϕ ∨ ψ) ∈ {0, i}.

Which means that the local ts-range of S3 in V3 is included in that of P2.
Once more, a technical explanation of the underivability of P2 will have to wait
until later in the article.

Below, we will see how to fill the gap between derivability and an adequate
semantic notion of metainferential validity. However, to close the present dis-
cussion we will comment on some reasons why, in the literature on ST and TS,
people have opted to work with the local notion when assessing the metainfer-
ential validity of Cut and Identity, from a semantic point of view. The reader
eager to see the appropriate semantic approach to derivability for non-transitive
and non-reflexive systems can skip the following paragraphs and go directly to
the next section.

In the case of ST, although the non-transitive nature of the strict-tolerant
account has been predicated on the theories (of truth and vagueness) that are
built on top of the base logic ST, some have observed that this is a symptom
of certain non-transitive character of said base logic. This can be thought in
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analogy to the non-transitive essence of the calculi through which ST is usually
presented. In both of them, although Cut is admissible, it fails to be derivable.
Thus, given that highlighting this non-transitivity was their aim, it is easy to
observe that the global notion was of no good for this purpose. In fact, per the
global reading, Cut is a valid metainference. In light of these considerations, it
is obvious that if we want to semantically emphasize the substructural nature
of ST, then another notion needs to be taken into account. Probably these
considerations led some scholars to work with the local notion, for which Cut
is an invalid metainference. However, as we discussed earlier, although local
validity might serve the purpose of highlighting the invalidity of Cut in ST, it
isn’t the case that in general local st-validity in V3 coincides with derivability.

In the case of TS, as far as we can tell, no one has intended to defend any
particular notion of validity for its metainferences. So, let us briefly analyze
how the local and the global notion of metainferential validity behave for this
logic. Recall, first, that the set of valid inferences of TS is empty. This is
so, because the Vsk-valuation which assigns to every propositional letter the
intermediate value is a counterexample to every inference. Given this, no matter
what the notion for metainferential validity one adopts, all of the inferences will
be invalid. However, regarding metainferences with non-empty sets of premises,
some distinctions can be made.

If we take the global approach, all of the metainferences with non-empty sets
of premises would be valid. This is so because any instance of the metainference
schema appearing below has as a ts-counterexample the Vsk-valuation which
assigns to every propositional letter the intermediate value. Thus, in some
sense, the global notion makes TS metainferentially trivial, and so it seems like
a rather useless conception of metainferential validity.

On the other hand, the local notion, as in the case of ST, is more useful since
it allows us to make finer distinctions, e.g. invalidating many metainferences.
For instance, the metainference token appearing below, whose conclusion is an
instance of Identity, is locally ts-invalid in Vsk—as it can be seen by taking any
strong Kleene trivaluation that assigns q a classical value and p the intermediate
value. Thus, also for the case of TS, the local notion seems to have some
preeminence.

q ⇒ q
p⇒ p

We have given then enough reasons to want to work with semantic notions
of metainferential validity that are closer to derivability and, thus, far from
global validity. We also showed that in general, the notions of local validity and
derivability don’t coincide in the way one might expect. In the next sections,
we are going to provide a number of positive points in this regard. First, we are
going to show that there is a semantic counterpart to the notion of derivability
that in all cases coincides with it, which we call “absolute global validity”.
Secondly, we are going to show under which circumstances this notion coincides
with global and local validity. Finally, in light of these considerations, we are
going to demonstrate how to properly work with local validity as a faithful

12



surrogate for the notion of derivability in the calculi used to present the logics
ST and TS.

4 Absolute global validity

In the previous section, we provided a negative result exposing the difference
between local validity and derivability, which was originally discussed by Hum-
berstone for logics semantically induced by bivaluations, and which was then
generalized by us for logics semantically induced by trivaluations. In this section,
we provide a positive result consisting of establishing the semantic counterpart
for derivability. This was already done by Humberstone for the case of logics
characterized by bivaluations (that is, Tarskian logics, i.e., Reflexive, Monotonic
and Transitive logics), and thus our contribution in this section is to generalize
this to logics characterized by trivaluations (that is, monotonic logics of the
non-transitive or non-reflexive kind).

The first step to the positive results is to have in mind the following crucial
definitions.

Definition 13. A set of inference tokens A is:

• Reflexive if and only if ϕ⇒ ϕ ∈ A;

• Monotonic if and only if Γ,Γ′ ⇒ ∆,∆′ ∈ A, whenever Γ⇒ ∆ ∈ A;

• Completely Transitive if and only if for all Σ, if for all Σ1 ∪ Σ2 = Σ,
Σ1,Γ⇒ Σ2,∆ ∈ A, then Γ⇒ ∆ ∈ A.10

Definition 14. A metainference token 〈B, ρ〉 is MR-derivable (MT-derivable)
from a set of metainference schemas S if and only if 〈B, ρ〉 is S-derivable and
any set of inferences closed under S is Monotonic and Reflexive (Monotonic
and Completely Transitive). A metainference schema is MR-derivable (MT-
derivable) from a set of metainference schemas S if and only if all its instances
are. A metainference token (a metainference schema) is MRT-derivable from
a set of metainference schemas S if and only if it is MR-derivable and MT-
derivable.

Furthermore, in our quest for a semantic counterpart to the concept of deriv-
ability we will replace the concept of a local range by the following broader one,
which Humberstone calls global range, but that we will call absolute global
range for matters of disambiguation.

Definition 15. The absolute global xy-range in V of a set of metainferences S
is the maximum set V of sets of valuations Vi ⊆ V such that all members of S
are globally xy-valid in Vi, for every Vi ∈ V, where x, y ∈ {s, t}.

10Complete Transitivity can be seen as an infinitary rule, a kind of Cut for sets (see [13]).
In any compact consequence relation, if a set of inferences is closed under the ordinary rule
of Cut then it is Completely Transitive (see [28, p. 436]). So, although for the familiar logics
with which we deal, the rule of Cut is enough, the results we prove in this section are more
general, so we stick to this broader terminology.
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With this in mind, Humberstone introduces an alternative conception of
metainferential validity—a notion he refers to as global, but that in order to
minimize ambiguity we choose to call absolute global validity. We provide its
definition, in full generality, below.

Definition 16. A metainference token 〈B, ρ〉 is absolutely globally xy-valid in
a set of sets of valuations V if and only if it is globally xy-valid in V , for every
V ∈ V, where x, y ∈ {s, t}. A metainference schema is absolutely globally
xy-valid in V if and only if all its instances are.

With these tools, he proved his main result [18] (which we state in our
terminology):

Theorem 17. Let S be a set of metainferences such that any set of inferences
closed under S is Monotonic, Reflexive and Completely Transitive; let V be the
absolute global range in V2 of S. A metainference schema P is MRT-derivable
from S if and only if it is absolutely globally valid in V.

In what remains of this section, we generalize these results showing that
absolute global validity can be understood as the semantic counterpart of deriv-
ability, also for non-transitive and non-reflexive logics. To do this we deploy a
strategy in two stages. For this, we recall that on the one hand, derivability was
defined as a sort of “super admissibility”, while now absolute global validity is
a sort of “super global validity”. That is, derivable metainferences are those
which are admissible in many inference sets, and absolutely globally valid ones
are those which are globally valid according to many sets of valuation. Thus, the
first stage of our strategy consists in proving the correspondence between global
validity and admissibility with full generality, whereas the second stage consists
in proving the correspondence between absolute global validity and derivability
in non-transitive and non-reflexive systems.

For the first stage, then, as we already informally stated in section 3, sound-
ness and completeness for inferences is all that is needed to prove the corre-
spondence between global validity and admissibility. In particular, we will work
with one special, general version of soundness and completeness, which appeals
to the concept of a Galois connection.

Definition 18. A Galois connection between sets A and V and a relation R
between them is a pair of functions f : ℘(A) −→ ℘(V ) and g : ℘(V ) −→ ℘(A)
such that f(x) = {y | Rzy, for all z ∈ x} and g(x) = {y | Ryz, for all z ∈ x}.

The paradigmatic example in [18] consists of taking A to be a set of people,
V to be a set of cities, and R to be the relation of visiting. Then, the function f
gives you, for each group of people, the set of cities that they all visited, while
the function g gives you, for each group of cities, the set of people who visited
them all. The interesting thing about Galois connections is that, if you compose
the functions, you get a closure operation.11

11As discussed in many places of the specialized literature, an operation C over a set Z is a
closure operation whenever, for all X,Y ⊆ Z: (1) X ⊆ C(X), (2) If X ⊆ Y , then C(X) ⊆ C(Y ),
(3) C(X) = C(C(X)).
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Definition 19. If 〈f, g〉 is a Galois connection between A and V , then a set
Ai ⊆ A is Galois-closed if and only if g(f(Ai)) = Ai, and a set Vi ⊆ V is
Galois-closed if and only if f(g(Vi)) = Vi.

Fact 20. If 〈f, g〉 is a Galois connection between A and V and R, then for all
Ai ∈ A and Vi ∈ V the sets f(Ai) and g(Vi) are Galois-closed.

All this can be applied to logic when, instead of cities and people, one takes
R to be the satisfaction relation between a set of inferences A and a set of
valuations V . Then, the function f(Ai) gives you the set Vi of valuations for
which the set Ai of inferences is sound, and if you go back with the function
g(Vi), you get the superset of Ai which is also complete with respect to Vi.
We say that this is a generalization of the usual soundness and completeness
theorems because it doesn’t rely on the sets of inferences Ai being generated by
any specific proof theory, or the valuations Vi to respect any previously defined
restrictions on the sets of interpretations. Therefore, by appealing to this sort of
soundness and completeness, we can finish the first stage and prove that global
validity and admissibility match under very general conditions:

Lemma 21. Let A be a set of inferences, V a set of valuations, R a satisfaction
relation between them, and 〈f, g〉 the corresponding Galois connection. Then,
(a) if Ai ⊆ A is a Galois-closed set, then a metainference token 〈B, ρ〉 is globally
valid in f(Ai) if and only if it is Ai-admissible ; and (b) if Vi ⊆ V is a Galois-
closed set, then a metainference token 〈B, ρ〉 is g(Vi)-admissible if and only if
it is globally valid in Vi.

Proof. We show here only the proof of (a), since proving (b) is symmetrical.
If: Assume 〈B, ρ〉 is globally valid in f(Ai) and its premises belong to Ai. By

definition of f , Ai is a sound set with respect to f(Ai), that is, all its members
are valid in f(Ai). Thus, given the global validity of 〈B, ρ〉, its conclusion has
to be valid in f(Ai) too. But by assumption, Ai is a Galois-closed set, and thus,
it isn’t only sound with respect to f(Ai), but also complete. This implies that
the conclusion of 〈B, ρ〉 has to be in Ai. Hence, 〈B, ρ〉 is Ai-admissible.

Only if: Assume that 〈B, ρ〉 is Ai-admissible —that is Ai is closed under
〈B, ρ〉 —and that its premises are valid in f(Ai). Since Ai is, by assumption,
a Galois-closed set, it is complete, i.e., every inference which is valid in f(Ai)
is in Ai. Thus, the premises of 〈B, ρ〉 must be in Ai. And since Ai is closed
under 〈B, ρ〉, the conclusion must belong to Ai too. But by definition of f , Ai

is sound with respect to f(Ai), and hence, the conclusion of 〈B, ρ〉 is also valid
in f(Ai). This means 〈B, ρ〉 preserves validity in f(Ai), that is, it is globally
valid in f(Ai).

This result could seem a bit too abstract, since these sets of inferences are not
being obtained for instance, by a compelling proof-theory. Thus, it may raise
doubts on whether this Lemma can be applied, in particular, to logics. The
answer is that Galois-closed sets have in fact a strong connection to logic: when
the set of valuations is that of the bivaluations, and the satisfaction relation is
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any of the ones discussed above, Galois-closed sets are precisely those which are
Tarskian—i.e., Reflexive, Transitive and Monotonic. This theorem proved by
[16] shows that Tarskian logics are, in a deep sense, the logics of bivaluations.12

In this vein, we can state that Lemma 21 shows that global validity and ad-
missibility coincide at least in Tarskian logics. Also, as proved by [13], when the
set of valuations is that of the trivaluations, and the satisfaction relation is the
strict-tolerant one (respectively, the tolerant-strict relation), Galois-closed sets
are precisely those which are Reflexive and Monotonic (respectively, Completely
Transitive and Monotonic). This shows that non-reflexive and non-transitive
logics are the logics of trivaluations. In what follows, we will state this result in
more formal terms. We will set 〈fr, gr〉 as the Galois connection between the set
of L-inferences, the valuations in V3 and the relation of st-validity, and 〈ft, gt〉
as the same connection, but with the relation of ts-validity instead. Also, we
will take fgr and fgt to be the respective closure operations. Thus, the theorem
proved in [13] can be formulated as follows.

Theorem 22. A set of inference tokens is fgr-closed if and only if it is Mono-
tonic and Reflexive, and it is fgt-closed if and only if it is Monotonic and
Completely Transitive.

This closes the first stage of our strategy, because Theorem 22 shows that we
can apply the previous Lemma 21 to the systems we are interested in, showing
that also in these substructural logics admissibility and global validity coincide.

The second stage of our strategy, as stated above, builds on this very general
correspondence between admissibility and global validity. Keeping in mind that
the theories we are interested in are not necessarily transitive and reflexive sets of
inferences, will help us remind that they won’t be Galois-closed with respect to
bivaluations, but to trivaluations. Then, we move on to prove that the concept
of absolute global validity works as a valuational counterpart of the concept of
derivability in non-transitive and non-reflexive logics as well:

Theorem 23. Let S be a set of metainferences such that any set of infer-
ences closed under S is Monotonic and Reflexive (respectively, Monotonic and
Completely Transitive); let V be the absolute global st-range (respectively, ts-
range) in V3 of S. A metainference schema P is MR-derivable (respectively,
MT-derivable) from S if and only if it is absolutely globally st-valid in V (re-
spectively, ts-valid).

Proof. We show here the proof for the set of Reflexive valuations and MR-
derivability. The proof for transitive valuations and MT-derivability is analo-
gous.

Only if : Suppose P is absolutely globally st-invalid in V. Thus, there is a
set of valuations V ∈ V such that every metainference in S is globally st-valid in
V but there is a metainference token 〈B, ρ〉 of P which isn’t. We need to show

12Though these bivaluations are not necessarily Boolean, of course, since that depends not
only on the structural properties, but also on the interpretations of the connectives.
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that P is MR-underivable, that is, that there is a set of inferences which is (i)
Reflexive and Monotonic, (ii) closed under S, but (iii) not closed under P. This
will be the set gr(V ), that is, all st-valid inferences in V . Notice that, because
of the Fact 20, we know this set of inferences is Galois-closed. Hence first,
Theorem 22 applies to gr(V ), and (i) follows because of Theorem 22. Second,
(ii) follows because, given that metainferences in S are by assumption globally
st-valid in V , then because of Lemma 21, they are all gr(V )-admissible. Lastly,
(iii) follows because, since 〈B, ρ〉 is by assumption globally st-invalid in V , again
Lemma 21 implies it isn’t gr(V )-admissible. Hence, P isn’t MR-derivable.

If : Suppose P isn’t MR-derivable. Thus, there is a set of inferences A
closed under Monotonicity and Reflexivity and S, and a metainference token
〈B, ρ〉 of P which isn’t A-admissible. We need to show that there is a set of
valuations which: (i) is in the global range of S and (ii) P is globally invalid
according to it. This will be the set fr(A), that is, the valuations satisfying
all inferences in A. Notice that, because of the Fact 20, we know this set of
valuations is Galois-closed, which guarantees part (b) of Lemma 21 applies to
it. First, (i) follows because, given that metainferences in S are by assumption
A-admissible, then because of Lemma 21, they are all globally st-valid in fr(A).
Second, (ii) follows because, since 〈B, ρ〉 is by assumption not A-admissible,
Lemma 21 applies, and thus 〈B, ρ〉 isn’t globally st-valid in fr(A). Hence, P is
absolutely globally st-invalid in V.

Having shown our first positive result, that the notion of absolute global
validity appropiately coincides with the notion of derivability, we now move on
to the final part of the article. In what follows, we discuss that what we said
above doesn’t entail that we must get rid of the notions of local and global
validity—even when we want to discuss derivability. The reason for this is,
as will become clear shortly, that under some conditions these approaches to
metainferential validity do indeed collapse.

5 Collapsing validities

Up until this section we have mainly focused on the differences between global,
local, and absolute global validity. However, it is a fairly standard goal to have
a logic in which they all match. In this section, we comment on the conditions
under which each pair of these notions collapse or coincide. It is worth noting
that all the results in what follows will pertain not only to trivaluations, as
discussed in the previous section, but also to bivaluations and valuations over
any space of truth-values. We consider this to be an advantage and an interesting
new piece of information in this regard.

First, let us start by the conditions under which local validity collapses into
global validity. Both concepts are in fact not that far away as one may think by
reading some of the literature. In fact, as long as one considers only metainfer-
ence schemas and not merely metainference tokens, they coincide in many logics
whose languages are powerful enough, as established in [30]. How to character-
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ize, in full generality, the necessary expressive strength to achieve this collapse
isn’t an easy task. One can say, for instance, that functional completeness is suf-
ficient; but to offer necessary conditions applicable to any logical system—even
to non-truth-functional systems—is harder to do. The informal and intuitive
idea, however, is that one needs to somehow express the truth-values of the
domain of the corresponding valuations through formulas, so that one can get
a metainference token of the invalid metainference schema where the formulas
involved have the same value in every valuation—i.e., the value they get in the
local counterexample. As an example of this, take the following metainference
schema, which is locally ts-invalid in V3:

⇒ ϕ

ψ ⇒ ψ

but it is globally valid if the language lacks truth-value constants. This is so,
because every instance of the premise of the schema is invalid (recall there are
no valid inferences in TS, since the valuation which assigns the intermediate
value to every formula is a counterexample to every inference). However, once a
1-constant > is introduced into the language, the metainference schema becomes
globally invalid as shown by the following token:13

⇒ >
p⇒ p

As the previous example illustrates, the use of schemas with the addition of
truth-value constants allows each valuation to be represented by a token, and
once this happens the difference between global and local validity vanishes.

Secondly, in a really similar fashion we can show sufficient conditions under
which global validity collapses into absolute global validity. However, in order to
even compare these notions, some clarifications are in order. A set of valuations
might be selected in different ways. From the semantic side, one could select
a subset which complies with previously established truth-theoretical meaning
constraints on some vocabulary—e.g., excluding valuations assigning a certain
truth-value to both a formula and its negation. In the same fashion, instead of
thinking about truth-conditions, one can proof-theoretically restrain the avail-
able valuations so that they respect the aforementioned meanings. That is, one
chooses a set of metainference schemas of some sort, and then determines a set
of valuations by taking, for instance, its local or its absolute global range, as we
did in previous sections.

If we want to compare our semantic notions by themselves, without appeal-
ing to their proof-theoretical counterparts, a small difference between global
and local validity on the one hand, and absolute global validity on the other,
emerges. While a set of valuations and a validity standard uniquely fixes both
the corresponding local and global notions of metainferential validity, many pos-
sible notions of absolute global validities can be defined from that very same

13Notice that with the addition of >, TS has valid inferences, e.g. ⇒ >, ¬> ⇒, ⇒ >∧>,
and so on.
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starting set of valuations. In order to compare these three notions, one may want
to have some privileged way of going about and defining a notion of absolute
global validity in such cases.

Thus, given a fixed base set of valuations VB , the whole spectrum of choices
from which absolute global validity can be defined is obtained by taking the
powerset of the powerset of VB . We have then a lattice of options, where the
maximum is the powerset ℘(VB), and the minimum is the empty set. Any of
the elements of the lattice can be used to provide a definition of absolute global
validity. However, notice that for some elements of the lattice, the union of all
its members won’t be VB . Thus, defining local and global validity over it won’t
be equivalent to defining it over VB . Moreover, the union of the maximum is
of course VB , and therefore if we define absolute global validity over ℘(VB), we
can prove the following result:

Fact 24. Let VB ⊆ {v | v : FOR(L) → {a1, ..., an}} be a set of valuations
and L a propositional language that contains a truth-value constant ai for each
truth-value ai. Then, a metainference schema P is globally valid in VB if and
only if it is absolutely globally valid in ℘(VB).

Proof. If: Assume P is globally invalid in VB . Since VB ∈ ℘(VB), P is absolutely
globally invalid in ℘(VB).

Only if: Assume P is absolutely globally invalid in ℘(VB). Therefore, there
is a metainference token 〈A, ρ〉 of P and a set of valuations Vi ⊆ VB such that
each v ∈ Vi satisfies all of the inferences of A but dissatisfies the conclusion
ρ. Take one of these valuations, say vi and define a new metainference token
〈A′, ρ′〉, uniformly substituting in 〈A, ρ〉 each propositional letter p occurring in
〈A, ρ〉 by ak, with vi(p) = ak. Now, it is easy to see that 〈A′, ρ′〉 is an instance
of P, such that in every valuation of VB , all of the premises are satisfied, but
the conclusion isn’t. Therefore, P is also globally invalid in VB .

It is worth noticing that in this result, we assume that the language L is
rich enough to contain a truth-value constant for each truth-value, just like it
was done in [30] to prove the collapse between global and local validity. As we
will see in the collapse result between local validity and absolute global validity
(see Fact 25), this isn’t required.

Thirdly, and at last, this same general definition of absolute global validity
can be used to establish the third point of comparison, which is the conditions
under which local validity collapses into absolute global validity :

Fact 25. Given a set of valuations VB, the set of metainferences which are
absolutely globally valid in ℘(VB) is identical to the set of metainferences which
are locally valid in VB.

Proof. Assume a metainference is locally invalid in VB . Thus, there is a val-
uation v ∈ VB satisfying the premises but not the conclusion. Take the set
{v}. This set belongs to the absolute valuational space (given that it is ℘(VB)),
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and the metainference doesn’t preserve validity in {v}. Thus, it isn’t absolutely
globally valid in ℘(VB). Assume a metainference is absolutely globally invalid
in ℘(VB). Thus, there is a Vi ⊆ VB such that the premises are valid in Vi but
the conclusion isn’t. Hence, there is a v ∈ Vi such that it is a counterexample
to the conclusion but not the premises. But v ∈ VB and thus the metainference
isn’t locally valid either.

Notice that the conditions for matching global validity with absolute global
validity are stronger than those for matching the latter with local validity. Once
we start with the same set VB , then both local and global validity can be seen
as particular cases of absolute global validity. In this vein, notice that local
validity can be defined as absolute global validity over the set {{v} : v ∈ VB},
i.e. the set which only contains the singletons of valuations. Global validity in
turn can be defined as absolute global validity over the set {VB}, i.e. the set
which only contains the whole set VB .

All these coincidences could lead someone to reason along the following lines.
Given that local validity seems to be conceptually more palatable than absolute
global validity, and also more practical to implement, and given that we have
a collapsing result, one may dispense with the latter and just work with the
former. However, that reasoning rests on a fallacy.

Notice that the previous fact doesn’t constitute a recipe to match absolute
global validity and local validity: it only works when absolute global validity is
defined over the power set of the set used to define local validity. But not all
sets of metainferences have as their absolute global range such a set. That is, if
V is the absolute global range of a set of metainferences, and we take the union
of all its elements, it won’t always be the case that V is the power set of that
base set.

Actually, all of the sets of metainference schemas S1, S2 and S3 introduced
in Section 3 provide examples of this statement. Let’s start by showing this for
S1. We have shown that the local range of S1 in V2 is the set of bivaluations
respecting the clauses of the Boolean disjunction. Now consider the following
two valuations:

v1(ϕ) = v1(ψ) = 0 and v1(ϕ ∨ ψ) = 1 v2(ϕ) = v2(ψ) = v2(ϕ ∨ ψ) = 0

The set VI = {v1, v2} belongs to VS1
, the absolute global range of S1 in

V2, since all of the metainferences of S1 are globally valid in VI. However,
notice that v1 doesn’t belong to the local range of S1 in V2 (it isn’t a Boolean
bivaluation). In other words, we have just shown that there is a valuation v1
which belongs to some set VI included in the absolute global range of S1, but
not in its local range. Putting things differently, if we take the base set VB to
be the union of all of the members of VS1

, then there are valuations in VB that
are not in the local range of the set S1.

Also, using these valuations, it’s easy to check that P1 from Section 3 is
globally invalid in VI, since the premises of P1 are valid, but its conclusion
is invalid. Given that absolute global validity coincides with derivability, this
proves that P1 isn’t derivable from S1.
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The same reasoning shows that P1 isn’t derivable from S2 and that P2 isn’t
derivable from S3, where the corresponding absolutely global counterexamples
are given by the sets VII = {v2, v4} and VIII = {v1, v3}.

v3(ϕ) = v3(ψ) = v1(ϕ ∨ ψ) = 1 v4(ϕ) = v2(ψ) = i and v1(ϕ ∨ ψ) = 1

All metainferences in S2 are globally st-valid in VII, whereas P1 isn’t, while all
the metainferences in S3 are globally ts-valid in VIII, whereas P2 isn’t.

This is in fact another way to look at what we claimed in Section 3, i.e.
that the local range is sometimes incomplete when it comes to counterexamples
to underivable metainferences. Put in the terms of the present section, what
happens in those cases is that the base set of VB properly includes the local range
of that set of metainferences. And this incompleteness cannot be amended by
adding valuations coming from the union of the elements of its absolute global
range, since the local range is the maximum set of valuations which satisfy all
metainferences. This means that any other valuation outside of it will be locally
unsound with respect to the metainferences.14

Thus, not all logics will have a local characterization of their derivability
relation, because their local range can diverge from the union of the elements
of their absolute global range. If the former is included in the latter, we have
soundness—but we might fail completeness, as mentioned before. On the other
hand, if the latter is included in the former—although, as we said, we might fail
soundness—we have completeness as the following fact shows:

Fact 26. Let S be a set of metainferences containing [KL] and [KR], V its
absolute global range, and VB the union of the elements of V. A metainference
schema P is locally valid in VB only if it is derivable from S.

Proof. Assume a metainference P isn’t derivable from S. By theorem 23, all
metainferences in S are absolutely globally valid in V, but P isn’t. Thus, there
is a V ∈ V such that all members of S are globally V -valid but P isn’t. Hence,
there is a token 〈A, ρ〉 of P and a valuation v ∈ V satisfying all premises of
〈A, ρ〉 but not its conclusion. And given that v is in VB , P is locally invalid in
VB .

To sum up, we think these collapsing conditions help us see these three
notions not as rivals of each other but as different perspectives on the same
relation. Moreover, each perspective has its own merit thanks to their differ-
ent applications. Absolute global validity can work as the main bridge with
proof-theory, global validity is arguably the one which has the richer conceptual
ground, and local validity is the easiest to implement. We want to present an
illustration of this last point in the next section, given that it explains the wide
use of local validity in the literature.

14Having unsound valuations inside some elements of the absolute global range isn’t an
issue, because in those cases, their singletons are never part of the range.

21



6 Local validity revisited

We now know that the counterpart of derivability in non-transitive and non-
reflexive logics isn’t necessarily local validity, but absolute global validity. Hence,
we cannot in general adopt the former merely relying on the fact that the rules
of our proof system are sound and complete with respect to a base set of val-
uations. However, provided we keep this warning in mind, there are still some
cases where local validity can satisfactorily be implemented, because it does in
fact coincide with derivability. In this section, we aim at illustrating how lo-
cal validity remains useful by presenting the relation between this notion and
derivability, regarding the two logics we have been using as study cases: ST and
TS, and their respecting sequent calculi introduced in Section 2.

Let us start with ST. As mentioned in Section 2 and following [10], it
should be remarked that ST has received at least two different sequent calculus
presentations. One of them through the system LK\Cut and the other through

the calculus LK
\Cut
INV . Both are sound and complete with regard to inferential

st-validity in Vsk.
In fact, thanks to the famous Hauptsatz, both of them have the same set of

provable inferences, encoding exactly those inferences valid in Classical Logic,

i.e. pr(LK\Cut) = pr(LK
\Cut
INV ) = pr(LK). However, they have different deriv-

able metainferences. In fact, just like the authors mention in [10, p. 395], the

set of LK\Cut-derivable metainferences is strictly included in the set of LK
\Cut
INV -

derivable metainferences. So, does local st-validity in Vsk coincide with either of
them? Fortunately, in [10] the authors give a positive answer to this question,
that we detail below adapting it to our current terminology.

Fact 27 ([10]). A metainference is LK
\Cut
INV -derivable if and only if it is locally

st-valid in Vsk.

Also, as Barrio et al. showed [2] the set of metainferences which are locally st-
valid in Vsk can be translated into the valid inferences of LP, and vice versa.15

LP—presented by Priest in [22] among other places—is the famous logic induced
by those trivaluations complying with the strong Kleene truth-tables for which
validity is defined using the tt-standard, i.e., the LP-valid inferences are those
tt-valid in Vsk. It is, thus, a structural or Tarskian logic which is also para-
consistent, meaning that the inference schema ϕ,¬ϕ ⇒ ψ is invalid in it. This
collapse result led some authors to say that LP is “the logic of the metainfer-
ences” of ST, and ultimately led others—like Dicher and Paoli in [10]—to claim
that the latter is just a metainferential presentation of the former, since the only
interesting notion of consequence in the context of a substructural logic is that
holding between inferences and not that holding between formulas.

Furthermore, as a corollary of Facts 25 and 27 we obtain that ℘(Vsk) is the

absolute global st-range in Vsk of the metainference schemas in LK
\Cut
INV . Given

these, and the collapse with LP, we also have the following result.

15Interestingly, a version of this result was also proved by Pynko in [23].
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Corollary 28. A metainference is absolutely globally st-valid in ℘(Vsk) if and
only if its translation is valid in LP.

From these facts it can be concluded that if the right standard for determin-
ing the validity of a metainference is its derivability, then ST can be identified

with LP only if we grant that LK
\Cut
INV is the preferred calculus presentation of

ST. However, the identification can be rejected if one endorses the weaker cal-
culus LK\Cut, given that its derivable metainferences cannot be characterized
by local st-validity in Vsk. Can we find another set of valuations for which local
validity does coincide with this derivability relation?

A deeply interesting observation in this regard has been proved by Girard
in [14, p. 163-166], which went, as far as we know, relatively unnoticed by peo-
ple working in these issues. What Girard shows is precisely that a particular
set of (reflexive) trivaluations can be implemented to characterize the notion of

derivability in LK\Cut. They are called Schütte valuations, i.e., trivaluations
satisfying the non-deterministic truth-tables appearing in Figure 3, with the
strict-tolerant standard—depicted here following the clauses described by Gi-
rard, adapting things a little bit to our terminology. In this regard, and for the
purpose of establishing the next results, let us denote by VSch the subset of the
trivaluations that comply with the Schütte truth-tables.

¬
1 {0, i}
i {i}
0 {1, i}

∧ 1 i 0
1 {1, i} {i} {0, i}
i {i} {i} {0, i}
0 {0, i} {0, i} {0, i}

∨ 1 i 0
1 {1, i} {1, i} {1, i}
i {1, i} {i} {i}
0 {1, i} {i} {0, i}

Figure 3: The Schütte truth-tables

Moving onto the proper results, then, the first one is due to Girard and the
second is easily obtained as a corollary of Girard’s result and Fact 25.

Fact 29 ([14]). A metainference is LK\Cut-derivable if and only it is locally
st-valid in VSch.

Corollary 30. A metainference is LK\Cut-derivable if and only it is absolutely
globally st-valid in ℘(VSch).

Now the question arises whether there is some logic that under translations
corresponds to the LK\Cut-derivable metainferences, as it happens between LP

and LK
\Cut
INV . One sensible guess might be that the logic induced by the tt-valid

inferences in VSch, which we may call paraconsistent Schütte logic, is such a sys-
tem. This guess is based on the fact that this logic, as LP, is paraconsistent—but
also on the fact that the logic invalidates every elimination inference (as hap-

pens metainferentially in the case of LK\Cut). So, what one would be inclined to
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think is that there could be some kind of translation from the LK\Cut-derivable
metainferences into the valid inferences of the paraconsistent Schütte logic. Ul-
timately, if this translation were provided and the conjecture were proved with
all the details, one could argue that ST is no more LP than the paraconsistent
Schütte logic is ST. Interesting as it is, we leave this exploration for future work.

Now, let us turn our attention to TS. As mentioned before, this logic was
much less explored in the recent literature, and as far as we know, no one
has tried to philosophically argue that TS should be collapsed into a Tarskian
logic (as we saw for the case of ST and LP). However, in what follows we will
present some results that in some sense dualize those for ST, perhaps implicitly
emphasizing the symmetries of these two systems.16

Firstly, as mentioned in Section 2, the logic TS can be presented using at least

two different (but natural) sequent calculi: LK\Id and LK
\Id
INV . Each of them is

the result of modifying in some sense the well-known sequent calculus for Clas-
sical Logic. As before, both are sound and complete with regard to inferential
ts-validity in Vsk. In other words, the set of provable sequents on both systems
coincides with the set of valid inference tokens in TS. However this is somewhat
trivial, since both of these sets are empty, i.e. pr(LK\Id) = pr(LK

\Id
INV ) = ∅.

In this context, once we drop Identity we cannot prove anything. So, from an
inferential point of view, this collapse between provable inferences and different
semantics isn’t very informative, in the sense that it is enough for a logic to be
an empty consequence relation to extensionally coincide with the set of provable
inferences in both of these calculi.

However, things become more interesting when we consider the notion of
derivability of these systems. In this sense, it is straightforward to check that

the set of LK\Id-derivable metainferences must be included in the set of LK
\Id
INV -

derivable metainferences. This is so, because in order to derive an inverse
metainference, one needs to use Cut (which is available in LK\Id) but also
the instances of Identity corresponding to the active formulas in the metainfer-
ence, and these are not available in this context. So, now that we know that
both of the natural proof systems for TS have different derivability relations,
one could wonder whether there are sets of valuations such that local validity
over them coincides with these systems. The answer is that there are, as we will
now see.

Let us start with the case of LK
\Id
INV (i.e. the system resulting from dropping

[Id ] and adding the inverse metainferences from LK). It can be proved that the
very set of Vsk-valuations is what we were looking for:17

Fact 31. A metainference is LK
\Id
INV -derivable if and only if it is locally ts-valid

in Vsk.

16In fact, in [9] and [8] the authors even claim these logics are properly speaking metainfer-
ential duals of each other.

17As far as we can tell, there is nowhere in the literature an actual written proof of this
statement. Although we think such proof can be given (especially regarding the results we
mentioned for ST and the duality between these systems ([9]), we are not providing it here,
since it would lead us astray from the purpose of the present section.
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Not only—as French suggested in [12, p.9], and as it arises of the investigations
of Barrio, Pailos and Szmuc [3] and Scambler [29]—can the set of metainferences
which are locally ts-valid in Vsk be translated into the set of valid inferences of
K3 (and vice versa). Furthermore, K3 is the logic induced by the trivaluations
satisfying the strong Kleene truth-tables, for which validity is defined using the
ss-standard, i.e., the K3-valid inferences are the inferences ss-valid in Vsk. It
is, thus, a Tarskian logic which is paracomplete—meaning that the inference
schema ⇒ ϕ,¬ϕ is invalid in it. So, as a corollary of Facts 25 and 31 we
obtain that ℘(Vsk) is the absolute global ts-range in V3 of the metainferences in

LK
\Id
INV . Thus, given that the metainferences which are locally ts-valid in Vsk

coincide via translations with the inferences of K3 we have the following result.

Corollary 32. A metainference is absolutely globally ts-valid in ℘(Vsk) if and
only if its translation is valid in K3.

Now, let us take into account the weaker system LK\Id. As in the case of
LK\Cut, to characterize its set of derivable metainferences using the notion of
local validity over a given set of valuations, we have to deal with some non-
deterministic valuations.18 In [17], the authors introduce the following non-
deterministic semantics, which they call strong Schütte valuations:

¬
1 {0}
i {0, i, 1}
0 {1}

∧ 1 i 0
1 {1} {0, i, 1} {0}
i {0, i, 1} {0, i, 1} {0}
0 {0} {0} {0}

∨ 1 i 0
1 {1} {1} {1}
i {1} {0, i, 1} {0, i, 1}
0 {1} {0, i, 1} {0}

Figure 4: The strong Schütte truth-tables

So, let us denote by VSSch the subset of the trivaluations that comply with
the strong Schütte truth-tables. The authors in [17] prove the following:

Fact 33 ([17]). A metainference is LK\Id-derivable if and only it is locally
ts-valid in VSSch.

And again, as a corollary of the above and of the Fact 25, we can state the
following that relates derivability with absolute global validity:

Fact 34. A metainference is LK\Id-derivable if and only it is absolutely globally
ts-valid in ℘(VSSch).

It is still an open question whether there is some logic that under transla-
tions corresponds to the LK\Id-derivable metainferences, as we mentioned to

happen between K3 and LK
\Id
INV . The natural conjecture is that the logic of the

18See [20] for a comprehensive study about non-deterministic semantics for Cut-free and
Identity-free sequent calculi.

25



inferences that are ss-valid in VSSch, which we may call the paracomplete strong
Schütte logic, is such a system. Firstly, as in the case of K3 this logic is para-
complete. Also, as every elimination metainference is LK\Id-underivable, in
the paracomplete strong Schütte logic it holds that every elimination inference
is invalid. However, as in the case of LK\Cut and the paraconsistent Schütte
logic, we don’t provide any particular translation here to do the job, as this
would take us outside the bounds of this article. So, although we hope to have
motivated enough this connection, this guess still needs a proof, which we leave
for further research.

7 Conclusions and future work

In this article, we showed that, if we care about substructural logics, and think
that a semantic interpretation for them should provide a notion of consequence
that matches a syntactical notion of derivability, then one should be careful not
to assume that a local definition of validity is always the way to go. Instead,
we showed how, for some families of substructural logics of the non-transitive
and non-reflexive kind the semantic counterpart of derivability is the concept
of absolute global validity. However, since the latter is harder to implement,
we showed how in many cases they coincide, as it can prove useful to appeal to
local validity in order to relate substructural logics with structural ones.

We also left some open questions, which we think are possible routes to
continue this investigation. First of all, as we said, even though absolute global
validity is an essential valuational tool, the absence of an intuitive reading for
it seems to limit its value as a stand-alone, bona fide semantic notion. We
consider an interesting task for future endeavors to search for a philosophically
compelling interpretation thereof.19

Secondly, there is the issue of characterizing the derivability relation of a
certain calculus in terms of the notion of local validity over a certain family of
valuations. We proved, in Section 5, that this task isn’t always achievable. How-
ever, we also showed that in certain cases this is plausible. The question is, then,
what proof-theoretic properties should it have in order for this characterization
to be in fact possible?

Thirdly, and following these lines, whenever we do get a characterization
of the notion of derivability of a certain set of metainferences in terms of local
validity, this isn’t always guaranteed to be describable in terms of a deterministic

19An anonymous reviewer suggested the following interpretation of absolute global validity.
A given set of metainference schemas S determines a set of valuations, which can be seen as a
set of “good” or acceptable scenarios, and adding any axioms constitutes a way of restricting
those valuations (alternatively, those acceptable scenarios). Whence, the reviewer suggests
that assessing the derivability of a given metainference would amount to quantifying over
all those valuations determined (alternatively, those scenarios deemed “good”) by the joint
force of S and its premise inferences, and assessing whether in all these cases the conclusion
inference of such a metainference is valid (respectively, considering whether these are “good”
scenarios too). We think this might be an interesting collection of ideas, and we hope to
discuss them in future works.
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semantics. Indeed, in Section 6, we showed that some calculi—like LK
\Cut
INV and

LK
\Id
INV —have deterministic semantics for this purpose, whereas some other—

like LK\Cut and LK\Id—have non-deterministic semantics for this purpose.
The question is, then, what proof-theoretic conditions should be imposed on a
calculus in order to secure a deterministic semantics for its notion of derivability.

Finally, an exploration of the inferential correlates of the substructural logics
defined by LK\Cut and LK\Id is due. We already ventured some hypothesis,
and there is work here to be done. In this vein, we would like to emphasize

here that we are neither giving reasons for adopting LK\Cut nor LK
\Cut
INV as

the preferable calculus for ST, nor for adopting either LK\Id or LK
\Id
INV as the

preferable calculus for TS. All of them have their benefits, some based on their
metainferential weakness (in the case of LK\Cut, for instance, the fact that
it doesn’t absorb any instance of Cut), some on their strength (in the case of

LK
\Cut
INV , it absorbs some maybe unproblematic instances of Cut). Be that as it

may, we hope to explore these and many other issues in future works soon.
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[17] B. Hösli and G. Jäger. About some symmetries of negation. Journal of
Symbolic Logic, 59(2):473–485, 1994.

[18] L. Humberstone. Valuational semantics of rule derivability. Journal of
Philosophical Logic, 25(5):451–461, 1996.

[19] L. Humberstone. The Connectives. MIT Press, 2011.
[20] O. Lahav. Studying sequent systems via non-deterministic multiple-

valued matrices. Journal of Multiple-Valued Logic and Soft Computing,
21(5/6):575–595, 2013.

[21] G. Malinowski. Q-consequence operation. Reports on Mathematical Logic,
24(1):49–59, 1990.

[22] G. Priest. The logic of paradox. Journal of Philosophical logic, 8(1):219–
241, 1979.

[23] A. Pynko. Gentzen’s Cut-Free Calculus Versus the Logic of Paradox. Bul-
letin of the Section of Logic, 39(1/2):35–42, 2010.

[24] D. Ripley. Uncut. Unpublished Manuscript.
[25] D. Ripley. Conservatively extending classical logic with transparent truth.

Review of Symbolic Logic, 5(02):354–378, 2012.
[26] D. Ripley. Paradoxes and failures of cut. Australasian Journal of Philoso-

phy, 91(1):139–164, 2013.
[27] D. Ripley. Revising up: strengthening Classical Logic in the face of paradox.

Philosophers’ Imprint, 13(5):1–13, 2013.
[28] D. Ripley. On the ‘transitivity’of consequence relations. Journal of Logic

and Computation, 28(2):433–450, 2017.
[29] C. Scambler. Classical Logic and the Strict Tolerant Hierarchy. Journal of

Philosophical Logic, 2(49):351–370, 2020.

28



[30] P. Teijeiro. Strenght and Stability. Análisis Filosófico, 2019. Forthcoming.
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