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Abstract The question of the analyticity of Hume’s Principle (HP) is central
to the neo-logicist project. We take on this question with respect to Frege’s
definition of analyticity, which entails that a sentence cannot be analytic if it
can be consistently denied within the sphere of a special science. We show that
HP can be denied within non-standard analysis and argue that if HP is taken
to depend on Frege’s definition of number, it isn’t analytic, and if HP is taken
to be primitive there is only a very narrow range of circumstances where it
might be taken to be analytic. The latter discussion also sheds some light on
the connections between the Bad Company and Caesar objections.

Keywords Neo-logicism - Non-standard Analysis - Hume’s Principle - Frege -
Analyticity

1 Introduction

Is Hume’s Principle analytic? Several authors have discussed this question ac-
cording to the “classical account” of analyticity (Wright, 1999; Boolos, 1997).
Yet, few seem to have devoted special attention to addressing whether or not
the Principle can be considered analytic according to Frege’s account of ana-
lyticity. Crispin Wright describes the classical account of analyticity as hold-
ing (minimally) that, “the analytical truths...[are] those which follow from
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logic and definitions.” (Wright, 1999, p. 8). For Frege, a statement is analytic,
roughly, if it is provable from general logical laws and admissible definitions.
The latter charactarisation is similar to the former, but the ways in which
it differs suggest that the latter cannot be adopted if Hume’s Principle is to
be deemed analytic. Below, we will explain why we take this to be the case.
We begin with a brief elucidation of Hume’s Principle (HP) and then sketch
Frege’s characterisation of analyticity. Next, we argue that, if HP is taken
as a definition (as neo-logicists take it to be), its admissibility depends on
a proposition which is not, itself, analytic (according to Frege’s conception).
Specifically, we show that the proposition belongs to the “sphere of a special
science” (namely, standard analysis) because it can be denied, without con-
tradiction, within another (non-standard analysis). We conclude on this basis
that Hume’s Principle fails to satisfy Frege’s definition of analyticity.

We then go on to argue that even if we follow the neo-logicist line taking HP
as primitive—not dependant on an explicit definition of “cardinal number”—
there is a very narrow set of conditions that would have to be met for HP to
be considered analytic in Frege’s sense. These conditions have to do with three
of the most pressing concerns for contemporary neo-logicists: Bad Company,
Good Company, and Caesar. We conclude with some ways our results might
be expanded or generalised.

We should note at his point that although we are not aware of anyone who
currently subscribes to Frege’s understanding of analyticity, it is similar to
certain modern conceptions. The methodology and results established below,
therefore, may be of interest not only to those concerned with Frege’s pro-
gram, but also those interested in investigating the epistemic status of Hume’s
principle through a modern, neo-logicist lens.

2 Hume’s Principle

We will follow Wright (1999, p. 6) in formulating Hume’s Principle as follows.
For any (appropriate!) concepts F and G,

(HP) The Number of Fs is the same as the Number of Gs if and only if there is
a one-to-one correspondence between the F's and the Gs.?

We will interpret HP as follows. First, we will take there to be a one-to-one
correspondence between the F's and the Gs just in case there is a bijection be-
tween F and G (hereafter, we will use the expressions, ‘F is equinumerous with
G’ and ‘F =~ G’, as synonymous with, “there is a one-to-one correspondence
between the F's and the Gs”). Given these conventions, the formal version of
HP with which we are operating is (the universal closure of) the following.

HP: #F = #G < F~G

1 See footnote 4 below.
2 Frege’s formulation of HP is developed in (Frege, 1980, §§63-73).
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where ‘#’ is a function from Fregean concepts to objects, and ‘x’ is a second-
order formula asserting the bijectability of the F's and Gs.3

Second, we will take the Number of F's to be the same as the Number of
Gs iff there are ezactly as many F's as there are Gs. Accordingly, and as is
implied by Wright in (Wright, 1999, p. 12), we will take the referent of ‘the
Number of F's’ to be that which (correctly) answers the question: How many
Fs are there? (and likewise for G).4

2.1 What does ‘less-than’ Mean?

There is one other important feature of HP, and of Frege’s account of cardi-
nality more generally that may seem obvious and natural now, but is in the
background of much of what follows (and the foreground in §4.5): in assert-
ing HP, Frege is, like Cantor, asserting that one-to-one correspondence is the
correct criterion for cardinal identity for both finite and infinite collections.’
Another way of putting this is that if we say that there are fewer F's than Gs,
i.e. the number of Fs is less than (<) the number of Gs, an injective func-
tion from F' into G could not be surjective—there would be Gs “left over”.
This is now the standard way to think about the less-than relation, at least
among those of us familiar with 20th century mathematical logic. There is,
however, another common intuition about the meaning of less-than relation
having to to with the part-whole relation.® This is perhaps best expressed
using set/subset discourse but that does not mean that it is only applicable
in formal set-theoretic settings. The principle is roughly this: if the F's are a
proper subset of the Gs, then the number of F's is less than the number of Gs.

Take a bowl of fruit as a toy example. There are some mangoes and some
figs in our fruit bowl. Without having to count either all of the pieces of fruit
or the just the figs, we know that the number of figs is less than the number
of pieces of fruit because the figs are a proper subset of the fruit. Likewise, if
we were to eat all of the figs we would know that the number of mangoes is
equal to the number of pieces of fruit because the mangoes are not a proper
subset of the fruit. Notice in this case nothing was ever counted, but answers

3 Some authors prefer ‘NxFx = NxGx...’ or something similar, treating the cardinality

operator as a variable-binding term-forming operator. In the presence of full second-order
comprehension, which is part of the background logic, the two formulations are equivalent
(Burgess, 2005, §2.6).

4 Wright introduces this question as part of his response to the objection that HP is not
analytic on the grounds that not every concept has a number (e.g. is self-identical). In short,
his point is that a restriction is needed such that substitutions for ‘F’ are restricted to those
concepts such that the question, “How many F's are there? makes sense—or at least has
a determinate answer...” (Wright, 1999, p. 12), e.g. count nouns and expressions for sortal
concepts.

5 The ideas in the subsection owe much to the reading of Mancosu (2009, 2015, 2016).
We encourage readers interested in what follows to look at those works.

6 For the history of the use of these different conceptions among mathematicians dating
back to the medieval period see especially (Mancosu, 2016, chapter 3).
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to “number of” questions were compared with respect to the less-than and
equal-to relations.”

We will have more to say about the two intuitions about the less-than re-
lation after developing our central argument against the Fregean analyticity
of HP, but two things are worth keeping in mind for what follows. First, that
the two conceptions of the meaning of ‘less-than’ agree entirely for finite cases.
Second, that the one-to-one correspondence (Fregean/Cantorian) understand-
ing entails the subset/ part-whole understanding in the infinite case but the
converse does not hold (Mancosu, 2015, p. 384).

3 Frege’s account of Analyticity

With the above interpretation of HP in place, we will now turn to Frege’s
account of analyticity. To begin, consider Frege’s contrast between analytic
and synthetic truths. He writes:

The problem becomes, in fact, that of finding the proof of the propo-
sition, and of following it up right back to the primitive truths. If, in
carrying out this process, we come only on general logical laws and on
definitions, then the truth is an analytic one, bearing in mind that we
must take account also of all propositions upon which the admissibility
of any of the definitions depends. If however, it is impossible to give
the proof without making use of truths which are not of a general log-
ical nature, but belong to the sphere of some special science, then the
proposition is a synthetic one. (Frege, 1980, §3)

Here, Frege claims that a statement ¢, is analytic just in case there is a proof of
o and that proof relies only on general logical laws and admissible definitions.
A definition is admissible, in this context, only if the propositions upon which
that definition deductively depends are, themselves, analytic.® General logical
laws, as opposed to truths that belong to the sphere of some special science,
apply to any subject matter whatsoever.’

Matthias Schirn (2006, pp. 199-200) provides a useful (and we would argue
correct) interpretation that brings the positive parts of Frege’s account of
analyticity together nicely. It can be summarised as follows. For any statement
©, @ expresses an analytic truth just in case:

(1) ¢ expresses a general logical law or,
(2r) ¢ expresses an admissible definition or,

7 We realize that more work will have to be done to compare the cardinalities of disjoint
collections, but as we will see, that is possible. See also the references in footnote 5.

8 Note, Frege may also include principles governing definitions (perhaps like those in
(Frege, 1997a, §33), (Frege, 1997b, §65), (Frege, 1997c, p. 316), and elsewhere) among the
propositions upon which a definition depends. Though, he does not specify how to account
for the analyticity of such principles.

9 How (or whether) one is to account for the analyticity of general logical laws is left
unspecified.
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(3r) There is a proof of ¢ such that that proof begins with primitive truths
(of logic) and each of its steps appeals (only) to general logical laws or
(admissible) definitions.'®

But of particular relevance to the arguments in the following two sections is
that, for Frege the following claim holds.
If it is not possible to prove a statement ¢, without making use of truths that
belong to the sphere of some special science, then ¢ is not analytic.

In order to understand this claim, it is useful to consider Frege’s expla-
nation as to why the truths of geometry are synthetic and not analytic. He
states,

For purposes of conceptual thought we can always assume the con-
trary of some one or other of the geometrical axioms, without involving
ourselves in any self-contradictions when we proceed to our deductions,
despite the conflict between our assumptions and our intuition. The fact
that this is possible shows that the axioms of geometry are independent
of one another and of the primitive laws of logic, and consequently are
synthetic. (Frege, 1980, §14)

It is worth specifically highlighting two of the points that Frege makes here.
First, a (true) statement can fail to be analytic even if its denial, or the con-
sequences of its denial, are not intuitable. Frege does not think that one can
intuit any non-Euclidean space.'! Yet, he does think that, for the purposes of
conceptual thought, one can consistently assume that there are such spaces.
Second, if a particular statement (say, the Parallel Postulate) can be denied
within the sphere of a special science (like a non-Euclidean geometry) without
contradiction, then that statement is synthetic.'?

10 Tt is important here that “primitive truths” are understood as definite propositions that
are among the general logical laws.

11 Frege makes this point explicitly stating, “To study such conceptions is not useless by
any means; but it is to leave the ground of intuition entirely behind. If we do make use of
intuition even here, as an aid, it is still the same old intuition of Euclidean space, the only
one whose structures we can intuit.” (Frege, 1980, §14)

12 Tt is worth mentioning that one may view what Frege says in (Frege, 1980, §14) to be in
tension with the statements he makes in (Frege, 1980, §3). In particular, if within a theory
T, there is a proof of a statement ¢ from the axioms (i.e. primitive truths) of T and each step
of the proof appeals (only) to general logical laws and (admissible) definitions, but there is
a consistent theory 7™ in which —¢ does not entail a contradiction, should ¢ be considered
analytic? If one privileges the narrower criterion in (Frege, 1980, §3), one might be inclined
to answer: yes. Yet, if one privileges the wider criterion in (Frege, 1980, §14), one might be
inclined to answer: no. We will understand the relationship between the narrower and the
wider criteria as follows. The wider §14 criterion is to be used when assessing statements
that do not admit of proof (in a theory): the primitive truths of a theory (to ensure that the
primitive truths of the theory are logical) and definitions (to ensure that the definiendum
clearly has the same Sinn as the definiens in all domains—see, footnote 16 below). Now,
if there is a proof in a theory T’, of a statement ¢, that begins with primitive truths of
logic (i.e. axioms which satisfy the §14 criterion) and each step of that proof appeals only to
general logical laws and definitions (i.e. definitions which satisfy Frege’s §14 criterion), then
 satisfies (3F) and is analytic according to Frege’s criteria in §3 and §14 (since ¢ is provable
by general logical laws from primitive truths and definitions that hold with respect to every
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Accordingly, we think that it is safe to say that Frege’s conception of an-
alyticity entails the following:

(A) If it is not the case that —¢ entails a contradiction within the sphere of
some special science (like Euclidean or non-Euclidean geometry), then it is
not the case that ¢ is analytic.

4 Is HP Analytic?

Under the assumption that HP is a definition, does HP satisfy Frege’s account
of analyticity? For Frege, a definition is admissible (i.e. analytic'®) only if the
propositions upon which it depends are analytic. HP depends, at least, upon
the following: For any (appropriate) F,

(N) The Number of F's is the extension of the concept equinumerous with F'.

We will also express (N) as, N(F) = Eq(F) (Where ‘N (F)’ means “The Num-
ber of F's” and ‘Eq(F')’ means “is the extension of the concept equinumerous
with F).

We will take the analyticity of HP to depend upon (N) for two reasons.
First, Frege understands ‘the Number of F's’ in terms of (N) (Frege, 1980,
§ 68). Second, HP holds if (N) does. If the analyticity of HP depends upon
(N), then, according to Frege’s account of analyticity, HP is analytic only if
(N) is.

It is well known that Frege took HP to depend on (N) in the sense that
he finds it necessary to derive HP from Basic Law V (BLV—more about this
below) and (N).!* The former is (meant to be) a basic logical law and (N), or
its expression in the concept-script, to be an admissible definition. But we are
in a different position than pre-1902 Frege, so it’s worth investigating whether
(N) is an admissible definition.'®

4.1 Is (N) Analytic?

It looks as though (N) fails to satisfy Frege’s conditions for analyticity. If,
within the sphere of some special science not-(N) is true, then (N) fails to

subject matter, ¢ holds with respect to every subject matter). See Schirn (forthcoming, §3)
for an in depth discussion of the relevant passages.

13 Henceforth by “analytic” we mean “analytic in Frege’s sense” unless it is expressly
noted.

™ Strictly speaking, Frege took HP to depend on the amended version of (N) given in the
Grundgesetze; however, the differences between the two versions do not have a significant
bearing on our argument.

15 As anonymous reviewer rightly pointed out, the epistemic status of (N) is irrelevant
from a neo-logicist perspective, as neo-logicists take HP (or similar principles) as primitive.
However, as we will get into nearer the end of the paper, this is not only an interesting
application of Mancosu’s (2016) use of the part-whole principle in looking at topics related
to neo-logicism, but also may provide insight both into Frege’s program and neo-logicist
conceptions of analyticity.
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satisfy Frege’s conditions for analyticity. Not-(N) is true within the sphere of
some special science X, just in case there is at least one F' such that N(F) #
Eq(F) is true in X. There is at least one F' such that N(F) # Eq(F) is true in
X if, in ¥ one can, consistently, give a value for N(F') (i.e. correctly answer
the question: How many F's are there?) such that that value # Eq(F).'¢

Non-standard analysis (NSA) is a branch of mathematics that was devel-
oped by Abraham Robinson in the 1960s.'” NSA introduces hyperreal numbers
(an extension of the real numbers into which the real numbers are embedded)
which allow for the existence of infinitesimals. There are two approaches to
NSA: model theoretic and axiomatic. The former approach, was first presented
in Robinson (1966). The latter approach was first presented by Edward Nelson
(1977).

Within the sphere of NSA'® one can, consistently, make N (F) = num(F),
where num(F) = the numerosity of F, and show that there is at least one F'
such that num(F) # Eq(F'). To demonstrate this, we will compare the set of
natural numbers including 0 ({0,1,2,3,...}), Ny, and the set of natural num-
bers excluding 0 ({1,2,3,4,...}), N1,'? and show that where N (Ng) = num(Np)
and N(Np) = num(Ny), either N(Np) # Eq(Np) or N(Ny) # Eq(Ny).

The numerosity of a set F, is (roughly) the hypernatural number that
answers the question: How many F's are there? To define the numerosity of F,
then, requires two things. First, a construction of the hypernatural numbers.
Second, a means of mapping F' to a particular hypernatural number according
to the size of F' (i.e. how many F's there are). Below, we will present each in
turn.

4.2 Hypernatural Numbers2’

The hypernatural numbers can be constructed by injectively mapping Ny into
its hypernatural extension: *Ng. This can be done by, first, defining a free or

16 Tn other words, if, with respect to a special science X, (N) satisfies (A), then the sense
(Sinn) of ‘N(F)’ is not the same as the sense (Sinn) of ‘Eq(F)’ within ¥. Hence, (N)
does not apply to any subject matter whatsoever (i.e. the sense of ‘N(F')’ is not always
the same as the sense of ‘Eq(F)’). We understand Frege to be explicitly rejecting such
definitions as admissible when he writes, “[T]he laws of logic presuppose concepts with
sharp boundaries. .. Accordingly all conditional definitions, and any procedure of piecemeal
definition, must be rejected. Every symbol must be completely defined at a stroke so that,
as we say, it acquires a Bedeutung.” (Frege, 1997b, § 65).

17 Tt is perhaps more accurate to describe NSA as a branch of mathematical logic as a
certain amount of mathematical logic is integral to its presentation.

18 We are assuming that the sphere of NSA constitutes the sphere of some special science.
This is plausible as it is a coherent theory about a particular domain, whose reliance on sets
precludes it from belonging to pure logic.

19 Strictly, using sets here (as opposed to concepts) is a departure from Fregean terminol-
ogy, however, doing so will make things simpler.

20 Those familiar with the construction of the hypernatural numbers, or who wish to take
or take our word on the matter can feel free to skip this section, and similarly for the
following section where we define numerosities.
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non-principal ultrafilter U, on Ny. We will follow Wenmackers and Horsten
(Wenmackers and Horsten, 2013, p. 44) in defining U such that:

(U1) U c P(No)
(U2) 0 ¢U
(U3) VF,G e U(FNG € U)

(U4) VF C No(F ¢ U — No\F € U)
(U5) VF C No(F is finite — No\F € U)

(Ul) makes U a proper subset of the power set of Ny. (U2) states that the
empty set is not an element of &. (U3) holds that for any pair of sets in U, the
intersection of that pair of sets is also in U. (U4) states that for any proper
subset of Ny, F', if F' is not in U, then the set of all elements in Ny that are
not contained in F' is a member of Y. Lastly, according to (U5), for any proper
subset of Ny, F', if F is finite, then the set of all elements in Ny that are not
contained in F is a member of Y. Together, (U1)—(U5) make U a set of infinite
subsets of Ny.%?

Using U, Ny can be injected into *Nj as follows. For all infinite sequences
of natural numbers, (s,) and (r,):

(M1) (sp) =~y (ro) < {n|sp=rp €U
(M2) [(sn)lue = {(rn) | (sn) ~u (rn)}
(M3) Vn e Ny :n=[{n,n,n,n,n,..\y

(M1) says, roughly, that a pair of infinite sequences of natural numbers are U-
equivalent just in case the set of numbers that label the places where the terms
in each sequence are equal is in U.?3 (M2) defines the U-equivalence class of an
infinite sequence of natural numbers (s,,) as the set of infinite sequences of nat-
ural numbers that are U-equivalent with (s, ). (M3) states that for any natural
number n, n is equal to the U-equivalence class of infinite sequences of natu-
ral numbers that has, as a member, the constant sequence, (n,n,n,n,n,...).
The set of hypernatural numbers *Ny, is the set of U-equivalence classes of
members of the set of all infinite sequences of natural numbers. (M3) serves
to embed Ny in *Ny (Wenmackers and Horsten, 2013, pp. 44-45).

4.3 Numerosity

The hypernatural number that constitutes a measure of the size of a set F' is
the numerosity of F. Numerosity has been discussed by a number of authors®*
but Wenmackers and Horsten (2013) provide a particularly clear definition of
the notion. For this reason, we will closely follow their procedure below (with
some minor variance from their original notation).

21 If there is no finite set in an ultrafilter, it is non-principal.

22 For a more general discussion of ultrafilters, see Komjath and Totik (2008).

23 Toillustrate with a toy example, if (sn) = (0,3,4) and (rn) = (1,3,4), then (sn) ~yy (rn)
iff {2,3} € U. Keep in mind this example is meant merely as an illustration. U does not
contain any finite sets. For an actual example, see §4.3 below.

24 See, especially, Benci and Di Nasso (2003) and Mancosu (2009).
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Wenmackers and Horsten define numerosity in three steps. First, they de-
fine a function C, that gives the characteristic bit string of a set of natural
numbers (Wenmackers and Horsten, 2013, p. 47). The characteristic bit string
of a subset F' of Ny is constructed from the following function:

XF: NO — {071}

0if n € No\F
n
lifne F

xr takes natural numbers as arguments and gives the value 0 if the given
natural number is not in F' and gives the value 1 if the number is in F. The
function C is now defined as follows:

C: P(Ny) — {0, 1}
F <XF(O)7XF(1)’ XF(2)’ e XF(n)7 )

C maps F' to a sequence of 0s and 1s. In particular, the sequence of Os and 1s
that results from applying xr to each number in the linearly ordered sequence
of natural numbers ((0,1,2,3,4,...)). To illustrate, if F' is {0,2,3}, C(F) is
(1,0,1,1,0,0,...).

The second step in defining numerosity is to define partial sums of charac-
teristic bit strings of F: sum-C(F') (Wenmackers and Horsten, 2013, pp. 47—
48). Wenmackers and Horsten define this as follows,

sum-C: P(Ng) — Np°
F—(S,)

where,
Sn=xr(0)+ ...+ xr(n).

This function maps the sequence given by C(F') to a new sequence where the
value of the term at the n-th place in the new sequence consists of the sum of all
of the terms in places < n in the sequence C(F'), for all places n. To illustrate,
again suppose that F is {0,2,3}. Accordingly, C(F) = (1,0,1,1,0,0,...) and
so, sum-C(F) =(1,1,2,3,3,3,3,3,...).

The final step in defining the numerosity of a set F, is to give a means
of interpreting sum-C(F) as one hypernatural number. This is done with the
following function (Wenmackers and Horsten, 2013, p. 48):

num: P(Ng) = "Ny
F — [sum-C(F)y.

The value of sum-C(F') is an infinite sequence of natural numbers. The U-
equivalence class of an infinite sequence of natural numbers is a hypernatural
number. Accordingly, the U-equivalence class of the value of sum-C(F) is a
single hypernatural number.
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The numerosity of a set F is the hypernatural number given by num(F):
the U-equivalence class of the partial sums of characteristic bit strings of F
(i.e. the value of [sum-C(F)]y). When the sizes of finite sets are given in terms
of their numerosities, (N) holds (as does HP). To illustrate, assume that F' is
{0,2,3}. Now measure the size of F' in terms of its numerosity. As before,

sum-C(F)=(1,1,2,3,3,3,3,...)

and so,
num(F) =1[(1,1,2,3,3,3,3,...)]u.

[(1,1,2,3,3,3,3,...)]u denotes the set of all sequences U-equivalent with (1,1,2,3,3,3,3,...)
and since {4,5,6,7,...} €U,

(1,1,2,3,3,3,3,...) ~ (3,3,3,3,3,3,..).

Hence, [(1,1,2,3,3,3,3,...)Ju has (3,3,3,3,3,3,...) as a member and so (by
(M3)),
[(1,1,2,3,3,3,3,..)u = 3.

The value of Eq(F) is 3,%° as is the value of num(F) and so, (N) holds with
respect to F. This result generalises for all finite sets of natural numbers.

If num is applied to infinite sets, it gives a value € *Ngp\Ny. To demon-
strate this, make F = Ny. Thus, C(F) = (1,1,1,1,...) and so, num(F) =
[(1,2,3,4,...)]y. There is no place at which (1,2,3,4,...) begins (infinitely) re-
peating some finite number n. Hence there is no n such that (1,2, 3,4, ...) is in
the U-equivalence class containing (n,n,n,n,...). Thus, [(1,2,3,4,...)]ys must
be larger than any finite number and so, [(1,2,3,4,...)]y € *No\Ng. We will
call this number «a (i.e. num(Ng) = ). 26

4.4 (N) is false in NSA

When the sizes of Ny and N; are given by their (respective) numerosities, (N)
is false of either Ny or Ny. By stipulation,

num(Ng) = a.

Now consider N;. C(Ny) = (0,1,1,1,1,1,...) and so, sum-C(Ny) = (0,1, 2, 3,4, 5, ...).
Subtracting one hypernatural number from another is done by taking se-
quences from the relevant U-equivalence classes and then subtracting (in the

25 Tt follows from the manner in which Frege defines cardinal numbers (Frege, 1980, §§ 77—
86) that, for any set of natural numbers F', the value of Egq(F) is equal to the standard
cardinality of F'.

26 We are following the lead of Benci and Di Nasso (2003, p. 52) and Wenmackers and
Horsten (2013, p. 48) in calling this number, a. Although, strictly speaking, Wenmackers
and Horsten do not call num(Ng) = «. Rather they stipulate that num(N;) = a. Following
their stipulation, num(Np) should be a 4+ 1. We’ve chosen to overlook this detail to keep
things simple.
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standard way) their corresponding entries one by one.?” Accordingly,

[(1,2,3,4,..)]u — [(1,1,1,1, . )]u
[(1,2,3,4,...) — (1,1,1,1,..)]u
=[{1-1,2-1),8-1),(4-1),.)u
[(0,1,2,3, ...)Ju-

Hence, the U-equivalence class of (0,1,2,3,...) is the hypernatural number
a — 1. Since num(Ny) is the U-equivalence class of (0,1,2,3,...),

num(Ny) = (o — 1).

Since (o — 1) < «,
num(Ny) < num(Np).

Therefore, when the sizes of Ny and Ny are compared in terms of their respec-
tive numerosities, N(N;) < N(Np). With respect to the infinite number R,
Frege states that it applies to the concept F' (i.e. Eq(F') = Ng) just in case,
“there exists a relation which correlates one to one the objects falling under
the concept F' with the finite Numbers.” (Frege, 1980, § 84). Since the objects
falling under Ny are the finite numbers,

Eq(No) = No.
Let f, be the function from N; to Np:

f:N1—)N0
n— (n—1).

Accordingly, f correlates one-to-one the objects falling under Ny with the finite
numbers. Thus,
Eq(Nl) = N().

Hence, Eq(N;) = Eq(Np) and so, either N(Ng) # Eq(Ny) or N(N;y) # Eq(Ny).
In either case, it follows that there is at least one F' such that N(F) # Fq(F)
is true.

4.5 HP is not Analytic in Frege’s Sense

It follows from the above that (N) is not analytic. There is a sphere of some
special science (NSA) such that not-(N) does not lead to contradiction. It is
consistent within NSA to make N(F) = num(F'). Furthermore, it seems that
num(F) does correctly answer the question “How many F's are there?” As
was shown above, with respect to any finite F', num(F) = Eq(F). Hence,
with respect to any finite F', if Eq(F') correctly indicates how many F's there

27 See (Wenmackers and Horsten, 2013, p. 50) for a brief explanation of how addition on
*Np is defined.

28 Frege uses coj rather than Rg.
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are, so must num(F). Other than presupposing the analyticity of (N), we see
little reason to suppose that num(F) should fail to also correctly indicate
how many F's there are with respect to any infinite F'. Hence, by (A), (N)
is not analytic. Under Frege’s account of analyticity, HP is analytic only if
(N) is analytic. Therefore, HP is not analytic according to Frege’s account of
analyticity.’

As mentioned above, and argued in much greater detail by Mancosu (2016),
the question of whether numerosities or Fregean cardinalities should be used
to measure infinite cardinalities comes down to whether we wish to privilege
the intuition that subsets are always strictly smaller than their supersets (if
F C G then F < G), or the intuition that cardinality is completely captured
by bijectability/ one—one correspondence as with HP. Both understandings
coincide for finite numbers, but diverge in the case of infinite cardinals. Thus
it appears that we’re in an even better position than Frege was in the case of
geometry, because although Frege found non-Euclidian spaces to be unintu-
itable, the intuition that proper parts are strictly smaller than their wholes is
a common one. Indeed, Mancosu (2016), traces a venerable history of math-
ematicians relying on that intuition both before and after Frege and Cantor
‘decided’ on one—one correspondence.

5 An Easier Route

Beginning again with the assumption that the analyticity of HP relies on
(N) being an admissible definition, and is thus itself analytic, we can take a
much shorter route to the conclusion that HP isn’t analytic in Frege’s sense.
The principle (N) is straightforwardly inadmissible. Here’s why. It says that
numbers are a particular class of extensions, which are logical objects governed
by Frege’s Basic Law V (BLV) (1997b), which says that two concepts have the
same extension just in case exactly the same objects fall under both concepts,
i.e. the two concepts are coextensional.® But in his (in)famous letter to Frege
in 1902 (see van Heijenoort, 1967, pp. 124-126), Russell shows that BLV is
inconsistent. Despite its suggestive moniker then, BLV is not a basic logical
law. Even if we were to find a way to characterise extensions with consistent,
analytic axioms, Frege’s derivation of HP from (N) relies heavily on BLV.?!
So, HP, if it relies on (N), is not analytic (in Frege’s sense).

29 The result that (N) can be consistently denied within NSA means that (N) is either
synthetic or false. However, the result is not, in itself, sufficient to decide between the
syntheticity or falsity of (N). For this reason we take no stand on this issue (likewise, for
HP).

30 BLV: VFVG(eF = €G <+ Vo (Fx = Gz))

31 This is not to say that it would be impossible to find a consistent theory of extensions,
the objects of which could be used in the formulation of (N), and HP derived therefrom.
However, our current best theory of extensions is Zermelo-Fraenkel set theory. If we then
take extensions to be governed by such a system, we would have to show that the axioms of
ZF are analytic. And if we can do that we can declare victory for logicism without having
to worry about (N) or HP, other than to perhaps pick out which sets to call the natural
numbers.
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Our appeal to numerosities is not, however, a superfluous exercise of our
mathematical muscles. Recall that neo-logicists in the vein of Hale and Wright
(see esp. Hale and Wright, 2001) want to take HP as primitive and then argue
that it is analytic, or has some equally important epistemic status that will
allow us to ground our epistemology of arithmetic.?? If we are concerned with
the analyticity of HP from a neo-logicist perspective, then we need not concern
ourselves with (N). In such a case, HP would have to either qualify as a basic
logical law, or as an admissible definition.

In the first case, one would be hard pressed to find anyone willing to endorse
the claim that HP is a basic logical law, thus we won’t go into any great
detail here. It is first worth noting though, that if one were to claim that
HP is a basic logical law, and assuming that basic logical laws are analytic
(which is the point), the neo-logicist reduction of arithmetic to logic falls out
immediately.?> But HP almost certainly isn’t a basic logical law. The obvious
arguments against HP as a basic law are ontological in character. For one, if we
accept HP as a basic logical law, then we are already committed to there being
infinitely many objects. This is a much larger ontological commitment then
first-order logic (1 thing) or second-order logic (1 thing).3* Furthermore, HP
is picking out objects called numbers which, if neo-Fregeans are to believed,
are abstract objects accessible only via HP. Should a basic logical law be the
sole means of picking out an entire category of objects?

There’s more to be said here, but to keep laying into a straw man seems
unfair. So we’re now left with the possibility that HP is an admissible defini-
tion. It is here that our earlier development of numerosities will come in handy

(again).

5.1 HP isn’t an Admissible Definition

Before proceeding, it will be useful to have a couple more definitions at hand.
First, HP is an example of a class of principles now known as abstraction prin-
ciples (APs) which neo-logicists hope will play a central role in grounding the
epistemology of mathematics beyond just arithmetic. In general, abstraction
principles are of the form:

(AP) OF =9G  F ~ G

32 Tt strikes us that Fregean analyticity as we have represented it here differs enough from
the standard Kantian or Quinean accounts of analyticity that it may provide such a status
even if we may not consider it to be a species of analyticity proper. Discussion of this
possibility would take us too far afield, but the second author hopes to address it in the
near future.

33 That is it falls out immediately from a proof of Frege’s theorem, which though non-
trivial, is by now well known (Boolos, 1996; Heck, 2011).

34 Quine (1970) was wrong about the vast ontological commitments of second-order logic.
See Boolos (1975) for the canonical refutation of Quine on this count.
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where ‘0’ is a function from concepts to objects—the abstraction operator—
and ‘~’ is an equivalence relation.?®

Both HP and BLV satisfy this schema, as do uncountably many other
sentences, including a numerosity AP (Mancosu, 2016, §9). But more about
that below. As should be fairly obvious from the beginning of this subsection,
we can’t simply argue that APs are all analytic or otherwise epistemically
privileged, because, for one thing, BLV is inconsistent (and unsatisfiable), while
HP is taken to be the paradigm case of a ‘good’ AP.3¢ This is the problem of
Bad Company.

What all of this has to do with NSA and analyticity is the following. Es-
tablishing HP as an admissible definition requires a solution to Bad Company
unless we have some reason to think that HP is privileged even among APs.
The reason we would need a solution to Bad Company is that we would pre-
sumably need to give strict ground for thinking that HP successfully cashes
out phrases like ‘the number of Fs is the same as the number of Gs’ while at
the same time denying that BLV (for example) successfully cashes out phrases
like “the F's and the Gs are coextensional”. This isn’t the usual way of framing
the Bad Company problem, but it is effectively the same problem.

The case could potentially be simplified by arguing that HP is special
among APs, but barring such an argument, which to our knowledge has never
been successfully made, we are essentially back where we started.?”

Since we are dealing with a single sentence, what we would need to do to
show that HP isn’t an admissible definition and thus not analytic, is to show
that there is some special science where HP fails, but is itself coherent. NSA
looks like a good candidate. Indeed, Heck thinks that the case of numerosities
closes the door on HP gua conceptual truth. In discussing Mancosu (2009) he
writes the following.

Mancosu’s announced goal in his paper is “to establish the simple point
that comparing sizes of infinite sets of natural numbers is a legitimate
conceptual possiblility” (Mancosu, 2009, p. 642). T think it is clear that
he succeeds. But if it is conceptually possible that infinite cardinals do
not obey HP, then it is conceptually possible that HP is false, which
means HP is not a conceptual truth, so HP is not implicit in ordinary
mathematical thought. (Heck, 2011, pp. 265-6)

35 Again, the abstraction operator is sometimes presented as a variable-binding, term-
forming operator. See footnote 3 above. Additionally, the variables bound by the abstraction
operators can be of any order or arity, though in general it’s APs involving first level concepts
that are of particular interest.

36 It’s straightforward to construct a model of HP (see e.g. Boolos, 1998, Chapter 9).
Additionally, HP plus full axiomatic second-order logic, known as Frege arithmetic (FA) is
equiconsistent with PAZ.

37 TIn fact results reported by Cook (2017) and Walsh and Ebels-Duggan (2015) might give
us reason to think that HP is special from certain mathematical perspectives. As those
results have little to do with definitions of number however, we don’t think it likely that
HP’s admissibility as a definition would follow.
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This is in fact, very broadly, the argument we’re in the midst of giving and
it turns out that there are a few more holes to plug. That brings us squarely
to:

6 A Final Worry (or Three)

The 800 pound pink gorilla in the foyer happens to be called Caesar, and is
concerned with the question of whether the Numbers of HP and the numerosi-
ties of NSA are commensurable in the first place. It might be the case that
we’re equivocating when we say that we can use both Numbers and numerosi-
ties to answer the question “how many are there?” To put it another way,
invoking NSA as a ‘special science’ in which HP fails, is to say that we are
talking about the very same cardinal numbers in both cases. Although there
are good reasons to think that they are the same cardinal numbers, it’s a
metaphysical assumption that can be consistently denied.

6.1 Identifying Cardinals

In 8§56 of the Grundlagen (Frege, 1980) Frege famously laments that “...we can
— to give a crude example — never decide by means of our definition whether
Julius Caesar belongs to a number concept, whether this same well-known
conqueror of Gaul is a number or not.” A passage that has since given a name
to the so-called Julius Caesar objection, or Caesar problem. The core of the
issue is that HP gives us no way to determine whether an object not identified
by an expression of the form #¢ is a number or not. Frege gets around this
problem by introducing an explicit definition of ‘the number of’: (N). As we’ve
already shown that that strategy fails, we have to look elsewhere if we want
to figure out whether numerosities and numbers can be identified.

Since abstraction principles are (partial) identity criteria (Fine, 2002, ch. 1),
an obvious place to start would be to see whether there is a suitable equiva-
lence relation that will allow us to construct an AP for numerosities. Numbers
and numerosities would then be on equal conceptual footing, and we could
appeal to the literature on the identification of abstracts.?® Alas this strategy
is unlikely to bear fruit. Mancosu (2016, §9) points out that any AP that sat-
isfies the Part-Whole principle will be (massively) inflationary.?® Because of
Cantor’s theorem and related arguments, we know that inflationary APs (like
BLV) are unsatisfiable in classical, static settings. So we’re left with less direct
arguments.

To our minds the most compelling evidence that Numbers and numerosities
ought to be identified is that they agree for all finite cases. There are practical

38 See (Mancosu, 2015, §9) for an overview as well as a discussion of some issues related
to NSA and Caesar.

39 An AP, I, is inflationary if it entails there be more I™abstracts than there were objects
in the original domain. BLV is inflationary; HP is inflationary on finite but not infinite
domains.
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as well as theoretical reasons to identify the finite cardinals, the finite ordinals,
the real whole numbers, etc. This is a thorny issue for structural realists, as well
as others who take piecemeal approach to the foundations of mathematics—
is the natural number structure embedded in the real number structure, the
real number structure in the complex number structure, or 2N £ 2R £ 2€240
Denying the identity of numbers presented in different ways would wreak havoc
on ordinary mathematics, and there don’t look to be reasons to uphold such
distinctness claims (beyond perhaps some currently unpopular metaphysical
theses). It would be much easier to say that the various properties of numbers
converge on the naturals, or slowly diverge as they become more complex.

That leaves the possibility, though, that numerosities and Numbers are
much like classical cardinals and ordinals, agreeing in finite cases, but diverging
for infinite cases. No-one to our knowledge holds that we can’t have both
infinite cardinals and infinite ordinals, and still maintains the identity of the
finite cardinals and ordinals.

Where this breaks down is with the less-than relation. To hold that nu-
merosities and Numbers are fundamentally different we would have to give up
the motivation for considering numerosities in the first place, namely that the
less-than relation should (or at least could) be defined according to the part-
whole principle rather than bijectibility. So once again it looks like we have
a dilemma. We can insist on a univocal less-than relation, or give up on the
identity of finite “natural numbers” that have been defined in different ways.

If we take hold of the first horn, we should conclude that HP isn’t an
admissible definition, and thus not analytic because it is inconsistent within
NSA. If we grasp the second horn, the possibility that HP is an admissible
definition is still open, in which case more work needs to be done.

6.2 Companions

Given our arguments thus far, an obvious strategy presents itself: find another
“special science” where HP fails. While we admit that such a strategy may
eventually be successful, a problem immediately presents itself. Since we will
have already given up on identifying Fregean numbers and numerosities, we
would be hard pressed to find a domain that meets the requisite criteria, but
won’t allow us to make a similar move. We could just keep claiming that the
objects of the domain under consideration and Fregean Numbers are incomen-
surable.

Two other issues also arise if we are trying to establish HP as an admissible
definition. The first, already briefly introduced, is Bad Company. The second
has been recently dubbed Good Company by Paolo Mancosu (2015). Both of
these problems are closely related to the criterion of universal applicability
that is behind the search for special sciences in which HP fails. Bad Company

40 See (Cook and Ebert, 2005), who calls this the ‘C-R problem, for more discussion in the
context of neo-logicism.
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asks us to weed out APs that will lead to inconsistency, while Good Com-
pany asks us to choose between principles that will do the same work as one
another. Indeed, the motivation for worrying about Good Company is essen-
tially the same as our concern about the comensurability of numerosities and
Fregean numbers. If we have multiple ways to construct or define a concept
like ‘cardinal number’; in this case different APs, how ought we decide between
them?

Bad Company presents a slightly (but only slightly) different problem. If
we have a principle that we’re claiming to be universally applicable, analytic,
an admissible definition, why should we think that it is fundamentally different
than other, inconsistent principles of the same form?

These are serious issues for neo-logicists, and there is a great deal of litera-
ture proposing and rejecting possible solutions to Bad Company (see Linnebo,
2011; Cook, 2012; Cook and Linnebo, 2017, for the state of the art), much
of which will be applicable to Good Company. For our purposes however, the
issues are somewhat narrower in scope.

Since we are only concerned with the analyticity of HP, we need not worry
about delineating the class (or classes) of acceptable APs. Instead we can look
at justifying an assumption underlying much of the literature on Bad Company
explicitly challenged by Good Company: HP is special. We would need to
show that there is something conceptually, and/or logically different about HP
that puts it above other similar principles, and also conceptually above other
understandings of cardinality such as that provided by NSA. In particular we
would need to show that it is broadly applicable in a way that other options
are not. We have already argued in §2.1 that our ‘natural’ understanding of
‘number of” won’t be enough. That was the point of looking at NSA.

The other option requires solutions to Good Company and Bad Company,
issues we won’t take a stand on here other than to note that they are both
open questions, and the state of the debate on Bad Company suggests that
that problem at least won’t admit of a static solution.

All of this is to say that even if we assume the incomensurability of Fregean
numbers and numerosities, the best hope for establishing the analyticity of
HP is to find a very specific kind of solution to problems that have proven
extremely contentious and difficult.

7 Concluding remarks

There are some important take-ways from our analysis here. First and fore-
most, it is exceedingly unlikely that HP is analytic on Frege’s understanding
of analyticity. This in itself is interesting for a couple of reasons. First, it
puts an important bound on how much of Frege’s logicist project can be re-
constructed without BLV, at least with respect to Frege’s chosen method for
showing the purported analyticity of arithmetic. In another way though, that
HP isn’t analytic vindicates Frege’s desire to ground HP on more fundamental
principles and definitions. It furthermore highlights a more insidious aspect
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of the Caesar problem which arguably was Frege’s impetus for that decision:
there are apparent abstracta that are much more difficult to differentiate from
HP’s numbers than the “well-known Conqueror of Gaul”.*!

More generally we have highlighted just how closely entwined the Caesar
problem and the Good and Bad Company problems are. This may turn out
to shed light on the importance of resolving all of these issues if the epistemic
supremacy of HP is to be established as is required by Scottish neo-logicism.

Finally, we contend that the analysis we have herein provided will be useful
in showing that HP isn’t analytic in senses other than Frege’s, but that’s a
project for another day.
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