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1 Introduction

Peirce’s system of Existential Graphs (EGs) is divided into three partsAlpha,
BetaandGamma. Beta builds upon Alpha, and Gamma builds upon Beta.
The step from Alpha to Beta corresponds to the step from propositional logic
to first order logic (FOL). In this step, a new syntactical element, theline of
identity (LoI), is added to EGs. LoIs are used to denote both the existence of
objects and the identity between objects, and they are represented as heavily
drawn lines. Consider the EGs of Fig. 1.
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Figure 1: Four Peirce graphs with so-called single-object-ligatures
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Figure 2: Three Peirce graphs with non-single-object ligatures

All these graphs are drawn on a surface, called thesheet of assertion
(SoA). They are composed of:

1. predicate symbols af arbitrary adity (including 0),

2. LoIs which are sometimes assembled to networks (termedligatures),
and
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3. ovals, termedcuts, which negate the enclosed subgraph.

For predicates of arity≥ 2, Peirce used to read the attached LoIs in clockwise
order. In the diagrams of Fig. 1, small numbers are added to the attached LoIs
instead.

The meaning of these graphs is ‘a cat is on a mat’, ‘there exists a male,
human African’, ‘there exists a man who will not die’, and ‘it is not true that
there is a pet cat such that it is not true that it is not lonely and owned by some
somebody’, i.e., ‘every pet cat is owned by someone and is not lonely’. In all
these graphs, LoIs resp. ligatures, even if they cross cuts, are used to denote
a single object.

Nonetheless, other examples show that this interpretation of ligatures is
simple in every case. Consider the EGs of Fig. 2. They are read ‘there are
at least two suns’, ‘there are (not necessarily distinct) objects which are blue,
red, large and small, respectively, and the blue and large or the red and small
object are distinct’, and ‘there are objectso1, o2, o3 with the propertiesS, P,
andT resp, and these objects are not all identical (i.e.,o1 = o2 = o3 does not
hold)’. A ligature does not denote only a single object in any of these graphs.

For novices it is often not clear how complex ligatures are read. Peirce
writes in CP 4.459 (we adopt the usual convention to refer to the collected
papers Hartshorne and Burks (1935)) that ‘A sep1 which is vacant, except for
a line of identity traversing it, expresses with its contents the non-identity of
the extremities of that line.’ This quotation seems to be a convention which
explains the reading of the first graph of Fig. 2. But it is in fact, as Peirce
writes in CP 4.459, an ‘Interpretational Corollary’ from his deeper under-
standing of heavily drawn lines. From this understanding, the reading of the
remaining two graphs can be obtained as well. Providing a means to read
these graphs is one of the goals of this chapter.

In Dau (2006b), Peirce’s writings are extensively explored, and from this
exploration, a formal, mathematical elaboration of Peirce’s graphs is ob-
tained. Particularly, the reading and handling of ligatures is discussed. Pro-
viding the mathematical definitions and results of Dau (2006b) is far beyond
the scope of this chapter. Instead, the main results of Dau (2006b) for liga-
tures are given in a more informal, but nonetheless precise, manner.

The organization of this chapter is as follows. In the next section, the dis-
tinction between graphs and their diagrammatic representations is briefly dis-
cussed. In Sec. 3, some important technical terms are introduced. In Sec. 4,
the handling of ligatures in Peirce’s transformation rules for graphs is dis-
cussed. In Sec. 5 it is investigated how ligatures in a graph can be rearranged.
Finally in Sec. 6, a specific kind of ligatures, so calledsingle-object-ligatures,
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is introduced, and it is discussed how they can be used to ease the reading of
graphs with complex ligatures.

2 Graphs and Graph Replicas

The ongoing scrutiny is exemplified with several diagrams of EGs. For this
reason, it has to be stressed that EGs should not be mistaken with their graph-
ical representations. Peirce draws a clear distinction between EGs and their
diagrams. Using the terminology of Peirce’s semiotics, a graph is asymbol,
and any concrete representation of a symbol is areplica of that symbol. As
Peirce says: ‘Symbols act through replicas.’

Particularly, an EG can be represented in many different ways (i.e., one
symbol can have many different replicas). Peirce explicitly said that arbitrary
features of the diagrams may vary, as long as they represent the same EG. At
the beginning of Peirce (1935) he says: ‘Convention No. Zero. Any feature of
these diagrams that is not expressly or by previous conventions of languages
required by the conventions to have a given character may be varied at will.
This “convention” is numbered zero, because it is understood in all agree-
ments.’ (a similar explication can be found in 4.507). For LoIs, he says even
more explicitly in Peirce (1935) that ‘its shape and length are matters of in-
difference’, and finally, in 4.500 we find that ‘Lines of Identity are replicas of
the linear graph of identity’.

To provide a simple example, consider the diagrams of Fig. 3. Although
looking quite different, the first two diagrams only differ in the shape and
arrangement of the lines of identity, thus they are different replicas of the
same graph. On the other hand, the third diagram differs in two respects
from the first and second one: The order of the predicatesR andQ, as they
are attached to the ligature, has changed, and the rightmost branching point is
now placed on the SoA instead of the cut. Thus the third diagram is a replica
of adifferent graph.

S
T

R Q
P T S

R
Q

P RQ
P S

T

Figure 3: two different replicas of the same graph and a further graph

Obviously, the distinction between graphs and graph-replicas is very sim-

3



ilar to the distinction between types (graphs) and tokens (graph replicas), as
it is known from philosophy. The type-token-issue for a mathematical elabo-
ration of diagrammatic logic is more deeply discussed in Dau (2004); Howse
et al. (2002).2 Nonetheless, we have to come back to this issue when we
informally define subgraphs of EGs.

3 Lines of Identity, Ligatures, and Subgraphs

In this section, some important technical terms are clarified. We start with
the LoI, which Peirce describes as follows: ‘The line of identity is [. . .] a
heavy line with two ends and without other topical singularity (such as a
point of branching or a node), not in contact with any other sign except at
its extremities.’ (4.116). It is important to note that LoIs do not have any
branching points, nor they are allowed tocrosscuts. But it is allowed that
theytouchother elements at their extremities, i.e.:

1. LoIs may be connected at their endpoints. Peirce allows only two or
three LoIs to be connected. If three LoIs are connected, the point where
they meet is aBRANCHING POINT.

2. LoIs may end on a cut. Particularly, it is allowed that LoIs are con-
nected directly on a cut. Due to this possibility, we can have heavily
drawn lines (composed of several LoIs) which cross a cut.

LoIs may be assembled to connected networks termedLIGATURES. Peirce
writes in 4.407: ‘A collection composed of any line of identity together with
all others that are connected with it directly or through still others is termed
a ligature. Thus, ligatures often cross cuts, [. . .] ’, and later on in 4.416, he
writes ‘The totality of all the lines of identity that join one another is termed
a ligature.’ Particularly, each LoI is a ligature, but not vice versa.

This will be exemplified with the last graph of Fig. 1. This graph has
two maximal ligatures. The left one is composed of (at least) seven LoIs.
In the diagram below, these LoIs are numbered, and all endpoints of LoIs
are indicated as bold spots. The right heavy line is a single LoI, but even
single LoIs can be understood to be composed of smaller LoIs as well. This
is indicated by breaking up this line into two LoIs.

ownedby

lonely

1

2

3 4 5

6
7

1 2cat
pet
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Peirce terms thetotality of all the LoIs that join one another a ligature, thus
for him a ligature is amaximalconnected network of LoIs. To clarify matters,
in this chaptereachconnected network of LoIs is called ligature.

Peirce often used the terms ‘area (of a cut)’ and ‘being enclosed (by a
cut)’. These terms are not synonymous and shall be clarified now. First of
all, a CONTEXT is either the SoA, or any cut. TheAREA of a contextc
contains all elements of an EG which are drawn insidec, but which are not
more deeply nested. The contextc itself does not belong to its area. An
element is said to beENCLOSED BY c if it is drawn insidec, even if it is
more deeply nested. An element in the area ofc is more specifically said to
be DIRECTLY ENCLOSED BYc, andc is said to beTHE CONTEXT OF THAT

ELEMENT. The next two diagrams exemplify these terms. Let us denote the
outermost cut withc1, the middle cut withc2 and the innermost cut withc3.
The left diagram indicates all elements located in the area ofc2 by drawing
them black (the remaining elements are grayed out). Analogously, the right
diagram indicates all elements enclosed byc2.

ownedby

lonely
pet
cat ownedbypet

cat

lonely

For the calculus we need to distinguish between evenly and oddly en-
closed elements. An element is said to beEVENLY ENCLOSED (ODDLY EN-
CLOSED) if and only if it is enclosed by an even (odd) number of cuts. Evenly
(oddly) enclosed contexts are sometimes calledNEGATIVE (POSITIVE). Note
that an element is evenly (oddly) enclosed if and only if the context of that
element is a positive (negative) context. The left diagram below indicates the
evenly enclosed elements and the right diagram the oddly enclosed elements
of our sample graph.

pet
cat

lonely

ownedby pet
cat

lonely

ownedby

Please note that for each ligaturel , there exists a uniquely given contextc
enclosingl , such that at least some portion ofl is directly enclosed byc. We
will say thatc IS THE CONTEXT OFl resp.l is STARTS IN THE AREA OFc.

Except the double cut rule, all rules of the calculus rely on the notation of
aSUBGRAPH. For the diagrams of EGs, we can provide an intuitive definition
of subgraphs, which is inspired by Zeman’s definition in Zeman (1964).
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Definition 3.1 (Subgraph-Lines and Subgraphs)A subgraph-line in the di-
agram of an EG is a closed, doublepoint-free and smooth curve, which does
not touch or cross cuts, nor predicates, and which does not touch heavily
drawn lines (but it is allowed that heavily drawn lines are crossed). To dis-
tinguish subgraph-lines from cuts, they are drawn in a dotted manner. Given
a graph G, any graph which is the part of G enclosed by a subgraph-line in
some diagram of the graph is aSUBGRAPHof G.

Below, four examples of subgraphs are depicted. Please note that each
subgraph is located in an uniquely given context: In first two diagrams, this
context isc1, in the last two diagrams, it isc2.

cat
pet ownedby

lonely

cat
pet ownedby

lonely

cat
pet ownedby

lonely

cat
pet ownedby

lonely

Note that subgraph-lines are defined on the token-level, whereas ‘sub-
graph’ is defined on the type-level. More precisely, a graphGs is a subgraph
of a given graphG, if there existsa diagram ofG whereGs is given by a
subgraph-linein that diagram.3 That is: Sometimes, we have to redraw a
diagram (i.e., provide a different token for the same type) in order to find a
specific subgraph. For example, consider the left graph below. The graph
consisting of the two inner cuts and their enclosures is a subgraph, but in the
left diagram, it cannot be indicated by a subgraph-line. Only if we redraw the
diagram, for example as in the right diagram, we can find an subgraph-line
for this subgraph.

P

T

S

Q P Q

T

S

4 Ligatures in the Calculus

In this section, it shall be investigated how ligatures are handled in Peirce’s
rules for EGs. In different writings on EGs, Peirce provided different versions
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of transformation rules, which differ in details. Roughly speaking, the rules
are as follows:

1. Rule of Erasure and Insertion: In positive contexts, any subgraph
may be erased, and in negative contexts, any subgraph may be inserted.

2. Rule of Iteration and Deiteration: If a subgraph of a graph is given,
a copy of this subgraph may be inserted into the same or a more deeply
nested context, and the copy may be connected with its original. This
transformation may be carried out in both directions.

3. Double Cut Rule (Erasure and Insertion of Double Cuts):Two Cuts
one within another, with nothing between them, except ligatures which
pass entirely through both cuts, may be inserted into or erased from
any context.

4. Erasure and Insertion of Lines of Identity: An isolated LoI may be
inserted into or erased from arbitrary contexts.

The following elaboration of the handling of ligatures in Peirce’s rules tries
to cover Peirce’s general understanding of his rules.

4.1 Erasure and Insertion

The erasure- and insertion-rule is described by Peirce in 4.505 as follows: ‘In
even seps, any graph-replica can be erased; in odd seps any graph-replica
can be inserted.’ In a note to this rule, he explains further that in ‘the erasure
of a graph by this rule, all its ligatures must be cut.’

These rules shall be illustrated with the graphsGe for erasure,Gi for in-
sertion:

Ge := S

RP

Q Gi :=
�� �Ge = S

RP

Q

With Peirce’s explanation of the rule, we see that evenly enclosed subgraphs
can be erased, i.e., if a diagram of an EG be given with a subgraph-lines in a
positive context, thens and all what is drawn insides can be erased. This is
how the following two graphs are obtained fromGe:

P

Q

RP

Q
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In the first graph, we have erased the whole subgraph ofGe which consists of
the outermost cut and all what it is drawn inside. In the second example, the
subgraph S in the innermost cut has been erased.

Due to the definition of a subgraph, even portions of a ligature are sub-
graphs. In fact, in another note for the erasure- and insertion rule in 4.505,
Peirce says that ‘this rule permits any ligature, where evenly enclosed, to
be severed, and any two ligatures, oddly enclosed in the same seps, to be
joined.’The following two examples are obtained fromGe by erasing a part
of the ligature on the SoA resp. in the innermost cut.

S

R

Q

P RP

Q S

The insertion-rule can be understood best as the inverse direction of the era-
sure rule, applied to negative contexts: If a graphG can be obtained fromG′

by erasing an oddly enclosed subgraph, thanG′ can be derived fromG with
the insertion-rule. Thus we can deriveGi from each of the following four
graphs.

P

Q

R

Q

P R

Q S

P R

Q S

P

Please note that when a subgraph is inserted into a contextc of a graphG,
is is allowed that outermost ends of heavily drawn lines of the subgraph are
connected to ends of heavily drawn lines ofG which are located inc.

4.2 Iteration and Deiteration

If a graph with a subgraphGs in a contextc is given, the iteration-rule allows
to write a copy ofGs into c, or into any more deeply nested context which
does not belong toGs. Consider the two graphs below.

Git := QP G1 := P Q
P

G1 can be derived fromGit by iterating the subgraph P . This kind of
iteration corresponds to the Alpha part of EGs and is easy to understand. But
for Beta, the handling of ligatures is crucial. The iterated subgraph may be
joined with the existing heavily drawn line. The question is: how?
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In 4.506, Peirce writes that the iteration rule ‘includes the right to draw
a new branch to each ligature of the original replica inwards to the new
replica.’ Consider the following two graphs, which have the same meaning:

G2 := P Q
P G3 := P Q

P

As we have inG2 a branch from the old replica of P which goes
inwardly to the copy of the iterated subgraph, one might think thatG2 results
from a correct application of the iteration-rule toGit , while G3 does not.
But, if the calculus is complete, it must be possible to show thatG2 and
G3 can be transformed into each other with its rules. With the just given, first
interpretation of the iteration rule, this is probably impossible. In fact, it turns
out that the quotation of Peirce for the handling of LoIs might be misleading,
andG3 appears to be the right result of an application of the iteration-rule.

In 4.386 Peirce provides an illuminating example how the alpha-rule of
iteration is amended to beta. He writes: ‘Thus, [A ( B)] can be trans-
formed to [A (A B)] .’ Peirce uses in this place a notation with brackets.
It is crucial to note that the LoI in the copy of A is connectedinside
the cut with the already existing ligature. A similar example can be found
in Peirce and Sowa (2000), where Peirce deiterates a copy of M(here
Peirce uses shadings for representing cuts):
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S

Again it is crucial to note that the copy of M was connected in thethird
innermostcut with the ligature. For Gamma, Peirce provides 1906 in 4.566 a
similar example.

From these examples, we can conclude the following understanding of
handling ligatures in the iteration-rule: Assume that a subgraphGs is iterated
from a contextc into a contextd. Furthermore, assume thatGs is connected
to a heavily drawn line which goes inwardly fromc to d. Then the copy of
Gs may be connectedin d with this line.

In order to provide a (slightly) more sophisticated example for the han-
dling of ligatures, consider the following graphs. The second graph is derived
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from the first graph by iterating the subgraphRfrom the SoA into the inner-

most cutd. In the rightmost diagram, we have indicated the iterated subgraph
with a subgraph-line, and the heavily drawn lines going inwardly from SoA
to d. Please note that it is allowed that this line has already existing further
branches (leading toP, SandT).

S TR

P
it
` S TR

P

R R TS

P

We are allowed to connect the iterated subgraph with the heavily drawn lines
going inwardly from SoA tod, but we don’t have to. Thus the following three

graphs are results of an iteration of the subgraphR, too.

S TR

P

R S TR

P

R S TR

P

R

The phrase “which goes inwardly fromc to d” is crucial for the correct ap-
plication of the iteration-rule. Consider the following graph:

G :=
Q

P R

The next four graphs are results of a correct application of the iteration-rule
to G by iterating the subgraph P .

P Q

P R

P Q

P R

Q

P
P R

Q

P
P R

Now consider the following two graphs, where a copy of P is con-
nected to a heavily drawn line which does not “go inwardly fromc to d” (the
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line crosses some cuts more than once), and two models with elementsa, b.

PQ

P R

PQ

P R

M1 :=
P R Q

a × ×
b ×

M2 :=
P R Q

a ×
b ×

The left graph holds inM1, butG does not, so they have different meanings.
Analogously,G holds inM2, but the right graph does not, so these two graphs
have different meanings, too. Iteration does not change the meaning of a
graph (as it can be reversed by the rule of deiteration), thus these graphs
cannot be obtained by iterating P .

We have seen thatG3 is the result of an correct application of the iteration-
rule toGit . We have now to show howG2 can be derived fromGit . In 4.506,
Peirce continues his explanation of the iteration-rule: ‘The rule permits any
loose end of a ligature to be extended inwardly through a sep or seps or to be
retracted outwards through a sep or seps.’With our handling of ligatures in
the iteration-rule, it is not clear why loose ends of ligatures can be be extended
inwardly through cuts. For this reason, this extension of ligatures should be
considered not as a consequence of the iteration-rule, but as separate clause
which cannot be left out. The iteration-rule can thus be summarized as fol-
lows:

1. Let a diagram of an EG be given with a subgraphGs (indicated by a
subgraph-line) in a contextc and letd be a context which is identical to
c or enclosed byc, and which does not belong toGs. Then a copy ofGs

may be drawn into the area ofd. In this transformation, the following
is allowed: If we have a heavily drawn line which proceeds inwardly
(particularly, it crosses no cut-line more than once) tod, and if this line
crosses the subgraph-line at a pointp, then the copy ofp (which is a
part of the copy ofGs) may be connected ind to the heavily drawn line.

2. It is allowed to add new branches to a ligature, or to extend any LoI
inwardly through cuts.

The deiteration-rule is just the inverse direction of the iteration-rule, that
is, it can be best described as follows: IfGs is a subgraph ofG which could
have been inserted by rule of iteration, then it may be erased.
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We have already seen thatG3 can derived fromGit with the iteration-rule.
Now we can deriveG2 from Git with the iteration-rule as well.

QP It.2.
` P Q It.1.

` P Q
P

Finally, as mentioned in the second clause of the iteration-rule, it is not
allowed to extend ligatures outwardly, as the following example shows (this
is an example which shows that the rule NR3 provided by Shin in Shin (2002)
is not sound).

R R 6|= R R

4.3 Double Cuts

For the Alpha part of EGs, the double cut rule allows to add or remove two
cuts if nothing is between them (that is, the area of the first cut contains
nothing but the second cut). For Beta, this rule is extended to cover ligatures.
Their handling is described by Peirce in 4.567: ‘Two Cuts one within another,
with nothing between them, unless it be Ligatures passing from outside the
outer Cut to inside the inner one, may be made or abolished on any Area.’
Let us first consider a valid example of the double-cut-rule. We have:

RP
Q Q

P

dc
` RP

Q Q
P

“To pass through both cuts” has to be understood very rigidly: It is crucial
that each ligature passesdirectly and entirelythrough both cuts. In a note
for another definition of the double cut rule in 4.508, Peirce describes two
cases which do not fulfill this condition as follows: ‘A ligature passing twice
through the outer sep without passing through the inner one, or passing from
within the inner one into the intermediate space and stopping there’ is not
allowed in the double cut rule. The first case can even be strengthened: A
ligature which crosses the outer cut twice, even if it crosses the inner cut as
well, may cause problems. The next example is an invalid application of the
double-cut rule, as the graphs are not semantically equivalent (on the right,
you find a model in which the left graph holds, but the right one does not
hold):

P
Q R

dc
6` P

Q R
P R Q

a ×
b ×
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Similarly for the second case, if a ligature starts in the area of the outer cut,
we may obtain an invalid conclusion. This is shown by the following example
(again the graphs are not semantically equivalent, which is shown by a model
in which the left graph holds, but the right one does not hold):

RP
dc
6` RP

P R

a ×
b ×

Strictly speaking, even in the next example, where we now have semantically
equivalent graphs, is an invalid application of the double cut rule. In order to
derive the second graph from the first, wefirst have to retract the left line out
of the cut with the deiteration rule, and then double cut rule can be applied.

P R

dc
6` P R

4.4 Erasure and Insertion of a Line of Identity

Surprisingly, usually this rule is not explicitely given, neither in Peirce’s
manuscripts, nor in secondary literature. On the other hand, in the usual
semantics of FOL, onlynon-emptymodels are considered. For this reason, it
must be possible to derive the EG which expresses that there is an object, i.e.,
the EG which contains only a single LoI.

Peirce considered only nonempty universes of discourse as well. In in
his ‘Prolegomena to an Apology For Pragmaticism’, he states in 4.567 ‘that,
since a Dot merely asserts that some individual object exists, and is thus one
of the implications of the Blank, it may be inserted in any Area.’ This principle
is not stated as an explicit rule, but as a principle ‘the neglect of which might
lead to difficulties.’ A LoI is in Peirce’s understanding composed of dots.
In 4.474, Peirce writes: ‘Now every heavily marked point, whether isolated
or forming a part of a heavy line, denotes an indesignate individual. [. . .]
A heavy line is to be understood as asserting, when unenclosed, that all its
points denote the same individual.’ As an isolated LoI denotes, like a dot, the
existence of some object, we see that the rule of erasing or inserting isolated
LoIs in arbitrary contexts is in accordance with Peirce.

5 Rearranging Ligatures

The correct understanding of the iteration-rule allows us to re-arrange liga-
tures in many ways. In the following, this will be exemplified.

13



The main idea in all following examples is to iterate or deiterate a portion
of a ligature in a context. If a portion of a ligature is iterated, the rule of
iteration allows to connect endpoints of the iterated copy with arbitrary points
of the ligature. In Fig. 4, each graph is derived from its predecessor with
single application of the iteration-rule.

Q

S
`

Q

S
`

Q

S
`

Q

S
`

Q

S

Figure 4: Iterating a part of a ligature within a context

So we see that within a context, a ligature may be extended in arbitrary
ways. Vice versa, with the deiteration-rule, we can remove arbitrary parts of
a ligature within a context (we can derive each graph in the example from
its successor with the deiteration-rule). This is always possible, as long as
the remaining ligature keeps connected. But of course, it is not possible to
tear a ligature apart with the deiteration-rule. The next example is not valid
application of the deiteration-rule, and in fact, these graphs have different
meanings.

Q

S

deit
6`

Q

S

With the possibility to extend and retract ligatures within a context, it is
particularly possible to “move branches along a ligature within a context”.
In order to understand this phrase, consider the third and fourth graph on
page 10 we have obtained fromG with the iteration rule. These graphs differ
only in the fact that the branch P of the ligature in the innermost cut
is attached at different positions to that ligature. These graphs can be easily
transformed into each other, as the following proofs shows.

P R

Q

P

It.1.
`

P R

Q

P

Deit.2.
`

P R

Q

P

The proof uses only iteration and deiteration and may therefore be carried out
in both directions. The following theorem (‘theorem’ should not be under-
stood in a mathematical sense) summarizes the discussion so far.
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theorem 5.1 Within a context, we can rearrange any part of a ligature in
arbitrary ways, as long as it keeps connected.

So far, we have considered ligatures being wholly placed within the area
of a specific context. Moreover, we have the possibility to rearrange in some
sense ligatures when they cross cuts. In order to see an example, we come
back to the graphsG2 andG3 of the last section. These graphs differ only in
the place of the branching point, which has essentially moved from the SoA
inside the cut. Such a transformation is always possible, as the following
theorem shows.

theorem 5.2 In Peirce’s graphs, we have:

A device like can be replaced by and vice versa.

(in this representation, we have sketched a segment of a cut line, and we
agree that the whole device is part of a graph, placed in an arbitrary context).
With the rules iteration/deiteration and the possibility to move branches along
ligatures, we can now prove theorem 5.2.
Let a graph be given where the leftmost device of the
theorem occurs.

First, we iterate a part of the ligature of the outer cut
into the inner cut, and connect it:

Then, we move the lower branch in the inner cut:

The iteration of the first step is reversed with the
deiteration-rule:

The ‘loose’ end of the ligature is retracted with the
deiteration-rule. We obtain the right device, which is
the device we wanted to derive (drawn slightly differ-
ent).

q.e.d.
But it has to be emphasized that we cannot move branching points in ar-

bitrary ways along cuts: It isnot possible to replace

A device like by (or vice versa).
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In fact, the following graphs have different meanings, as only the right graph
holds in the given model.

S
T P and PS

T

S T P

a ×
b ×

6 Ligatures in the Reading of Graphs

In the readings of the graphs of Fig. 1, we assigned to each ligature a single
object. To put it more formally: We can provide translations of the EGs to
formulas of FOL where we assign to each ligatureonevariable. In fact, we
can translate the EGs of Fig. 1 to FOL as follows:

∃x.∃y.(cat(x)∧on(x,y)∧mat(y))

∃x.(male(x)∧human(x)∧A f rican(x))

∃x.(man(x)∧¬willdie(x))

¬∃x.(cat(x)∧ pet(x)∧¬(∃y : ownedby(x,y)∧¬lonely(x)))

On the other hand, for the graphs of Fig. 2, we have to assign more than one
variable to the ligatures. The translations to FOL are:

∃x.∃y.(issun(x)∧ issun(y)∧x 6= y)

∃x.∃y.∃u.∃v.(blue(x)∧ large(y)∧ red(u)∧small(v)∧¬(x = y∧u = v))

∃x.∃y.∃z.(S(x)∧P(y)∧T(z)∧¬(x = y = z))

In all graphs of Fig. 2, a part of the ligature traverses a cut (i.e., there is
a cut c and a heavily drawn linel which is part of the ligature such that
both endpoints ofl touchc and the remainder ofl is enclosed byc). Such
a device denotes non-identity of the endpoints ofl , thus a ligature contain-
ing such a devicel usually denotes different objects. But if such a device
does not occur, it has been shown in Dau (2006b) that the ligature denotes
a single object. A ligaturel such that no part ofl traverses any cut will be
called SINGLE-OBJECT-LIGATURE (SO-LIGATURE). Note that so-ligatures
may contain cycles (see the graphs in Fig. 4) or may cross a cut more than
once (see the graphsG2 andG3 of section 4.2).

The clue to read arbitrary EGs is to break up non-so-ligatures into several
so-ligatures by adding additional equality relations. Peirce writes in Peirce
and Sowa (2000) that the second graph of Fig. 1 ‘is a graph instance com-
posed of instances of three indivisible graphs which assert ‘there is a male’,
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‘there is something human’ and ‘there is an African’. The syntactic junc-
tion or point of teridentity asserts the identity of something denoted by all
three.’ That is, we can replace the branching point by a relation=3, termed
TERIDENTITY, expressing that the objects denoted by the attached LoIs are
all identical. The corresponding graph is the leftmost graph below (in the
diagrams, the indices on the equality-signs are omitted). Even simpler, when
two LoIs meet in a point, we can replace this point by the usual binary iden-
tity relation=2. So, if an EG with a non-so-ligature is given, we can replace
some branching points by=3 and some non-branching points by=2 until the
non-so-ligature is split up into several so-ligatures. The graphs we obtain this
way from the graphs of Fig. 2 are the second, third and fourth graphs shown
below. Now we have two, four and three so-ligatures, respectively, thus the
above translations of these graphs to FOL need two, four and three variables.

male

African
human is sun is sun

large
small

blue
red

S

TP

Replacing branching points by=3 has already been carried out by Zeman
in Zeman (1964) in his translation of EGs to formulas. But Zeman replaces
eachbranching point by an identity relation, and moreover, healwayssplits
heavily drawn lines if they cross a cut more than once (by adding=2). Thus
in nearly all cases, Zeman translation uses far more variables than necessary,
and the resulting formulas are hard to read.

This has been thoroughly discussed by Shin in Shin (2002). She correctly
points out that Zeman’s reading algorithm for existential graphs is compre-
hensive and yields correct results (in contrast to Robert’s reading in Roberts
(1973), as she argues), but as Shin writes, ‘Zeman’s reading fails to capture
Peirce’s motivation for the use of lines [of identity]’, and it usually yields a
‘ translation that looks more complicated than the original graph’. A main
reason for her criticism is the ‘mismatch between the number of lines in a
graph and the number of the variables in the translation’. Shin tries to over-
come this problem in her reading algorithm, but unfortunately, sometimes
she assignstoo fewvariables to ligatures, i.e., her reading algorithm is flawed
(see Dau (2006a)). With the observation that so-ligatures denote single ob-
jects, it is possible to improve Zeman’s reading of EGs, as well as to fix Shin’s
reading of EGs. The latter is described in Dau (2006a). In the following, a
translation of graphs to formulas in the style of Zeman is described.

We translate each EGG to a formulaΦ(G). In the formulas, we use
the existential quantifier ‘∃ and the junctors ‘∧’ and ‘¬’. Moreover, to ease
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matters, let us agree that we have a further symbol> standing for ‘true’ (this
is helpful for translating empty cuts).

Let G be an EG. Each ligaturel which is not attached to any predicate
can be, by successively applying the deiteration rule, retracted to an isolated
LoI (which is directly enclosed by the contextc in which l started), and this
isolated LoI can be removed with the ‘Erasure and Insertion of a LoI’ rule.
This transformation can be carried out in both directions, i.e., removing a
ligature which is not attached to any predicate does not change the meaning
of the graph. In the following, we can therefore assume that each ligature
is attached to at least one predicate (without this restriction, the following
algorithm could yield mal-formed formulas).

Now the following algorithm describes howΦ(G) is obtained.

1. Transform all ligatures into so-ligatures by appropriately adding rela-
tion signs ‘=’.

2. Assign a new variable to each so-ligature.

3. Now we assign to each predicate (occurrence)Pof Ga formulaΦ(G,P)
as follows: LetP be attached to ligaturesl1, . . . , ln, respectively, and let
α1, . . . ,αn be the variables we assigned tol1, . . . , ln. Then letΦ(G,P) :=
P(α1, . . . ,αn).

4. Now we assign inductively to each contextc in G a formulaΦ(G,c).
If the area ofc is empty, we simply setΦ(G,c) :=>. Otherwise let

Φ(G,c) := ∃α1 . . .∃αk : (Φ(G,P1)∧Φ(G,P2)∧ . . .∧Φ(G,Pl )
∧¬Φ(G,c1)∧¬Φ(G,c2)∧ . . .∧¬Φ(G,cm))

where

• α1, . . . ,αk are the variables which are assigned to the ligatures
which start in the area ofc,

• P1, . . . ,Pl are the occurrences of predicates which are directly en-
closed byc, and

• c1, . . . ,cm are the cuts which are directly enclosed byc.

5. Finally we setΦ(G) := Φ(G,SoA).

The formulas at the beginning of this section are examples of this readings
(in these formulas, we used the common infix notation for identity, i.e. we
write x = y instead of= (x,y) andx = y = z instead of=3 (x,y,z)).

18



Below, a sample graph for Zeman’s reading and the herein presented al-
gorithm is provided. In the middle, the ligatures of the graph are split due to
Zeman’s algorithm, on the right, this is done according to our algorithm. The
corresponding translationsfZ of Zeman andfD of Dau show the difference.

R
P
S

T
R

T5

6 7

43P
S

1

2 R
P
S

T21

fZ = ∃x1,x2,x3,x4 : [P(x1)∧S(x2)∧x1 = x2∧x2 = x3∧T(x4)∧
¬∃x5,x6,x7 : (x3 = x6∧x6 = x5∧x5 = x7∧x7 = x4∧¬R(x6,x7))]

fD = ∃x1,x2 : [P(x1)∧S(x1)∧T(x2)∧¬(x1 = x2∧¬R(x1,x2))]

Notes
1 ‘Sep’ is another word Peirce used for cut.
2 Both papers argue for a distinction between structures (types) and their mathe-

matical representations (tokens), but in Dau (2004) it is argued that only the types
need mathematical definitions, whereas Howse et al. (2002) propagates that this
holds both for types and tokens.

3 In Dau (2006b), first subgraphs are defined on the type level, and a discussion
on graphs and their diagrams yields that each subgraph can be represented by
a subgraph-line insomediagram, and vice versa, each subgraph-line in a given
diagram gives raise to a subgraph.
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