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Introduction: The Importance of Prior Knowledge in Reasoning 
and Learning from Instances 

If an agent is to apply knowledge from its past experience to a present 
episode, it must know what properties of the past situation can justifiably 
be projected onto the present on the basis of the known similarity between 
the situations. The problem of specifying when to generalize or reason by 
analogy, and when not to, therefore looms large for the designer of a learning 
system. One would like to be able to program into the system a set of criteria 
for rule formation from which the sy'stem can correctly generalize from data 
as they are received. Otherwise, all of the necessary rules the agent or 
system uses must be programmed in ahead of time, so that they are either 
explicitly represented in the knowledge base or derivable from it. 

Much of the research in machine learning, from the early days when 
the robot Shakey was learning macro-operators for action [29J to more re
cent work on chunking [32] and explanation-based generalization [27], has 
involved getting systems to learn and represent explicitly rules and relations 
between concepts that could have been derived from the start. In Shakey's 
case, for e:l;{ample, the planning algorithm and knowledge about operators 
in STRIPS were jointly sufficient for deriving a plan to achieve a given goal. 
To say that Shakey "learned" a specific sequence of actions for achieving 
the goa1 means only that the plan was not derived until the goal first arose. 
Likewise, in explanation-based generalization (EBG), explaining why the 
training example is an instance of a concept requires knowing beforehand 
that the instance embodies a set of conditions sufficient for the concept to 
apply, and chunking, despite its power to simplify knowledge at the appro
priate level, does not in the logician's terms add knowledge to the system. 

The desire to automate the acquisition of rules, without programming 
them into the system either implicitly or explicitly, has led to a good deal 
of the rest of the work in symbolic learning. Without attempting a real 
summary of this work, it can be said that much of it has involved defining 
heuristics for inferring general rules and for drawing conclusions by anal
ogy. For example, Patrick Winston's program for learning and reasoning 
by analogy [43] attempted to measure how similar a source and target case 
were by counting equivalent corresponding attributes in a frame, and then 
projected an attribute from the source to the target if the count was large 
enough. In a similar vein, a popular criterion for enumerative induction 
of a general rule from instances is the number of times the rule has been 
observed to hold. Both types of inference, although they are undoubtedly 
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part of the story for how people reason inductively and are good beuris
tic methods for a. naive system,l are nonetheless frought with logical (a.nd 
practical) peril. In reasoning by analogy, for example, a large number of 
similarities between two children does not justify the conclusion that one 
child is named "Skippy" just because the other one is. First names are not 
properties tha.t can he projected with any plausibility based on the similar
ity in the childrens' appearance, although shirt size, if the right similarities 
are involved, can be. In enumerative induction, likewise, the formation of a 
general rule from a. number of instances of co-occurrence mayor may not be 
justified, as Nelson Goodman's weU:known unprojectible predicate "grue" 
makes very clear [15]. So in generalizing and reasoning by analogy we must 
bring a. good deal of prior knowledge to the situation to tell us whether the 
conclusions we might draw are justified. Tom Mitchell has ca.Ued the effects 
of this prior knowledge in gujding inference the inductive "bias" (26). 

A Logical Formulation of the Problem or Analogy 

Reasoning by analogy may be defined as the process of inferring that a 
conclusion property Q holds of a particular situation or object T (the target) 
from the fact that T shares a property or set of properties P with another 
situation/object S (the source) which has property Q. The set of common 
properties P is the similarity between S and T, and the conclusion property 
Q is projected from S onto T. The process may be summarized schematica.Uy 
as follows: 

P(S) A Q(S) 
P(T) 
Q(T). 

The form of argument defined above is nondeductive, in that its con
clusion does not follow synta.ctica.Uy just from its premises. Instances of 
this argument form vary grea.tly in cogency. As an example, Bob's car and 
Sue's car share the property of being 1982 Mustang GLX V6 hatchbacks, 
but we could not infer that Bob's car is painted red just because Sue's car 
is painted red. The fact that Sue's car is worth about $3500 is, however, a 
good indication that Bob's car is worth about $3500. In the former exam
ple, the inference is not compelling; in the latter it is very probable, but the 
premises are true in both examples. Clearly the plausibility of the conclu
sion depends on information that is not provided in the premises. So the 

lSee the essay by Stuut Russell elsewhere in this volume. 
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justification aspect of the logical problem of analogy, which has been much 
studied in the field of philosophy (see, e.g. [6,19,23,42]), may be defined as 
follows. 

THE JUSTIFICATION PROBLEM: 
Find a criterion which, if satisfied by any particular analogical 
inference, sufficiently esta.blishes the truth of the projected con· 
clusion for the target case. 

Specifically, this may'be taken to be the task of specifying background know}· 
edge that, when added to the premises of the analogy, makes the conclusion 
follow soundly. 

It might be noticed tha.t the analogy process defined above can be bra. 
ken down into a twa.step argument as follows: (1) From the first premise 
P(S) " Q(S), conclude the generalizalion Vz P(z) => Q(z), and (2) instan
tiate the generalization to T and apply modus ponens to get the conclusion 
Q(T). In this process, only the first step is nondeductive, 60 it looks as if 
the problem of justifying the analogy has been reduced to the problem of 
justifying a single--instance inductive generalization. This will in fact be the 
assumption henceforth - that the criteria for reasoning by analogy can be 
identified with those for the induction of a rule from one example. This 
amounts to the assumption that a set of similarities judged sufficient for 
projecting conclusions from the source to the target would remain sufficient 
for such a projection to any target case with the same set of similarities 
to the source. There are clearly differences in plausibility among different 
single· instance generalizations that should be revealed by correct criteria. 
For example, if inspection of a red robin reveals that its legs are longer than 
its beak, a projection of this conclusion onto unseen red robins is plausible, 
but projecting that the scratch on the first bird's beak will be observed on 
a second red robin is implausible. However, the criteria that allow us to dis· 
tinguish between good and bad generalizations from one instance ca.nnot do 
so on the basis of ma.ny of the considerations one would use for enumerative 
induction, when the number of cases is greater than one. The criteria for 
enumerative induction include (1) whether or not the conclusion property 
taken as a predicate is "entrenched" (unlike 'grue', for instance) [15], (2) 
how many instances have confirmed the generalization, (3) whether or not 
there are any known counterexamples to the rule that is to be inferred, and 
(4) how much variety there is in the confirming instances on dimensions 
other than those represented in the rule's antecedent [37]. When we have 
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informa.tion about only a. single instance of a. property pertinent to its as
socia.tion with another, then none of the a.bove criteria. will provide us with 
a. way to teU whether the generaliza.tion is a. good one. Criteria. for gener
alizing from a. single instance, or for reasoning by a.nalogy, must therefore 
be simpler than those required for general enumerative induction. Identify
ing these more specialized criteria. thus seems like a. good place to start in 
elucidating precise rules for induction. 

One approach to the analogy problem has been to rega.rd the conclusion 
as plausible in proportion to the amount of similarity that exists between the 
target and the source (see [251). Heuristic variants of this have been popular 
in research on analogy in a.rtificial intelligence (AI) (see, e.g. [4,43]). Insofar 
as these "similarity-based" methods and theories of analogy rely upon a 
measure over the two cases tha.t is independent of the conclusion to be 
projected, it is easy to see that they fail to account for the differences in 
plausibility among many analogical arguments. For example, in the problem 
of inferring properties of an unseen red robin from those of one already 
studied, the amount of similarity is fixed, namely that both things are red 
robins, but we are much happier to infer that the bodily proportions will 
be the same in both cases than to infer that the unseen robin will also 
have a scratched beak. It is worth emphasizing tha.t this is true no matter 
how well constructed the similarity metric is. Partly in response to this 
problem, researchers studying analogy ha.ve recently adverted to relevance 
as an important condition on the relation between the similarity and the 
conclusion [22,35]. However, to be a. useful criterion, the condition of the 
similarity P being relevant to the conclusion Q needs to be weaker than 
the inheritance rule 'r/z P(x) =? Q(z), for then the conclusion in plausible 
analogies would always follow just by application of the rule to the target. 
Inspection of the source would then be redundant. So a solution to the 
logical problem of analogy must, in addition to providing a justifica.tion 
for the conclusion, also ensure that the information provided by the source 
instance is used in the inference. We therefore have the following. 

THE NON REDUNDANCY PROBLEM: 
The background knowledge that justifies an analogy or single
instance generalization should be insufficient to imply the COD

clusion given information only about the target. The source 
insta.nce should provide new informa.tion about the conclusion. 

This condition rules out trivial solutions to the justification problem. In 
particular, although the additional premise 'r/z P(z) =? Q(x) is sufficient for 
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the validity oC the inference, it does not solve the nonredundancy problem 
and is thereCore inadequate as a general solution to the logical problem of 
analogy. To return to the example oC Bob's and Sue's cars, the nonredun
dancy requirement stipulates that it should not be possible, merely Crom 
knowing that Bob's car is a 1982 Mustang GLX V6 hatchback, and having 
some rules Cor calculating current value, to conclude that the value of Bob's 
car is about $3500-Cor then it would be unnecessary to invoke the informa
tion that Sue's CM is worth that amount. The role of the source analogue 
(or instance) would in that case be just to point to a conclusion which could 
then be verified independently by applying general knowledge directly to 
Bob's car. The nonredundancy requirement assumes, by contrast, that the 
information provided by the source instance is not implicit in other knowl
edge. This requirement is important iC reasoning Crom instances is to provide 
us with any conclusions that could not be inCerred otherwise. As was noted 
above, the rules formed in EBG·like systems are justified, but the instance 
inCormation is redundant, whereas in systems that use heuristics based on 
similarity to reason analogically, the conclusion is not inferrable Crom prior 
knowledge but is also not justified after an examination oC the source. 

There has been a good deal of fruitful work on different methods for 
learning by analogy (e.g., [3,4,5,16,22,43]) in which the logical problem is of 
secondary importance to the empirical usefulness of the methods for partic
ular domains. Similarity measures, for instance, can prove to be a successful 
guide to analogizing when precise relevance information is unavailable, and 
the value of learning by chunking, EBG, and related methods should not 
be underestimated either. The wealth of engineering problems to which 
these methods and theories have been applied, as well as the psychologi
cal data they appear to explain, all attest to their importance for AI. In 
part, the current project can be seen as an attempt to fill the gap between 
similarity-based and explanation-based learning, by providing a way to infer 
conclusions whose justifications go beyond mere similarity but do not rely on 
the generalization being implicit in prior knowledge. In that respect, there 
will be suggestions of methods for doing analogical reasoning. The other, 
perhaps more important, goal of this research has been to provide an un
derlying normative justification for the plausibility of analogy from a logical 
and probabilistic perspective, and in so doing to provide a general form for 
the background knowledge that is sufficient for drawing reliable, nonredun
dant analogical inferences, regardless of the method used. The approach is 
intended to complement , rather than to compete with, other approaches. In 
particular it is not intended to provide a descriptive account of how people 
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reason by analogy or generalize from cases, in contrast to much of the work 
in cognitive psychology to date (e.g., [11,13]). Descriptive theories may also 
involve techniques that are not logically or sta.tistically sound. The hope is 
that, by elucidating what conclusions are justified, it will become easier to 
analyze descriptive and heuristic techniques to see why they work and when 
they fail. 

Determination Rules for Generalization and Analogical Inference 

Intuitively, it seems that a. criterion that simultaneously solves both the 
justification problem and the nonredundancy problem should be possible to 
give. As an example, consider again the two car owners, Bob and Sue, who 
both own 1982 Mustang GLX V6 hatchbacks in good condition. Bob talks 
to Sue and finds out that Sue has been offered $3500 on a. trade·in for her 
car. Bob therefore reasons tha.t he too could get about $3500 if he were to 
trade in his car. Now if we think about Bob's state of knowledge before he 
talked to Sue, we can imagine that Bob did not know and could not calculate 
how much his car was worth. So Sue's information was not redundant to 
Bob. At the same time, there seemed to be a prior expectation on Bob's part 
that, since Sue's car was also a 1982 Mustang GLX V6 hatchback in good 
condition, he could be relatively sure that whatever Sue had had offered to 
her, that would be about the value of his (Bob's) car as well, and indeed 
of any 1982 Mustang GLX V6 hatchback in good condition. What Bob 
knew prior to examining the instance (Sue's car) was some very general but 
powerful knowledge in the form of a determination relation, which turns 
out to be a solution to the justification and nonredundancy problems in 
reasoning by analogy. Specifically, Bob knew that the make, model, design, 
engine-.type, condition and year of a car determine its trade·in value. With 
knowledge of a single determination rule such as this one, Bob does not have 
to memorize (or even conSUlt) the Blue Book, or learn a complicated set of 
rules for calculating car values. A single example will tell him the value for 
aU cars of a particular make, model, design, engine, condition, and year. 

In the above example, Bob's knowledge. tha.t the make, model, design, 
engine, condition, and year determine the value of a car, expresses a de· 
termination relation between functions, and is therefore equivalent to what 
would be called a "functional dependency" in da.ta.base theory {39]. The 
logical definition for function G being functionally dependent on a.nother 
function F is the following [40]: 

(.) Vx,yF(x) = F(y) => G(x) = G(y). 
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In this case, we say that a. function (or set of functions) F functionally 
determines the value offunction(s) G because the value assignment for F is 
associated with a unique value assignment for G. We may know this to be 
true without knowing exactly which value for G goes with a. particula.r value 
for F. If the example of Bob's and Sue's cars (CarB and Cars respectively) 
from above is written in functional terms, as follows: 

Mak,(Cars) = Ford 
Model(Cars} = Mustang 
Design(Cars) = GLX 
Engine(Cars) = V6 
Condition(Cars) = Good 
Y,ar(Cars) = 1982 
Va/u,(Cars) = $3500 
Va/u,(CarB) = $3500 

Mak,(CarB) = Ford 
Model(CarB) = Mustang 
Design(CarB) = GLX 
Engine(CarB) = V6 
Condition(CarB} = Good 
Y,ar(CarB) = 1982 

then knowing that the make, model, design, engine, condition, and year 
determine value thus makes the conclusion valid. 

Another form of determination rule expresses the relation of one predi
cate deciding the truth value of another, which can be written as: 

('*) (If. P(.) => Q(.)) V (If. P(.) => ,Q(.)). 

This says that either all P's are Q's, or none of them are. Having this as
sumption in a background theory is sufficient to guarantee the truth of the 
conclusion Q(T) from P(S) 1\ P(T) 1\ Q(S) , while at the same time requir
ing an inspection of the source case S to rule out one of the disjuncts. It 
is therefore a solution to both the justification problem and the nonredun
dancy problem. We often have knowledge of the form" P decides whether Q 
applies." Such rules express our belief in the rule-like relation between two 
properties, prior to knowledge of the direction of the relation. For example, 
we might assume that either all of the cars leaving San Francisco on the 
Golden Gate Bridge have to pay a toll, or none of them do. 

Other, more complicated formulas expressing determination relations 
can be represented. It is interesting to note that determination cannot be 
formulated as a connective, i.e. a relation between propositions or dosed 
formulas. Instead it should be thought of as a relation between predicate 
schemata, or open formulas. In the sema.ntics of determination presented in 
the next section, even the truth value of a predicate or schema is allowed to 
be a variable. Determina.tion is then defined as a relation between a deter
minant schema and its resultant schema, and the free variables that occur 
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only in the determinant are viewed as the predictors of the free variables 
that occur only in the resultant (the response variables). It is worth noting 
that there may be more than one determinant for any given resultant. For 
example, one's zip code and capitol city are each individually sufficient to 
determine one's state. In our generalized logical definition of determination 
(see the section on "Representa.tion and Semantics") , the forms (.) and (**) 
are subsumed as special cases of a single rela.tion "P determines Q," written 
as P >- Q. 

Assertions of the form" P determines Q" are actually quite common in 
ordinary language. When we say "The IRS decides whether you get a. tax 
refund," or "What school you attend determines what courses are avail
a.ble," we are expressing an invariant relation that reflects a causal theory. 
At the same time, we are expressing weaker informa.tion than is contained 
in the statement that P formally implies2 Q. If P implies Q then P de
termines Q, but the reverse is not true, so the inheritance relation falls out 
as a special case of determination. That knowledge of a determination rule 
or of "relevance" underlies preferred analogical inferences seems transparent 
when one has considered the shortcomings of alternative criteria. like how 
similar the two cases are, or whether the similarity together with our back
ground knowledge logically imply the conclusion. It is therefore surprising 
that even among very astute philosophers working on the logical justifica
tions of analogy and induction, so much emphasis has until recently been 
placed on probabilistic analyses based on numbers of properties [6J, or on ac
counts that conclude that the analogue is redundant in any sound analogical 
argument (e.g., [7]). Paul Thagard and Richard Nisbett [37J speculate that 
the difficulty in specifying the principles that describe and justify inductive 
practice has resulted from an expectation on the part of philosophers that 
inductive principles would be like deductive ones in being capable of being 
formulated in terms of the syntactic structure of the premises and conclu
sions of inductive inferences. When, in 1953-54 Nelson Goodman [15J made 
his forceful argument for the importance of background knowledge in gen
eralization, the Carnapian program of inductive logic began to look less at
tractive. Goodman was perhaps the first to take seriously the role and form 
of semantically-grounded background criteria (called by him "overhypothe
ses") for inductive inferences. The possibility of valid analogical reasoning 
was recognized by Julian Weitzenfeld (41], and Thagard and Nisbett [37J 

2The term 'formal implication' is due to Bertrand Russell and refers to the relation 
between predicates P and Q in the inheritance rule 'h:P(l:) => Q(l:). 
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made the strong case for semantic (as opposed to syntactic, similarity. or 
numerica.l.ly-based) criteria for generalization. In the process both they a.nd 
Weitzenfeld a.nticipated the argument made herein concerning determination 
rules. The history of AI a.pproaches to analogy and induction has la.rgely 
recapitulated the stages tha.t were exhibited in philosophy. But the precision 
required for making computational use of determination, and for applying 
related statistical ideas, gives rise to questions a.bout the scope and meaning 
of the concepts that seem to demand a. slightly more formal analysis than 
has appeared in the philosophical literatUIe. In the next section, a general 
form is given for representing determInation rules in first order logic. The 
probabilistic analogue of determination, herein called "uniformity," is then 
defined in the following section, and finally the two notions-logical and 
statistical-are used in providing definitions of the relation of "relevance" 
for both the logical and the probabilistic cases . 

The Representation and Semantics of Determination 

To define the general logical form for determination in predicate logic, we 
need a representation that covers (1) determination of the truth value or 
polarity of an expression, as in example cases of the form "P( x) decides 
whether or not Q(x)" (formula (**) from previous section), (2) functional 
determination rules like (*) above, and (3) other cases in which one expres
sion in first order logic determines another. Rules of the first form require us 
to extend the notion of a first order predicate schema in the following way. 
Because the truth value of a first order formula cannot be a defined function 
within the language, let us introduce the concept of a polar variable which 
can be placed at the beginning of an expression to denote that its truth 
value is not being specified by the expression. For example, the notation 
"iP(x)" can be read "whether or not P(x)," and it can appear on either 
side of the determination relation sign "}-" in a determination rule, as in 

This would be read, "Pt(x) and whether or not P2(x) together jointly de
termine whether or not Q(x)," where it and i l are polar variables. 

As was mentioned above, the determination relation cannot be formu
lated as a connective, i.e. a relation between propositions or dosed formulas. 
Instead, it should be thought of as a. relation between predicate schemata, 
or open formulas with polar variables. For a. first order language L, the set 
of predicate schemata for the language ma.y be characterized as follows. If 
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S is a sentence (closed formula. or wff) of L, then the following operations 
may be applied, in order, to S to generate a predicate schema: 

1. Polar variables may be placed in front of any wffs that are contained 
as strings in 5, 

2. Any object variables in S may be unbound (made free) by removing 
quantification for any part of 5, and 

3. Any object constants in S may be replaced by object variables. 

All of a.nd only the expressions generated by these rules are schema.ta of L . 
To motivate the definition of determination, let us turn to some example 

pairs of schemata for which the determination relation holds. As an example 
of the use of polar variables, consider the rule that, being a. student athlete, 
one's school, year, sport, and whether one is female determine who one's 
coach is and whether or not one has to do sit-ups. This can be represented 
as follows: 

EXAMPLE 1: 

(Athlete(x) A Student(x) A School(x) = 8 

AYear(x) = y A Sport(x) = z A i1Female(x» 
>- (Coach(x) = c A i,Sit-up8(X)). 

As a second example, to illustrate that the component schemata may contain 
quantified variables, consider the rule that, not having any deductions, hav
ing all your income from a corporate employer, and one's income determine 
one's tax rate: 

EXAMPLE 2: 

(Taxpayer(x) A Citizen(x, US)A 
(..,3d Deductions(x, d» A (Vi Income( i, x) ~ 
Corporate(i» A PersonaIIncome(x) = p) 

>- (TaxRate(x) = r) . 

In each of the above examples, the free variables in the component 
schemata ma.y be divided, relative to the determination rule, into a case 
set ~ of those that appear free in both the determinant (left-hand side) and 
the resultant (right-hand side) , a. predictor set 11.. of those that appear only 
in the determinant schema, and a response set ~ of those that appear only 
in the resultant . These sets are uniquely defined for each determination 

11 



rule. In particular, for example 1 they are ~ = {x}, 1'. = {8,y,z,i1}, and 
;. = {c,i,}; and for example 2 they are" = {x}, 1£ = {p}, and;. = {r}. In 
general, for a. predicate schema E with free variables ~ and }I.. and a predicate 
schema X with free variables ~ (shared with E) and ~ (unshared), whether 
the determination relation holds is defined as follows: 

E [", l!l '" X [,t, .] 
iff 

Vll, ;.(3" E[", l!l A X[",.]) => (V" E[,t, lil => X[,t,.]). 

For interpreting the right-hand side of this formula, quantified polar 
variables range over the unary Boolean operators (nega.tion and affirmation) 
as their domain of constants, and the standard Tarskian semantics is a.pplied 
in evaluating truth in the usual way (see [10]). This definition covers the full 
range of determination rules expressible in first order logic, and is therefore 
more expressive than the set of rules restricted to dependencies between 
frame slots, given a fixed vocabulary of constants. Nonetheless, one way to 
view a predicate schema is as a frame, with slots c.orresponding to the free 
variables. 

Using Determination Rules in Deductive Systems 

Determination rules can provide the knowledge necessary for an agent or 
system to reason by analogy from case to case. This is desirable when the 
system builds up a memory of specific cases over time. H the case descrip· 
tions are thought of as conjunctions of well-formed formulas in predicate 
logic, for instance, then questions about the target case in such a. system 
can be answered as follows: 

1. Identify a resultant schema. corresponding to the question being asked. 
The free variables in the schema are the ones to be bound (the response 
variables .i.). 

2. Find a determination rule for the resultant schema, such that the 
determinant schema. is instantiated in the target case. 

3. Find a. source case, in which the bindings for the predictor variables 1t 
in the determinant schema are identical to the bindings in the target 
case for the same variables. 
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4. If the resultant schema is instantia.ted in the source case, then bind 
the shared free variables £ of the resultant schema to their values in 
the target case's instantiation of the determ.inant schema, and bind 
the response variables to their values in the source case's instantiation 
of the resultant schema. The well-formed formula thus produced is a 
sound conclusion for the target case. 

Such a system might start out with a knowledge base consisting only of 
determination rules that tell it wha.t informa.tion it needs to know in order 
to project conclusions by analogy, and as it acquires a. larger and larger 
database of cases, the system can draw more and more conclusions based 
on its previous experience. The determination rule also provides a. matching 
constraint in searching for a source case. Rather than seeking to maximize 
the similarity between the source and the target, a system using determina~ 
tion rules looks for a case that matches the target on predictor bindings for 
a determinant schema, which mayor may not involve a long list of features 
that the two cases must have in common. 

A second use of determination rules is in the learning of generalizations. 
A single such rule, for example that one's species q.etermines whether one 
can fly or not, can generate a potentia.lly infinite number of more specific 
rules about which species can fly and which cannot, just from collecting case 
data on individual organisms that includes in each description the species 
and whether that individual can fly. So the suggestion for machine learn~ 
ing systems that grows out of this work is that systems be programmed 
with knowledge about determination rules, from which they can form more 
specific rules of the form 'Ix P(x, Y) => Q(x, Z). Determination rules are 
a very common form of knowledge, perhaps even more 50 than knowledge 
about strict implication relationships. We know that whether you can carry 
a thing is determined by its size and weight, that a student athlete's coach 
is determined by his or her school, year, sport, and sex. In short, for many, 
possibly most, outcomes about which we are in doubt, we can name a set of 
functions or variables that jointly determine it, even though we often cannot 
predict the outcome from just these values. 

Some recent AI systems can be seen to embody the use of knowledge 
about determination relationships (e.g., see [l,5,31}). For example, Edwina 
IDssland and Kevin Ashley's program for reasoning from hypothetical caseS 
in law represents cases along dimensions which are, in a loose sense, deter~ 
minants of the verdicts. Likewise, research in the psychology and theory of 
induction and analogy (see, e.g. [30]) has postulated the existence of knowl~ 
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edge about the "homogeneity" of populations along different dimensions . In 
all of this work, the reality that full, indefeasible determination rules cannot 
be specified for complicated outcomes. and that many of the determination 
rules we can think of have exceptions to them. has prompted a view toward 
weaker relations of a partial or statistical nature [33]. and to determination 
rules that have the character of defaults (34]. The extension of the deter· 
mination relation to the statistical case is discussed in the next section on 
uniformity. 

A third use of determination rules is the representation of knowledge in 
a more compact and general form than is possible with inheritance rules. 
A single determination rule of the form P(x. y) >- Q(x, z) can replace any 
number of rules of the form "'Ix P(x, Y) => Q(x, Z) with different constants 
Y and Z. Instead of saying, for instance, "Donkeys can't fly," "Humming· 
birds can fly," "Giraffes can't fly," and so forth , we can say "One's species 
determines whether or not one can fly," and allow cases to build up over 
time to construct the more specific rules. This should ease the knowledge 
acquisition task by making it more hierarchical. 

Uniformity: The Statistical Analogue of Determination 

The problem of finding a determining set of variables for predicting the 
value of another variable is similar to the problem faced by the applied 
statistician in search of a predictive model. Multiple regression, analysis of 
variance, and analysis of covariance techniques all involve the attempt to fit 
an equational model for the effects of a given set of independent (predictor) 
variables on a dependent (response) variable or vector (see [21,28]). In each 
case some statistic can be defined which summarizes that proportion of the 
variance in the response that is explained by the model (e.g. multiple R2, 
w2 ). In regression, this statistic is the square of the correlation between 
the observed and model-predicted values of the response variables, and is, 
in fact, often referred to as the "coefficient of determination" [211. When 
the value of such a statistic is 1, the predictor variables clearly amount to a 
determinant for the response variable. They are, in such cases, exhaustively 
relevant to determining its value in the same sense in which a particular 
schema determines a resultant in the logical case. But when the proportion 
of the variance explained by the model is less than 1, it is often difficult to 
say whether the imperfection of the model is that there are more variables 
that need to be added to determine the response, or that the equational form 
chosen (linear, logistic, etc .) is simply the wrong one. In low dimensions 
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(one or two predictors). a residual plot may reveal structure not captured 
in the model, but at higher dimensions this is not really possible, and the 
appearance of randomness in the residual plot is no guarantee in any case. 
So, importantly, the coefficient of determination and its analogues measure 
not the predictiveness of the independent variables for the dependents, but 
ra.ther the predictiveness of the model. This seems to be an inherent problem 
with quantitative variables. 

If one considers only categorical data, then it is possible to assess the 
predictiveness of one set of variables for determining another. However there 
are multiple possibilities for such a so-called "association measure." In the 
statistics litera.ture one finds three types of proposals (or such a. measure, 
tha.t is, a measure of the dependence between variables in a k·way con· 
tingency table of count data. Firstly, there are what have been termed 
"symmetric measures" (see (l7,I8]) that quantify the degree of dependence 
between two variables, such as Pearson's index of mean square contingency 
[18]. Secondly, there are "predictiveness" measures, such as Goodman and 
Kruskal's..\ [14), which quantify the proportional reduction in the probability 
of error, in estimating the value of one variable (or function) of an individual, 
that is afforded by knowing the value of another. And thirdly, there are in· 
formation theoretic measures (e.g. [381) that quantify the average reduction 
in uncertainty in one variable given another, and can be intepreted similarly 
to the predictive measures [18]. In searching for a sta.tistic that will play 
the role in probabilistic inference that is pla.yed by determination in logic, 
none of these three types of association measure appear to be what we are 
looking for. The symmetric measures can be ruled out immediately, since 
determination is not a symmetric relation. The predictive and information 
theoretic measures quantify how determined a variable is by another relative 
to prior knowledge about the value of the dependent variable. While this is 
a useful thing to know, it corresponds more closely to what in this paper is 
termed "relevance" (see next section), or the value of the information pro
vided by a varia.ble relative to what we already know. Logical determination 
has the property that a schema can contain some superfluous information 
and still be a determinant for a given outcome; that is, information added to 
our knowledge when something is determined does not change the fact that 
it is determined, and this seems to be a useful property for the statistical 
analogue of determination to ha.ve. 

So a review of existing statistical measures apparently reveals no suit· 
able candidates for what will hereinafter be called the unifoMnity of one 
variable or function given the value of another, or the statistical version of 
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the determination relation. Initially we might be lid simply to identify the 
uniformity of a function G given another function F with the conditional 
proba.bility: 

Pr( G(z) = G(y) I F(z) = F(y)} 

for randomly selected pairs % and y in our population. Similarly, the unifor
mity of G given a. pa.rticular value (property or category) P might defined 
as: 

Pr( G(x) = G(y) I P(z) " P(y)}, 

and permutations of values a.nd variables in the arguments to the uniformity 
function could be defined along similar lines. This possibility is adverted to 
by Thagard and Nisbett [37]. though they are not concerned with exploring 
the possibility seriously. IT the uniformity statistic is to underlie our confi
dence in a particular value of G being shared by additional instances that 
share a. particular value of F, where this latter value is newly observed in 
our experience, then it seems that we will be better off, in calculating the 
uniformity of G given F, if we conditionalize on randomly chosen values of 
F, and then measure the probability of a match in values for G, rather than 
asking what is the probability of a match on G given a match on F for a 
randomly chosen pair of elements in our past experience, or in a population. 

An example should illustrate this distinction and its importance. If we 
are on a desert island and run across a bird of a species unfamiliar to us (say, 
"shreebles," to use Thagard and Nisbett 's term) and we further observe that 
this bird is green, we want the uniformity statistic to tell us, based on our 
past experience or knowledge of birds, how likely it is that the next shreeble 
we see will also be green. Let us say, for illustration, that we have experience 
with ten other species of birds, and that among these species nine of them 
are highly uniform with respect to color, but the other is highly varying. 
Moreover, let us assume that we have had far greater numerical exposure to 
this tenth, highly variable species, than to the others, or that this species 
(call them "variabirds") is a lot more numerous generally. Then if we were 
to define uniformity as was first suggested, sampling at random from our 
population of birds, we would attain a much lower value for uniformity than 
if we a.verage over species instead, for in the latter case we would have high 
uniformities for all but one of our known species and therefore the high 
relative population of variabirds would not skew our estimate. Intuitively 
the latter measure, based on averaging over species ra.ther than individuals 
in the conditional, provides a better estimate for the probability that the 
next shreeble we see will be green. The important point to realize is that 
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there are multiple possibilities for such a statistic, and we should choose the 
one that is most appropriate for what we want to know. For instance, if 
the problem is to find the probability of a match on color given a match 
on species for randomly selected pairs of birds, then the former measure 
would clearly be better. Another factor that plays in the calculation when 
we average over species is the relative confidence we have in the quality of 
each sample, i.e. the sample size for each value of F . We would want to 
weigh more heavily (by some procedure that is still to be specified) those 
values for which we have a good sample. Thus the uniformity statistic for 
estimating the probability of a match given a new value of F would be the 
weighted average, 

1 p 

U(G I F) = - L:w;Pr{ G(z) = G(y) I F(z) = F(y) = Pd, 
P i=1 

where p is the number of values Pi of F for which we have observed instances 
and also know their values for G. In the absence of information about the 
relative quality of the samples for different values of F, all of the weights Wi 

would equal 1. 
How might we make use of such a statistic in learning and reasoning? 

Its value is that, under the assumption that the uniformity of one function 
given another can be inferred by sa.mpling, we can examine a relatively small 
sample of a population, tabulate data on the subsets of values appearing in 
the sample for the functions in question , and compute an estimate of the ex
tent to which the value of one function is determined by the other. This will 
in turn tell us what confidence we can have in a generalization or inference 
by analogy based on a value for a predictor function (variable) co-occurring 
with a value for a response function, when either or both have not been ob
served before. The experience of most people in meeting speakers of foreign 
languages provides a good example. In the beginning, we might think, based 
on our early data, that one's nationality determines one's native language. 
But then we come across exceptions- Switzerland, India, Canada. We still 
think that native language is highJy uniform given nationality, however, be
cause its conditional uniformity is high. So in coming across someone from a 
country with which we are not familiar, we can assume that the probability 
is reasonably high that whatever language he or she speaks is likely to be the 
language that a randomly selected other person from that country speaks.3 

'r am indebted to Stuart RUMell Cor this example, and Cor the .uggea:tion oC the term 
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Relevance: Logical and Statistical Definitions for the Value of In
formation 

The concepts of determination and uniformity d-efined above can be used 
to help answer another common question in learning and problem solving. 
Specifically, the question is, how should an agent decide whether to pay at
tention to a given variable? A first answer might be that one ought to attend 
to variables that determine or suggest high uniformity for a given outcome of 
interest. The problem is that both determination and uniformity fail to teU 
us whether a given variable is nece8sary for determining the outcome. For 
instance, the color of Smirdley's shirt determines how many steps the Statue 
of Liberty has, as determination has been defined, because the number of 
steps presumably does not change over time. As another example, one's 
zip code and how nice one's neighbors are determine what state one lives 
in, because zip code determines state. This property for determination and 
uniformity is useful because it ensures that superfluous facts will not get in 
the way of a sound inference. But when one's concern is what information 
needs to be sought or taken into account in determining an outcome, the 
limits of resource and time dictate that one should pay attention only to 
those variables that are relevant to determining it. 

The logical relation of relevance between two functions F and G may be 
loosely defined as follows: F is relevant to determining G if and only if F is 
a necessary part of some determinant of G. In particular, let us say that 

F is relevant to determining G iff there is some set of functions 
D such that (I) FED, (2) D ~ G, and (3) D - {F} does not 
determine G." 

We can now ask, for a given determinant of a function, which part of it is 
truly relevant to the determination, and which part gives us no additional 
information. Whether or not a given function has valueS to us in a given 
situation can thus be answered from information about whether it is relevant 
to a. particular goal. Relevance as here defined is a special case of the 
more general notion because we have used only functional determination 
in defining it. Nonetheless, this restricted version captures the importa.nt 

'uniformity'. The definition of "paxtitJ. determination" given by Rusadl in [33] correspond, 
to the ,pecial cue of Uniformity in which tbe weight. axe each 1. 

tThis definition CaD euily be ausmented to cover the relevaDce of let. of fundio .. , 
aDd values, to othera. 

~'Value' u used here refen only to uefuinesa for purpoeet of inference. 
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properties of relevance. Devika. Subramanian and Michael Genesereth [36] 
have recently done work demonstrating that knowledge about the ifTelevance 
of, in their examples, a particular proposition, to the solution of a logical 
problem, is useful in reformulating the problem to a more workable version 
in which only the aspects of the problem description that are necessary to 
solve it are represented. In a. similar vein, Michael Georgeff has shown that 
knowledge about independence a.mong subprocesses can eliminate the frame 
problem in modeling an unfolding process for planning [12]. Irrelevance and 
determination are dual concepts, and it is interesting that knowledge in both 
forms is important in reasoning. 

Irrelevance in the statistical case ca.n, on reflection, be seen to be related 
to the concept of probabilistic independence. In probability theory, an event 
A is said to be independent of an event B iff the conditional probability of 
A given B is the same as the marginal probability of A. The relation is 
symmetric. The statistical concept of irrelevance is a. symmetric relation as 
defined in this paper. The definition is the following: 

F is (statistically) irrelevant to detennining G jff 
U( G(z) = G(y) 1 F(x) = F(y)} = Pr( G(z) = G(y)}. 

That is, F is irrelevant to G if it provides no information about the value of 
G. For cases when irrelevance does not hold, one way to define the relevance 
of F to G is as follows: 

R(F,G) = 1 U( G(z) = G(y) 1 F(x) = F(y)} - Pr( G(z) = G(y)} I. 

That is, relevance is the absolute value of the change in one's information 
about the value of G afforded by specifying the value of F. Clearly, if the 
value of G is known with probabilly 1 prior to inspection of F then F cannot 
provide any information and is irrelevant. If the prior is between 0 and 1, 
however, the value of F may be highly relevant to determining the value of 
G. It should be noted that relevance has been defined in terms of uniformity 
in the statistical case, just as it was defined in terms of determination in 
the logical case. The statistic of relevance is more similar to the predictive 
association measures mentioned in the last section for categorical data than 
is the uniformity statistic. As such it may be taken as another proposal 
for such a. measure. Relevance in the statistical case gives us a continuous 
measure of the value of knowing a pa.rticuiar function, or set of functions, 
or of knowing that a property holds of an iIidividuaJ, for purposes of de
termining another variable of interest. Knowledge a.bout the relevance of 
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variables can be highly useful in reasoning. In particular, coming up with 
a set of relevant functions, variables, or values for determining an outcome 
with high conditional uniformity should be the goal of an agent when the 
value of the outcome must be assessed indireetly. 

Conclusion 

The theory presented here is intended to provide normative justifications for 
conclusions projected by analogy from one case to another, and for general
ization from a case to a rule. The lesson is not that techniques for reasoning 
by analogy must involve sentential representations of these criteria in order 
to draw reasonable conclusions. Rather it is that the soundness of such con
dusions, in either a logical or a probabilistic sense, can be identified with the 
extent to wltic.h the corresponding criteria (determination and uniformity) 
actually hold for the features being related. As such it attempts to answer 
what has to be true of the world in order for generalizations and analogical 
projections to be reliable, irrespective of the techniques used for deriving 
them. That the use of determination rules without substantial heuristic 
control knowledge may be intractable for systems with large case libraries 
does not therefore mean that determination or uniformity criteria are of no 
use in designing such systems. Rather, these criteria provide a standard 
against which practical tecltniques can be judged on normative grounds. At 
the same time, knowledge about what information is relevant for drawing a 
conclusion, either by satisfying the logical relation of relevance or by being 
significantly relevant in the probabilistic sense, can be used to prune the 
factors that are examined in attempting to generalize or reason by analogy. 

As was mentioned earlier, logic does not prescribe what techniques will 
be most useful for building systems that reason by analogy and generalize 
successfully from instances, but it does teU us what problem such techniques 
should solve in a tractable way. As such, it gives us what David Marr [241 
called a "computational theory" of case-based reasoning, that can he applied 
irrespective of whether the (in Marr's terms) "algorithmic" or "implemen
tational" theory involves theorem proving over sentences [9J or not. A full 
understanding of how analogical inference and generalization can be per
formed by computers as well as it is performed by human beings will surely 
require further investigations into how we measure similarity, how situations 
and rules are encoded and retrieved, and what heuristics can be used in pro
jecting conclusions when a valid argument cannot be made. But it seems 
that logic can teU U8 quite a lot about analogy, by giving us a standard for 
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evaluating the truth of its conclusions, a general form for its justification, 
and a language for distinguishing it from other forms of inference. More
over, analysis of the logical problem makes clear that an agent can bring 
background knowledge to bear on the episodes of its existence, and soundly 
infer from them regularities that could not have been inferred before. 
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