
.. f

Knowledge Bases and Neural Network Synthesis

Todd Davies
Artificial Intelligence Center

SRI International
:3:33 Ravenswood A venue

Menlo Park, California 9402.5 USA
DAVIES@ALSRI.COM

Prob lem-specific
Information

decompile

BB

compile

NN

Figure 1: Iterative Compiling and Decompiling.

Abstract

We describe and try to motivate our project to build sys
tems using both a knowledge based and a neural network ap
proach. These two appl'oac.lies a.re used at different stages ill
the solu~ion of a. problem, instead of tising knowledge bases
exclusively on some problems, and neural nets exclusively
on others. The knowledge base (KB) is defined first in a
deciarative, symbolic language that is easy to use. It is then
compiled into an efficient neural network (NN) representa
tion, run, and the results from run time and (eventually)
from learning are decompiled to a symbolic description of
the knowledge contained in the network . After inspecting
this recovered knowledge, a designer would be able to modify
the KB and go through the whole cycle of compiling, running,
and decompiling again, as illustrated in Figure 1.

The central question with which this project is concerned
is, t.herefore,

How do we go from a KB to an NN, and back again?

We are investiga.ting this question by building tools consisting
of a l'epertoire of liwguage/translation/network types, (l,nd
trying them on problems in a variety of domains.

1 Features of Neural Networks and
Knowledge-Based Systems

Attempts to build intelligent machines have historically di
vided into two broad types. One has emphasized the use
of recursive programming languages like Lisp and Prolog,
sy mbolic data structures, a.nd the declarative representa.~ion

of knowledge (Webbe!' and Nilsson, 1981) . The other (an
Lhologized in Anderson and Rosenfeld, 1988) has focused on
bounded state machines, mathematical models of neu rill cir
cuits, and statistical learning a.lgorithms. These two schools
of thought are sometimes called "symbolism" and "connec
tionism", respecti vely, or the "knowledge-based" (KB) ap
proach and the "neural networks" (NN) approach.

Some problems appear to be more appropriate applica
tions of one approach or the other. For instance, very high
level reasoning of the kind often performed by experts wi th
lots of book knowledge (e.g., mathematicians, medical doc
tors) seems at present more suited to a KB approach (e.g.,
Buchana.n and Shortliffe, 1984; Bundy, 1983), while low-level
vision and signal-processing tasks appear better for the NN
approach (e.g., Lapedes and Farber, 1987; Mead a.nd 11'1 a
howald, 1988). But there is a la.rge array of problems in
between, such as the more knowledge-intensive perceptual
ta.sks, natural language tasks, and common sense reasoning.
We refer to problems in this general class as "knowledge
intensive problems" or "KIPs." KIPs have been treated as
a battleground, with both KB and NN researchers claiming
that their approach is the best for these tasks.

Some of the enthusias~ for the NN school that ha.s been
rekindled in this decade can be understood as a. response to
disadvantages of the KB approach for which NNs seem to
provide a corresponding advantage. The main advantages of
NNs arc the following.

1. They are fast classifiers. Most fixed weight connec
tionist networks compute an answer for a given set of inputs
very quickly, partly through parallelism (trading space for
time), but mostly through a closed world assumption that
maps every input to an output within tight temporal bounds.

2. They learn. Neural networks can change their weights
and/or connections, which makes them self-modifying pro
grams . This can save labor when it is easier to present a set
of training examples than to program the network or write a
set of rules for solving a problem.

3. They are probabilistic. Neural networks learn a.nd
classify using statistical optimization criteria, so they can
deal well with uncertainty. Specifically, they cope well with
conflicting a.nd incomplete information.

4. They are global. Neural networks' high degree of
connectivit.y 1l13kes them well suited to problems involving a.
great deal of impinging evidence, for example when all of the
data about a situation must be taken into account. N a.tllrally
occurring problems are often of this type, particulary KIPs.

5. They are fault-tolerant. Part of the extra space
and connectivity used by neural networks is informationally
redundant in a way that permits graceful degradation when
parts of the network ma.lfunction or when there is noise in
the inputs.

These advantages of neural networks all address specific
disadvantages often attributed to the KB approach, such as
the slowness of inference, the need for too much labor to ell

ter all the knowledge, the rigidity of binary distinctions, and
the often unrea.listic requirements that problems be nea tly
decomposable and t.ha.t local information maint.ain perfect.
integrity. But neural networks themselves have several prob·
lems associated with them. Specifically,

1. Slow learning. Neural network learning algorithllls

T. Davies 717

slich as back-propagation can take quite long to converge,
alld although efforts to develop faster algorithms are under
I\'~y, there appear to be important limits to these speedups.
The convergence rate depends on specifics of the problem
being worked on (Minsky and Papert, 1988).

2. Spatial combinatorics. NN architectures differ in
their space requirements, but nearly all of them grow quite
ra.pidly with the size of the problem if we try to solve for
the general case, since they usually trade time complexity for
space complexity.

3. Local minima. Neural nets can get trapped in subop
timal states in the space of activation or of weights. Much
of the problem can be eliminated if we choose a judicious
input-output representation, but as the problem gets larger
and more complicated this can be increasingly hard to do,
a.nd it becomes apparent that neural networks fail to elimi
nate the need for careful thinking about the problem.

4. Poor generalization. The network can fail to cor
rectly cla.ssify new input patterns even when it has learned
all of the correct classifications for the training set. This is
an important shortcoming because for problems of reasonable
si ze, it is impossible to present all of the input patterns.

5. Output underdetermination. It is usually not pos
sible to solve a. real problem u.sing input data from just one
sensor or other input source. This underdetermination can
arise for a number of reasons. For instance, the context can be
important, or the input source may be a. limited perceptual
window on the problem, or background information whose
acquisition is separated in time from the current input can
be crucial to a.n interpretation .

The technical efforts to improve neural networks have so
far focused mostly on the first few problems noted above, like
learning speed and network size. Yet these do not appear to
be the most serious barriers to 'the widespread use of neura.l
networks. Moreover, the approaches that have been taken in
trying to solve them (as well as the few efforts undertaken
LO ad dn:s. local minima. and gene ralization) have almost all
been based 0 11 gene.ral properties of networks, e.g. learning
algorithms that a re fas ter in general, simulated annealing al
goriLhms fO l' escaping local minim a, or size considerations
that apply to all problems. It looks as though a great deal of
effort aimed at solving problems in this way could provide us
with algorithms and architectures as generally well-tuned as
possi ble but still prone to serious errors to whi ch people will
be very sensIt ive. These errors would come from those paTLs
of tile pr6blems stated above (in cl udlng part of lhe speed
p l'·obl em , <1 good deal of the size, local minim a, <1ud general
izatioll 11roblel11s, an d possibly all of the underdetermin a ti.oll
problem) which are intrinsically unsolvable using general ap
proaches.

Because the difficulties arising with neural networks de
pend grea.tly on the particular problems to which they are
bein g applied-some problems mapping easily onto an effi
ci ent architecture, a.nd others not-the real solutions to the
gen eral problems with neural networks must vary with the
specific applicatioll, invol ving principles for taking adva.ntage
of what we know aboll t particular tasks to which the networks
will h e applied. T hi s approach requi res us to nse knowJedge
lhat We 11 ave a bou a problem in selecting network st.ructures
and in itia l I'alucs for parameters. In other word s, it requires
that Ive do some initial proglamming of the network. Th is
leads U~ to three additional problems with neural networks
th a.t affect our ability to program and understand (or verify)
them:

G. Lack of locality. The representation of knowledge in
neural networks is global, and this creates problems for build
ing knowledge into them. In general, we cannot simply build

718 PRICAI '90

links between nodes incrementally without worrying about
how such links fit into the entire problem representation.

7. Restrictive syntax. To ensure the nice computational
properties mentioned earlier and to ensure convergence in dy
namic networks, network architectures have restrictions on
the types of connections allowed. Sometimes our knowledge
of evidential relationships simply does not obey such restric
tions, although once expressed it can usually be recast in a
form that does obey them.

8. Semantic obscurity. WJlell we talk a.bou L problems in
ordinary language (or even in a formal symbolic language),
we do not use terms like weights, energy, and the like, so it is
not obvious how to map knowledge so expressed onlo a net
work representation. Hopes for verification procedures also
must rest partially on semantic understanding, since empir
ical tests on a limited set of examples can be risky in real
situations .

Considera.tion of the general problems 1-5 led us to con
clude that we need to make substantial use of our knowledge
about a pa.rticular task and domain, and build it into the net
work 's structure and inillal state. Problem~ 6-8 suggesl LIla!
it may be too difficult to do this directly. Instead It appears
t hat we should make use of tbe I<B a.pproach in some way,
since it is geared toward solvi ng the programmillg alld veri fi
ca.tion problems we have with neural networks. Specifically,
building knowledge bases in a sentential langua.ge gives us
t he following advantages: (a) It gi ves us a convenient way to
enter what we know about the task and domain a whatever
level of detail we seem to have in mind. For instance, we can
say simply that proposition A supports proposition C as we
would in a production system of heuristics or a truth mainte
nance system, without specifying some numerical probability,
or we can specify exact probabilities if we want . (b) It eases
the nonlocality problem (number 6) by giviI}g us 8. way of
stating axioms or const raints somewhat Independent1y, with
the usual concerns a.bout consistency of the knowledge base.
(c) It gives us a much less restrictive, more natural syntax
than the ones required for neural networks, with which we
can set forth the facts of the problem. And (d) it removes us
from the semantic obscurity of neural networks by giving us
a language (chosen from the repertoire of AI knowledge rep
resentation formalisms) with a well-understood semantics .

So the KB approach to AI has a lot to offer as a solu
tion to the problems that plague neural networks, and, as
argued earlier, neural networks nicely complement the KB
approach. In particula.r, networks that overcome the general
difficulties with the NN approach must embody, in their ini
tial configuration, knowledge about the particular tasks they
are to perform, and defining that knowlege in a design phase
is what the KB approach is geared for. At the same time,
the learning capabilities of neural nets lessen the amount of
knowledge that must be defined, and the other features of
neural networks, namely their soft, holistic inferencing, and
run-time speed, help to break down the traditional barriers to
using large knowledge bases for solving real problems. An ob
vious way to combine the approaches would be to define our
knowledge in a KB first, possibly using the AI tools that have
been built over the years such as theorem provers and other
inference engines, and tools for entering knowledge. Then,
when we felt that we had a good theory of the task and its
domain, we could convert the KB into an appropriate neu
ra.l network which would embody the knowledge contained in
the KB. After network learning, we could try to verify the
network for correctness by looking at what knowledge it has
learned, and the easiest way to do this would be to construct
a KB from the NN itself. The difficulty, then, and the main
problem to which this project will be addressed, is

How do we go from a KB to an NN, and back again?

In other words, how can a network be made to embody, or
be interpreted as, declarative knowledge?

David Marr and many others in the cognitive sciences have
noted the usefulness of viewing problems in AI at two levels of
analysis, called by him the "computational level" and the "al
gorithmiclevel" (Marr, 1982)1 The basic idea is that solutions
at the computational level must specify only the constraints
involved in a problem (e.g . enough facts about it to uniquely
determine a solution) without meeting the constraints of re
source availability for carrying out the computation. At this
computational level a theory for solving a problem is like (and
may be literally) a logical theory, i.e. a set of axioms and its
consequential closure. Solutions at the algorithmic level, on
the other hand, must cope with resource constraints as well.
Thus, at this level we must specify how conclusions are to be
drawn from, for example, a set of axioms, and by necessity
some conclusions in the consequential closure will be left out .
fhe resources required for computation at the algorithmic
level can be divided into four kinds : time, space, labor, and
data. In a Turing machine, these correspond to the number of
moves, the amount of tape, the complexity of the finite con
trol, and the length of the inputs .2 Presently in computing
we have, as a rule, less time and labor than we need, and more
space and data than we can use, with a few exceptions. For
the resource requirements of KIPs, the NNs approach seems
well-suited because it is designed to be fast and to learn au
tonomously rather than to be programmed (minimizing time
and labor), while consuming lots of processor power and lots
of data for training (sometimes too much-see the next sec
tion) . But at the computational level, KIPs require lots of
empirically-derived constraints or knowledge to specify a so
lution, so a knowledge-based approach, as its name suggests,
seems appropriate at this level. The idea behind our work
is that designing systems to solve KIPs can be decomposed
in just this way, with the knowledge-based approach and the
neural nets approach operating at different levels and com
plementing one another . The resulting requirement is for a
system that relates the two a~proaches in an approapriate
way.

2 Our Approach: Knowledge Compila-
tion and Recovery

2.1 Describing the Approach

We use declarative languages that are both convenient and
expressive enough to define at least partially the evidential
relationships of a problem. This is the computational level.
At the algorithmic level, we use parallel networks, possibly in
corporating learning, so that the theory defined at the higher
level can be computed as efficiently as possible at run-time
under the requirements for correctness. Learning will ease

IThi. dist inction is really identlca.! to those of Noa.m Chomsky (com
l'e l.Cnce VB. performance), John McCa.rlhy a.nd Pa.trick Ha.yes (epis te
mologica.! V!. heuri stic adequacy), Herbrut Simon (substan t ive VB . pro
cedu ral ra.tionility) , Daniel Dennett (intentional stance VB. subpersonal
stance), Allen Newell (knowledge level VS. symbol level) , a.nd Hector
Levesque (content VB. form) .

'The [our. lesources divide in to two natura.! cluster!, with t he min
imal req uirements for them in a given computalion being (h'c s ubjec\.6
of com plexity and In[ormalion t heory. SplLce and li me (t he subjecu of
compulationi!.l complexi ty theory) ca.n be traded off one for Lhe olher,
<IS can program all(l data (measured by I<olmogorov com plex itx il-nd
Shannon '. en t ropy, rcspectively. in information theory) . In I\ddition ,
the computational requi.rements (space-time) Lyade off ag;linst the infor
m. tion a.! requirements (program-d"t.,,) in '''lLyo thaL u e just beginning
to be stud ied t heoreti cally.

the labor burden thal would ordina rily (al l at the computa
tional level. And relating . he two levels we use procedures
of compilat ion and decom pilation from the language to t he
networks and back again. T he com pile and decompile pro
cedures ueed to be automated because it is of Len far from
transparent what knowledge is embedded in the networks,
even those (like the Pearl networks, see detail below) whose
structure is closely tied to probabilities, and also because the
translation in each direction is generally tedious. This last
fact is caused by the global character of the translation.

We have explored several combinations of language, net
work architecture, and translation. Likewise, in the develop
ment tools we are begi.nning to build, the person attempting
to solve a problem will be gi ven a choice of several higher
level languages for defini ng what he/she knows about the do
main, matched by translation procedures to different network
architectures. This diversity is necessary because different
problems and computing situations require different levels of
convenience and expressiveness , and different cost priorities
for soundness, completeness, time, space, labor, and data.
For instance, the method we have chosen below to illustrate
this approach on the Yale Shooting Problem uses a variant
of first order logic with default rules. The compilation proce
dure then translates statements in this language individually
into constraints on a probability model, finds a particular
probability model by maximizing entropy, and embeds this
model in what Judea Pearl calls a "causal poly tree" for use
at run-time (Pearl, 1988).

Our approach to solving the Yale Shooting Problem (which
differs from Pearl's own solution in Pearl, 1988) does not re
quire learning, but many more complicated problems would.
In fact, one method for solving a problem or building an
efficient knowledge base that would be well served by this
approach is one involving iterative compilation and decom
pilation. We define what we know about a problem as bes t
we can in a language that seems appropriate, ~ompile this
representation into a network, let it do the best it can while
constantly receiving new data to modify itself, and then de
compile to a representation of what it has learned. At this
stage, we could inspect the principles it is applying and see
for ourselves whether they are sufficiently general to apply
to novel inputs , or obviously taking advanta.ge of regulari
ties tha t happened to hold dllcing training but will not apply
la ter on. II t.his lat ter is the case, then we need to modify the
knowledge by hand at the declara ti ve level, recompile, and
try again. Over time, we should achieve a better system by
this type of refinement , and moreover we can be confident
that our solu tions are sufficiently general because we can re
cover explanations from the system.

The development of this methodology for networks that
learn is part of the work in which we are currently engaged,
but we should emphasize that this is an experimental ap
proach. While we feel after careful analysis that this ap
proach can make neural networks work, we really cannot tell
how easy it will be to overcome the inherent problems with
the networks that we listed previously. Our rationale is that
networks cannot work well on large problems unless we pro
vide initial structuring that reflects what we know about the
problem, and knowledge bases large enough to encompass
everything we know about natural language, perception , and
common sense reasoning problems are impossible to build
entirely by hand, let a.lone to run an inference engine over.
So the right method must lie somewhere in the middle, but
it will require much experimentation before we can say just
where. It is possible, for instance, that learning can sol ve
most of the problem for a surprising number of applications,
and only some crude structuring is necessary. Alternatively,

T Davies 719

it may prove unmanageable to use learning until most of the
knoll'ledge that must be defined about a problem is built into
a net.work. These possibilities are what we would lil(e to test,
and the answers will almost certainly depend on what types
of problems we are trying to solve, even within the class we
have called knowledge-intensive.

2.2 An Example of Compilation

To illustrate the approach we are taking, we will present a
step- by-step description of how we might translate the Yale
Shooting Problem , described in a declarative language by a
designer, into a network that will answer questions about
the shooting situation based on the information in the de
scription. To do this, we must choose a specific description
language, target architecture, and translation algorithm. All
of this should make it clearer what kinds of tools we will be
builcling, although we will stop short of actually solving the
problem .

The langua.ge we will use for the high level description is
a variant of the functional predicate calculus that has a de
fault implica.tion operator ("~") which means that the left
hand side provides strong evidence for the right hand side.
The objects in the domain are all time points. The state
ments in this language would be divided into background
knowledge, which applies more generally across situations,
and situational knowledge specific to the case at hand. The
background knowledge would be entered as follows.

"It Loaded(t)&Shoot(t) =:::? Dead(t + 1)
"It Loaded(t) ~ Loaded(t + 1)

VtAlive(t) ~ Alive(t + 1)
"It Dead(t) <==> -,Alive(t)

TJ = To + 1
T2 = TJ + 1

The last two statements express background knowledge about
specific times, like our knowledge that the 18th Century came
before the 19th, and that both have passed. We might think
of the above as already forming part of the knowledge base
before we describe the current situation, which reads as fol
lows.

Loaded(To)

Shoot(Td
Alive(TJ)

Fin al ly, we would enter a query. Since we want to know
whether Fred is dead at time T2 , we would enter

The target archi tecture we will use is Judea Pearl's causal
poly trees (Pearl, 1988). Poly trees have the advantages of a
well-understood semantics (for easy decompilation) and quick
settling. The disadvantages are that the translation (compi
lation) is computa.tiona.lly difficult and that the highly struc
tured nature of the network does not lend itself to flexible
learning. For this problem, we do not require learning and
the number of variables is small enough that we can han
dle a small combinatorial explosion in the translation algo
rit.hm , so poly trees will do fine for us this time. For other
problems, we would ma.ke another choice depending on the
cost priorities specific to the problem. The translation algo
rithm. \\'hich is just one of several we could choose for going

720 PRICAI '90

from logic with defaults to causal poly trees, consists of five
~ j;eps. Fjl's~ we gen rate a. set of equ at ional constrain ts On

the probabili ty model. These are obtained by LranslMing
eadl sla.t~rlenl (ex(;ept for equalities) in the logical des(;rip
lion of backg.l'ound knowledge into a probabili ty equation ,
aJ1d substitu ting known object constants for object varIables
to make all of the probability statements un quantified. We
can also make use of known situational facts (like Shoot(TJ))
and simple definitions (like Dead(T2) <==> -,Alive(T2)) to
simplify the probability constraints, yielding a set that in
cludes following.

Pl'{ -,Loaded(Td V -,Alive(T2)} = 1

Pr{Alive(T2) I Alive(TJ)} = v

Pr{Loaded(Td I Loaded(To)} = v

The global parameter v is a number inside the unit interval
which is determined by the designer. In this case, we will set
it to be 0.9.

The key idea in most of these tra.nslations is to construct a
model from the constraints. A model specifies what happens
for every combination of events expressible in the la.ngua.ge,
in this case probabilistically, and therefore goes beyond the
information in the description. AI researchers have been at
tracted to models as a way of doing tractable reasoning partly
for computational reasons (Levesque, 1986) and partly be
{;ause they appear from introspection to be how we reason
about change ourselves without falling victim to the "Frame
Problem," or the problem of enumerating all that becomes
or remains true or false after an event or action. We 'under
stand what happens when a ball is kicked into a window not
because we run down a list of sentences in our head about
the effects of kicking balls at windows, but because we set up
from the description' some internal picture or model of what
happens. To get a probability model for the Yale Shooting
Problem, we need to infer probabilities that cannot be calcu
lated from the given information merely using the probability
calculus. Instead we find a model that maximizes the prob
abilistic entropy subject to our constraints. To set this up
as a nonlinear optimization problem, we need to divide the
space of possibilities into disjoint events, set up an objective
function for maximizing the entropy of these probabilities,
and add a few constraints that come from probability the
ory. V,'hen this is done, the resulting nonlinear program is
the following (see notational definitions below).

MAXIM IZE - L I(Pr{Lo = i&AJ = j&L j = k&A2 = I})
i,j,k,1

S .T. Pl'{LJ = O} + Pl'{AI = O} - Pr{L1 = 0&A 1 = O} = 1
Pr{Al = 1&A2 = 1}/Pr{A1 = I} = v
Pr{Lo = 1&L1 = l}/Pr{Lo = 1} = v

L: Pr{Lo = i&AJ = j&LJ = k&A2 = I} = 1
i,j,k,1

Vi, j, k, IPr{Lo = i&AJ = j&L1 = k&A2 = I} ~ 0,

where I(x) = x log x, event variables AJ and Lo denote the
propositions Alive(TJ) and Loaded(To), and so forth, and
i, j, k, and I range over {O, I} and denote the truth (1) or
falsity (0) of the event variable. The last two constrai~ts
come from probability theory. The solution to the nonlIn
ear program is a probability model which can then be used
to generate a ca.usal poly tree for answering queries. We
first decompose the probability distribution P(Lo, AJ , LJ, A2)
into a product of probabilities using the chain rule for con
junction. When all conditional independencies are taken
into acco unt, with the event variable order we have been

4
I

I

.... ~

(1,0)

P(at)

Figure 2: Causal Poly tree for the Yale Shooting Problem

using, the distribution can be rewritten as the product
P(Lo)P(A1)P(L l I Lo)P(A2 I Ll,Ad· Applying Pearl's al
gorithm for constructing Bayesian networks, this genera.tes
the tree shown in Figure 2. Each node has associated with
it two parameters, 71 (below the node) a.nd >. (above the
node). If we solve the nonlinear program given above (us
ing, say, the SQP method of optimization employed in the
NPSOL program (Gill et aI., 1986) and provide the evidence
that Loaded(To) and Alive(T1), then the network concludes
that Pr{Alive(T2) I Loaded(To)&Alive(Tt)} = 0.5. In other
words, we have not provided sufficient information to say that
It is more likely Lhat tile person died than that the gull was
unloaded. At thjs point, we can change the knowledge base
of statements to ma,ke this fact clear, and iterate through
the compilation aga.in. The details of the network updat
ing algorithm and the parameter assignments are too com
plicated to present in this paper, but are given in section
4.3 of Judea Pearl's book (Pearl, 1988). The parameters can
ollly be fully determined once we have a complete probability
model, thus making necessary the solution of the maximum
entropy problem. However , because Ute maximllID entropy
problem grows cxponell~iaJ]y in the number of ato·mic pl'OpO
si tional variables, it is i It[easi ble to sol ve exactly far prob
lems other than sma.ll ones Jlke the Yale SllOoting Problem.
To get around this problem, we mus~ 'UBe heuristic methods
of optimization geared toward finding the maximum entropy
solution. These methods would need to be developed as part
of the project. Our initial plan is to add intelligence to the
process of decomposing the space into disjoint possibilities,
instead of using the straightforward method given here.

Additional complications that can arise in these problems
include the dependence of the constructed network on the
orderi ng of the event varia.bles, the need to eliminate cycles
tha.t make networks fai l to be singly-connected (and hence lIot
poly t rees), ,~nd the problem of large malrlces of parameLers
al nod.es which depend on many interacting causal variables,
since blley grow Ul size exponentially. AJl of these problems
have solutions (see Pearl, 1988), but the solutions are tecUous
and so a.u.tomation is crucial if they are to be applied to prob
lems of a.ny size. This complication is a point we want to em
phasize generally. We have made this example simple enough
to present briefly and in a way that gi ves a flavor of the work
we are doing, but in the process we have stripped away most
of the complicating factors (including learning and decompi
lation) that necessitate tools for constructing these networks
automatically from a friendlier declarative de·scription.

2.3 Approaches to Decompilation

Onr approach to the development of decompilation algo
rithms involves ana.lysis of correlations in a unit's activation
with conditions in its input set to determine objective mean-

---1
il'lg for a hidden node, fa[Jowed by r.ra llslatio ll f the sel of
weights Into meaningflll probability staLements. T he first or
these stages is similar in spirit to the work dOlle by Terry Se
jl\Ow ki ru1d Char1s Rosenherg on analyzing NelTalk (Rosen
b rg, 19 7), alld the second stage approach is described in it

paper by Davies gi ven at the L988 L! NS Conference ill Boston
(Davies, 1988). Since this work has appeared elsewhere we
will not repeat the mathematical details here.

3 Related Work by Others: How We
Differ

A number of researchers ha.ve ex-pressed the opinion that NNs
and KBs apply best to different problems (e.g., Hecht-Nielson,
1986). Hybrid KB/NN systems thus sometimes use the KB
and the NN to work on different aspects of a problem, rather
than using them at different stages in the solution of a. single
applications problem as in this project .

The principal research efforts that have involved encod
ing or recovering knowledge in neural networks, in a. manner
comparable to that proposed here, have been the following.

1. Work by Steven Gallant that is being further developed
by Hecht-Nielson Neurocomputers, on so-ca.lled "connec
tionist expert systems" (Gallant, 19 8). This involves an
induction of rules from statistics collected [rom examples
rather than a translation of the parameters obtai lied dur
ing adaptation.

2. Work by Dam\ Ballard on implemen.ting precUca~e logic
theorem proving in neural networks (Ballard, 1986) , or
all the work that has been done by others, this is tl'le
most like what we are proposing. Dall ru'd's algorithm
is used [or "proof by refutation, and so can only answer
Yes/No queries for specific propositIons, r.ather than for
ward chaining to a set of conclusions as in the algorithm
we have developed for translating first order logic con
straints (Davies, 1989).

3. Work by a number of researchers (Derthick, 1988; We
ber, 1989; Thagard, 1988; Pearl, 1988; Shastri, 1989;
Jones & Story, 1989) on using neural networks for nOll
monotonic and evidential reasoning. Ea.ch of these re
searc.hers has constructed networks by ha.nd, t,o solve
inference problems, inc.\udlng exa,mpJes like the Yale
Shooting Problem detailed earlier. But the compilation
and r.ecovery of declarative knowledge in their systems
are, if they are mentioned a.t all, accomplished by rather
simple, local mappings of a constra.int onto a network
link, rather than by global fit-ting. T his approach limits
eiLher the expressiveness of the network or its efficiency
ralher severely for general problem solving. It limits
t he ex.pressiveness becaUBe sets of constraints whose local
translations violate tlle Iletwork's forma.tion rules (syn
tax) cannot be represented. Thus, for exa.mple, Lok
enda Sha.stri, Mark Jones and Guy Story, who do pro
vide interpretations of network structures as embodying
declarative theories, restrict themselves to inheritance
networks that are relatively inexpressive for local trans
lation algorithms. When the synta.x is relaxed to allow
more flexibility, for example when cycles or combinato
rial rules are permitted, then the network will by nc·
cessity run more slowly, if it settles at all. The globa.l
translation approach we use, which requires automation,
is designed to get around this tradeoff by paying the price
during compilation ra.ther than during design or at rlln
time.

T. Davies 721

I

To summarize, then, the distinctive features of our ap
I'roach are (1) the use of global rather than local translation,
12) the idea of an iterative compile/decompile cycle with some
place for learning and some place for hand-crafting, and (3)
I he fact that the KB and NN approaches are both used, but
,t! different sta.ges in the solution of a problem rather than to
~olve different problems.

References

[1) Anderson, J. A. & Rosenfeld, E. Neurocomputing: Foun
dations of Research. Cambridge, MA: The MIT Press,
1988.

[2) Ballard, D. H. Parallel Logical Inference and Energy
Minimization. Proceedings of the Fifth National Confer
ence on Artificial Intelligence (AAAI-86), Philadelphia,
PA, August 11-15, 1986, pp. 203-208.

[3) Buchanan, B. G. & Shortliffe, E. H. Rule-Based Ex
pert Systems: The MYCIN Experiments of the Stanford
Heuristic Programming Project. Reading, MA: Addison
Wesley, 1984.

[4) Bundy, A. The Computer Modeling of Mathematical
Reasoning. New York: Academic Press, 1983. .

[5) Davies, T. R. Some Notes on the Probabilistic Seman
tics of Logistic Function Parameters in Neural Networks.
Neural Networks, 1, Supplement 1, Abstracts of the First
Annual INNS Meeting, Boston, September 6-10, 1988, p.
88.

[6] Davies, T . R. Neural Networks and Artificial Intelli
gence. Independent Research and Development Data
Sheet, Project WS, SRI International, Menlo Park, Cal
ifornia, March 15, 1989.

[7] Derthick, M. Mundane Reasoning by Parallel Constraint
Satisfaction. Technical Report CMU-CS-88-182, Com
puter Science Department, Carnegie Mellon University,
Pittsburg, PA, September 1988.

[8] Gallant, S. 1. Connectionist Expert Systems. Communi
cations of the ACM, 31(2), February 1988, pp. 152-169.

[9) Gill, P. E., Murray, W., Saunders, M. A., Wright, M. H.
User's Guide for NPSOL (Version 4.0): A Fortran
Package for Nonlinear Programming. Technical Report
SOL 86-2, Systems Optimization Laboratory, Depart
Illent of Operations Research, Stanford University, Stan
ford, CA, January 1986.

[10] Hanks, S. & McDermott, D. Default Reasoning, Non
monotonic Logics, and the Frame Problem . Proceedings
of the Fifth National Conference on Artificial Intelli
gence (AAAI-86). Philadelphia, PA, August 11-15,1986.

[11] Hecht-Nielsen, R. Performance Limits of Optical,
Electro-optical, and Electronic Neurocomputers. In Szu,
H. (Ed.) Hybrid and Optical Computing. Bellingham,
WA: Society of Photo-Optical Instumentation Engi
neers, 1986, pp. 277-306.

[12) Jones, Iv!. A. & Story, G. A. Inheritance Reasoning in
Connectionist Networks. First International Joint Con
ference on Neural Networks, Washington, D.C., June
1989.

722 PRICAI '90

[13] Lapedes, A. & Farber, R. Nonlinear Signal Processing
Using Neural Networks: Prediction and System Model
ing. Technical Report LA-UR87-2662, Los Alamos Na
tional Laboratory, Los Alamos, NM, 1987.

(14) Levesque, H. J. Making Believers Out of Computers. Ar
ificial Intelligence, 30, 1986, pp. 81-108.

[15) Marr, D. Vision. New York: W. H. Freeman and Co.,
1982.

[16) Mead, C. A. & Mahowald, M. A. A Silicon Model of
Early Visual Processing. Neural Networks, 1:1, 1988,
pp. 91-97.

(17) Minsky, M. L. & Papert, S. A. Perceptrons (Expanded
Edition). Cambridge, MA: The MIT Pres, 1988.

(18) Pearl, J. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Los Altos, CA: Morgan
Kaufmann, 1988.

[19) Rosenberg, C. R. Revealing the Structure of NETtalk's
Internal Representations. The Ninth Annual Conference
of the Cognitive Science Society, Seattle, Washington,
16-18 July, 1987, pp.537-554.

[20] Shastri, L. Default Reasoning in Semantic Networks: A
Formalization of Recognition and Inheritance. Artificial
Intelligence, July, 1989, pp. 283-356.

(21) Thagard, P. Explanatory Coherence. CSL Report 16,
Cognitive Science Laboratory, Princeton University,
Princeton, NJ, March 1988.

[22] Webber,' B. L. & Nilsson, N. J. Readings in Artificial
Intelligence. Los Altos, CA: Morgan Kaufmann, 1981.

(23) Weber, J. A Statistical Approach to the Qualification
Problem. Talk Presented at Artificial Intelligence Cen
ter, SRI International, Menlo Park, CA, February 23,
1989.

Artif'cial IntelliRence in the Pacific Rim
Proceeding<; of the Pacific Rim International Conference on Artificial Intelligence.
NaRoya 19'10

Copyright © 1991 by Japanese Society for Artificial Intelligence

The exclu!'ive publication riRhts to this post-conference proceedings are granted to
OIlMSIIA. LTD. by the copyright owner.

All riRht!' reserved. No part of this publication may be reproduced. stored in a retrieval system
or tnm,;mitted in any form or by any means. electronic. mechanical. recording or otherwise.
without the prior written permission of the copyright owner.

ISB'-l 4-:!74-076:lfi-9 (OIlMSHA>
ISBN 90 ':iJ99-0S:l-7 (lOS Press)

711,' 1"''</-'-''''/''1'1'111''' I·difion {",hlished find di.,frihuled in Japan by:
OHMSIIA. LTD.
;l-I Kanda Nishiki-cho, Chiyoda-ku. Tokyo J01. Japan

lJi.<lribulr·d ;17 .'V"rl" Aml'l"im by:
lOS Press. Inc.
Postal Drawer 1055R. Burke. VA 22009-0558. U.S.A.

nisln'bllit'd ill f;lIropc and till' I'I'S/ (If file world by:

lOS I'r~"
Van Diemenstraat 94, 1013 eN Am,;terdam. The Netherlands

Prilllcd in J'IIIOII1

Artificial Intelligence
in the Pacific Rim

Edited by

Hozumi Tanaka
Tokyo Institute of Technology

lOS Press
~~w
Ohnlsha

Amsterdam , Wa~hlngton Tokyo a,aka KyolO

