Capturing Relativized Complexity Classes
without Order

Anuj Dawar Georg Gottlob
Department of Computer Science Department of Information Systems
University of Wales, Swansea TU Wien, Paniglgasse 16
Swansea SA2 8PP, U.K. A-1040 Vienna, Austria
a.dawar@swansea.ac.uk gottlob@dbai.tuwien.ac.at

Lauri Hella
Department of Mathematics
P.O. Box 4 (Yliopistonkatu 5)
00014 University of Helsinki, Finland
hella@cc.helsinki.fi

March 7, 1997

Abstract

We consider the problem of obtaining logical characterisations of oracle complex-
ity classes. In particular, we consider the complexity classes LOGSPACE"" and
PTIME™? . For these classes, characterisations are known in terms of NP computable
Lindstrom quantifiers which hold on ordered structures. We show that these charac-
terisations are unlikely to extend to arbitrary (unordered) structures, since this would
imply the collapse of certain exponential complexity hierarchies. We also observe,
however, that PTIME™® can be characterised in terms of Lindstrom quantifers (not
necessarily NP computable), though it remains open whether this can be done for

LOGSPACE™®.

1 Introduction

Since Fagin showed that existential second order logic captures the class NP [7], and
Immerman and Vardi characterised PTIME in terms of least fixed point logic [14, 25],
a large number of complexity classes have been given logical characterisations, and a
tight correspondence has been established between logical expressibility and computational
complexity. The results that relate logic to complexity in this way generally fall into two
classes. There are those in which the correspondence holds over all finite structures — the
paradigmatic example is Fagin’s theorem; and there are those where the correspondence
holds only over structures whose logical relations include a linear order over the domain
— in the style of the Immerman-Vardi result.

It has often been said that complexity classes from NP and above can be captured by
a logic even in the absence of a linear order, while the classes below cannot be so captured,
because the corresponding logic is too weak to construct the order, which is necessary in

order to simulate computation. Indeed, there is no class below NP for which a logic is
known that captures that class over all structures. In this paper we show that the situation
is a little more subtle with respect to relativized complexity classes, i.e., complexity classes
defined with respect to oracles. In particular, the class LOGSPACE"™", which contains
NP and which has a natural logical characterisation when an order is available [22, 23, 8]
appears not to be capturable without the restriction to ordered structures. Indeed, we
show that the characterisations that work on ordered structures are unlikely to work in
the absence of order, as this would imply the collapse of certain complexity theoretic
hierarchies.

More generally, it appears that there is a trade-off between the power of the oracle and
the complexity of the machine. The more powerful the oracle, the weaker we can make
the basic machine while still having a capturable complexity class. With the empty oracle,
neither LOGSPACE nor PTIME seems to be logically characterizable. With oracles in
NP, PTIME™ can be captured by a logic, but this seems unlikely for LOGSPACE"™".
However, we show that with Y% oracles, both LOGSPACE™ and PTIME™ can be cap-
tured.

2 Background and Notation

A signature ¢ = (Ry,..., R,) is a finite sequence of relation symbols, R;, each with
an associated arity n;. A structure A = (A, R{,..., RA) over signature o, consists of
a universe A and relations R* C A" interpreting the relation symbols in o. Unless
otherwise stated, we will assume that the universe of every structure considered is finite.
We write |A| to denote the universe of the structure A, and card(.9) for the cardinality
of a set 5. We will assume, in general, that the universe of A is an initial segment of the
natural numbers, i.e., |[A| = n ={0,...,n — 1} for some n. In the special case when the
signature o is empty, we call A a pure set of size n, denoted by (n).

The basic equality type of a tuple s = (ay,...,a;) in a model A is the quantifier
free formula Ay jes(@i = @) A N jrer (20 = 2;), where 5 = {(4,j)le; = a;} and
T =A{(i,j)|a; # a;}. Note that in a pure set (n) each tuple is described up to isomorphism
by its basic equality type.

An (m-ary) query ¢ (also sometimes called a global relation) is a map from structures
(over some fixed signature o) to (m-ary) relations on the structures, that is closed under
isomorphism. That is, if (ay,...,an) € ¢(A), and f is an isomorphism from A to B,
then (f(ay),..., f(am)) € ¢(B). A 0-ary query is also called a Boolean query. When we
refer to the complexity of a query ¢, we mean the complexity of the decision problem:
given a structure A and a tuple s of elements of A, is it the case that s € ¢q(A)? Here,
the complexity of a query is always measured in terms of the size of the structure, i.e. the
cardinality of its universe.

The m-ary query defined by a formula ¢ with free variables among z4,...,2,, maps
a structure A to the relation {s € |A|™ | A |= ¢[s]}. We say that a query is expressible
(or definable) in a logic L if there is some formula of L that defines it.

We write FO, LFP, etc. both to denote logics (i.e., sets of formulas) and the collections
of queries that are expressible in the respective logics. By a class of structures, we mean a
collection of structures that is closed under isomorphisms of the structures (or equivalently,

a Boolean query). We say that alogic L capturesa complexity class C if a query is definable
in L if, and only if, it is in C.

2.1 Inductive and Infinitary Logic

Let ¢ be a first order formula in the signature o~ (R), where R is k-ary. On a o-structure
A, ¢ defines the operator, ® 4(R*) = {s € |A|* | (A, R*) E ¢[s]}. If ¢ is an R-positive
formula (that is, all occurrences of R in ¢ are within the scope of an even number of
negations), then ¢, is monotone, and has a least fixed point. This least fixed point can
be obtained by iterating the operator @, as follows: % = 0; @4t = ®4(¢%). The
m'" stage of the induction determined by ¢ can be uniformly defined over all structures
by a first order formula which we denote by ¢™. The set inductively defined by ¢ on
A, denoted %, is the least fixed point of the operator @4, that is, ¢ = ¢’, where
m = ||p||4 is the least natural number such that ¢3+" = ¢ . Observe that, because the
stages of the induction are increasing, and because there are only n* distinct k-tuples,
where n is the cardinality of |.A], it must be the case that ||p||4 < n*.

We write LFP for the extension of first order logic with the lfp operation which
uniformly determines the least fixed point of an R-positive formula. That is, for any
R-positive formula ¢, Up(R,zy,...,2)p(21,...,2¢) is a formula of LFP and A =
Up(R,zq,...,24)¢[s] if, and only if, s € ¢ .

Even if ¢ is not R-positive, we can define an induction, the stages of which are
increasing, by iterating the inflationary operator @', given by ®,(R*) = ®4(R*)U R*.
We call the fixed point obtained in this way the inflationary fixed point of ¢. We write IF'P
for the extension of first order logic with the ifp operation, which uniformly defines the
inflationary fixed point of a formula. That is, the relational expression ifp(R,zy, ...,z)p
denotes the inflationary fixed point of . Gurevich and Shelah [11] showed that on finite
structures, IFP is equivalent to LFP. Immerman [14] and Vardi [25] independently showed
that when we include a total ordering on the domain as part of the logical vocabulary, the
language LF'P expresses exactly the class of polynomial time computable properties:

Theorem 2.1 ([14],[25]) On ordered finite structures, LF'P= PTIME.

If we take an arbitrary formula ¢ and iterate the corresponding operator ® 4, the
sequence of stages may not be increasing and therefore may or may not converge to a
fixed point. Define the partial fized point of ¢ to be ¢7 for the least m such that
et = o, if such an m exists, and empty otherwise. Because there are only 27" sets
of k-tuples over a structure of size n, if such an m exists, then m < 27" We can then
define another logic called PFP which extends first order logic by the partial fixed point
operaror pfp, similar to the operator ifp. The relational expression pfp(R,zy,...,2)p
denotes the partial fixed point of . It has been shown that on ordered structures, the
logic PFP captures the complexity class PSPACE [25, 1].

Let L* be the fragment of first order logic which consists of those formulas whose
variables, both free and bound, are among x4,..., 2. Let L* be the closure of L* under
the operations of conjunction and disjunction applied to arbitrary (finite or infinite) sets
of formulas. Let L = U, L%, . The logic L% was introduced by Barwise in [2].

oW

Kolaitis and Vardi [17] showed that LFP and PFP are fragments of L% on the class of

all finite structures.

2.2 Generalized Quantifiers

Let C' be any collection of structures over the signature ¢ = (Ry,..., R,,) (where R; has
arity n;) that is closed under isomorphism. We associate with C' the generalized quantifier
Qc. YFor alogic L, define the extension L(Q)¢) by closing the set of formulas of L under
the following formula formation rule: if ¢y,..., ¢, are formulas of L(Q¢) and Zy,..., T
are tuples of variables with the length of Z; being n;, then Q¢Z;...Tn(p1,...,¢0m) is a
formula of L(Q)¢). Here the quantifier Q)¢Z;...7,, binds only those occurrences of the
variables among #; which are in ¢;; all other free occurrences of variables remain free. The
semantics of the quantifier is given by: (A,s) E QcT1 .. . T (@1(T1,T1)5 s Pm(Tims Tpn)) s
if and only if, (JA], ¢f[s1], ..., ¢ [sm]) € C, where ¢#[s;] = {t € |[A]" | A = @ilt, 5]}

We are primarily interested in vectorized quantifiers. Given a class of structures C', let
C, be the class of all structures (A, Sy, ..., 5,,) such that §; C A*" and (A%,) 500
€ C, where SZ»(k) is the relation S; thought of as an n;-ary relation on A*. Then, the
extension of a logic L with the set of quantifiers {Q¢, | k¥ € w} is denoted L(Q.).

For a set of generalized quantifiers Q, we write L(Q) for the extension of the logic
L by all the quantifiers in Q. Thus, for instance, FO(Q) denotes the extension of first
order logic by the generalized quantifiers in the set Q. Note, however, that LFP(Q) is not
well-defined for an arbitrary set Q of quantifiers. This is because, in the presence of non-
monotone quantifiers, positivity of a formula ¢ is no longer a guarantee for monotonicity
of the corresponding operator ® 4. We will avoid this problem by considering logics of the
form IFP(Q) instead of LFP(Q).

2.3 Some Complexity Classes

PTIME and NP denote the classes of all languages recognizable in polynomial time by
a deterministic and nondeterministic Turing machine, respectively. The class ETIME
(NETIME) consists of all languages recognizable by a deterministic (nondeterministic)
Turing machine in time O(2*"), where n is the size of the input and & is some constant.
Note that ETIME is not closed under polynomial time many-one reductions (short, <? -
reductions). Therefore one often prefers to consider the more robust class EXPTIME
which consists of all languages recognizable by a deterministic Turing machine in time
O(Q”k), where n is the size of the input and k is some constant. ETIME is a proper
subset of EXPTIME. Moreover, EXPTIME is identical to the closure of ETIME under
<P -reductions. Anagously, NEXPTIME is the nondeterministic version of EXPTIME
and is equal to the closure of NETIME under < -reductions.

LOGSPACE, LINSPACE and PSPACE denote the classes of all languages recogniz-
able by deterministic Turing Machines using logarithmic, linear, and polynomial workspace,
respectively. Note that PSPACE is the closure of LINSPACE under <P -reductions.
NLOGSPACE is the nondeterministic version of LOGSPACE. NLINSPACE is the non-
deterministic version of LINSPACE. It is currently not known whether LOGSPACE =
NLOGSPACE or whether LINSPACE = NLINSPACE. On the other hand, PSPACE
coincides with nondeterministic PSPACE.

If C is a machine-based complexity class and and D is any complexity class, then
C'" denotes the class of all languages recognizable by a ' Turing machine having access
to an oracle A in D. The notion of relativization (i.e., of oracle access) is the standard
notion due to Ladner and Lynch [18]. In particular, the query tape is erased after a

EBH = EBH;, where: EXPBH = EXPBH;, where:
i i
EBH; = NETIME EXPBH; = NEXPTIME
EBH;; = {ANB| A€EBH3;,_1 and B € NETIME} EXPBH3; = {AN B | A€ EXPBHy;_1 and B € NEXPTIME}
EBHg,41 = {AUB | A €EBHy; and B € NETIME } EXPBHgz;41 = {AUB | A € EXPBHgy,; and B € NEXPTIME }

Table 1: Definition of exponential Boolean hierarchies EBH and EXPBH.

EH =, ¥f, where: EXPH = |J, X", where:

¥¢ = ETIME Yeapy = EXPTIME

%¢ = NETIME™ | for i > 0 | P = NEXPTIME™" | for i > 0
II{ = co—%3 fop = co—Efxp

Table 2: Definition of exponential hierarchies EH and EXPH.

query is answered; moreover, the oracle query strings of a space bounded machine are not
themselves subject to the space bound.

The complement of a language A is denoted by A. For a complexity class C', co—C
denotes the class {A | A€ C}.

The Boolean Hierarchy over NP (or simply the Boolean Hierarchy), denoted by BH,
consists of all laguages that can be recognized by evaluating a Boolean combination of NP
queries. More formally, BH is the union of all classes BH; defined as follows:

BH, =NP

The Polynomial Hierarchy, denoted by PH, is the union of all classes X¥ and II¥ for
0 < i, where ¥} = I} = PTIME and for each i > 0, ¥%,, = NP™ and II¥ = co—X".

An interesting class contained in the Polynomial Hierarchy and containing the Boolean
Hierarchy is LOGSPACE"™". Several different characterizations of this class exist, for an
overview see [27]. In particular, LOGSPACE™" is identical to the class PTIME""7¢s]
of languages recognizable in polynomial time with a logarithmic number of queries to an
oracle in NP.

The Boolean Hierarchy and the Polynomial Hierarchy have analogues at the exponen-
tial level. In particular, NETIME gives rise to the (linear) exponential Boolean hierarchy
EBH and to the (linear) exponential hierarchy EH. In turn, NEXPTIME gives rise to
the (full) exponential Boolean hierarchy EXPBH and to the (full) exponential hierarchy
EXPH'. The exact definition of these hierarchies and their classes is given in Tables 1
and 2. Concerning the definitions of ¥f and X;"" in Table 2, note that a Xf , Turing
machine may ask exponentially long queries to its X oracle, similarly for a a X7} Turing
machine.

For each complexity class €' C PH defined in this paper we define the linear exponential
version I2(C') and the full exponential version Exp(C') in Table 3.

The following proposition is well-known. The proof is by simple padding arguments.

!The ETIME and EXPTIME hierarchies are sometimes referred to as the weak ETIME hierarchy and
the weak FXPTIMFE Hierarchy, respectively. They should not be confounded with the Strong Exponential
Time Hierarchy studied in [12].

Basic class C

Linear exponential version E(C) | Full exponential version EXP(C) |

PTIME ETIME EXPTIME
NP NETIME NEXPTIME
¥7 v7 ST
17 IR 57
PH EH EXPH
BH, EBH, EXPBH;
BH EBH EXPBH

LOGSPACE LINSPACE PSPACE

NLOGSPACE NLINSPACE PSPACE

LOGSPACE™” LINSPACE™” PSPACE™"

Table 3: Exponential versions of basic classes.

Proposition 2.2 For each basic class C appearing in the first column of Table 3, the
closure under < -reductions of E(C') is equal to Exp(C).

For a natural number n, bin(n) denotes its standard binary encoding. If A is a
language over {0,1}*, denote by 1A the set of all words in A prefixed with 1. The tally
version of A is the language tally(A) = {1"|bin(n) € 1A}.

It is well-known that there is an exponential jump in complexity if we proceed from
the tally version to the binary version of a language (see [9]).

Proposition 2.3 Let C be any class appearing in the first column of Table 3. It holds
that for each language A, tally(A) € C iff A€ E(C).

If C is a complexity class, then a C' quantifier is a generalized quantifier (i.e., a set of
structures) in C'. In particular, we will deal with NP quantifiers and with NLOGSPACE
quantifiers in this paper.

2.4 Capturing Complexity Classes

As observed earlier, Theorem 2.1 crucially depends on the presence of a linear order in
the structures considered. If arbitrary structures are considered, then LFP is too weak to
capture PTIME. It remains an open question whether there is some logic that captures
PTIME over arbitrary structures. Similarly, it is also not known if there is any logic
that captures the class LOGSPACE. Indeed, no logical characterisation is known for any
complexity class below NP.

On the other hand, NP and many complexity classes above it have been shown to be
captured by appropriate logics. One exception is LOGSPACE"™", for which the known
logical characterizations hold only for ordered structures. In particular, Stewart [22, 23]
has shown that the logic FO(Ham) (i.e., first order logic extended with vectorized versions
of the Hamiltonicity quantifier) captures LOGSPACE"™" on ordered structures. Gottlob
[8] extended this result and showed that for a large number of natural complexity classes C'
(among which POLYLOGSPACE, all classes of the Polynomial hierarchy, and all classes
of the Exponential Hierarchy), the following holds: If a set () of quantifiers is complete for
C under first order reductions, then FO(Q) captures LOGSPACE® on ordered structures
(related results can be found in [19, 6]). It was posed as an open question in [8] whether this
result extends to arbitrary structures. We show in this paper that this result is unlikely to

extend to arbitrary structures, in as much as capturing LOGSPACE™" by first order logic
with NP quantifiers would imply the collapse of the Boolean hierarchy over NEXPTIME.
(When we speak about a collapse of a hierarchy, we mean a collapse to some finite level,
but not necessarily to the first.)

Of course, it remains difficult to prove negative results — i.e., that some complexity
classes cannot be captured by any logic. Indeed, showing such a result for LOGSPACE™"
would separate many complexity classes (not least of all, it would separate P from NP),
since (see Section 6) any complexity class containing PTIME™" that is closed under
compositions is captured by some logic. Moreover, it follows from results in [4] that if
LOGSPACE™" is captured by any logic, then it is captured by one that is an extension
of first order logic by a single vectorized generalized quantifier (though not necessarily an
NP quantifier).

3 A Normal Form Result

Let Q be a set of generalized quantifiers. Recall that L% (Q) denotes the extension of
L¥ . by the quantifiers in Q. Note that if Q is infinite, then a formula of this logic
may contain occurrences of infinitely many different quantifiers in Q. We will restrict our
attention to the fragment of L% (Q) which consists of formulas containing only finitely
many different quantifiers (but a single quantifier is allowed to have infinitely many distinct
occurrences).

Definition 3.1 Let Q be a set of quantifiers. L*(Q) is the logic consisting of all formulas
¢ that belong to L% (Q,) for some finite subset Q, of Q.

Our aim is to prove that, on the class of pure sets, L*(Q) collapses to a small fragment
of FO(Q) consisting of formulas that do not involve any nesting of the quantifiers in
Q. The proof of this normal form result is heavily based on the analysis of L* (Q)-
equivalence types that was carried out by Dawar and Hella in [5]. In fact, the collapse of
L*(Q) to FO(Q) on pure sets was already proved in [5], but without giving any explicit
normal form.

Definition 3.2 Let ¢ be a formula of L*(Q).

1. ¢ is a basic flat formula if it is either atomic, or of the form QT ... Twm(B1,- .., Bm)
for some @ € Q and quantifier free formulas B1,...,0,,.

2. ¢ s in flat normal form if it is obtained from basic flat formulas by successive
applications of Boolean operations and first order quantifications.

Theorem 3.3 Let Q be a set of quantifiers. For any formula ¢ of L*(Q) there exists a
formula v of FO(Q) in flat normal form such that ¢ and 1 are equivalent on the class
of pure sets.

Proof. Let ¢(zy,...,2;) be a formula of L*(Q) over the empty vocabulary. Thus,
there is a k < w and a finite Q, C Q such that ¢ belongs to L%, (Q,).

In [5] it was proved that each pure set? (n) can be characterized up to L* (Q,)-
equivalence by a sentence of the form

Ny = /\ dzq ... Jzp A
1<i<m
Vo, Vo, \/ i A
1<i<m
/\ Vay .. Ver(e; < v5)s

1<j<r

where the formulas i; are basic equality types, the formulas v; are disjunctions of basic
equality types, and each of the formulas ¢; is of the form Q7 ...Z,,(51,...,3,) for some
@ € Q, and quantifier free formulas f,...,8,,. That is, for every n’ < w, (#') |E 7,
if and only if, (n’) and (n) satisfy the same sentences of L* (Q,). Furthermore, the
L% (Q,)-equivalence type of each [-tuple ¢ € n' can be defined by a formula of the form

N a(T1y ooy @) = Ny AVZy . Vg, \/ Wy,

1<i<p

where, again, the formulas 1; are basic equality types.
Let F' be the set of all pairs (n,t) such that (n) = ¢[t]. We claim now that the

formula
¢ = \/ Mn ,t

(n,t)eF

is equivalent to ¢ on pure sets. Indeed, if (n) |= ¢[t], then (n,t) € I, whence (n) |= ¥[t].
On the other hand, if (n) |= 1, »[t] for some (n/,t') € F, then (n') |= ¢[t'] and ¢ satisfies
the same L* (Qg)-formulas in (n) as ¢ in (n’). In particular, {n) | ¢[t].

Clearly the formula ¢ is in flat normal form. It remains to show that 1 is (equivalent
to) an FO(Q)-formula. To see this, observe that since the set Q, is finite, there are
only finitely many different formulas of the form 7, ; up to logical equivalence. Hence the
infinite set I can be replaced with a finite subset F, that contains a representative for
the L% (Q,)-equivalence type of each pair (n,t) € F. [

Corollary 3.4 For every formula ¢ of PFP(Q) there exists a formula v of FO(Q) in
flat normal form such that ¢ and ¥ are equivalent on the class of pure sets. In particular,
PFP(Q) collapses to FO(Q) on pure sets.

Proof. A straightforward modification of the proof that PFP C L = (see [17]) shows
that PFP(Q) C L% (Q). Since each formula of PFP(Q) contains only finitely many
different quantifiers, we actually get the inclusion PFP(Q) C L*(Q). Hence the claim
follows from Theorem 3.3. [|

Note that Corollary 3.4 implies the same flat normal form also for formulas of IFP(Q),
since clearly IFP(Q) C PFP(Q).

If Q consists of NP quantifiers, then the flat normal form given in Theorem 3.3 can
be further simplified.

2The result in [5] is formulated for complete structures over an arbitrary vocabulary. The claim for
pure sets is obtained by considering the special case of the empty vocabulary.

Corollary 3.5 If Q is a set of NP quantifiers, then, on the class of pure sets, every
sentence FO(Q) is equivalent to a Boolean combination of NP properties.

Proof. Let ¢ be a sentence of FO(Q). By the proof of Theorem 3.3, on pure sets, ¢
is equivalent to a finite disjunction \/, .p 7, of sentences of the form

N = 0 A /\ V$1---V$k(99j<_>7j)v

1<j<r

where § is a first order formula, each of the formulas v; is quantifier free, and each of the
formulas ¢; is the result of a single application of some quantifier () € Q to quantifier
free formulas. Thus, ¢ is equivalent to a Boolean combination of first order formulas and
formulas of the form

Vay .. Vap(—e V) AVey .o Ve (=, Vogg).

Since each ¢; is NP-computable, and both NP and co— NP are closed under disjunctions
and universal quantification, the claim follows. [|

4 Negative Results about Generalized Quantifiers

The aim of this section is to provide evidence for the fact that over arbitrary (i.e., un-
ordered) structures, LOGSPACE™" cannot be captured by first order logic (or even fix-
point logic) plus NP quantifiers. In particular, we show that if such a capturing result
were possible, then a rather unexpected collapse of certain exponential complexity classes
would occur.

For a language A over {0,1}*, Pureset(A) denotes the set of structures arising from
encoding each word of A as a pure set. More formally,

Pureset(A) = {(n) | 1" € tally(A)}.

Theorem 4.1 If there exists a family Q of NP quantifiers such that FO(Q) captures
LOGSPACEY" | then

1. EBH = LINSPACE"" and EBH collapses to some of its member classes; and

2. EXPBH = PSPACE"" and EXPBH collapses to some of its member classes.

Proof. Let A be a language in LINSPACE™ . Then, by proposition 2.3, tally(A)
lies in LOGSPACE™ and so, by hypothesis, Pureset(A) is expressible in FO(Q). By
Corollary 3.5, there exists a flat FO(Q) formula expressing Pureset(A), and this formula
is equivalent to a Boolean combination of NP properties. It follows that Pureset(A)
and thus tally(A) is in BH; for some constant k. Therefore, by Proposition 2.3, A is
in EBH;. It follows that LINSPACE™ C EBH,. Since, on the other hand, EBH, C
EBH C LINSPACE™", it follows that EBH, = EBH = LINSPACE"™". This proves 1. To
see 2, recall that the closures under <’ -reductions of EBH,, EBH, and LINSPACE"™"
are EXPBH;, EXPBH, and PSPACE"", respectively (Proposition 2.2). Thus it must
hold that EXPBH; = EXPBH = PSPACE™". [

The identity EXPBH = PSPACE™" and the implied collapse of EXPBH would gen-
erate great surprise among complexity theorists. Most researchers dealing with these
classes tend to believe that EXPBH is a proper hierarchy which is properly contained
in PSPACE™ . In fact, it is well known that PSPACE™" coincides with the class
PTIME"?*7TI™® of all problems solvable in polynomial time with polynomially many
queries to a NEXPTIME oracle [13]. On the other hand, all problems in EXPBH can
be solved in polynomial time with a constant number of queries to a NEXPTIME oracle.
It would be rather surprising if polynomially many queries to such an oracle could be
replaced by a constant number of queries.

There are interesting problems complete for PSPACE™” . Here are two examples (for
details see [9]):

e Let O, denote the first order closure of existential second order logic (SO3). The
problem of evaluating (varying) ©, formulas over the fixed structure ({0,1}) is
complete for PSPACE™". (In other terms, the expression complexity of O, is
PSPACE™".)

e PBvaluating (varying) first order formulas with Henkin quantifiers over a fixed finite
structure is PSPACE"™" complete.

No algorithms are known that solve those problems in polynomial time with a constant
number of calls to a NEXPTIME oracle.
Note that by Corollary 3.4, we immediately get the following corollary to Theorem 4.1:

Corollary 4.2 If one of the following facts hold, then EBH = LINSPACE"", EXPBH =
PSPACE™", and EBH and EXPBH both collapse to a fived level k.

1. LOGSPACE"" is included in IFP(Q) or in PFP(Q) for some set Q of NP quan-
tifiers.

2. PTIME™ is captured by IFP(Q) for some set Q of NP quantifiers.
3. PTIME™ is included in PFP(Q) for some set Q of NP quantifiers.

It is thus unlikely that for any set Q of NP quantifiers, IFP(Q) captures PTIME"".
This is particularly interesting, because, as we will see below in this paper, the class
PTIME™" can be captured by an appropriate logic.

Let us conclude this section with an interesting remark concerning the collapse of the
Boolean Hierarchy over NEXPTIME. By well-known result of Kadin [16] and Yap [26],
the collapse of the Boolean Hierarchy BH entails the collapse of the entire Polynomial
Hierarchy PH to its third level ¥5. One may thus ask if analogous results hold also in
the exponential cases, e.g., if the collapse of EXPBH would entail the collapse of the
entire Exponential Hierarchy EXPH to some fixed level. Unfortunately, Kadin’s proof
does not carry over to the exponential case. There is evidence that proving the analogous
result to Kadin’s for the exponential Hierarchy would require much stronger techniques
and a major complexity theoretic breaktrough. In fact, the following interesting result
was recently shown by Mocas [20]:

10

Proposition 4.3 ([20]) If FEXPTIME = NEXPTIMFE = NEXPTIME = EXPH then
PH s properly contained in NEXPTIME.

Note that there is currently no proof that the Polynomial Hierarchy is properly con-
tained in NEXPTIME. Such a proof would be a major breakthrough. Many other results
on EXPH are given in [12, 13, 20, 21, 9].

The premise in Mocas’ Result mentions the total collapse of EXPH, i.e., the collapse
of EXPH to its first level NEXPTIME. By applying basically the same proof argument
as the one used by Mocas [20] in the proof of proposition 4.3, we can show that a similar
result holds if collapses to any level are considered.

Theorem 4.4 If there is a constant k such that a collapse of KXPBH (to any level)
implies a collapse of EXPH to XY, then PH is properly contained in %" .

Proof. Assume a partial collapse of EXPBH implies a collapse of EXPH to X;*”.
Assume X7"" = PH. Since X" has complete problems, then also PH must has complete
problems, and thus PH collapses to some of its classes X¥. By the hypothesis, this
entails a collapse of EXPH to X;". Let m = max(i,k). By a hierarchy theorem (see
Mocas [20, 21]) it holds that ¥? # ¥ and thus PH # X7 = ;"7 Contradiction.
Therefore, ¥;"" # PH and thus PH is properly contained in ;™. []

Note that currently no level &k is known such that PH is a proper subset of ;™"
(though it can be seen that such a k& must exist).

5 On Capturing PTIME Using Generalized Quantifiers.

By using similar methods as for Theorem 4.1, we show that it is very unlikely that PTIME
can be expressed by extending fixed point logic with NLOGSPACE quantifiers.

Theorem 5.1 If I[FP(Q) captures PTIME for a family @ of NLOGSPACE quantifiers,
then FTIME = NLINSPACFE and FXPTIMFE = PSPACE.

Proof. Assume the premise holds for a particular family Q of NLOGSPACE quanti-
fiers. Let A be alanguage in ETIME. Then tally(A) is in PTIME and so Pureset(A), by
Corollary 3.4 can be expressed by a flat FO(Q) formula. Since FO C LOGSPACE, such
flat formulas can be evaluated in LOGSPACE"?9*"4“® = NLOGSPACE. (The latter
equality follows from the well-known result by Immerman and Szelepcsényi [15, 24] stating
that NLOGSPACE is closed under complementation.) Thus tally(A) is in NLOGSPACE
and therefore A is in NLINSPACE. Hence, ETIME = NLINSPACE. By taking the clo-
sures under <? -reductions (see Proposition 2.2), we then also get EXPTIME = PSPACE.
|

A similar proof yields the following.

Theorem 5.2 If PTIME is included in PFP(Q) for some family Q of NLOGSPACE
quantifiers, then ETIMF = NLINSPACF and EXPTIMFE = PSPACE.

11

6 Capturing Relativized Complexity Classes

In this section we consider the question of which relativized complexity classes can be
captured by some logic. To make this question precise, we can ask for which complexity
classes are the isomorphism-closed properties in that class recursively indexable.

It suffices to focus on isomorphism-closed properties of graphs. To consider machines
that compute graph properties, we choose the following representation of graphs as binary
strings. A graph on the set of vertices {0,...,n — 1} is represented by a binary string of
length n?. There is a 1 in the ith position of this binary string if, and only if, there is
an edge (u,v), where (u,v) is the ith pair in the lexicographical ordering of all pairs in
{0,...,n—1}?. Let G denote the set of binary strings that encode graphs, and for any
a,b € G, we write a = b to denote that the graphs represented by a and b are isomorphic.

Definition 6.1 A function C : G — G is a canonical labelling function, if:
e forany a€ G, a = C(a); and
e forany a,be G, if a2 b, then C(a) = C(b).

In [10], Gurevich shows that, if there is a polynomial time computable canonical la-
belling function, then there is a logic that captures PTIME. This is easily generalised to
the following observation:

Proposition 6.2 [f C is a recursively presented complexity class, which contains a canon-
ical labelling function, and is closed under compositions, then the class of isomorphism-
closed properties in C' s recursively indexable.

Blass and Gurevich [3] observed that, for any polynomial time decidable equivalence
relation on strings, there is a corresponding canonical element function in PTIME"".
Their method, in fact, works for any equivalence relation that is decidable in NP, and
hence, in particular, for the graph isomorphism problem. In the latter case, the canonical
element function is just a canonical labelling funtion. For the sake of completeness, we
sketch below a PTIME"" algorithm that computes, for any a € G, the lexicographically
first b € G such that a &2 0.

The oracle set is the set

I={(z,y)|FzFwa = z and z = yw}.

It is clear that I is in NP.
The algorithm, using the set I as oracle is now as follows:

—_

. input(z);

[\

. out:= ¢ (the empty string);
3. for i := 1to n? do:

3a. write (z, out0) on the oracle tape, and query the oracle;

3b. if oracle answers yes then out := out0 else out := outl;

=

output (out).

12

Since the above algorithm is in PTIME"", the following is a direct consequence of
Proposition 6.2.

Proposition 6.3 Any recursively presented complexity class containing PTIME"™" and
closed under compositions is recursively indexable (and thus there is a logic capturing this
class).

It follows from this that there is a logic capturing, for example, LOGSPACE™ . More-
over, since this class is bounded, in the sense of [4], it follows that it is captured by a

logic of the form FO(Q)). However, it remains an open question whether there is any logic

capturing LOGSPACE™".

Acknowledgment

We would like to thank Sarah Mocas for helpful discussions concerning the Boolean Hi-
erarchy over NEXPTIME and for making her thesis and her papers available. We also
thank Harry Buhrman, Lane Hemaspaandra, and Steve Homer for clarifications concerning
exponential complexity classes.

References

[1] S. Abiteboul and V. Vianu. Datalog extensions for database queries and updates.
Journal of Computer and System Sciences, 43:62-124, 1991.

[2] J. Barwise. On Moschovakis closure ordinals. Journal of Symbolic Logic, 42:292-296,
1977.

[3] A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms. STAM
Journal on Computing, 13(4):682-689, 1984.

[4] A. Dawar. Generalized quantifiers and logical reducibilities. Journal of Logic and
Computation, 5(2):213-226, 1995.

[5] A. Dawar and L. Hella. The expressive power of finitely many generalized quantifiers.
Information and Computation, 123(2):172-184, 1995.

[6] H.D. Ebbinghaus and J. Flum. Finite Model Theory Springer Verlag, 1995.

[7] R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
R. M. Karp, editor, Complexity of Computation, SIAM-AMS Proceedings, Vol 7,
pages 43-73, 1974.

[8] G. Gottlob. Relativized logspace and generalized quantifiers over ordered finite struc-
tures. Journal of Symbolic Logic, to appear. Short version in: Proc. Tenth Annual
Symposium on Logic in Computer Science LICS’95 (San Diego, CA, June 1995).
IEEE Computer Society Press, pp. 65-78, 1995.

[9] G. Gottlob, N. Leone, and H. Veith. Second order logic and the weak exponential
hierarchies. In Proc. Intl. Symp. on Mathematical Foundations of Computer Science,
MFCS’95, Prague, CR, LNCS nr. 969, pages 66—81. Springer, August/September
1995.

13

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Y. Gurevich. Toward logic tailored for computational complexity. In M. Richter et al.,
editors, Computation and Proof Theory, pages 175-216. Springer Lecture Notes in
Mathematics, 1984.

Y. Gurevich and S. Shelah. Fixed-point extensions of first-order logic. Annals of Pure
and Applied Logic, 32:265-280, 1986.

L. A. Hemachandra. The strong exponential hierarchy collapses. Journal of Computer
and System Sciences, 39:299-322, 1989.

E. Hemaspaandra. Census techniques collapse sparse classes. Information Processing
Letters, 51:79-84, 1994.

N. Immerman. Relational queries computable in polynomial time. Information and
Control, 68:86-104, 1986.

N. Immerman. Nondeterministic space is closed under complementation. SIAM .J.
Comp., 17, pp. 935-939, 1988.

J. Kadin. The polynomial hierarchy collapses if the Boolean Hierarchy collapses.
SIAM J. Comput., 17:1263-1282, 1988.

Ph. G. Kolaitis and M. Y. Vardi. Infinitary logics and 0-1 laws. Information and
Computation, 98(2):258-294, 1992.

R. Ladner, N. Lynch. Relativization of questions about log-space reducibility. Math.
Systems Theory, vol. 10, pp. 19-32, 1976.

J. A. Makowsky and Y. B. Pnueli. Oracles and quantifiers. Computer Science Logic,
Refereed papers from CSL’93, Springer LNCS vol.832, 1994, pp. 198-222.

S. Mocas. Separating exponential time classes from polynomial time classes. Ph.D.
Thesis, Graduate School, College of Computer Science, Northeastern University, 1993.

S. Mocas. Separating classes in the exponential-time hierarchy from classes in PH.
Theoretical Computer Science, 185:1-2, pp.221-231, 1996.

lain A. Stewart. Logical characterization of bounded query classes I: Logspace Oracle
Machines. Fundamenta Informaticae, vol. 18, pp. 65-92, 1993.

Tain A. Stewart. Logical characterization of bounded query classes II: Polynomial-time
Oracle Machines. Fundamenta Informaticae, vol. 18, pp. 93-105, 1993.

R. Szelepcsenyi. The method of forced enumeration for nondeterministic automata.
Acta Informatica, 26, pp. 279-284, 1988.

M. Y. Vardi. The complexity of relational query languages. In Proceedings of the 14th
ACM Symposium on the Theory of Computing, pages 137-146, 1982.

C. Yap. Some Consequences of non-uniform conditions on uniform classes. Theoretical
Computer Science, 26(3) pages 287-300, 1983.

Klaus Wagner. Bounded query classes. SIAM J. Comp., 19(5), pp. 833-846, 1990.

14

