
Argument & Computation 8 (2017) 35–59 35
DOI 10.3233/AAC-170017
IOS Press

Defeasible argumentation over relational
databases

Cristhian Ariel David Deagustini a,b,∗, Santiago Emanuel Fulladoza Dalibón a,b,
Sebastián Gottifredi a, Marcelo Alejandro Falappa a,b, Carlos Iván Chesñevar a and
Guillermo Ricardo Simari a

a AI R&D Lab., Institute for Computer Science and Engineering (ICIC), Consejo Nacional de
Investigaciones Científicas y Técnicas (CONICET), Alem 1253, (B8000CPB), Bahía Blanca Bs. As.,
Argentina
E-mails: cadd@cs.uns.edu.ar, sef@cs.uns.edu.ar, sg@cs.uns.edu.ar, mfalappa@cs.uns.edu.ar,
cic@cs.uns.edu.ar, grs@cs.uns.edu.ar
b Agents and Intelligent Systems Area, Faculty of Management Sciences, Universidad Nacional de
Entre Ríos, Tavella 1424, Concordia E. R., Argentina

Abstract. Defeasible argumentation has been applied successfully in several real-world domains in which it is necessary to han-
dle incomplete and contradictory information. In recent years, there have been interesting attempts to carry out argumentation
processes supported by massive repositories developing argumentative reasoning applications. One of such efforts builds argu-
ments by retrieving information from relational databases using the DBI-DeLP framework; this article presents eDBI-DeLP,
which extends the original DBI-DeLP framework by providing two novel aspects which refine the interaction between DeLP
programs and relational databases. First, we expand the expressiveness of dbi-delp programs by providing ways of controlling
how the information in databases is recovered; this is done by introducing filters that enable an improved fine-grained control
on the argumentation processes which become useful in applications, providing the semantics and the implementation of such
filters. Second, we introduce an argument comparison criterion which can be adjusted at the level of literals to model particu-
lar features such as credibility and topic expertise, among others. These new tools can be particularly useful in environments
such as medical diagnosis expert systems, decision support systems, or recommender systems based on argumentation, where
datasets are often provided in the form of relational databases.
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1. Introduction

Argumentation represents a sophisticated mechanism for the formalization of commonsense rea-
soning, which has found application and proven its importance in different areas of Artificial Intel-
ligence (AI) such as legal systems, multi-agent systems, and decision support systems among others
(see [4,21,26,30]). Intuitively, an argument is a coherent set of statements that supports a claim; the ac-
ceptance of this claim will depend on a dialectical analysis (formalized through an inference procedure)
of the arguments in support of the claim and considering those arguments against that support [30].

In the literature, a particular kind of argumentation systems can be identified, namely Rule Based
Argumentation Systems (RBAS) [2,14,18,28]. In RBAS, arguments are built from a specific knowledge
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base of rules and facts, which in many cases represents an important drawback, as all the available
information needs to be explicitly encoded in such rules and facts; this may be an obstacle for their
application to real world situations where often there is an enormous amount of data to be included, and
encoding explicitly such data would make the RBAS highly impractical [10]. Because of this problem,
recently there has been an increasing interest in connecting argumentation approaches with massive data
repositories, such as relational databases or the Web [7,13,22,29,36].

The research presented here is related to those works focused on enabling argumentation over massive
repositories but following a different direction. Our goals are not only to provide means of interaction
between the argumentation mechanisms and relational databases, but also to introduce means of con-
trolling the interaction itself and how it affects the proof procedure used to warrant claims through the
argumentation process. To achieve this, we will take as the basis for our work the DBI-DeLP (Database
Integration for Defeasible Logic Programming) framework developed in [13], revising and expanding
several parts in it to achieve the mentioned goals. In particular, a key aspect to be considered for this is
that different information sources can have attached different epistemic importance (whether it reflects
credibility, weight, probability, etc.); thus, it is important which particular source is providing the sup-
port for literals in arguments. Moreover, such epistemic importance may vary as the topic changes, and
then we argue that it is not advisable to simply establish an order among databases, but rather we have
also to consider literals themselves in the equation.

To model this, we will introduce the notion of authority, which represents the topic expertise asso-
ciated with a specific database regarding the particular predicate it gives support to; using this concept
we introduce eDBI-DeLP (extended DBI-DeLP), an extension of framework developed in [13], whose
main contribution will be twofold. On the one hand, we introduce a mechanism to control how the data
supporting an argument is to be retrieved from databases; this is achieved by using filters, which provide
the user with a way to restrict the databases in which the data should be searched. These filters can take
different forms; for instance, we can restrict the search to those databases with a maximal authority for
the given predicate, or ask to retrieve those results which have more consensus on the set of available
databases. On the other hand, we provide an argument comparison criterion tailored for our scenario
of obtaining data to build arguments from databases. Such comparison criterion will be based on the
use of an argument valuation function that considers both the inherent strength associated with rules
in the program and the authority assigned to the databases that provide the data that enables the use
of these rules. In this way, the dialectical process outcome becomes influenced by the authority of the
repositories used to construct arguments, a feature which can be of great benefit in different application
domains by focusing the process on the pertinent data. For instance, in a medical setting we can have
databases corresponding to different hospitals, attaching higher authority to those pieces of information
coming from hospitals specialized in various areas of expertise (e.g., burn and skin injuries, cancer treat-
ments, etc.), rather than plainly adopt a general ranking among all hospitals. This approach can help to
identify which arguments should prevail in different situations (e.g., a good argument concerning how
to treat skin cancer should combine high-quality information from the skin-specialized hospital and the
cancer-specialized hospital).

The remainder of the paper is organized as follow: in Section 2, we review DeLP, the formalism that
supports eDBI-DeLP; in Section 3, we outline a possible structure that allows the realization of argu-
mentation processes over information stored in databases, focusing on how to control the interaction
between the rules in the program and relational databases, and how such interaction influences the di-
alectical process used to warrant arguments; in Section 4, we present a complete structure that enables
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the objectives of this paper. Finally, in Section 5, we introduce the main conclusions obtained and discuss
the pertinent related works, identifying lines for future research work as well.

2. Preliminaries

We will begin by giving a brief summary of Defeasible Logic Programming (DeLP) [18], a formalism
that combines results from Logic Programming and Defeasible Argumentation providing the possibility
of representing information as rules in a declarative manner, and a defeasible argumentation inference
mechanism for warranting the entailed conclusions. These rules are the key element for introducing
defeasibility and they are used to represent a relation between pieces of knowledge that could be defeated
after all things are considered.

Assuming certain familiarity with Logic Programming, the language of DeLP can be succinctly de-
scribed as follows. A term is either (a) a constant, (b) a variable, or (c) if f is a functor and t1, t2, . . . , tn
are terms then f (t1, t2, . . . , tn) is a term. Also, if p is a predicate and t1, t2, . . . , tn are terms then
p(t1, t2, . . . , tn) is an atom, and a literal is an atom or a strongly negated atom (an atom preceded by
the strong negation “∼”). A defeasible logic program (or delp for short) is a pair (�, �) where � is a
set of strict rules and facts, and � is a set of defeasible rules. In a delp, knowledge can be represented
using strict rules, facts, and defeasible rules. Facts are ground literals representing atomic information
or the negation of atomic information using strong negation “∼”, e.g., a or ∼ a. DeLP strict rules are
denoted L0 ← L1, . . . , Ln, and represent information that cannot be attacked, i.e., if the Body consisting
of L1, . . . , Ln can be supported then the Head L0 it is also supported; while defeasible rules (d-rules) are
denoted L0 −≺ L1, . . . , Ln which represents tentative information that may be used if nothing could be
posed against it. A d-rule Head −≺Body expresses that reasons to believe in Body give reasons to believe
in Head.

Strict and defeasible rules are ground, nevertheless, following the usual practice in logic program-
ming [23], we use schematic rules with (meta-)variables in them, that stand for all possible grounded in-
stances of such rules. To distinguish these variables from other elements in a schematic rule, we adopt the
notation of logic programming, where variable names begin with uppercase letters, and where constant
and predicate names begin with lowercase letters. For example, actor(Person) ← performs_in(Movie,
Person) represents a strict rule; and good_movie(Movie) −≺ performs_in(Movie, arnold) represents a de-
feasible rule.

A defeasible rule with an empty body is called a presumption. Presumptions are assumed to be true
if nothing could be posed against them. In [18,25] an extension to DeLP that includes presumptions is
presented, where an extended delp is a set of facts, strict rules, defeasible rules and presumptions.

From a DeLP program it is possible to infer tentative information and these inferences are called
defeasible derivations, and are computed by backward chaining applying the usual SLD inference pro-
cedure used in logic programming. Strong negation can appear in facts and presumptions, or generally
in the head and body of strict and defeasible rules; therefore, it is important to note that from a program
it is possible to obtain contradictory literals; but, the set � used to represent non-defeasible information
is non-contradictory, i.e., � is such that no pair of contradictory literals can be derived from �. This last
restriction is methodological since from an inconsistent � all the language can be obtained.

An argument for a literal L, denoted 〈A, L〉, is a minimal non-contradictory set of d-rules A ⊆ �,
that allows to derive L, possibly in combination with the strict information available. When contradictory
literals are derived from a program, a dialectical process is used to decide which literals are warranted;
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that is, a literal L is warranted if there exists a non-defeated argument A for L. To establish if 〈A, L〉
is a non-defeated argument, defeaters for 〈A, L〉 are considered. Counterarguments of 〈A, L〉 are those
arguments that disagree (i.e., are in contradiction) at some point with 〈A, L〉, and a counter-argument is a
defeater for an argument A if it is preferred to 〈A, L〉 by some argument comparison criterion. Note that
different comparison criteria can be formulated to suit the needs of a particular application domain; in
particular, in this work we will focus on comparison criteria which take into account the characteristics
of the databases used as source of information. More detailed information regarding how the warrant
procedure is performed can be found in [18,19].

It seems natural that in a setting where arguments are supported by information extracted from
databases, the characteristics of such databases, e.g., the credibility associated with them should in-
fluence the preference of an argument over another. Moreover, we argue that those characteristics should
take into account the topics considered as well, since a database could be reliable for a particular topic
but be completely inadequate for another; for instance, a database with movie information provided by
users can be a good resource when we try to find out by looking at the ratings provided by the users
whether a movie is good or not, but it may not be reliable when trying to find out the salaries earned by
the actors who participated in the film and, on the other hand, a database provided by the Internal Rev-
enue Service should be a good fit for the latter topic, but not for the former. To model this, we introduce
the concept of authority, denoted V , which will have a value inside [0, 1] representing how well fitted a
database is at supporting some literal. In the following, we assume the existence of a set of authorities for
the literals that appear in the rules of a program. So, for instance, we can have a predicate used to assess
an actor’s performance in movies and databases DBcritics and DBusers, and we can set the authority of the
former database to 1 while the latter’s authority to 0.5 (deeming the critics’ valuation of performances as
more significant than those from regular moviegoers). Later in the paper, we will see how these values
will be considered in the dialectical process when evaluating arguments, thus affecting the outcome of
the argumentation process.

3. Defeasible argumentation over databases

DeLP enables query resolution by an argumentative process which deals with incomplete and po-
tentially contradictory information. Several real-world applications have been proposed on the basis of
DeLP, such as recommender and decision-support systems [27], multi-agent systems [35], agreement
technologies [6], etc. However, many of these real-world environments require massive repositories of
data; thus, DeLP requires additional features to handle such data, since this cannot be achieved by in-
cluding new data as a static part of the program. The DBI-DeLP framework [13] is an extension of DeLP
that uses relational databases as the source of the information on which arguments are based. This frame-
work has been proven useful in the definition of new architectures for argumentation-based applications
which have the above mentioned requirements [9]. In what follows, we will add new components to the
framework presented in [13], and redefine others in such a way they suit our objectives. The extended
DBI-DeLP framework will be called eDBI-DeLP.

3.1. Representing knowledge in the framework: Interaction between rules and databases

The eDBI-DeLP framework will enable argumentation supported by information stored in relational
databases. In what follows, we will describe how this can be achieved, introducing ways of representing
the information stored in the databases in the context of a DeLP-like program. First, we will introduce an
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annotated form of literals extending the notation with additional information regarding the information
the literals represent; this extra information may take diverse forms, e.g., describe conditions that must
be met for the literal to hold, or provide information about which sources we shall use to support the
literals. Then, an annotated literal is defined as follows:

Definition 1 (Annotated literal). Given an atom pred(p1, . . . , pm) and an atom filter, then “pred(p1, . . . ,

pm)[filter]” is an annotated literal.

The extra information is called filters and the idea behind them is to give the programmer more control
on the interactions between the program and the databases, by augmenting the expressiveness of the
former. Filters can be used for diverse purposes and later we will formally define the filters that will be
used in our framework, but for now we will introduce the intuitions behind the set of filters that will used
here.

• ε filter: indicates that the literal is supported from databases; thus, if a literal with this filter is
included in a rule it is unnecessary to look into the facts in the program to prove the literal.

• max filter: indicates that we should retrieve only tuples from databases that have the maximal author-
ity value for the predicate that the filter is annotating; for instance, weather(london, Weather)[max]
establish to only use information from the databases with the highest authority for the predicate
weather(City, Weather).

• maj filter: states that we should use a majority approach when retrieving information. That is,
we should retrieve information that is replicated in most databases; for instance, weather(london,

Weather)[maj] indicates to retrieve the weather value that appears in the most available databases
containing the weather associated with the city London.

• source filter: establishes which databases we will search for support for the annotated literal; e.g.,
rating(Movie, Rating)[source(DBcritics, DBdirectors)] is an indication that we should retrieve the rat-
ings of movies only from the DBcritics and the DBdirectors databases. Notice that this filter is used to
narrow the search space; thus, if some annotated literal does not have a source filter then the search
is performed in every available database suitable for supporting the literal.

• excluded_source filter: prohibits some source to be used as support for the literal; for instance,
movie_rating(Movie, Rating)[excluded_source(DBusers)] ignores the Users’ database when retriev-
ing information for such literal.

Then, filters can be used by a developer to control how the rules interact with the databases that provide
literals used to support arguments. To do this, in this work we redefine strict and defeasible rules to allow
the use of annotated literals in their body.

Definition 2 (Strict rules and defeasible rules). Given a literal L, i.e., a ground atom or a negated ground
atom, and a finite, non empty, set Body = {L1, . . . , Ln}, where all Li(1 � i � n) are literals or annotated
literals:

• A strict rule is an ordered pair “L ← Body”.
• A defeasible rule is an ordered pair “L−≺Body”.

To properly represent information coming from relational databases the eDBI-DeLP framework adopts
the notion of presumptions [18] for representing “defeasible” facts, thus avoiding inconsistencies in the
strict knowledge as required in DeLP. Given a database D, their operative presumptions (OPs) are those
tentative facts associated with the information stored in D. Such tentative facts are represented by means
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of annotated literals, and then they contain information of the filters used in the retrieval of tuples from
databases (if any). In addition, in this work we will attach to every presumption which is supported by
tuples in a relational database (i.e., to every OP) additional information regarding the authority of the
sources that gives support to the operative presumption. Formally, these presumptions are defined as
follows:

Definition 3 (Annotated operative presumption). Let X be a set of predicates, pred the predicate name
for some predicate x ∈ X, and D = {D1, . . . , Dn} a set of databases. An annotated operative presump-
tion (OP) for a database D and the predicate pred is a pair (AL,V) where:

• AL is an annotated literal with the form pred(t1, . . . , tm)[filter] such that there exists a tuple tup =
(q1, . . . , qm) ∈ D, where D ∈ D and qi = ti for all i, and

• V ∈ [0, 1]
Given an operative presumption O = (pred(t1, . . . , tm)[filter],V) we denote by lit(O) the literal part

of the operative presumption, i.e., lit(O) = pred(t1, . . . , tm).
The set of all OPs for given sets of predicates X and set of databases D = {D1, . . . , Dn}, denoted as

OPsetX,D is defined as
⋃n

i=1 OPsetX,Di
, where OPsetX,Di

is the set of all OPs for database Di and every
predicate x ∈ X.

Example 1. Suppose that we have the predicate temperature(City, Value), and the databases D1, D2 and
D4 that have information regarding temperatures in different cities, where the authority assigned to D1

is 0.7, and the authority given to D2 and D4 is 0.5. Now, assume that for the city Montevideo we have
the following information

Then, we can build the OP (temperature(montevideo, 17)[ε], 0.5).
To see how filters affect the way OPs are built consider now the case where we have temperature(City,

Value)[max]. Then, the previous OP cannot be built. Nevertheless, we can have (temperature
(montevideo, 15)[max], 0.7).

In this manner, operative presumptions are used to represent the information available in the databases
so they could be used to build arguments. Nevertheless, given that in this work we use annotated oper-
ative presumptions which are different from the presumptions used in [18], then we could not simply
reuse the standard derivation in DeLP used in that work. Then, we present now a modified version of
derivation, tailored to our particular setting.

Definition 4 (DB-based defeasible derivation). Let � be a set of strict rules and facts, � be a set of
defeasible rules, X the set of every predicate in the rules of �∪�, D = {D1, . . . , Dn} a set of databases,
OPs ⊆ OPsetX,D and L a ground literal. A defeasible derivation of L from P = � ∪ � ∪ OPs, denoted
P|∼L, consists of a non-empty finite sequence L1, L2, . . . , Ln = L of ground literals, and each literal
Li is in the sequence because:
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(a) Li ∈ � is a fact, or
(b) (AL,V) ∈ OPs is such that lit(AL) = Li , or
(c) there exists a rule Ri in P (strict or defeasible) with head Li and body B such that:

• if Bj ∈ B is a literal then Bj is an element of the sequence appearing before Li .
• if Bj ∈ B is an Annotated Literal then there is an operative presumption OP = (Bj ,V) in OPs

such that lit(Bj ) is an element of the sequence appearing before Li .

When there is some operative presumption or defeasible rule in a derivation we call such derivation a
defeasible derivation.

As a remark note that here we use the same notational practice adopted from Programming Logic
for DeLP regarding schematic rules. That is, in eDBI-DeLP all strict and defeasible rules are grounded,
but for notational simplicity we will present them using meta-variables that represent all the grounded
instances of them. Nevertheless, if we were to use variables in the programs then we could apply a
substitution schema such as the one introduced by Capobianco et al., [10].

Arguments in eDBI-DeLP are obtained in the same way explained previously for DeLP, but using the
derivation procedure stated in Definition 4.

Definition 5 (Arguments in eDBI-DeLP). Let � be a set of strict rules and facts, � be a set of defeasible
rules, X the set of every predicate in the rules of � ∪ �, D = {D1, . . . , Dn} a set of databases and L

a ground literal. A pair 〈A, Q〉 where A is a non empty set A of defeasible rules in � and operative
presumptions in OPsetX,D and Q is a grounded literal is an argument for Q iff:

(1) there exists a defeasible derivation for Q from � ∪ A,
(2) � ∪ A is non contradictory,
(3) A is minimal with respect to set inclusion in satisfying (1) and (2).

Given an argument 〈A, Q〉 we call the literal Q the claim of A, denoted claim(A). The set of all
arguments that can be built from P = � ∪ � ∪ D is denoted Args.

For the sake of simplicity through the rest of the paper we will often omit the claim in an argument,
i.e., we will refer to 〈A, Q〉 as A.

An eDBI-DeLP program (edbi-delp) accounts for a DeLP program (as defined in Section 2) along
with a set � of operative presumptions, associated with a number of available databases D1, . . . , Dk.
Such operative presumptions are built on demand for solving a query, and discarded later when the query
has been solved. Finally, an edbi-delp contains a valuation υ among the facts, strict and defeasible rules
in the program, which can be used to establish priorities between such elements. We assume that this
valuation is such that strict elements (both facts and strict rules) have a value of 1, whereas defeasible
rules’ valuation is a real in [0, 1]. Note that the choice of strict information having a value of 1 is made
to model that strict information cannot be challenged, and thus it has the maximal valuation possible. As
we will see later in the paper such valuation has an impact on the overall dialectical process, adding an
extra feature to ultimately determine whether a claim is accepted or not.

Definition 6 (eDBI-DeLP program). Let D = {D1, . . . , Dk} be a set of databases, an eDBI-DeLP pro-
gram (edbi-delp) P is a tuple (�, �, D, �, υ) where � is a set of facts and strict rules, � is a set of
defeasible rules, � = OPsetX,D is a set of Operative Presumptions where X is the set of every predicate
in the rules of (�, �), and υ : � ∪ � �→ [0, 1] ∈ R.
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Now we describe the process used to answer queries from an edbi-delp. In Definition 4 we have
outlined how eDBI-DeLP constructs arguments to solve queries by a backward chaining process. That
is, when eDBI-DeLP is searching for an argument in support of a literal L, the argument construction
might involve a strict or defeasible rule having L in the head; then, DeLP tries to prove the literals in the
body of this rule. These literals in the body are called Target Goals (TG), as they will be the next goals
of the inference procedure.

Definition 7 (Target goals). Let � be a set of facts and strict rules, and � a set of defeasible rules. Given
some strict rule L ← L1, . . . , Ln in � or defeasible rule L −≺ L1, . . . , Ln; every (annotated) literal
Li, (1 � i � n), in the body of the rule is called Target Goal (TG). The set of all TGs for � ∪ � is
called TGset.

The TGs are a key element in eDBI-DeLP, as they are the connection between the rules in the program
and the records in databases. As such, since they emerge from rules then TGs clearly depend on the
particular sets of strict and defeasible rules being considereng in an edbi-delp. Every TG will be analyzed
following the traditional SLD procedure, using all the rules, facts and presumptions in the edbi-delp. For
the purpose of this work, we focus on how presumptions can be obtained from the available databases. To
do so, a search for operative presumptions is launched to retrieve from the databases information offering
support to the literal (if any). For this, we begin by identifying the data sources; i.e., the databases, and
the tables and fields in it, that are expected to have useful data for the TG. The triplet [database, table,
field] in the data source is called a Parameter Source (PS), formally,

Definition 8 (Parameter source). Given a set D = {D1, . . . , Dn} of available databases, a PS is a triplet
[Di, T , F ] where Di ∈ D, T is a table in Di and F is a field in T . The set of all PS for a given D is called
PSS.

Each potential data source of useful information for a given TG is linked to the corresponding TG
through a Pertinence Relation. Moreover, in this relation we find the information regarding the authority
assigned to a database with respect to a particular predicate. It is important to remark that authority is
information extra that is attached to the pertinence relation for further use in the warranting of arguments,
but does not affect whether or not a data source is pertinent for a TG.

Definition 9 (Pertinence relation). Given a set D of available databases {D1, . . . , Dn}, a set � of facts
and strict rules, and a set � of defeasible rules, let PSS be the set of all PS for DTGset the set of all
TG for � ∪ �. The Pertinence Relation PR ⊆ TGset × 2PSS × [0, 1] is such that (TG, DS,V) ∈ PR iff
DS ⊂ PPS and V ∈ [0, 1].

We assume that the Pertinence Relation is given as an input to the system; in Section 4.3 we show
how this relation is implemented through a particular structure.

Intuitively, if a data source is pertinent for a TG then we can use that data source to support that TG,
i.e., we can obtain the necessary tuples (and, in turn, built the necessary OPs) from this source. Once we
know which data sources are pertinent, we have to retrieve from them the data and make it available to
the DeLP core which builds answers to the query using this data, along with the rest of the edbi-delp.
This retrieval is made by the application of the Presumption Retrieval Function (PRF).

Before introducing the PRF, however, we will introduce the Tuple To Presumption Function (TPF),
as a previous step to formally define the filters that we will consider through the paper. As its name
suggests, the TPF is a function that takes a set of tuples (possibly with some other parameters) and built
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presumptions that can be used by the argumentative process presented in the paper. Formally, a TPF is
as follows.

Definition 10 (Tuple to presumption function). Let D = {D1, . . . , Dn} be a set of available databases,
TGset be the set of all target goals and OPset be the set of all operative presumptions for D and TGset. Let
TG ∈ TGset, and finally, let TupSet = {(tup1, Di), (tup2, Di′), . . . , (tupk, D

′′
i )} where 1 � i, i ′, i ′′ � n

be a set of pairs such that (tup, Di) indicates that tup ∈ Di .
A Tuple To Presumption Function TPF is such that if TPF(TupSet, TG) = S then the set S ⊆ OPset

is a set of Operative Presumptions.

Clearly, the TPF models a family of functions that transform tuples (along with additional information)
into operative presumptions, rather than a particular constructive function. In this work we call filters to
the particular instances of the TPF that we will use when operative presumptions are built.

So, filters are functions that focus on certain subsets of the whole set of presumptions that could be
retrieved from the databases to support certain literals. We have already intuitively introduced the set of
filters that we will use in this work. Now we will look more deeply into how such filters behave, that is,
we will introduce the particularizations of the TPF that we will use through this paper. In what follows
let D = {D1, . . . , Dn} be a set of available databases, TGset be the set of all target goals and OPset be
the set of all operative presumptions. Let TG ∈ TGset, PSS be the set of all parameter sources, and PR be
the Pertinence Relation for TGset over PSS. Given a tuple tup = (q1, . . . , qm), let |tupD| be the number
of databases Di ∈ D such that tup ∈ Di . Finally, let TupSet = {(tup1, Di), (tup2, Di′), . . . , (tupk, D

′′
i )}

where 1 � i, i ′, i ′′ � n be a set of pairs such that (tup, Di) indicates that tup ∈ Di , and S be the set of
Operative Presumptions returned by the filter. Then the filters used in this work are the following.

The ε filter simply builds the presumptions based on the tuples received and the authority for the pair
(TG, DB), with no further filtering being done.

Definition 11 (ε filter). Given TG = pred(t1, . . . , tm) or TG = pred(t1, . . . , tm)[ε], the ε filter (or empty
filter) is such that (pred(t1, . . . , tm)[ε],V) in ε(TupSet, TG) iff

� there exists (tup, D) ∈ TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for
every qi ∈ tup it holds that qi belongs to field F in table T of database D and [D, T , F ] ∈ DS.

The max filter only returns those presumptions built based on tuples retrieved from databases with the
maximal authority for the given TG.

Definition 12 (max filter). Given TG = pred(t1, . . . , tm)[max], the max filter is such that (pred(t1, . . . ,

tm)[max],V) in max(TupSet, TG) iff

• there exists (tup, D) ∈ TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for
every qi ∈ tup it holds that qi belongs to field F in table T of database D and [D, T , F ] ∈ DS, and

• there does not exist DS′ ∈ PSS where (TG, DS′,V ′) ∈ PR such that V < V ′.

The maj filter returns presumptions supported in the greater number of databases, assigning as the au-
thority for the presumption the maximal authority among the ones assigned for the databases containing
the tuple and the given target goal.

Definition 13 (maj filter). Given TG = pred(t1, . . . , tm)[maj], the maj filter is such that (pred(t1, . . . ,

tm)[maj],V) in maj(TupSet, TG) iff
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• there exists (tup, D) ∈ TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for
every qi ∈ tup it holds that qi belongs to field F in table T of database D and [D, T , F ] ∈ DS and
there does not exist (TG, DS′,V ′) ∈ PR such that for every qi ∈ tup it holds that qi belongs to field
F ′ in table T ′ of database D′ and [D′, T ′, F ′] ∈ DS′ where V < V ′, and

• there does not exist DS′ ∈ PSS where (TG, DS′,V ′) ∈ PR and tup′ = (r1, . . . , rm) such that
for every ri ∈ tup′ it holds that ri = ti , ri belongs to field F ′ in table T ′ of database D′ and
[D′, T ′, F ′] ∈ DS′ and it holds that |tupD| < |tup′

D|.
The source filter builds the presumptions based on the tuples received and the authority for the pair

(TG, DB) under consideration, filtering out those based on tuples retrieved from databases that are not
listed on its parameter.

Definition 14 (sources filter). Given TG = pred(t1, . . . , tm)[sources(DBList)], the sources filter is such
that (pred(t1, . . . , tm)[sources(DBList)],V) in source(TupSet, TG) iff

• there exists (tup, D) ∈ TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for
every qi ∈ tup it holds that qi belongs to field F in table T of database D and [D, T , F ] ∈ DS, and
D ∈ DBList.

The excluded_source filter builds the presumptions based on the tuples received and the authority for
the pair (TG, DB) under consideration, filtering out those based on tuples retrieved from databases listed
on its parameter.

Definition 15 (excluded_sources filter). Given TG = pred(t1, . . . , tm)[excluded_sources(DBList)],
the excluded_sources filter is such that (pred(t1, . . . , tm)[excluded_sources(DBList)],V) in excluded_
source(TupSet, TG) iff

• there exists (tup, D) ∈ TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for
every qi ∈ tup it holds that qi belongs to field F in table T of database D and [D, T , F ] ∈ DS, and
D /∈ DBList.

The set of filters introduced is the particular one that we will consider in the present work, but clearly
could be expanded to suit other application environment needs if necessary. We can show that the filters
max, maj, source and excluded_source are proper instances of TPF (that is, the ε filter).

Proposition 1. Let TupSet = {(tup1, Di), (tup2, Di′), . . . , (tupk, D
′′
i )} where 1 � i, i ′, i ′′ � n be an

arbitrary set of pairs such that (tup, Di) indicates that tup ∈ Di , and TG be an arbitrary Target Goal.
Then, for any OP ∈ filter(TupSet, TG) there exists OP′ ∈ ε(TupSet, TG) such that lit(OP) = lit(OP′),

where filter ∈ {max, maj, sources(DBList), excluded_sources(DBList′)}.
Proof. Let TupSet = {(tup1, Di), (tup2, Di′), . . . , (tupk, D

′′
i )} where 1 � i, i ′, i ′′ � n be an arbitrary set

of pairs such that (tup, Di) indicates that tup ∈ Di , and TG be an arbitrary Target Goal.
We begin with the analysis of the max filter. Consider any arbitrary operative presumption OP =

pred(t1, . . . , tm)[max] such that OP ∈ max(TupSet, TG). Then, by Definition 12 there exists (tup, D) ∈
TupSet and (TG, DS,V) ∈ PR where tup = (q1, . . . , qm) is such that for every qi ∈ tup it holds that qi

belongs to field F in table T of database D and [D, T , F ] ∈ DS(1).
From (1) and Definition 11 it follows that there exists OP′ ∈ ε(TupSet, TG) such that OP′ =

pred(t1, . . . , tm)[ε]. Finally, we have that lit(OP) = pred(t1, . . . , tm) and that lit(OP′) = pred(t1, . . . , tm),
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and thus since OP is arbitrary it holds that for any OP ∈ max(TupSet, TG) there exists OP′ ∈
ε(TupSet, TG) such that lit(OP) = lit(OP′).

We omit the proofs for filters maj, sources(DBList) and excluded_sources(DBList′) as they are analo-
gous to the one presented for max. �

Now that we outlined all filters that will be considered in the paper, we are ready to introduce the
Presumption Retrieval Function. The goal of the PRF is to feed the argumentation process with relevant
data obtained from the pertinent data sources, along with information regarding the authority assigned
to such datasources for the topic addressed by the particular literal that is trying to support.

Definition 16 (Presumption retrieval function). Let D = {D1, . . . , Dn} be a set of available databases,
TGset be the set of all target goals and OPset be the set of all operative presumptions for D and TGset.
Let TG ∈ TGset, PSS be the set of all parameter sources, and PR be the Pertinence Relation for TGset
over PSS.

The Presumption Retrieval Function PRF : TGset �→ 2OPset is such that

PRF(TG) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{OP|OP ∈ ε(TupSet, TG)} if TG = pred(t1, . . . , tm)or if

TG = pred(t1, . . . , tm)[ε],
i.e., TG is a literal or a

non-filtered annotated literal

{OP|OP ∈ filter(TupSet, TG)} if TG = pred(t1, . . . , tm)[filter]
where filter ∈ {max, maj,

sources(DBList),

excluded_sources(DBList′)},
i.e., TG is a filtered annotated

literal

where TupSet = {(tup1, Di), (tup2, Di′), . . . , (tupk, D
′′
i )} is such that

• for every (tup, D) ∈ TupSet it holds that tup = (q1, . . . , qm) exists in the database D ∈ D such that
qi = ti , for all 1 � i � n, and

• there exists (TG, DS,V) ∈ PR such that for every qi ∈ tup it holds that qi belongs to field F in
table T of database D and [D, T , F ] ∈ DS.

Therefore, the PRF function retrieves database tuples from pertinent data sources with values equal to
the corresponding constant values. Notice how the PRF function formalizes the effects of the different
filters available by conditioning the retrieval of tuples. Clearly, Definition 16 is flexible enough to allow
an easy expansion of the set of filters proposed.

To see an example of how the PRF works, consider a database DBactors with the tuples (demolition
man, stallone), (demolition man, snipes), and (rambo, stallone), where each tuple states that the actor
in the second component has appeared in the film associated with the first component. Given the TG
performs_in(demolition man, Actor), assume that the authority of database DBactors for the predicate per-
forms_in is 0.9. Then, for the PRF we have



46 C.A.D. Deagustini et al. / Defeasible argumentation over relational databases

Fig. 1. Weather databases.

PRF(performs_in(demolition man, Actor)) =
{(performs_in(demolition man, stallone), 0.9)
(performs_in(demolition man, snipes), 0.9) }

unifying the non grounded parameter (i.e., schematic variable) Actor with both stallone and snipes with
an assigned authority of 0.9. As we can see, (performs_in(rambo, stallone), 0.9) is not in S as the tuple
(rambo, stallone) does not match the value required for the grounded parameter.

Now, to see an example of how filters are applied consider the following situation. Suppose that we
have the databases depicted in Fig. 1, and the TG temperature(City, Temp)[max], where the authorities
assigned for the temperature(City, Temp) predicate for the WeatherInfo and KnowWeather databases is
0.65 and 0.25, respectively. Then, we have that:

PRF(temperature(City, Temp)[max]) =

{(temperature(london, 12)[max], 0.65),
(temperature(new_york, 25)[max], 0.65),
(temperature(venice, 22)[max], 0.25)}

3.2. Argument preference in database-supported argumentation processes

So far we have introduced a retrieval mechanism to obtain data to support the construction of argu-
ments from databases together with other information associated that can be used to measure the value
of such information. As explained in Section 2, to find out whether a literal is warranted, a dialectical
process is carried out, looking to find an argument for that literal that is not defeated under an established
defeat relation. Even when it is possible to abstract from the way in which the defeat relation is obtained,
usually in practice it is better to be able to calculate the relation by taking advantage of the particular
meaning of the domain [17]. A key component to obtain a defeat relation is the argument comparison
criterion, which is used to decide whether or not an argument is preferred to another. In this section we
will introduce a comparison criterion that we will use in eDBI-DeLP. Such comparison criterion makes
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full use of the authority assigned to a database regarding its specific topic (i.e., the different predicates)
to model topic expertise.

Next we define the rule in an argument that is used to infer the corresponding claim supported by that
argument. Formally:

Definition 17 (Claim inferring rule). Let P = (�, �, D, �, υ) be an edbi-delp, and an argument A ∈
Args built from P such that claim(A) = L and δ its associated derivation. Then, the claim inferring
rule r ∈ � ∪ � for argument A is such that either

• r ∈ A is a defeasible rule with Head(r) = L, or
• r is a strict rule with Head(r) = L, every literal L′ ∈ Body(r) is such that L′ in δ and there exists

no strict rule r ′ ∈ � such that Body(r ′) � Body(r).

We will now establish how the value of an argument is obtained in eDBI-DeLP, i.e., how the authority
assigned to presumptions and the valuation in rules is combined to calculate a final value for an argument.
Formally, the argument valuation in eDBI-DeLP proceeds as follows.

Definition 18 (Argument valuation function). Given an edbi-delp P = (�, �, D, �, υ), let A be an
argument for L over P . Then, the argument valuation function ν : Args �→ [0, 1] ∈ R, noted as ν(A),
is such that:

ν(A) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

V if A = {(AL,V)}
1 if A = ∅
μ ∗ ν(A′) otherwise, where (r, μ) ∈ υ and r is the claim inference

rule for A, and A′ ⊂ A is the subargument with minimum

valuation such that claim(A′) ∈ Body(r).

Intuitively, the valuation of an argument is made by combining the intrinsic valuation of its claiming
rule with the valuations of its subarguments. To do so, we take the product of the less-valued element
in the body of the rule and the numerical valuation of the rule, following a cautious approach similar
to the propagation of necessity degrees in P-DeLP (Possibilistic Defeasible Logic Programming) [1].
Nevertheless, it is clear that this approach can be modified as needed to suit the particular requirements
of the different application environments, e.g., we could use an average of the values obtained for the
elements in the body.

In eDBI-DeLP the argument valuation function will be used as the argument comparison criterion.
First, however, we will formally introduce the notion of counter-argument. Intuitively, an argument
counter-argues another when a contradiction arise when considering both arguments along with the
strict information in the program. Formally this is as follows.

Definition 19 (Counterargument). Given P = (�, �, D, �, υ), let 〈A, Q1〉 and 〈B, Q2〉 ∈ Args be
two arguments over P . We say that 〈A, Q1〉 is a counter-argument for 〈B, Q2〉, if and only if there exists
a subargument 〈B′, Q〉 of 〈B, Q2〉 such that Q and Q1 disagree (i.e., � ∪ {Q, Q1} is contradictory).

Therefore, using this notion of counter-argument and the argument valuation in eDBI-DeLP, we will
formalize the notion of defeater in our framework.
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Definition 20 (Defeat). Given P = (�, �, D, �, υ), let 〈A, Q1〉, 〈B, Q2〉 ∈ Args be two arguments
over P . Then, 〈A, Q1〉 defeats 〈B, Q2〉 iff 〈A, Q1〉 is a counter-argument for 〈B, Q2〉 attacking at literal
Q, there exists a subargument 〈B′, Q〉 of B and

(a) ν(B′) < ν(A) (proper defeater), or
(b) ν(B′) = ν(A) (blocking defeater).

Example 2. To see how the argument valuation and the comparison criterion work, let’s consider the
following situation. Suppose that in our program we have the rules

sr1 = ∼ buy_stock(Company) ← good_price(Company),
risky_company(Company)

and

dr2 = buy_stock(Company) −≺ good_price(Company),
in_fusion(Company, AnotherCompany),
value(AnotherCompany, Val)[max],
worth(Val).

where the valuations for the rules are υ(sr1) = 1 and υ(dr2) = 0.6.
Now, assume that we have the argument:

A ={(good_price(acme), 0.8),
(risky_company(acme), 0.25)}

which uses sr1 to conclude ∼ buy_stock(acme), advising not to buy stocks from the company Acme,
since it is a risky company. For the sake of example assume that we obtain the support for Acme being
at a good price at this moment from a database with an authority of 0.8 for the topic, and that the
literal risky_company(acme) is supported by a database that has an associated authority for that literal
of 0.25, thus enabling us to build the operative presumption (risky_company(acme), 0.25). Under such
assumptions, the value of argument A is ν(A) = 1 ∗ min(0.8, 0.25) = 1 ∗ 0.25 = 0.25.

On the other hand, assume that we build argument B as follows:

B ={(buy_stock(acme) −≺ good_price(acme),
in_fusion(acme, emca),
value(emca, 22M)[max],
worth(22M)),

(good_price(acme), 0.8),
(value(emca, 22M)[max], 0.7)}

for buy_stock(acme), where dr2 is the claim inference rule, we have a fact stating Acme is merging with
the company EMCA (which valuation is 1, since facts cannot be challenged), and the database with the
maximal authority to inform company values between available databases (0.7) state that EMCA has
a net value of 22 millions. Also, assume that we can build an argument that supports the claim that a
company with a value 22M is worthy, and that the recursively obtained value for this argument is 1 (e.g.,
only strict rules are used). Therefore, we have that ν(B) = 0.6 ∗ min(0.8, 1, 0.7, 1) = 0.6 ∗ 0.7 = 0.42.

In addition, note that A is a counter-argument for B and viceversa, since the literals ∼ buy_stock(acme)
and buy_stock(acme) disagree. Thus, we have that under our comparison criterion B defeats A. Note that
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this occurs even when the claim inferring rule for A is a strict rule (which has maximum valuation) and
the claim inferring rule for B is a defeasible rule (which has lower valuation). This is because the au-
thority of the database for the information regarding acme being a risky company is considerably low.

4. Components of the framework

In order to integrate DeLP with a database system we need to identify which databases can be used
during the argumentation process. We assume that our database system may involve several databases,
which are accessed asynchronously. At runtime, new databases could be added or existing databases
could be removed from the system. To formalize this setting in a seamless way, we must maintain com-
patibility with external systems, so that both the DeLP inference mechanism and the databases schemas
can remain unchanged. To achieve this we establish a translation layer between the argumentation pro-
cess and the databases, where the architecture is based on the following three components.

4.1. EDBI-DeLP server:

This component takes care of the argumentation process; that is, it receives a DeLP ground query, and
then builds arguments and counter-arguments based on an edbi-delp, providing answers and explanations
on how they were built. This component plays a central role in the framework, carrying out the valuation
for rules and applying the comparison criterion for argument-based decision making. The component
includes two modules to separate knowledge storage issues from the actual usage of such knowledge:
Domain Logic and DeLP Core. Finally, the Rule Valuation Function is a component used to provide
valuations for rules in the program.

– Domain Logic: is the knowledge of the domain that the system has. It is expressed as (part of) an
eDBI-DeLP program. Thus, this component comprises strict rules and facts, defeasible rules, and
also operative presumptions.

– DeLP Core: The argumentation process is carried out by the DeLP core. It receives a query from a
client and tries to build arguments for and against it, and finally gives the obtained answer. Clearly,
this is a key component in terms of the goal of our work, which is establishing how preference
between arguments can be obtained by analyzing the different sources used. Note that this compo-
nent will effectively apply the preference criteria for argument-based decision making. However,
no major modifications need to be done to it, since the use of argument preference criteria in DeLP
is modular [18], and thus we can directly change the comparison criterion, adapting it for its use
when contrasting database-supported arguments.

– Rule Valuation Function: This component is used by the user to provide the υ relation in an
edbi-delp; thus, it maintains the valuation for every rule in the Domain Logic.

4.2. Domain data Holder (DDH):

This component represents the set of databases that can be accessed to support arguments.

4.3. Domain data integrator (DDI):

The DDI retrieves the necessary information from the DDH and feeds it to the DeLP Core so it can
be used in the argumentation process. The information needed by the DDI to perform this translation is
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Fig. 2. The predicate translation database schema.

provided by the Predicate Translation Database (PTD). Thus, this database is used to implement Defi-
nition 9 into the framework; that is, PTD maintains information about relations between predicates and
data sources which enable the information retrieval from that sources that the user indicate as potential
support sources. In addition the PTD can store additional information regarding some characteristics
(e.g., quality or credibility) associated with the database in the matters of the particular predicate, for
every predicate that can be supported with information in a database in the DDH. For example, we want
to store that for the predicate weather(City, Weather) the database D1 has an accuracy of 0.75, whereas
D3 is also a possible source for the predicate weather but only has a 0.3 accuracy. Consequently, in this
version of the framework the Predicate Translation Database is defined by the tables shown in Fig. 2:

– Predicates table: it has information about predicate’s functors in the program that are able to be
supported by some databases in the DDH.

– DDH databases table: stores the information needed to connect with every database available in the
DDH.

– Is_source database: indicates when certain databases can be used to support a given predicate; it
also stores information to be used by arguments’ preference criteria, i.e., the authority given to the
database to support the predicate.

– Parameters table: it maintains the equivalence between a predicate’s parameter and a pair (table,
field).

– RelatedTables table: it keeps information about the tables that take part in the SQL JOINS needed
to obtain information about a particular predicate.

– ForeignKeys table: it maintains a list of the pairs (primaryKey, foreignKey) on which the SQL
JOINS have to be made.

With the introduced architecture it is possible to carry out argumentation processes capable of relying
on information from relational databases to provide argument support. The interaction among the com-
ponents in the framework when solving a query is depicted in Fig. 3. The process is executed each time
the eDBI-DeLP Server receives a query.
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Fig. 3. The eDBI-DeLP argumentation process.

Remark 1. The process of answering a query is considered as part of a closed transaction in the sense of
database theory. This is because the available databases (i.e., their current state) are part of the edbi-delp.
Thus, if we change some database then we are modifying the program as well, but since queries are posed
to particular programs then they are solved with the information available when the query arrives.

To implement the Presumption Retrieval Function formalized before, we define a high-level algorithm
for their specification. Operationally speaking, to achieve their goals, the PRF function executes SQL
queries to the PTD and databases in the DDH and adapt the resulting datasets so the DeLP Core can use
them. In the process involved they use three other functions:

• The Obtain Instantiated Parameters function receives a list of parameters from a function objective
and returns those that are ground. For example, for the predicate director(Movie, tarantino) the
function returns the list [tarantino], while for the predicate film_genre(pirates_of_the_caribbean,
comedy) it returns [pirates_of_the_caribbean, comedy].

• The Obtain Instantiated Fields function takes a list of fields and a list of parameters and returns those
fields corresponding to instantiated parameters. For example, if the function receives [[table.field1,
table.field2], [Movie, tarantino]] then it returns [table.field2].

• The Generate Operative Presumptions function receives a functor’s name, a list of values and an
authority V , and returns a pair (AL, V) where functor’s name is the predicate’s functor for AL
and the list of values is the predicate’s parameters. For example, if it receives [film_genre, [‘Game
of Thrones’, ‘Drama’], 0.8] then (film_genre(‘Game of Thrones’, ‘Drama’), 0.8) is the generated
Operative Presumption.

After outlining the auxiliary functions for the algorithm, we show in Algorithm 1 the implementation
for the process used by eDBI-DeLP to obtain Operative Presumptions for a TG, i.e., the Presumption
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Retrieval function. We also present the implementation of the filters previously introduced in the paper,
which will help Algorithm 1 to achieve its goal.

Algorithm 1 Presumption retrieval function
1: function PRESUMPTIONRETRIEVALFUNCTION(TargetGoal Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filter filt if Li is an annotated literal, or filt = null otherwise
3: instantiatedParameters ← obtainInstantiatedParameters(p1, . . . , pn)
4: SourcesList ← Execute a SQL Query in the form “SELECT DDHdatabases.id, DDHdatabases.DSN, DDHdatabases.User, DDH-

databases.Pass, is_source.Authority FROM predicates JOIN is_source ON predicates.id = is_source.predicate_id JOIN DDHdatabases
ON DDHdatabases.id = is_source.database_id WHERE name = func”

5: //We begin by retrieving every tuple listed as a possible support for the Target Goal that matches with the instantiated parameters of
the former

6: for each DSN ∈ SourcesList do
7: dsn_id ← present DSN Id
8: fieldsToRetrieve ← Execute a SQL Query in the form “SELECT Table, Field FROM parameters WHERE predicate_id = dsn_id”
9: whereFields ← obtainInstantiatedFields(fieldsToRetrieve, p1, . . . , pn)

10: joinTables ← Execute a SQL Query in the form “SELECT Table FROM relatedTables WHERE predicate_id = dsn_id”
11: joiningFields ← Execute a SQL Query in the form “SELECT Tables, Fields FROM foreignKeys WHERE predicate_id = dsn_id”
12: Connect to database indicated by DSN using user User and password Pass
13: RetrievedTuple ← Execute a SQL Query in the form “SELECT fieldsToRetrieve FROM joinTables ON joiningFields WHERE

whereFields = instantiatedParameters”
14: TupSet ← TupSet + (RetrievedTuple, dsn_id)
15: end for
16: //Once we retrieved any significant tuple we pass them to the proper filter according to Li

17: switch filt do
18: case ε or null
19: OPList ← TuplesToPresumptions(TupSet, Li )

20: case max
21: OPList ← MaxFilter(TupSet, Li )

22: case maj
23: OPList ← MajFilter(TupSet, Li )

24: case sources(DBList)
25: OPList ← SourcesFilter(TupSet, Li )

26: case excluded_sources(DBList)
27: OPList ← ExcludedSourcesFilter(TupSet, Li )

28: return OPList

29: end function

Now that we have presented the algorithms used to retrieve argument supporting information from the
databases we will briefly look into their computational complexity aspects. In [13] it was shown that the
non-filtered version of the PRF has a complexity of O(p + ns+1) where p is the number of predicates’
parameters, s is the maximum number of tables implied in a join, and n the maximum number of entries
in any table on the DDH. We can show that this complexity does not get increased by the inclusion
of filtering in the PRF. To see this consider first the complexity of the TPF algorithm. It is easy to see
that such algorithm (and also every filtering algorithm presented) depends on the cardinality of TupSet,
which control the number of iterations in the for cycle, i.e., Algorithms 2–6 are in O(n) since n is the
number of tuples in TupSet in the worst case. And, since the call for the proper filter is not nested in
the retrieve of argument supporting tuples, then execution time for filters is added to the time needed to
retrieve tuples (instead of multiply it). Thus, since the addition of two complexity orders is in the order
of the greater addend and O(n) < O(p+ns+1) we can conclude that the overall complexity order of the
new PRF algorithm presented in this work (i.e., tuple retrieving plus filtering) is in the same complexity
class than the algorithm presented in [13], and then filtering does not increase complexity.
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Algorithm 2 Tuples to presumptions function
1: function TUPLESTOPRESUMPTIONS(TupSet, Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filter ε if Li is an annotated literal, or filt = null otherwise
3: for each tuple (tup, DB) ∈ TupSet do
4: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and database_id

= DB”
5: OPList ← OPList + generateOperativePresumption(func, tup, auth)
6: end for
7: return OPList

8: end function

Algorithm 3 Max filter function
1: function MAXFILTER(TupSet, Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filter max
3: for each tuple (tup, DB) ∈ TupSet do
4: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and database_id

= DB”
5: if max = auth then
6: OPList ← OPList + generateOperativePresumption(func, tup, auth)
7: else if max < auth then
8: max ← auth
9: OPList ← generateOperativePresumption(func, tup, auth)

10: end if
11: end for
12: return OPList

13: end function

Algorithm 4 Maj filter function
1: function MAJFILTER(TupSet, Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filter maj
3: for each tuple (tup, DB) ∈ TupSet do TupAppearances = amount of times that tup appears in TupSet
4: if TupAppearances < MaxAppearances then
5: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and

database_id = DB”
6: maxAuth ← auth
7: OPList ← generateOperativePresumption(func, tup, auth)
8: else if TupAppearances = MaxAppearances then
9: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and

database_id = DB”
10: if maxAuth < auth then
11: maxAuth ← auth
12: OPList ← OPList + generateOperativePresumption(func, tup, auth)
13: end if
14: end if
15: end for
16: return OPList

17: end function
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Algorithm 5 Sources filter function
1: function SOURCESFILTER(TupSet, Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filter source(DBList)
3: for each tuple (tup, DB) ∈ TupSet do
4: if DB ∈ DBList then
5: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and

database_id = DB”
6: OPList ← OPList + generateOperativePresumption(func, tup, auth)
7: end if
8: end for
9: return OPList

10: end function

Algorithm 6 Excluded sources filter function
1: function EXCLUDEDSOURCESFILTER(TupSet, Li ):OPList
2: Decompose Li into its Functor func, a list of parameters p1, . . . , pn and its filterexcluded_source(DBList)
3: for each tuple (tup, DB) ∈ TupSet do
4: if DB /∈ DBList then
5: auth ← Execute a SQL Query in the form “SELECT is_source.Authority FROM is_source WHERE name = func and

database_id = DB”
6: OPList ← OPList + generateOperativePresumption(func, tup, auth)
7: end if
8: end for
9: return OPList

10: end function

5. Conclusions and related work

We have shown an approach to combine defeasible argumentation with relational database technolo-
gies, where the latter is used to obtain information that enables the construction of arguments to support
claims. In particular, in this work we focused on providing more control on how such information is
obtained by using methods that state how the developer expects that certain literal in a rule is to be
supported. For providing such control we presented a filtering mechanism. Rather than being tailored
for particular scenarios, this fine-grained control is versatile enough to be useful in different application
domains. Moreover, even when we have presented a particular set of filters, to expand such set only
involves altering Definition 16 providing the semantics for the new filters (and perhaps modifications of
the PTD, if new information regarding the sources is required for the filters). This makes the framework
flexible enough to handle dynamic environments where new requirements can arise: such requirements
may involve new needs that may be better captured by modifying the argument support mechanism
adding new filters rather than modifying the rules in the program to capture said needs.

We were also concerned about how the characteristics of the databases involved in the argument con-
struction process influence the dialectical analysis performed by the argumentation system. Since differ-
ent sources can have a different level of expertise in the different aspects involved in the argumentation,
instead of using a preference order between the different databases, we claim that it is also important to
consider which literal the process is trying to support; for instance, we can have a greater confidence in
a database storing tax income information when trying to support a literal regarding the salary of certain
person rather than using a database with information regarding the films that person likes.
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To model the topic expertise we have chosen to associate a pair (predicate, database) with a value
representing the authority assigned to the database for the particular topic the predicate is about. Then,
when trying to establish the defeat relation between arguments we combine this authority with the value
associated with the rules in each argument. This provides a valuation for these arguments which can be
used to compare them to adjudicate the defeat of one over the other. This combination is used in a cau-
tious approach where we combine the valuation of the rule that infers the claim of the argument with the
least valued element in the body of such rule; nevertheless, even when we presented a particular valua-
tion function, to modify such behavior only involves the modification of Definition 18 to accommodate
it to the particular needs of the application domain. For instance, to be less cautious, we can consider
the average between the values in the elements of the body of the rule instead of the minimal value.
Moreover, if we prefer to follow a credulous approach, we can consider the maximal value in elements
instead. As it was explained, to include such modifications in the framework is straightforward, and will
not affect how the rest of the framework works, only affecting final answers to queries.

Recently, the research community has developed an interest in integrating relational database tech-
nologies with defeasible argumentation systems. In particular, although this paper builds on [13], here
we have extended that work in several novel aspects. The main focus of [13] was to formally support the
construction of arguments using information coming from relational databases; however, in that paper no
further control on how to interact with such databases was provided. Here, we extended and adapted the
method to retrieve information from the databases to introduce the notion of filters. In contrast with [13],
this extension provides a tool to modify how tuples from databases should be retrieved, and along with
filters we also introduced the use of authority.

In [13], no particular comparison criterion was introduced, and the use of databases did not influence
the dialectical process itself, even when they did influence the argument building process. Here, we ac-
knowledge such influence providing means to control how the use of particular sources of information
results on different answers to queries. We also provide a definition of argument valuation that accounts
for the particular characteristics of the databases that support the argument along with a comparison
criterion tailored for such valuation. Finally, we have extended and revised other aspects of the frame-
work presented in [13] such as the derivation mechanism, the Predicate Translation Database, and the
algorithm used to retrieve Operative Presumptions (among others) to achieve the above mentioned goals.

In [36], Wardeh et al. introduced a protocol called PADUA to support two agents debating a classi-
fication by offering arguments based on association rules mined from individual datasets. In contrast
with our approach, this research connects databases with argumentation from a machine learning per-
spective, including as well a large scale evaluation designed to test the effectiveness of using PADUA
to detect misclassified examples, and to provide a comparison with other classification systems. In [3]
the problem of using defeasible reasoning in a massive data repository was addressed, but instead of
using databases to look for information to support conclusions its repository is the Web, more specif-
ically the Semantic Web. Recently, several large-scale domain-dependent datasets have been released,
providing additional motivation for the development of the framework proposed in that paper. Thus,
using databases we probably will have access to the same repositories that those accessed by the system
in [3], and even more.

Regarding databases, there is research related to the use of non-monotonic reasoning to resolve in-
consistencies in databases by means of database repairs [32]. Although this approach can resolve in-
consistencies in databases allowing reasoning on data stored in them, database repair is conducted by
the explicit addition, modification or suppression of tuples in databases. Instead, our approach is based
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on a conflict resolution strategy using argumentation, avoiding thus any modification of the actual in-
formation stored in the database. Other approaches to deal with the issue of inconsistent databases are
presented in [5,11], where instead of repairing the databases, modifications to queries are made to pro-
vide consistent answers to them. In eDBI-DeLP we always obtain consistent answers as inconsistency
will be managed automatically by the DeLP Core and the proof procedure using the domain information.
In addition, in eDBI-DeLP the filtering mechanism provides tools to discard potentially contradictory in-
formation, as we have shown in Example 1 where the max filter is used to retrieve only one temperature
value of a given city (the one in the database with the maximum authority).

Another approach that uses databases as the basis of a reasoning process is presented in [12]. The aim
of the reasoning mechanism is to address the different conflicts that may arise when merging several
databases. Nevertheless, the databases used in that work are deductive databases, i.e., databases that are
made of an extensional part – a set of positive or negative ground literals – and an intensional part, i.e.,
a set of first order function-free clauses. Deductive databases have some known drawbacks that are not
present in eDBI-DeLP, such as the need to define criteria for using a rule included in the database as a
deduction rule or a coherence rule; in eDBI-DeLP this does not happen because rules are only used to
build arguments. Another well-known drawback of deductive databases is that they have the possibility
of falling in infinite loops in the deduction process; this is also avoided in eDBI-DeLP using constraints
over the argumentation lines [18].

Another work that is related to ours is the one in [8]. In that work the authors introduce a framework
to allow for reasoning on heterogeneous sources by combining arbitrary monotonic and non-monotonic
logics. To do this the authors exploit bridge rules to infer knowledge on the different contexts in play
(i.e., the different logics and the belief bases obtained from them), where the bridge rules in one context
are used to augment belief bases in other contexts. Based on this last feature the authors present how to
achieve a certain equilibrium among the contexts, which represent acceptable belief states a system may
adopt. Thus, our work can be modelled as a particular instance of Brewka and Eiter’s framework, as
there are certain parallels even when the aims of the works are clearly different. It can be argued that in
our work we have two different contexts in play (a non-monotonic one – DeLP – and a monotonic one –
SQL), and some “one-way” bridge rules can be obtained that augment the belief base in one context
(DeLP) with information obtained from the other context (the databases). In our work such bridge rules
are represented through the use of the Pertinence Relation and the Presumption Retrieval Function.
Nevertheless, note that there will be some differences between a “pure” multi-context system and our
approach. For instance, to properly adequate our work to Brewka and Eiter’s we will have to retrieve all
tuples related to each annotated literal in the program and build every operative presumption at first (i.e.,
we need to apply all applicable bridge rules), and then use those necessary to the dialectical process.
Instead, for the sake of efficiency in our work we have chosen to only retrieve tuples and build Operative
Presumptions when needed by such dialectical proof procedure.

As for future work, there are several lines of research that we are following. First, as we have dis-
cussed, the set of filters presented in this work can be easily expanded to accommodate the system to
new requirements. As a future line of work we plan to tackle different application domains and develop
new filters inspired in the detected needs. Moreover, in the present work we can have certain combination
between filters (v.g., by using them sequentially for the same predicate in a rule); nevertheless, we want
to further increase the expressiveness in our framework by providing ways to use more refined combi-
nations (e.g., in the same annotated literal) that adhere to the original semantics of the filters combined
as much as possible.



C.A.D. Deagustini et al. / Defeasible argumentation over relational databases 57

Also, several interesting questions and lines of work arise from our use of the notion of authority.
For instance, in this work we have followed a cautious approach when considering how authority in
operative presumptions affects the valuation of arguments, but it may be interesting to explore how less
cautious approaches behave. Also, we acknowledge that in any dynamic environment a concept such as
authority cannot be static. In this first approach we were not concerned with how authority may change,
but we plan to integrate in the framework automatic mechanisms to update it, inspired by similar efforts
in areas like Belief Revision and Trust in multiagent systems, e.g., [16,24,31,33,34,37].

It is interesting to study how to enhance this framework with semantic information about predicates
allowing to automatically obtain information about the different possible data sources; e.g., one way
this could be done is by using ontologies with semantic definitions for every parameter in a predicate.
In this way, such ontologies may help us to identify and recognize the structure of the different data
sources, allowing the definition of processes that could automatically fill the PTD. Additionally, this
can help to add new capabilities, e.g., data alignment among heterogeneous databases. Notice that the
presented structure of the PTD is adequate to maintain the information relating predicates and data
sources provided by such processes, making the addition and modification of data sources easier. Also,
the proposed framework is flexible enough to allow the automatic generation of the necessary SQL
queries; thus, every modification in the PTD is reflected in the formed queries directly, because they are
constructed on the fly.

We also plan to tackle on the implementation of the framework introduced in this work. As expected,
for such implementation we will take as basis the one presented in [13]. Once we have implemented
the new features of eDBI-DeLP we plan to perform empirical evaluations to asses the impact of such
new features in the overall efficiency of the framework. As explained before, the use of filtering does
not increase complexity for the PRF, but clearly execution times could be different than if no filtering
is made at all. It is our intuition, however, that the impact of filtering in execution times for the PRF
should not be noticeable, and that the most time-consuming task will still be the dialectical process,
with little negative impact of the filtering process. Moreover, we believe that in certain situations filters
will improve performance, e.g., when we use the max filter to only retrieve the most credible operative
presumption, thus greatly reducing the number of arguments that need to be evaluated. That is, we
believe that if filters are applied correctly we can reduce the amount of arguments under consideration
when building dialectical trees, which will indeed reduce the overall time needed to solve queries in the
system.

Finally, another line of research we are currently following is the dynamics in the knowledge in our
scenario. This involves at least two different aspects. On the one hand, we want to explore how changes
in the set of available databases affect the query solving process in our framework. In our current version
of the paper the set of available databases is included in the edbi-delp, and thus when posing a query
to a program the set of databases is fixed for that query. Indeed, if the set of databases changes then
the program change, but we still should consider the previous state of the databases for queries already
being solved, since they were posed to the previous state of the program. For the future we plan to allow
that the databases change in a program while considering these changes for queries being solved. This
poses some interesting challenges, both regarding how we treat arguments in dialectical trees supported
by information no longer available, and how it affects the credibility and trust assigned to the databases
(i.e., how authority reflects changes, changing in turn the defeat relation and thus the query resolution).

On the other hand, we can tackle the update of the rules in the program based on the analysis of the
information stored in the DDH. In particular, as supporting information is searched in the databases,
counterexamples to already known rules may arise. We plan to take advantage of such counterexamples
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to further refine the available knowledge. While searching for support for some TG the set of rules
may be revised when data with values different to those expected are found; for example, strict rules
may be weakened to defeasible ones, or new refined defeasible rules may be formed by analyzing the
characteristics of the newly found data [15]. To do this, we can exploit mechanisms already developed
for DeLP to make the knowledge base updates; for instance, we can take advantage of the addition
and removal of elements of knowledge from a DeLP program provided by contextual queries proposed
in [20].
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