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Zusammenfassung

Diese Dissertation beschäftigt sich mit dem Thema des Begriffswandels und mit den damit
verbundenen erkenntnistheoretischen und semantischen Problemen. Jene Probleme betr-
effen die philosophischen Bereiche der Wissenschaftstheorie, der Philosophie des Geistes,
der Sprachphilosophie, der Philosophie der Mathematik, der Erkenntnistheorie, der Meta-
physik und der Metaphilosophie.

Das Thema wird mit Hilfe eines Vergleichs zwischen vier Arten von Modellen, die den
Wandel von Begriffen abbilden, analysiert. Die vier Arten von Modellen, die benutzt wer-
den, sind pragmatische, evolutionäre, unbestimmte und kognitive. Was das pragmatische
Modell betrifft, wird besonders mit der carnapianischen Explikation gearbeitet. Für das
evolutionäre Modell wird das darwinsche Modell beispielhaft verwendet. Für das unbes-
timmte Modell wird auf Mark Wilsons Begriffsmodell zurückgegriffen. Und das kognitive
Modell arbeitet mit Thagards Modell der Begriffsrevolution.

Der Vergleich erfolgt anhand von neun verschiedenen Dimensionen, die eine Bewer-
tung von Begriffswandeln möglich machen. Diese Dimensionen nehmen jeweils folgende
Bereiche in den Blick: Selektionseinheiten, Begriffsontologie, Begriffsstruktur, Arten des
Begriffswandels, Normativität, Urteilseffektivität, Darstellung von wissenschaftlichen Be-
griffswandeln, Darstellung von philosophischen Begriffswandeln und metaphilosophische
Hintergründe.

Nach dem Einführungskapitel werden im zweiten Kapitel einige philosophische Vorüber-
legungen zu Begriffen und deren Wandel angestellt. Zuerst sollen dabei die wichtigsten
philosophischen und psychologischen Theorien zu Begriffsstruktur und -ontologie behandelt
werden. Anschließend werden die Hauptprobleme, die in Verbindung mit philosophischen
und wissenschaftlichen Begriffswandeln stehen, vorgestellt.

Das dritte Kapitel nimmt die carnapianische Explikation in den Fokus. Diese wird aus
historischer und abstrakter Perspektive analysiert. Außerdem wird eine verbesserte und um
eine Stufe erweiterte Version von Carnaps Modell des Begriffswandels entwickelt. Danach
wird ein mathematisches Modell von der carnapianischen Explikation erstellt, eingebettet
in Gärdenfors’ geometrische Begriffstheorie. Zum Schluss wird Carnaps Modell mit den
obengenannten neun Dimensionen analysiert.

Das vierte Kapitel beschäftigt sich mit den darwinschen Modellen der Begriffsevolution.
Zuerst wird die Geschichte der evolutionären Erkenntnistheorie und deren Verbindung zu
den darwinschen Modellen beleuchtet. Anschließend wird ein mathematisches Modell,
angelehnt an die darwinschen Modelle, für die mathematische Begriffsevolution entwickelt.



x Zusammenfassung

Auch hier wird eine Analyse mit Hilfe der neun Dimensionen vorgenommen.
Im fünften Kapitel wende ich mich den unbestimmten Modellen zu. Dazu werden

zunächst zwei Modellbeispiele vorgestellt: Waismanns Modell der Porosität von Begriffen
und Mark Wilsons Modell für den Begriffswandel. Zu letzterem Modell wird wieder eine
Formalisierung vorgenommen, die auf der strukturalistischen Wissenschaftstheorie aufbaut.
Wie in den vorangegangenen Kapiteln werden zum Schluss die neun Dimensionen für die
Analyse herangezogen.

Das sechste Kapitel beschäftigt sich mit kognitiven Modellen von Begriffswandeln, ins-
besondere mit Thagards Modell der Begriffsrevolution. Dazu wird ein logisches Modell
aufgestellt, das sich auf die Belief Revision-Theorie bezieht. Mit den neun Dimensionen
wird auch dieses Modell analysiert.

Im letzten Kapitel dieser Arbeit werden alle vier Arten von Modellen zusammenfassend
verglichen, aufbauend auf den Erkenntnissen aus den vorherigen Kapiteln. Mit Hilfe dieses
Vergleichs kann ein neues Verständnis des Phänomens des Begriffswandels möglich gemacht
werden. Zum Schluss wird ein Ausblick auf Konsequenzen, die dieses neue Verständnis
für die Philosophie hervorrufen kann, gewährt. Außerdem sollen Anknüpfungspunkte für
zukünftige Forschung in diesem Bereich geliefert werden.
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Chapter 1

Introduction

The topic of this thesis is conceptual change, broadly understood as the many philosoph-
ically interesting ways in which our concepts (in the intuitive sense of the term) change
and the many epistemological and semantic problems connected with these changes.

As it will become clear later, this thesis cannot be easily boxed in one of the main
standard sub-fields of analytic philosophy. This is partly the fault of the chosen topic.
Philosophical problems connected with conceptual change encompass in fact several philo-
sophical subfields, such as general philosophy of science, philosophy of cognitive science,
philosophy of language, philosophy of mathematics, epistemology, metaphysics, metaphi-
losophy, and the history of philosophy and science.

Conceptual change is traditionally considered primarily a topic in general philosophy
of science, due to the worries that the existence of conceptual change prompts for ideas of
scientific progress and objectivity. Concepts are also usually considered to be the cognitive
substrata of several important higher-cognitive tasks such as memory, abstraction, catego-
rization, and inferential behavior. As such, the mechanisms behind conceptual dynamics
have been, and are, heavily debated in cognitive science and its philosophy. Moreover,
concepts are of course closely connected with linguistic predicates and, as such, changes in
concepts often correspond to philosophically interesting changes in the related linguistic
practices. Conceptual change has also been a source of philosophical discussions in phi-
losophy of mathematics, especially in connection with the birth and development of the
philosophy of mathematical practice. The extent and the nature of scientific and philosoph-
ical conceptual change has been (and still is!) at the center of debates between contrasting
epistemological, metaphysical, and metaphilosophical pictures. Finally, conceptual change
is a central component of many important episodes of scientific and philosophical change,
making it a well-studied phenomenon in the history of science and philosophy.

It would be unfair to blame just the topic of this thesis for the thesis quirks, though.
Part of why this work is not easily boxed in one of the aforementioned subfields of analytic
philosophy is the specific way in which I approached its subject-matter. Conceptual change
is analyzed in this thesis, in fact, primarily via the development of improved models of
conceptual change and a new methodology of how to assess them, compare them, and
judge them. My analysis will be carried out on four prominent kinds of model of conceptual
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change. For each of these four kinds of model, I will develop a formal improved model of
conceptual change that builds on a paradigmatic specimen of the kind of model under focus.
The methodological analysis of these four kinds of model will be carried out through a
novel meta-framework for judging models of conceptual change that I will call the Toolbox
framework. This meta-framework consists of nine different evaluative dimensions with
respect to which models of conceptual change can be judged, assessed, and compared.

The methodology that I will use in this work is non-standard within analytic philosophy.
My judgments on conceptual change and the best ways of modeling this phenomenon
will not be mainly based on arguments. I will not start defending or attacking specific
conceptions of my subject-matter, nor will I break the phenomenon of conceptual change
into a list of theses and sub-theses on its specific aspects.

My main activity in this thesis will be model-building, understood as the development
of abstract and idealized representations of a given phenomenon. I will build several models
of conceptual change, focusing on the formal or informal improvement of one prominent
model for each of the four types of model that will appear in this thesis. In order to formally
improve and characterize specific models of conceptual change, I will employ a vast array of
formal tools from contemporary logic, mathematics, and cognitive science. This activity of
building improved models of conceptual change is the first, lower, layer of my methodology.
The second layer consists of reconstructing significant historical episodes within a given
model. I will use the reconstruction of case studies as a way of testing the adequacy and the
fruitfulness of a given (type of) model of conceptual change. A good model of conceptual
change ought to adequately reconstruct significant episodes of its subject-matter from the
history of science and philosophy. The third, and more abstract, layer of my methodology is
the collective assessment, comparison, and judgment of several types of model of conceptual
change. This third layer will be based on the two lower levels of the methodology, i.e. on
the adequacy of a given type of model in reconstructing historical episodes of conceptual
change. The results of this collective assessment, comparison, and judgment will offer
a general conception of conceptual change as a philosophical phenomenon. Despite the
evident lack of orthodoxy of my methodology, at least for the canon of analytic philosophy,
the strong focus on abstract model-building and idealized reconstructions of case studies
is reminiscent of certain sub-tradition of analytic philosophy such as Logical Empiricism
and (some kind of) Historicism. In particular, two philosophers whose methodologies have
strong similarities with the present work are Carnap and Lakatos. Not surprisingly, their
influence permeates all the parts of this thesis and their work has been a constant source
of inspiration for me since the beginning of my studies.

The four types of model of conceptual change that will be analyzed in this thesis are
pragmatic, evolutionary, indeterminate, and cognitive models. These four types of model
will be judged and compared along the nine evaluative dimensions of my Toolbox frame-
work, by virtue of which a given type of model of conceptual change can be analyzed with
respect to its units of selection, concept ontology, concept structure, kinds of conceptual
change, normativity, effectiveness of normative judgments, picture of scientific conceptual
change, picture of philosophical conceptual change, and metaphilosophical background.

In order to judge these four different types of model of conceptual change, I will focus
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primarily on a single paradigmatic instance of each model. I will focus on Carnapian ex-
plication for what concerns pragmatic models, while my specimen for evolutionary models
will be Darwinian models based on conceptual populations. As a prominent indeterminate
model of conceptual change I will take Mark Wilson’s frameweork of patches and facades,
while Thagard’s model of conceptual revolution will be my main example of cognitive mod-
els. In addition to these four specimen, several others specific models of conceptual change
will be presented and briefly analyzed. These models include Campbell’s selective varia-
tion model, Popper’s active learning model, Toulmin’s conceptual population model, Hull’s
model of conceptual evolution, Lakatos’ concept-stretching, Mormann’s model of axiomatic
variation, Waismann’s open-texture, Andersen’s, Barker’s, and Chen’s neo-Kuhnian model
of scientific revolution, Kornmesser’s and Schurz’s theory-frame model, and Gärdenfors’
and Zenker’s model of scientific change based on conceptual spaces.

In order to analyze and compare the conception of conceptual change provided by these
different models, I will rely on several historical reconstructions of episodes of scientific
conceptual change. The historical episodes of scientific change that will figure in this work
include the emergence of the morphological concept of fish in biological taxonomies, the
development of scientific conceptions of temperature, the Church-Turing thesis and related
axiomatizations of effective calculability, the history of the concept of polyhedron in 17th
and 18th century mathematics, Hamilton’s invention of the quaternions, the history of
the pre-abstract group concepts in 18th and 19th century mathematics, the expansion of
Newtonian mechanics to viscous fluids forces phenomena, and the chemical revolution.

I will also present five different formal and informal improvements of four specific models
of conceptual change. I will first present two different improvements of Carnapian expli-
cation, a formal and an informal one. My informal improvement of Carnapian explication
will consists of a more fine-grained version of the procedure that adds an intermediate,
third step to the two steps of Carnapian explication. I will show how this novel three-step
version of explication is more suitable than its traditional two-step relative to handle com-
plex cases of explications. My second, formal improvement of Carnapian explication will be
a full explication of the concept of explication itself within the theory of conceptual spaces.
By virtue of this formal improvement, the whole procedure of explication together with its
application procedures and its pragmatic desiderata will be reconceptualized as a precise
procedure involving topological and geometrical constraints inside the theory of conceptual
spaces. My third improved model of conceptual change will consist of a formal explica-
tion of Darwinian models of conceptual change that will make vast use of Godfrey-Smith’s
population-based Darwinism for targeting explicitly mathematical conceptual change. My
fourth improvement will be dedicated instead to Wilson’s indeterminate model of concep-
tual change. I will show how Wilson’s very informal framework can be explicated within a
modified version of the structuralist model-theoretic reconstructions of scientific theories.
Finally, the fifth improved model of conceptual change will be a belief-revision-like logical
framework that reconstructs Thagard’s model of conceptual revolution as specific revision
and contraction operations that work on conceptual structures.

At the end of this work, a general conception of conceptual change in science and
philosophy will emerge, thanks to the combined action of the three layers of my methodol-



4 1. Introduction

ogy. This conception takes conceptual change to be a multi-faceted phenomenon centered
around the dynamics of groups of concepts. According to this conception, concepts are
best reconstructed as plastic and inter-subjective entities equipped with a non-trivial inter-
nal structure and subject to a certain degree of localized holism. Furthermore, conceptual
dynamics can be judged from a weakly normative perspective, bound to be dependent on
shared values and goals. Conceptual change is then best understood, according to this
conception, as a ubiquitous phenomenon underlying all of our intellectual activities, from
science to ordinary linguistic practices. As such, conceptual change does not pose any
particular problem to value-laden notions of scientific progress, objectivity, and realism.
At the same time, this conception prompts all our concept-driven intellectual activities, in-
cluding philosophical and metaphilosophical reflections, to take into serious consideration
the phenomenon of conceptual change. An important consequence of this conception, and
of the analysis that generated it, is in fact that an adequate understanding of the dynamics
of philosophical concepts is a prerequisite for analytic philosophy to develop a realistic and
non-idealized depiction of itself and its activities.

In Chapter 2, I will present several philosophical preliminary discussions on concepts
and conceptual change broadly understood. I will first survey the philosophical and psy-
chological literature about concepts, discussing the main views of concept ontology and
structure. Then, I will present the main problems that the phenomenon of conceptual
change poses for scientific progress, objectivity, and realism. I will focus especially on the
different kinds of models of scientific conceptual change that have been developed in the
related literature. I will then discuss the problems connected to philosophical conceptual
change and the related metaphilosophical debates over conceptual analysis and conceptual
engineering. In the light of some recent debates over externalism in semantics and the
possibility of changing concepts, I will offer a defense of the reality of conceptual change
together with a plead for meaning pluralism and meta-semantic plasticity in matters of con-
ceptual dynamics. This plead will also constitute a philosophical justification of the novel
methodology developed in this work. At the end of the chapter, I will present what I will
call the Toobox framework, i.e. a meta-framework for assessing and comparing different
models of conceptual change along nine evaluative dimensions.

Chapter 3 will be focused on pragmatic models of conceptual change and in particular
on Carnapian explication. I will first give an in-depth historical analysis of the development
of Carnapian explication and Carnap’s related metaphilosophical background. Then, I will
analyze the procedure of Carnapian explication from an abstract epistemological point of
view, focusing especially on the desiderata that a certain explicatum must possess and
on related recent philosophical debates on the shortcomings of explication as a model
of conceptual change. Next, I will present my refined three-step version of Carnapian
explication that adds to the traditional two steps a third, intermediate step dedicated to
the semi-formal sharpening of the clarified explicandum. This new step allows my refined
version of Carnapian explication to carefully distinguish between different explications of
a given concept even when two explications clarify the same explicandum in the same way.
I will demonstrate the fruitfulness of my three-step version of Carnapian explication with
the help of a detailed case study on the Church-Turing thesis and related explications of
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our concept of effective calculability. Then, I will present my general explication of the
concept of explication itself within the theory of conceptual spaces. I will illustrate how
my proposal is able to frame the procedure of explication and its desiderata in the formal
framework of conceptual spaces, showing how specific readings of explication desiderata
can be framed as topological constraints on the related conceptual spaces. I will also argue
that my framework is able to defend the usefulness of Carnapian explication against some
recent critiques. In order to build my case and to show the virtues of my proposal, I
will reconstruct two paradigmatic cases of explication in my framework: the emergence
of the morphological concept of fish and the development of the scientific concepts of
temperature. Finally, at the end of this chapter, I will analyze Carnapian explication in
the Toolbox framework, evaluating this prominent pragmatic model of conceptual change
along the nine dimensions of my meta-framework.

In Chapter 4, I will focus on evolutionary models of conceptual change and in particular
on Darwinian models. I will first describe the historical background behind the ideal of
evolutionary epistemology and I will explain the connection with Darwinian models of
conceptual change. Then, I will present four different influential Darwinian models of
scientific change: Campbell’s blind variation and selective retention model, Popper’s goal-
driven trial and error model, Toulmin’s model of conceptual populations, and Hull’s model
of scientific evolution. I will briefly summarize the debate about the viability of such
evolutionary models of scientific change, defending the need of more specific and precise,
historically testable evolutionary models of scientific change. After that, I will present a
novel formal model of conceptual evolution specifically designed to tackle mathematical
conceptual change. My framework will be built upon Mormann’s evolutionary model of
mathematical conceptual change and Godfrey-Smith’s population-based Darwinism. I will
show how this framework, centered around the contrasting notions of Lakatosian and
Euclidean populations, as well as the spatial tools of what I will call the Lakatosian space,
is able to adequately model the plurality of conceptual evolutions that historical episodes of
mathematical conceptual change exhibit. I will also show how my framework is able to give
a normative assessment of the rationality of a given mathematical conceptual history in
terms of mathematical selection or drift. In order to show the usefulness of my framework,
I will apply it to three different episodes of conceptual change in mathematics: the history
of the concept of polyhedron, the invention of the quaternions, and the development of the
pre-abstract group concepts. At the end of the chapter, I will analyze Darwinian models
of conceptual change such as my framework for mathematical conceptual evolution in the
Toolbox framework. I will thus judge such evolutionary models of conceptual change along
nine evaluative dimensions.

The focus of Chapter 5 will be on what I will call indeterminate models of concep-
tual change. I will first describe what I mean with this label and then I will present two
paradigmatic example of this kind of models: Waismann’s open-texture model and Mark
Wilson’s patches and facades framework. Next, I will offer a formal reconstruction of
Wilson’s indeterminate model of conceptual change within a modified version of the struc-
turalist model-theoretic reconstruction of scientific theories. Specifically, I will show how
my modified structuralist framework, i.e. what I will call Wilson-Structuralism, is able
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to explicate Wilson’s patches and facades as Theory-Elements and Wilson-Theory-Nets. I
will also show how, within my framework, one can give a precise semantic understanding
of many conceptual wanderings described by Wilson as specific set-theoretic relationships
between Theory-Elements. In order to demonstrate the faithfulness of my reconstruction of
Wilson’s framework, I will reconstruct in Wilson-Structuralism one of Wilson’s main case
studies of conceptual wanderings, i.e. viscous fluids forces in classical mechanics. Finally,
at the end of this chapter, I will analyze indeterminate models of conceptual change along
the nine dimensions of the Toolbox framework.

In Chapter 6, I will focus on cognitive models of conceptual change. First, I will describe
three influential instances of this kind of models: Thagard’s model of conceptual revolution,
Anderson’s, Barker’s and Chen’s frame-based Neo-Kuhnian model of scientific revolutions,
and Gärdenfors’ and Zenker’s model of scientific change based on conceptual spaces. Then,
I will present a logical reconstruction of Thagard’s model of conceptual change that offers
belief-revision-like revision and contraction operations that work on conceptual structures.
I will show how this conceptual revision framework, by working at the conceptual level of
abstraction, is able to model almost all the kinds of radical conceptual change described
in Thagard’s model. In order to substantiate the adequacy of my logical reconstruction of
Thagard’s model of conceptual change I will reconstruct one of Thagard’s main example of
a conceptual revolution, i.e. the chemical revolution, as a series of revision and contraction
operations within my conceptual revision framework. Finally, I will assess cognitive models
of conceptual change through my Toolbox framework.

Finally, in the Conclusions chapter, I will collectively analyze all four types of model
of conceptual change discussed in the preceding chapters. I will combine all the specific
analyses given in the different chapters into a general study of the conceptions of conceptual
change corresponding to these four different types of model. I will first show the general
results of this combined analysis by presenting a chart of how the different models face along
the nine dimensions of the Toolbox framework. Then, I will break this chart row-by-row
focusing on one dimension of the Toolbox framework at a time in order to give a more fine-
grained analysis of a specific aspect with respect to which the different models conceptualize
conceptual change. I will end up with a general conception of the phenomenon of conceptual
change as it emerges from this combined analysis. At the end of this last chapter, I will
draw some general morals of philosophical interest that this work arguably supports and I
will briefly mention some related directions for future work.



Chapter 2

Concepts and Conceptual Change

In this chapter, I will prepare my analysis of models of conceptual change in science and
philosophy, focusing on some preliminary issues. More specifically, I will survey the philo-
sophical literature on concepts and conceptual change that will constitute the background
for my discussion. I will also stress and defend the significance of the phenomenon of con-
ceptual change for philosophy and science. Furthermore, in order to make more precise my
analysis of models of conceptual change, I will present a meta-framework in which models
of conceptual change can be compared along nine dimensions.

In Section 1, I will survey the philosophical and psychological literature about concepts,
fixing my terminology and briefly presenting the main positions on the ontology and the
structure of concepts. In Section 2, I will describe the philosophical problem of concep-
tual change in science and in philosophy. First, I will focus on how conceptual change in
science became a central issue for any adequate notion of scientific progress, realism, and
rationality, presenting the main alternatives for modeling conceptual continuity between
scientific theories. Then, I will analyze whether the main metaphilosophical views in ana-
lytic philosophy are compatible with the philosophical significance of conceptual change in
philosophy. In Section 3, I will stress how recent metaphilosophical debates prompt us to
question the compatibility between conceptual change and certain externalist and essen-
tialist views about meaning. I will then defend the philosophical significance of conceptual
change, stressing how this alleged incompatibility stems out of two mistaken assumptions
about how our language works: meaning monism and metasemantic finality. This defense
will also constitute a philosophical justification of the novel methodology for studying con-
ceptual change developed and employed in this work. Finally, in Section 4, I will present a
meta-framework that I will call the Toolbox framework, composed of nine dimensions along
which models of conceptual change can be judged and compared.

2.1 Theories of Concepts
Concepts are usually understood as the units of thought (Murphy, 2002; Margolis and Lau-
rence, 2019), i.e. the entities that allow us to perform several higher cognitive abilities such
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as inference, categorization, abstraction, memory, learning, and the like. More specifically,
concepts are usually considered the atomic units of thought, i.e. the most basic entities
from which beliefs and other mental entities are constructed. Concepts are also usually con-
sidered to be in a special relation with the linguistic entities we call ‘predicates’. Concepts
are, in fact, usually put in a one-to-one correspondence with predicates and sometimes even
identified with their meanings. Concepts are moreover usually considered an essential part
of our mental and worldly life, because of their pivotal role in the aforementioned higher
cognitive abilities, in our thinking about the past and the future, and in our everyday acts
and plans. Without concepts, we will be in the unenviable position of Borges’ Funes, who
lived in a “teeming world of (. . . ) only details” (Borges, 1998, p. 136).

The traditional philosophical picture of concepts involves at least four different entities:
ideas, properties, meanings, and extensions. These four fundamental philosophical notions
are directly related to (and often identified with) concepts. Ideas are usually considered to
be the psychological components of our mental attitudes, i.e. the atomic mental entities
that allow us to successfully engage in intentional and unintentional psychological thinking
processes. Properties (or categories or kinds) are instead usually understood as the abstract
entities that our linguistic and thought activity tries to pick out, i.e. classes of entities in
which the external reality can be divided. Meanings and extensions are instead the two
building blocks of semantics. Meanings are usually understood as the entities expressed by
words that allow us to successfully engage in any linguistic activity. Extensions are instead
usually thought to be the entities to which our words refer to, i.e. the external entities that
ground the reference of our linguistic activity. The traditional philosophical conception of
conceptual activity is something like the following scenario: thinking about a given entity,
say about dogs, involves a given subject possessing (and usually intentionally using) an
idea of dogs, closely connected with the property of being a dog, the meaning of the word
dog and the actual dogs out in the world.

The above characterization of concepts (and of ideas, properties, meanings, and exten-
sions, respectively) is of course only a functional one, understanding concepts as whatever
enable us to carry out certain cognitive processes. It leaves completely open fundamental
questions such as the ones on the ontological status of concepts and their structure. These
two kinds of questions are at the center of the philosophical and psychological literature on
concepts. Different answers to these questions give very different pictures of what concepts
are and how are they connected with ideas, properties, meanings, and extensions.

Let us survey the most common answers in philosophy and psychology to these two
questions. First, I will briefly describe the most common alternative to question over the
ontological status of concepts. Then, I will analyze in far more detail the main answers
that philosophers and psychologists gave to question of how concepts are structured. My
main references for presenting these alternatives will be (Smith and Medin, 1981; Margolis
and Laurence, 1999; Murphy, 2002; Margolis and Laurence, 2015).
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2.1.1 The ontology of concepts
The four main positions regarding the ontological status of concepts are closely connected
with the four different entities, related to concepts, that we briefly introduce above: ideas,
properties, meanings, and extensions. For each of these entities, there is an ontological
view of concepts that identifies concepts with that specific entity involved in conceptual
activity. I will dub the view that identifies concepts with ideas the psychological view and
the one that identifies concepts with properties the abstract view. The ontological view
that identifies concepts with meanings will be instead dubbed the linguistic view and the
view that concepts are extensions will be dubbed the worldly view. Let us survey these
four ontological views about concepts, then.

The psychological view claims that concepts are mental entities, i.e. ideas. According
to this position, concepts are then some kind(s) of basic mind-dependent entities, from
which more complex mental entities (correlated to propositional attitudes) such as beliefs
are constructed. The psychological view is the default position in cognitive science and
also between philosophers of mind. This position is also historically connected with the
empiricist tradition in modern epistemology, in particular with Locke’s (Locke, 1690) and
Hume’s (Hume, 1739) theories of ideas. Philosophers holding the psychological view are
usually (but definitely not always) also supporters of a general empiricist attitude in epis-
temology, a cognitivist approach to semantics, an anti-realism about kinds and categories,
and a close alignment with the related psychological literature.

The abstract view claims that concepts are abstract entities, i.e. properties. According
to this position, concepts are some kind of abstract entities, external to and independent
from the mind. The abstract view is a common position in philosophy of mathematics and
metaphysics, where often concepts are equated with the related abstract properties. This
position is historically connected with the rationalist tradition in modern epistemology
and Platonism in metaphysics and philosophy of mathematics. Paradigmatic examples of
the abstract view are Plato’s forms (Plato, 399-395 BC) and Frege’s senses (Frege, 1892a).
Philosophers holding the abstract view are usually (but definitely not always) supporters
of a general rationalist attitude in epistemology, a realism about kinds and categories, and
a close alignment to mathematics and other allegedly a priori disciplines.

The linguistic view claims that concepts are linguistic entities, i.e. meanings. According
to this position, concepts are inter-subjective linguistic entities. The linguistic view is
commonly assumed in philosophy of language, where often concepts are equated with the
intensions of the related words. Historically, this position is connected with the strong focus
on linguistic analysis typical of philosophical methodologies prominent in early analytic
philosophy. Some proponents of the linguistic view often stress the know-how aspect
of conceptual knowledge, identifying concepts with certain kinds of (broadly) linguistic
disposition or abilities. Examples of philosophers that can be interpreted as holding a
linguistic view of concepts are Dummett (Dummett, 1993), Brandom (Brandom, 1994,
2000), and Wittgenstein (Wittgenstein, 1958).

The worldly view claims that concepts are worldly entities, i.e. extensions. According
to this position, concepts can be simply equated with the worldly entities that the related
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linguistic term refers to. The worldly view is often assumed by philosophers of language
that equate concepts with the extensions of the related words. Historically, this position
is connected with the rise of semantic externalism, i.e. the (meta)semantic position that
stresses how the meaning of many parts of our language is determined (at least in part) by
external factors. Some remarks of Kripke’s (Kripke, 1972) famous externalist plead can be
interpreted as suggesting a worldly view of concepts.

The description I just gave of these four positions is of course a very rough summary of
them and by no means the few lines above do justice to the complex and vast philosophical
debate about the ontology of concepts. As we will see in the next sections and chapters,
many interesting philosophical theories about conceptual ontology involve a subtle mixture
of these four macro-views of the ontological status of concepts.

2.1.2 The structure of concepts
If the debate over the ontological status of concepts can be roughly summarized describing
few main (bundles of) standpoints, the same thing cannot be easily done for the debate
over conceptual structure. In philosophy and psychology, in fact, a plethora of different
theories about conceptual structure have been proposed. In what follows, I will focus on
eight influential views about how concepts are structured: definitional theories, functional
theories, prototype theories, exemplar theories, atomic theories, theory theories, ability
theories, mixed theories.

Definitional theories. The most influential conception of conceptual structure is with-
out a doubt the one depicted by definitional theories, also known as the classical picture
or the received view of concepts. According to definitional theories, (most) concepts have
definitional structure, i.e. our conceptual knowledge is structured in a hierarchical way,
where a given concept is obtained combining the (usually) necessary and sufficient prop-
erties that simpler concepts are identified with. For instance, the concept of a bachelor,
according to these theories, is made of the definition ‘unmarried man’, where the concept
of unmarried and the concept of man are simpler concepts. The definitional structure of
concepts explains also how they allow us a vast range of cognitive abilities such as cat-
egorization, learning, inferences, and the like. We categorize via realizing that a given
individual satisfies the definition of a given concept, we learn concepts through learning
how they are defined, and we use definitions for drawing analytic inferences from our con-
ceptual knowledge. We furthermore form new concepts from simpler ones via combining
their definitions.

Definitional theories have been common throughout the whole history of philosophy,
from Plato to twentieth century philosophy, and they were also the received view in the
first half of the last century in psychology and linguistics. Definitional theories have been
defended together with all the four aforementioned ontological views about concepts, thus
forming psychological, abstract, linguistic, and worldly definitional theories of concepts.
As stressed by Fodor and his co-authors (Fodor et. al., 1980) in their famous critique of
definitional theories, the explanatory power of definitions come from being entangled with
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a classical set of epistemological and metaphysical assumptions that see in definitions the
glue that holds ideas, properties, meanings, and extensions together, thus connecting our
thought, our language, and our world.

However, in the last century psychologists have become more and more dissatisfied with
definitional theories, up to the point that virtually no contemporary cognitive psychologist
is a defender of such an account. This is because, starting from the early seventies, a
series of experiments started to accumulate an increasing amount of evidence against the
classical theory, culminating in what in Kuhnian terms we can call the Roschian revolution
in cognitive psychology. More specifically, the classical theory of concepts gives a flat and
sharp depiction of concepts. Since concepts are organized via necessary and sufficient
definitions, either something falls under the definition of a given concept or not. No vague
cases are allowed. Furthermore, in the classical picture all instances of a given concept
exemplify the concept in the same, perfect, way. There are no better or worse examples
of a bachelor, since all bachelors are unmarried men. This sharp and flat conception of
conceptual structure has been strikingly disproved by the so-called typicality and borderline
effects. A robust series of studies (e.g. Rosch 1973, 1975; McCloskey and Glucksberg
1978; Hampton 1979) showed that people’s use of concepts involves a very non-flat and
non-sharp way of assigning conceptual membership, where objects can be more or less
typical instances of a concept and several cases can fall in-between membership or non
membership1. These findings were completely alien to the rigid hierarchical definitional
structure of the classical theory of concepts and thus prompted psychologists to develop
alternative views of conceptual structure.

If in psychology the classical theory has fallen out of fashion, in philosophy one can
instead easily find, still nowadays, theories of concepts assuming a definitional structure.
Despite very influential philosophical critiques to definitional theories (e.g. Quine 1951;
Wittgenstein 1958), in fact, definitions can still play a role in a theory where concepts are
seen as abstract entities. Abstract definitional theories of concepts are usually built around
so-called external definitions, i.e. definitions independent and usually often unknown to
the subject2. External definitions are usually coupled with a certain degree of essentialism
about kinds and externalism about meanings (Kripke, 1972; Putnam, 1975) that detach
concepts and related entities from the human mind, thereby shielding definitions from
contrasting psychological evidence. Accounts of concepts based on such external definitions
are Putnam’s and Rey’s conceptual cores (Putnam, 1970; Rey, 1983), and Peacocke’s
implicit definitions (Peacocke, 1992).

1The existence and the significance of borderline cases in conceptual and linguistic activity is also a
central theme of the philosophical literature on vagueness and the sorites paradox (cf. Williamson 1994;
Keefe and Smith 1996; Keefe 2000). For a description of how the philosophical and the psychological
literature on vagueness relate to each other, see (Égré, Ripley, and Verheyen, 2019).

2There are also more classical abstract definitional theories of concepts, such as Zalta’s object theory
(Zalta, 2001).



12 2. Concepts and Conceptual Change

Functional theories. Another, very influential, traditional picture of conceptual struc-
ture in analytic philosophy is the one described by functional theories of concepts3. Ac-
cording to functional theories, concepts are entities akin to functions in mathematics, i.e.
they are mappings from one domain of entities to another one (usually from objects to
truth-values). As such, concepts are definable through the specific mapping with which
they are identified. Concepts are thus seen by functional theories are closely connected
with the related predicates and, just like them, as incomplete entities (one could say un-
saturated, using Frege’s chemical metaphor, cf. Dummett 1973), usually defined thanks
to their domain and their co-domain. Two examples of (very influential) functional theo-
ries of concepts are Frege’s own theory of language (Frege, 1891, 1892a,b) and Carnap’s
theory of intensions (Carnap, 1947). Functional theories of concepts, and their depiction
of concepts as abstract functions, are closely connected with the rise of formal semantics,
and especially of intensional semantics in philosophy of language and linguistics.

Functional theories are naturally connected with the abstract and the linguistic views
of concepts. The core idea of functional theories, i.e. that concepts are entities akin to
functions, takes concepts to be non-mental entities, closely connected with the related
predicates. Thus, concepts have been identified by functional theorists either as abstract
properties or as the (intensional) meanings of the related predicates. Psychological and
worldly views on the ontology of concepts seem instead incompatible with functional the-
ories of concepts. As such, functional theories have encountered the peculiar fate of being
amongst the received views of concepts in philosophy of language and formal semantics
(cf. Katz 1972), while receiving little discussion in philosophy of mind and psychology.

Prototype theories. If definitional theories were discredited in psychology by typicality
and vagueness effects, prototype theories were explicitly developed with these effects in
mind. According to prototypical theories, (most) concepts have prototypical structure, i.e.
our conceptual knowledge is stored via a summary representation of the properties that
instances of a concept tend to possess. The pivotal difference with definitional theories
is then the step from a summary of necessary and sufficient properties to a statistical
summary of the properties that a given instance is most likely to have. This tendency-
based structure is able to straightforwardly explain the typicality and graded structure
effects that caused so much trouble to the classical picture. Categorization is, in fact,
according to prototype theories, achieved via measuring the similarity of a given instance
with the prototypical structure of a given concept. Instances of a concept can then be
more or less similar to the prototype, i.e. having more or less prototypical properties,
resulting in a more or less typical exemplification of the concept. Similarity calculations
allow the possibility of borderline cases, i.e. instances that are almost equally similar to

3As it should be clear, what I dubbed here the functional theory of concepts should not be confused
with the strain of conceptual pluralism that it is sometimes called in philosophy of mind conceptual
functionalism (Lalumera, 2010) and that I will treat amongst the mixed theories of concepts. The two
theories have nothing in common. The functional theory of concepts understands in fact concepts as
entities akin to functions in mathematics, while conceptual functionalism thinks instead that concepts
have no common structure and thus are a functional kind.
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prototypes of different concepts. The assumption of a prototypical conceptual structure is
able to explain several cognitive abilities related to concepts. If categorization, as already
mentioned, is done via judging the similarity of a given object with the prototype of a
given concept, learning is achieved via the abstraction of a prototype, while prototype
combination allow us to form new concepts from simpler ones (Smith and Osherson, 1984;
Smith et al., 1988; Rips, 1995). Prototype theories can easily model various conceptual
inferences, such as category-based induction (i.e. inferring the properties of an instance
from the concept it belongs to) and other probabilistic inferences, thanks to the statistical
aspect of prototypical representation (Rips, Shoben, and Smith, 1973).

Prototype theories are deeply entrenched in the psychological view of concepts. They
were first developed by Rosch and her colleagues (Rosch, 1973, 1975; Rosch and Mervis,
1975; Rosch, 1978) for explaining psychological data about typicality effects and graded
structure and they remain the default option for any psychological model of cognitive
abilities related to concepts. In philosophy, prototypical theories have been most famously
used by Wittgenstein (Wittgenstein, 1958), who is referred as a direct inspiration for the
development of prototype theories by Rosch, and by Kuhn (Kuhn, 1974, 1976, 1990, 1991),
who in his late work spelled out his crucial notions of paradigm and kind in increasingly
prototypical terms (cf. Hoyningen-Huene 1993; Andersen et al. 1996, 2006). Wittgenstein’s
ante litteram prototype theory could be interpreted as a linguistic prototype view. The
only ontological views with which the idea of a prototypical structure seems prima facie
incompatible are thus the abstract and the worldly view.

If the idea that concepts have some kind of prototypical structure is almost uncon-
troversial in contemporary cognitive science, the way in which this structure is exactly
spelled out has been the center of many controversies since Rosch’s seminal work. Starting
from Rosch’s original formulation of the prototype theory, psychologists disagreed on what
exactly the prototype of a concept is, forcing Rosch to explain many times what is pre-
cisely implied by assuming that concepts have a prototypical structure. Different specific
models of prototypical structure have been proposed, differing in how many prototypes
they assume and how is the prototype structured. Examples of these models include fea-
ture list models (Hampton, 1979), dimensional models (Smith and Medin, 1981, Ch. 5),
and holistic models (Smith and Medin, 1981, Ch. 6). Another topic of heated discussion
has been how to exactly measure the similarity of a given object with the prototype of a
concept, a debate in which several mathematical measures of similarity were proposed and
discussed (Tversky, 1977). The similarity-based categorization model of prototypes the-
ory has been also criticized for not taking into account other determinants of conceptual
structure such as ideals and base-rates (Hampton and Gardiner, 1983; Barsalou, 1985).
More generally, many psychologists argued that prototype theories need further structure
in order to account for the whole spectrum of cognitive abilities in which concepts are in-
volved. This critique cause the appearance of many enriched prototype models of concepts
such as schemata (Lakoff, 1987a,b), frames (Minsky, 1975; Jackendoff, 1992), and spaces
(Gärdenfors, 2000, 2014). These enriched models can be considered the default way of
representing conceptual knowledge in cognitive science and computer science nowadays.
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Exemplar theories. Another type of conceptual structure developed to account for the
empirical flaws of definitional theories is the one championed by exemplar theories. Accord-
ing to these theories, (most) concepts have exemplar structures, i.e. they are represented
via a set of their specific instances. Exemplar theories take then a more radical departure
from the classical picture of concepts than prototypes accounts, denying that conceptual
knowledge is stored via an abstract conjunction of properties possessed by (all or many)
instances of the concept. According to exemplar views, we do not build concepts summariz-
ing properties, we do that by storing specific instances of them. Evidence for the exemplar
view is provided via the so-called exemplar effects, i.e. cases where single instances of a
concept influence our categorization and induction skills. These effects are explained by
exemplar theorists with the assumption that conceptual competences like categorization
and category-based induction are performed via the retrieval of specific instances of the
concept. According to this view, when we categorize a dog in the street as an instance of
the concept dog, we retrieve a specific dog from our long-term memory (say, our own dog)
and, by judging the similarity between the two dogs, we realize that the dog on the street
is indeed a dog. Analogously, category-based induction is performed via default reasoning
mechanisms based on the similarity with stored exemplars of concepts. Conceptual learn-
ing and combination are also performed thanks to the specific instances of concepts that
are stored in our mind. Exemplar theories can also easily account for the typicality and
borderline cases effects that prompted the development of prototype theories, since their
categorization models are also based on similarity judgments.

Exemplar theories, just like prototype ones and perhaps even more, are strongly con-
nected with a psychological view of concepts. They were first developed by Medin and
Schaffer (Medin and Schaffer, 1978), few years after the publication of Rosch’s revolution-
ary studies. In comparison with prototype theories, exemplar models have not been very
popular amongst philosophers, but they enjoy the stable status of a valid alternative to
prototype-based models in cognitive psychology, especially in studies related to categoriza-
tion abilities (Nosofksy, 1984).

Just like for prototype models, there have been several different proposals of how the
exemplar structure of concepts is exactly spelled out. Specific exemplar models of concepts
differ in the number and the nature of the exemplars, how the exemplars are chosen amongst
all the instances of a concept we experience, the exact similarity measure involved in
categorization judgments (Smith and Medin, 1981, Ch. 7). Exemplar models have also
been criticized for giving an extremely similarity-focused picture of conceptual abilities,
giving rise to enriched exemplar models that often involve also some kind of prototypical
structure (Nosofksy, 1992).

Atomic theories. A radical conception of conceptual structure is the one given by
atomic theories (or conceptual atomism). According to these theories, in fact, concepts
have no semantic structure whatsoever. The many cognitive, semantic, and epistemolog-
ical abilities related to concepts can be explained via mechanisms other than a concept
internal structure. The most prominent advocate of conceptual atomism is Jerry Fodor
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(Fodor, 1975, 1998, 2008), who developed and repeatedly defended an atomistic view of
concepts against the many critiques that this radical position attracted. Most of Fodor’s
reasons supporting conceptual atomism are not in the form of positive evidence for it, but
they are arguments against the viability of all the other accounts of conceptual structure
(e.g. Fodor et. al. 1980; Fodor and Lepore 1996). Roughly speaking, the central point
of Fodor’s dissatisfaction with non-atomist theories of concepts is that they cannot fully
explain conceptual learning, since they all presuppose a basis of primitive concepts the
acquisition of which cannot be explained by any account of the internal structure of a
concept. The acquisition of these primitive concepts has then to be explained either with
some kind of innatism or with some learning mechanism external to the structure of con-
cepts. Fodor argues then that there is no reason to postulate a conceptual structure, when
a combination of these two external explanations (i.e. innatism and externalism about
conceptual content) suffices to justify all kinds of conceptual knowledge. It is important to
stress that, just like the classical picture of concepts thrived in combination with related
common epistemological assumptions, the explanatory power of Fodor’s conceptual atom-
ism is best understood in the light of his computationalist view of the human mind and his
language of thought hypothesis (cf. Fodor 1975, 2008; Crane 2015). Seen in this perspec-
tive, Fodor’s conceptual atomism offers a formal model of conceptual abilities as syntactic
properties of the atoms composing the language of thought consistent with old-fashioned
computationalism in philosophy of mind.

Atomic theories of concepts are naturally connected with a psychological view of con-
cepts. Apart from Fodor’s own picture of the human mind, conceptual atomism has been
a very popular position in philosophy, especially as a conceptual counterpart of semantic
externalism and the so-called new theory of reference. Fodor’s attacks against non-atomic
theories of concepts are actually structurally analogous to Kripke’s critique of internalist
theories of meaning and references (Kripke, 1972). Moreover, atomic theories of concepts
are often coupled with causal and teleological theories of mental content (Millikan, 2000).
Both kinds of theories, when held together, strengthen one another, since conceptual atom-
ism offers a deflationary way of talking about conceptual abilities to externalist account
of mental content, while causal and teleological accounts of mental content offer an exter-
nalist way of connecting atomic concepts with the world (cf. Fodor 1990; Millikan 1998).
Despite the philosophical success, conceptual atomism has never been equally popular
amongst psychologists. Especially after the emergence of the so-called embodied theories
of cognition and the consequent fall of the old computationalist paradigm, atomic theories
of concepts give a depiction of the human mind significantly different from the one depicted
by contemporary cognitive science (Clark, 1993; Shapiro, 2004).

Theory theories. We saw how both prototype and exemplar theories, having both of
them similarity-centered models of categorization, have been criticized for not sufficiently
taking into account contextual factors such as ideals and base-rates. In a similar fashion,
similarity-based models of categorization have been criticized for neglecting the so-called
knowledge-effects, i.e. the influence of general knowledge on our categorization. In order
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to account for these effects, some scholars argued that we have to change the whole picture
of conceptual structure offered by prototype and exemplar theories (Murphy and Medin,
1985; Barsalou, 1987). This change gave rise to the so-called theory theories (or knowledge
theories) of concepts. According to these theories, (most) concepts are structured like
(simple) scientific theories. So, for instance, our concept of dog, for the theory theorists, is
structured like a simple theory of why dogs are dogs, including several kinds of biological,
morphological, and social explanations that contribute to our idea of dogs. In other words,
theory theorists claim that a given concept is a summary of the different kinds of knowledge
that we have on a given category of entities. Theory theories account for the cognitive
abilities related to concepts by considering them as chapter in our epistemological account
of theoretical knowledge, especially of scientific one. Categorization is then a simplified
version of scientific hypothesis testing, where we check whether certain empirical data,
i.e. the properties of a given individual, are consistent with the theory, i.e. the concept
under which (we assume) it falls. Analogously, conceptual inferences are for the theory
theorists analyzable with the models through which philosophers of science understand
related scientific inferences. The relationship between theory theories of concepts and
philosophy of science is even stricter in regards to model of developments, where theory
theories models of concept learning and development are directly inspired by models of
theory change in philosophy of science (Carey, 1985; Gopnik and Meltzoff, 1997).

Theory theories are, since their appearance, primarily developed within a psychological
view of concepts. These theories have become quite popular in many subfields of cognitive
psychology, especially in the ones studying how children acquire and develop concepts
(Carey, 1985; Keil, 1989; Carey, 2009). Many holistic accounts of meaning in philosophy of
language, such as Quine’s (Quine, 1960) one for instance, can be seen as possible blueprints
for a linguistic theory view of concepts.

Different models of theory-based conceptual structures have been proposed, differing
in their understanding of theory and in the mechanisms of acquisition and change used. A
common problem of all theory theories is the exact specification of the theory-like way in
terms of which concepts are allegedly structured. In philosophy of science, in fact, there is
no commonly accepted account of how scientific theories are structured. Moreover, theory-
theories may also face a circularity-problem (similar to the one stressed by Fodor et al.
against definitional theories of concepts, cf. Fodor et. al. 1980), since any reasonable way of
spelling out the atomic components of the (alleged) theoretical structure of concepts seems
to involve some kind of non-theory-like structure. Many proponents of the knowledge view
acknowledge (to a certain extent) these two issues and take a more moderate departure
from similarity-based account of conceptual structure, claiming that their approach should
be considered an addition and not a replacement of prototype or exemplar accounts of
conceptual structures (Murphy and Medin, 1985).

Ability theories. All the theories of conceptual structure we have seen so far under-
stand conceptual knowledge as a certain kind of propositional knowledge, a know-that.
What I will call ability theories, instead, is a bundle of theories of conceptual structure
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that share an understanding of conceptual knowledge as a certain kind of know-how. In
other words, according to ability theories, concepts are identifiable as certain kinds of
skills, epistemologically similar to knowing how to play a sport or a musical instrument.
These theories claim that conceptual structure cannot be identified with any set of prop-
erties, instances, theories, or causal relationships, but it is instead a kind of disposition
to perform certain cognitive abilities related to concepts. Paradigmatic examples of abil-
ity theories are conceptual neo-empiricism (Barsalou, 1999; Prinz, 2002; Shapiro, 2004)
and inferentialism (Carnap, 1934; Dummett, 1991; Brandom, 1994, 2000; Peregrin, 2011).
Neo-empiricism, in its various form, is a modal form of ability theory that sees conceptual
knowledge as embodied in the perceptual and motor cognitive systems. Building upon
the aforementioned embodied mind turn, neo-empiricists claim that concepts are certain
kinds of (simulated) perceptual or motor abilities, the existence of which derives from the
bodily aspect of human experience. Inferentialism, instead, understands concepts primar-
ily as inferential tools. According to inferentialists, a concept is not determined by its
internal structure, but by its inferential relations with other concepts. Inferentialism is
thus a holistic approach to conceptual knowledge that identifies concepts with their role
in inferential practices. Historically, inferentialism is closely connected with the rise of the
field of proof-theory (Gentzen, 1934/35; Prawitz, 1965) in logic and the related inferential
role or proof-theoretic semantics (Schroeder-Heister, 2018) for logical systems.

Ability theories seem compatible with most of the main ontological views about con-
cepts. Neo-empiricism is, in fact, usually coupled with a psychological view of concepts,
while inferentialism mostly comes together with a linguistic view. Moreover, Peacocke’s
(Peacocke, 1992) aforementioned neo-classical theory of external definition, with its strong
focus on dispositions and implicit rules, can be also considered an abstract ability theory.
The only ontological view of concepts that seems incompatible with ability theories is the
worldly view. Both in psychological and philosophical literature, ability theories continue
to remain popular alternatives to more traditional theories of conceptual structure.

Mixed theories. The seven theories of conceptual structure we have seen so far share
a common assumption on how concepts are structured, namely, that all (or at least most)
kinds of concepts have the same kind of structure. This assumption has not been un-
challenged in psychological and philosophical debates. I call mixed theories the group of
theories of conceptual structure that hold that concepts do not have a single general struc-
ture. I will briefly describe four different mixed theories: dual theories, hybrid theories,
conceptual pluralism, and conceptual eliminativism.

Dual theories claim that there are two different entities behind the intuitive notion of
a concept. Usually, these two entities belong to a different ontological realm and they are
responsible for different parts of conceptual knowledge. For instance, Rey’s theory of con-
ceptual cores (Rey, 1983) is made of a mental prototype that is used for psychological cate-
gorization and related cognitive abilities and an abstract conceptual core, constituted by an
external definition, that is used for metaphysical categorization and identification. Another
interesting dual theory of concepts is Fodor’s mature formulation of conceptual atomism
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(Fodor, 1990), where structureless, causally identified, atoms of language of thought are
coupled with prototype-like non-semantic contents used for psychological categorization.

Hybrid theories (Vicente and Manrique, 2016) claim instead that concepts have a com-
plex structure that is made of two (usually psychological) kinds of structure, such as (for
instance) a prototype and some exemplars. The difference with dual theories is that hybrid
theories claim that the multiple structure of a concept is used in combination for perform-
ing the same kinds of tasks. Both dual theories and hybrid theories claim that a single
concept has more than one kind of structure, but they still assume that all concepts share
the same kinds of (complex) structure. Recently, philosophers have started to question
whether the class of concepts is such that all its members share a certain kind of structure.

Conceptual pluralism (Weiskopf, 2009; Lalumera, 2010) claims that concepts are a
functional kind, i.e. a class of entities identified by performing a certain function, not
by sharing a certain kind of structure. According to this position, the class of concepts is
structurally similar to kind of things such as means of transportation, whose members share
only the fact that all of them perform the function of transporting people. Conceptual
pluralists think that different kinds of concepts might have different kinds of structures
and even the same concept can be instantiated, depending on the context, by different
conceptual structures (cf. Wilson 2006; Haueis 2021). Evidence for conceptual pluralism
can be given by the well-known fact that different theories of concepts often give an excellent
account of certain specific kinds of concept or certain functions of concepts, but they seem
inadequate to describe different kinds or different functions.

Finally, conceptual eliminativism (Machery, 2009) claims that concepts are not a nat-
ural kind and thus the term ‘concept’ should be eliminated from our scientific image of
the world. Eliminativists claim in fact that there is robust empirical evidence supporting
different theories of conceptual structures and that furthermore there is robust evidence
that all these different structures are related to different cognitive processes behind in-
tuitive conceptual abilities such as categorization or conceptual combination. For these
reasons, eliminativists propose that psychologists should abandon any talk of concepts,
conceptualizing conceptual knowledge only at the sub-level of these different kinds of con-
ceptual structure. Machery’s book-length plead for eliminativism prompted a very heated
discussion about which kinds of things are concepts and which kind of function they serve
in contemporary psychology and philosophy (cf. the many interesting replies to Machery’s
summary of eliminativism in Machery 2010).

2.2 The Problem of Conceptual Change in Science
and Philosophy

In the last section, we surveyed the philosophical and psychological literature on concepts,
focusing on the main proposals about which kind of entities concepts are and how are
they structured. We have now an idea of how we can statically understand concepts. In
this section, I will instead focus on the dynamical aspect of concepts, i.e. how these enti-
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ties change. Specifically, I will debate the epistemological problems related to conceptual
change that made it a central topic in philosophy of science and meta-philosophy.

First, I will focus on the problems that conceptual change in science poses to philoso-
phers of science, describing why conceptual change is paramount to our understanding of
scientific progress, scientific realism, and scientific rationality. Then, I will describe the
meta-philosophical debate over the existence of conceptual change in philosophy and its
relations with our ideas regarding the goals, the scope, and the methods of philosophical
activity.

2.2.1 Conceptual change in science
The fact that our scientific image of the world changes with time is uncontroversial. Our
best scientific theories in current times are different from the ones that were considered
the best ways of describing the same phenomena two hundreds years ago. This difference
makes us think that even future scientific theories would probably be different from the
current ones. Scientific theory change, by itself, would be unproblematic if we could be
completely sure that every new theory is just a more precise and more complete version of
the theory it replaces. If all scientific changes were of this kind, we could see in scientific
theory change just a cumulative series of extensions and improvements of old theories.

Unfortunately, even the most optimistic enthusiasts of scientific activity cannot seri-
ously believe this idyllic picture of science history. Just a quick and superficial glimpse
at the actual history of science reveals in fact that far more radical and epistemologically
worrisome changes took place. Extensions and improvements are just very specific cases of
scientific theory change. New theories replacing old ones often drastically change the image
of the world given by the replaced theories, modifying important aspects of old theories
such as laws, explanations, ontological assumptions, and (most importantly for the present
work) concepts. The most radical and important macro-changes in scientific theories have
been dubbed, in analogy to political revolutions, scientific revolutions (Kuhn, 1970; Nick-
les, 2017). The frequency and the extent of scientific revolutions prompted philosophers
to question over-optimistic accounts of scientific progress, rationality, and realism4. How
can we be sure that science progresses towards truth if lots of experimental knowledge is
lost during a revolution? How can scientific activity be rational if there is no way to objec-
tively compare two radically different theories? How can we trust the scientific description
of reality if in revolutionary times new entities are postulated and old ones disappear? A
complete survey of the answers that philosophers have given to these enormous questions
is out of the scope of the present work and, most likely, impossible to squeeze in any single
book5.

In what follows I will focus on the specific problems that conceptual change causes
4Most famously, the theoretical discontinuity of scientific theories is at the heart of both Laudan’s

‘pessimistic induction’ (Laudan, 1981, 1984a) and Hesse’s ‘principle of no privilege’ (Hesse, 1976), two
influential historical arguments against scientific realism.

5For general surveys of philosophical debates over scientific progress, scientific objectivity, and scientific
realism see (Niiniluoto, 2019; Reiss and Sprenger, 2020; Chakravartty, 2017; Psillos, 2018).
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in regards to these bigger questions. Conceptual change is in fact at the heart of the
most worrisome byproduct of scientific revolutions: incommensurability between different
(bundles of) scientific theories. The mathematical notion of incommensurability, i.e. the
lack of a common measure, was made a common term in philosophy of science by the
influential work of Kuhn (Kuhn, 1970) and Feyerabend (Feyerabend, 1962) who applied
this term to the (alleged) breakdown of rational communication in scientific revolutions.
In particular, radical conceptual change is central to one pivotal component of Kuhn’s
complex notion of incommensurability, i.e. what is known as taxonomic incommensurability
(Hoyningen-Huene, 1993; Sankey, 1997; Sankey and Hoyningen-Huene, 2001). Taxonomic
incommensurability denotes the fact that different theories can have a completely different
understanding of a given scientific term and its related meaning. This conceptual kind of
incommensurability challenges supporters of scientific progress, scientific rationality, and
scientific realism to explain the continuity in goals, roles, value, and ontological import of
these incommensurable concepts. In other words, what is needed to defend science is a
model of the dynamics of scientific concepts, i.e. a model of conceptual change.

This is how Kuhn’s extremely influential notion of incommensurability caused the prob-
lem of conceptual change to become one of the main topic that philosophers of science
discussed in the second part of the last century. Let us survey the main types of model
of conceptual change that have been proposed in the literature, then. I will organize my
presentation of these models via clustering them in five categories, differing in how these
models conceptualized the continuity between scientific concepts. I will talk respectively of
syntactic, semantic, cognitive, pragmatic, and evolutionary models of conceptual change6.
Before starting my analysis of models of scientific conceptual change, I need to specify
what I mean with the term ‘models’ in this context, in order to avoid misunderstandings.
I use the term ‘model’ in this work in its naive scientific sense, i.e. to denote an abstract,
idealized, and simplified representation of a given phenomenon. I do not assume any spe-
cific ontological, epistemological, or semantic theory about models7. I just make the basic
assumption that models are fruitful ways of describing and studying a phenomenon like
conceptual change. So, when I will talk about a given model of conceptual change, it
should be considered a lightweight short expression for denoting an abstract, idealized,
and simplified representation of conceptual change8.

6It should be noted that many of these models of conceptual change are often a part of a more general
model of scientific theories and theory change. Usually, a given understanding of conceptual continuity
is inscribed in a theory that understands scientific theories in the same way. Usually, but not always,
since there are examples of models of conceptual change that have conceptualize conceptual continuity
in a given way inside a differently characterized view of scientific theory. Kitcher’s semantic model of
conceptual change lies for instance within a practice-based pragmatic view of scientific theory (Kitcher,
1995). I will focus on conceptual change and thus characterize the models exclusively according to how
they understand conceptual change.

7For a general survey on the philosophy of models and the many ontological, epistemological, and
semantic theories regarding them, see (Frigg and Hartmann, 2020).

8An exception will be when, in Section 3 of Chapter 5, I will talk about models within the model-
theoretic perspective of Structuralism in Philosophy of Science.
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Syntactic models of conceptual change Syntactic models of conceptual change track
the continuity of scientific concepts with syntactic logical tools such as (various kinds of)
translations, reductions, and definitions. According to this approach, even if different sci-
entific theories understand a given concept differently, their differences can be analyzed
and bridged by mutual translation and interpretation. Old concepts belonging to old the-
ories can be defined in newer theories by translating them (together with the related parts
of the theory) via proof-theoretic means. The analysis of scientific episodes of conceptual
changes becomes then an exercise in reconstruction and translation.

This approach to conceptual change can be traced back to the kind of philosophy of
science championed by early logical empiricism. Syntactic models of conceptual change
are in fact naturally connected to two pivotal components of (early) logical empiricist phi-
losophy: the statement-view of scientific theories (Carnap, 1934; Hempel, 1952) and the
methodology of epistemological reduction (Carnap, 1928b; Hempel, 1966). Roughly put,
the statement-view claims that scientific theories are best understood (or more exactly
reconstructed) as a logically structured bundle of statements. The methodology of episte-
mological reduction denotes instead the technique of recursively defining a given notion into
epistemologically simpler terms, until only epistemologically basic terms are obtained. The
reconstruction of external reality within a phenomenal constitution system contained in
Carnap’s Aufbau (Carnap, 1928a) can be considered a paradigmatic example of this kind of
technique. The combination of epistemological reduction and the statement-view of scien-
tific theories allowed early logical empiricist philosophy of science to naturally understand
conceptual dynamics in terms of logical reductions between theories. More generally, anal-
ogous models of theory change were the received view of scientific theory change against
which Kuhn and especially Feyerabend stressed the possibility of incommensurability. Fey-
erabend (Feyerabend, 1962) specifically argued that incommensurability makes inadequate
any application of linguistic models of conceptual change to scientific revolutions.

Due to the influence of Kuhn’s and Feyerabend’s work and to even more influential
critiques to the logical empiricists epistemology and to its (allegedly) reductionist method-
ology (cf. Quine 1951), linguistic models of conceptual change were heavily criticized.
More generally, the so-called historicist turn in philosophy of science and the contempo-
rary rise of sociology of science pushed linguistic reconstruction of scientific theories and
scientific concepts at the corners of philosophy of science. Nevertheless, influential syntac-
tic models of scientific change were still developed in the second part of the last century,
such as Quine’s explication (Quine, 1960) or Sellars’ analogy-based model (Sellars, 1963,
1973). Both these models are holistic syntactic models of conceptual change, built around
the interrelationships between (groups of) concepts (cf. Brown 2007). Furthermore, in
recent years, thanks also to a renewed historical scholarship on logical empiricism (e.g.
Friedman 1999; Carus 2007), the usefulness of linguistic models of conceptual change and
their close relationships with other, allegedly different, models of scientific change has been
re-appraised (cf. Lutz 2012, 2014; Andreas 2014; Schurz 2014a).
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Semantic models of conceptual change Semantic models of conceptual change un-
derstand the dynamics of scientific concepts as specific changes in their semantic content.
According to these models, despite the different linguistic frameworks in which scientific
theories are constructed, continuity can be found in the underlying non-linguistic semantic
entities. The semantic content of old concepts and theories can then be connected with
the one of the newer ones via specific changes in the related semantic structures.

The rise of semantic models of conceptual change is closely connected with the develop-
ment of the non-statement view of scientific theories. As the name indicates, non-statement
views defined themselves in opposition to the aforementioned statement view of scientific
theories, claiming that theories are not best reconstructed as a bundle of statements, but
as semantic entities. Even if certain aspects of the logical empiricists understanding of
scientific theories foresaw a semantic conception of scientific theories, the paradigmatic
example of non-statement view is structuralist philosophy of science as developed by Sup-
pes, Suppe, Sneed, and Stegmüller (Suppes, 1967; Suppe, 1977; Sneed, 1979; Stegmüller,
1976; Suppe, 1989; Suppes, 2002). This structuralist research program championed the
reconstruction of scientific theories as set-theoretic entities (Balzer et al., 1987; Balzer and
Moulines, 1996). The structuralist way of understanding conceptual change is then to
use fine-grained model-theoretic tools to capture the continuity in semantic content be-
tween (set-theoretic reconstructions of) concepts of subsequent theories. The other main
kind of non-statement view in philosophy of science, often also labeled structuralism, is
the so-called state-space approach (van Fraassen, 1989; French and Ladyman, 1999; da
Costa and French, 2003; French, 2017). According to the state-space approach, just like
for supporters of model-theoretic structuralism, the diachronical continuity of science is
reconstructed as specific changes in the semantical structures related to scientific theories.
The difference with the model-theoretic approach is in how these semantical structures are
conceptualized. In the state-space approach, scientific theories are best reconstructed as
state-spaces, i.e. abstract spaces having dimensions corresponding to the relevant variables
of the theory and points corresponding to possible states of a real system.

Another, influential, type of semantic model of conceptual change is composed of ref-
erential models of conceptual change. These models focus on the reference of scientific
terms, understanding conceptual change as a specific kind of overlapping in the reference
of the related scientific terms. Referential models of conceptual change are usually cou-
pled with a general externalist (meta)semantic attitude over meaning that stresses the
worldly component of the process by virtue of which the reference of scientific terms gets
fixed. A seminal example of an externalist referential model of conceptual change is due to
Putnam (Putnam, 1973). Other examples of referential models are the so-called causal de-
scriptive models (Lewis, 1984; Kroon, 1985). Two influential, broadly causally descriptive,
referential models of conceptual change in science are Psillos’ (Psillos, 1999) core-causal
description model and Kitcher’s reference potential model (Kitcher, 1995).

Cognitive models of conceptual change Cognitive models of conceptual change un-
derstand the dynamics of scientific concepts as specific changes in the cognitive structures
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underlying scientific theories. According to these models, scientific theories are best under-
stood as cognitive architectures, representable with one of the many ways of representing
conceptual knowledge developed in cognitive science9. Diachronic conceptual change in
science is then seen as a specific kind of change in related cognitive structures, where the
structures representing newer concepts are obtained from previous structures corresponding
to old concepts by specific rule-governed transformations.

Cognitive models of conceptual change are naturally connected with the rise of knowl-
edge representation models in cognitive science and artificial intelligence. Different models
use different cognitive structures as a background framework, but they all share the general
understanding of scientific change as a kind of cognitive change just described. The most
common kind of background framework for this kind of model is given by frames. Frames
have been used in many cognitive models of conceptual change such as Kornmesser’s and
Schurz’s theory-frame models (Kornmesser and Schurz, 2018) and Andersen’s, Barker’s,
and Chen’s neo-Kuhnian approach (Andersen et al., 2006). Other cognitive frameworks
for representing conceptual knowledge that have been used to models scientific change
are conceptual systems (Thagard, 1992), conceptual spaces (Gärdenfors and Zenker, 2011,
2013; Zenker, 2014; Zenker and Gärdenfors, 2015a; Masterton, Zenker, and Gärdenfors,
2017) and schemata (Giere, 1988, 1999).

Pragmatic models of conceptual change All three types of model of conceptual
change presented so far understand change in scientific concepts as a kind of transfor-
mation involving primarily the syntax or the semantics of scientific theories. Supporters
of pragmatic models of conceptual change claim instead that a pivotal part in scientific
conceptual change is played by pragmatic factors. More accurately, pragmatic models un-
derstand the dynamics of scientific concepts as a change driven by the values and goals of
the scientists. In contrast to syntactic, semantic, and cognitive models, pragmatic models
do not analyze conceptual continuity by means of reductions or transformation rules, but
by meta-conceptual frameworks. The replacement of old scientific concepts with new ones
can then be understood, according to pragmatic models of conceptual change, inside a
framework where the reasons for the scientist choices can be analyzed in relation to their
value-laden rationality or their interests.

Pragmatic models of conceptual change are closely connected with the increasing in-
terest of philosophers of science for the topic of values in science, together with the mod-
ification of the idea(l) of scientific objectivity from a value-free to a value-laden concep-
tion (Reiss and Sprenger, 2020). Pragmatic models of conceptual change can focus on
different pragmatic factors and different values in their analysis, relying on different meta-
frameworks for judging scientific conceptual change. Examples of pragmatic models that
focus on the so-called epistemic values are Carnap’s mature method of explication (Car-
nap, 1950b), Kuhn’s own model of theory choice (Kuhn, 1977), Lakatos’ scientific research

9It should be noted that cognitive models of conceptual change could be considered also a sub-kind of
semantic models of conceptual change, since many supporters of them argue that the cognitive architectures
related to a given scientific theory constitute a cognitive semantic for it.
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programs methodology (Lakatos, 1970), Friedman’s dynamics of reasons (Friedman, 2001),
and Wilson’s Machian explication (Wilson, 2006, 2012a). Other pragmatic models are in-
stead more focused on non-epistemic values, giving a more practice-oriented conception
of conceptual change (e.g. Bloor 1976; Hacking 1983; Shapin and Schaffer 1985; Galison
1987; Pickering 1995).

Evolutionary models of conceptual change Evolutionary models of conceptual change
understand the dynamics of scientific concepts as a kind of evolution analogous to the one
undertaken by biological entities. According to these models, the change of scientific theo-
ries and concepts is best understood as a kind of selection process akin to natural selection.
If in evolution by natural selection the selection process is guided by the fitness of the in-
dividuals, this selection-guidance role is usually played in evolutionary models of scientific
change by bundles of epistemic values or abstract notions of fitness with reality. The rise
and fall of scientific theories and concept becomes then a kind of cultural evolution obeying
specific rules and patterns.

Even though applications of evolutionary thinking to scientific change were already com-
mon, the most influential evolutionary account of scientific products is without a doubt
Popper’s one (Popper, 1972a, 1984). Popper, in fact, proposed a general model of scien-
tific change built around an analogous Darwinian selection mechanism, making explicit the
commitment to an evolutionary approach to epistemology. Other examples of evolutionary
models of conceptual change are Toulmin’s conceptual populations (Toulmin, 1967, 1970,
1972), Campbell’s selective retentions model (Campbell, 1960, 1974b), and Hull’s selective
processes model (Hull, 1988a). The appearance of these evolutionary models of conceptual
change prompted a philosophical debate over the possibility and the role of a truly evo-
lutionary epistemology for philosophical activity tout court (cf. Campbell 1974a; Bradie
1986, 1994). Moreover, several influential philosophers of science, such as Kuhn (Kuhn,
1970, 1991) and Lakatos (Lakatos, 1970), have repeatedly used a vast range of evolution-
ary metaphors in their models of scientific change. The extent to which they therefore
subscribe to evolutionary models of scientific change is a controversial topic in historical
scholarship (Renzi, 2009; Reydon and Hoyningen-Huene, 2010; Hacking, 1979; Kadvany,
2001).

2.2.2 Conceptual change in philosophy
If the significance of conceptual change in science is a rather uncontroversial observation in
philosophy of science, the philosophical relevance of the same phenomenon in philosophy is
very much disputed. Many conceptions of what philosophy is deny, in fact, much philosoph-
ical significance to the dynamics of philosophical concepts. To be sure, nobody denies the
mere historical fact that philosophical ideas about a given topic have changed in the history
of philosophy. This is rather uncontroversial. What is controversial is whether conceptual
dynamics have much significance for philosophical activity outside historical interests or
related enterprises in the history of ideas. Does philosophical conceptual change matters
for philosophical progress and philosophical methodology? Several popular conceptions of
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philosophy have given a negative answer to this question, identifying proper philosophical
methods with absolute, time-independent methodologies according to which present and
past alternative conceptions of a given issue are of little philosophical significance.

An important example of a philosophical methodology that downsizes the philosoph-
ical significance of conceptual change is conceptual analysis as traditionally understood
in analytic philosophy. Since its foundational linguistic (Rorty, 1967) or conceptual turn
(Williamson, 2007), in fact, analytic philosophy has largely understood philosophy as the
logical or linguistic analysis of abstract entities such as concepts, propositions, and intu-
itions. These object of philosophical inquiry were subjected to a transformative analysis
that would reveal their true logical or linguistic form. Especially in early analytic philoso-
phy, most strongly in Frege and in the logical atomist phase of Russell and Wittgenstein,
the goal of analytic philosophy was identified with giving a definite logical analysis of a
given notion. Philosophical concepts are then, in this metaphilosophical view, the passive
and static objects of such a descriptive analysis, while past and present alternative con-
ceptions of the same subject are completely irrelevant to the analysis. Thus, the dynamics
of philosophical concepts, past or present, are more of interest for the historian than for
the philosopher. The same negative assessment of the philosophical significance of con-
ceptual change is given by different conceptions of analysis in early analytic philosophy,
such as the linguistic and connective notions of analysis championed by the ordinary lan-
guage movement. For philosophers like Ryle or Austin, philosophical analysis was still the
method through which static and passive objects of philosophical inquiry were clarified.
Even when the idea(l) of finding a definite analysis of statements got criticized and (even-
tually) overcome, the linguistic and conceptual analysis of philosophical concepts remained
a central topic of analytic philosophy, as it drastically exemplified by the seemingly infinite
literature on the analysis of knowledge prompted by Gettier’s famous paper (Gettier, 1963;
Ichikawa and Steup, 2018).

There are of course many philosophical methodologies outside analytic philosophy that
give a very different picture of the significance of conceptual change in philosophy. All
kinds of historicist methodologies, for instance, conceive the re-appraisal of past proposals
as a necessary step in the understanding of a given philosophical problem. One does not
need to hold an historicist perspective on philosophical activity to appreciate the signifi-
cance of conceptual change in philosophy, though. Even within analytic philosophy, one
can find an example of a meta-philosophy that puts conceptual dynamics at the center
of its philosophical methodology. Logical empiricism, in fact, understood philosophical
activity not as a kind of descriptive analysis, but as a kind of constructive enterprise. For
(most of) the logical empiricists, the proper methodology of philosophy is rational recon-
struction, i.e. a “redescription and reorganization of a (purported) body of knowledge or
conceptual scheme or set of events that exhibits the logical (or rational) relations between
its elements” (Beaney, 2013, p. 253). Rational reconstruction merges together the con-
structivist Neo-Kantian view of epistemology and the logical tools of analysis typical of
early analytic philosophy (cf. Friedman 1999, 2000; Carus 2007). Like logical or linguistic
forms of analysis, rational reconstruction involves in fact the transformation of the objects
of philosophical inquiry via the use of logical or linguistic tools, but it crucially under-
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stands this transformation as an active construction of the philosopher and not as a mere
discovery or reveal of an external phenomenon. The most paradigmatic example of this
constructivist spirit is Carnap’s use of rational reconstruction. From his early writings up
until his last works, Carnap always understood his philosophy as the incessant construc-
tion of logical and linguistic frameworks in which scientific and philosophical concepts and
theories could be rationally reconstructed (Carus, 2007, 2012b). Philosophical concepts,
for a methodology like rational reconstruction, are not just passive and static object of
philosophical analysis, but they are the subjects of an open-ended engineering (Richard-
son, 2013). Concepts are reorganized and reconstructed in different formal and linguistic
frameworks, making conceptual change a central topic for philosophical inquiry. Carnap
increasingly stressed the centrality of conceptual change in his philosophy, by replacing in
his mature writing the talk of rational reconstruction with the notion of explication (Car-
nap, 1950b), which as we will see is a specific kind of rational reconstruction that takes
concepts as its main units of construction.

In recent years, a kind of constructivist philosophical methodology has been increasingly
popular also amongst analytic philosophers outside the logical empiricist tradition, namely
the bundle of metaphilosophical positions that goes under the name conceptual engineering
(Cappelen, 2018; Cappelen, Plunkett, and Burgess, 2020) and conceptual ethics (Burgess
and Plunkett, 2013a,b). Conceptual engineers propose the substitution of the traditional
methodology of conceptual and linguistic analysis in analytic metaphysics and epistemol-
ogy with what they call conceptual engineering, broadly understood as the “enterprise
of assessing and improving our representational devices” (Cappelen, 2018, p. 3). In the
last twenty years, in fact, conceptual analysis and related assumptions on its transparency
and its epistemological significance have been heavily criticized, together with other tra-
ditional assumptions about the goal and the scope of philosophical activity (e.g. Knobe
and Nichols 2008; Machery 2017). These critiques of traditional philosophical methods
such as conceptual analysis have prompted many analytic philosophers to focus more on
metaphilosophical problems. What is the correct self-image of analytic philosophy? What
are its methods? Do we have to change something in the traditional way of analyzing
philosophical problems? Are traditional philosophical methods and philosophical concepts
defective? According to conceptual engineers, many of our traditional philosophical con-
cepts are very likely to be defective (cf. Cappelen 2020; Scharp 2020). The list of alleged
defects of our traditional concepts involves epistemic defects such as vagueness, ambigu-
ity, and inconsistency, as well as pragmatic and lexical effects undesirable for social and
political reasons. If many of our concepts have these defects, it seems that any descrip-
tive conceptual analysis would just reveal these defects and will not offer us any way of
solving these issues. Philosophers will be left with the unenviable work of using defective
tools to tackle complex problems. To remedy this dystopian view of philosophical activity,
conceptual engineers propose to radically change (what is allegedly considered) the central
methodology of philosophy, replacing conceptual analysis with conceptual engineering. Af-
ter this methodological switch, from a descriptive to a inherently normative methodology,
philosophers will have the meta-conceptual tools for assessing any defectiveness of our tra-
ditional philosophical concepts and, when needed, to normatively choose better concepts.
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Not surprisingly, this proposed radical revolution in philosophical methodology caused
the quick appearance of many different takes on whether traditional analytic philosophers
should give up conceptual analysis and start engineering philosophical concepts, on what
exactly conceptual engineering entails for philosophical activity, and on how it can be
implemented in actual philosophical practice. A (proper) part of this metaphilosophical
debate is particularly relevant for our more general topic of conceptual change, because it
debates the nature and the possibility of any significant change in meanings, concepts, and
kinds. Let us turn to this discussion, then.

2.3 Defending Conceptual Change
We saw that conceptual engineers propose to embrace a normative methodology in philos-
ophy that focuses on the improvement of our concepts. But what exactly does it mean to
improve a concept? Intuitively, any reasonable way of spelling out how a concept can be
improved will depend on the particular theory of concepts assumed. As we saw in Section
1 of this chapter, many different kinds of entities have been identified by philosophers and
psychologists with concepts. To improve, say, a prototypically structured mental represen-
tation would arguably be a very different matter than to improve, say, an abstract external
definition. Moreover, the possibility of improving concepts is also dependent on ontological
and metaphysical conceptions of concept identity. For instance, if someone holds a very
abstract view of concepts, such as the one identifying concepts with entities outside space
and time, it seems very difficult for her view to allow concepts to be improved in any
meaningful sense. Similarly, if someone holds a very radical view of conceptual identity ac-
cording to which concepts are not the kinds of things that can undergo change, she cannot
meaningfully assert that concepts can be improved.

Given these complications, which kind of entities conceptual engineers want to engi-
neer? There is not much agreement on this important matter in the growing literature
on conceptual engineering. Supporters of conceptual engineering have supported theories
that take the engineering units to be psychological (Scharp, 2013; Machery, 2017), lin-
guistic (Richard, 2020; Nado, 2019), abstract (Sawyer, 2018, 2020), and worldly entities
(Cappelen, 2018). There is also no agreement on the structure and the identification of
these units. As a matter of fact, most of the proposals do not even clearly spell out which
theory of conceptual structure they assume.

A surprisingly popular characterization of conceptual engineering wants the objects of
engineering to be worldly creatures, i.e. entities independent from any subject. A paradig-
matic example of this kind of worldly conceptual engineering is Cappelen’s (Cappelen,
2018) so-called Austerity Framework. According to Cappelen, conceptual engineering is
and should be about changes in meaning, specifically about changes in the extensions of
words determined by changes in their intensions. Intensions and extensions are understood
by Cappelen in an externalist way, i.e. as strongly determined by the external world. So,
to engineer a given concept is for Cappelen to successfully change its extension by changing
its intension. This change is thus a worldly one, an actual change in the status of the ex-



28 2. Concepts and Conceptual Change

ternal reality. Metaphysically speaking, according to Cappelen, changing a given concept
is more similar to changing your clothes than to change your opinion on a given matter.
Cappelen’s picture of what conceptual engineering is and should be is surprising because,
as he acknowledges, it makes conceptual engineering a very difficult enterprise. Non-trivial
changes in the extensions of words are in fact difficult to obtain10. From an externalist
point of view, in fact, since the extension of a word is determined mostly by the world,
parochial changes in the use or in the stipulated intentional meaning of a given word from
a (group of) speaker(s) are (usually) not sufficient to determine a change in the extension
of that word. Moreover, externalist extension change is not only difficult, but also an
inherently non-transparent phenomenon. Cappelen stresses with his three “Corollaries of
Externalism: Inscrutability, Lack of Control, and Anti-luminosity” (Cappelen, 2018, pp.
72-78) that we often do not control, nor we could, when and how the reference of our lin-
guistic practices change. Reference change is in fact according to his strongly-externalist
view mostly determined by worldly factors outside of our knowledge and thus we are of-
ten not able to judge whether a change has actually occurred in the extension of a given
word. Thus, in Cappelen’s Austerity Framework and similar views, conceptual engineering
is a mostly uncontrollable and untraceable worldly phenomenon. Nevertheless, he believes
philosophers should engage with it, given the aforementioned inherently defectiveness of
many of our philosophical concepts.

The tension between the popularity of Cappelen’s Austerity Framework and its far from
optimistic depiction of the prospects of conceptual engineering caused the debate about
conceptual enginering to focus on the possibility of intentional meaning change. Enthusiasts
of conceptual engineering have stressed the possibility of indirect form of collective control
over reference change (Koch, 2021) or the necessity of a more psycho-linguistic approach to
meaning change (Scharp, 2020; Koch, 2020) in order to have a more favorable conception
of the prospective success of any wannabe conceptual engineer. Critics of conceptual
engineering have instead stressed that the lack of control and knowledge over meaning
change is far more problematic than what Cappelen himself acknowledges, thereby causing
any implementation of the conceptual engineering project to be bound to fail (cf. Deutsch
2020).

This discussion about the possibility of having a viable conception of conceptual en-
gineering within an externalist metasemantics raises also a similar question for the more
general phenomenon of conceptual change. If, in fact, changes in meanings are often be-
yond our control and difficult to even detect, what sense does it make to study conceptual
change? In other words, given the popularity of externalist frameworks in philosophy of
language and epistemology, conceptual change and especially the intentionally designed
kind that corresponds to conceptual engineering seem to be inherently confused and mys-
terious phenomena. The situation is even worse if one couples together with an externalist
(meta)semantics, a certain kind of essentialism about kinds, i.e. the view that there are

10As Cappelen himself notes, trivial changes in the extension determined by the appearance and disap-
pearance of entities (such as an animal dying, for instance) are (not and should) not considered forms of
conceptual engineering.
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some properties that members of a given kind possess in all possible worlds. A certain
kind of origin essentialism is in fact often coupled with externalist views since the seminal
works of Kripke (Kripke, 1972) and Putnam (Putnam, 1970, 1975). Then, if meanings
change beyond our control and our knowledge and many kinds possess essential properties
that cannot be changed and that often are also not transparent to us, in which sense can
concepts and meanings change in a philosophically interesting way?

In short, my reply to these worries is that this is a pseudo-problem, caused by some
unhealthy philosophical attitudes. In fact, a brief look at the history of science, philosophy,
or any other conceptual human activity shows that significant change and growth in our
conceptual tools occurs indeed. Concepts and meanings, in whatever understanding you
have of them, are not fixed and stable entities, but they change consistently with our
human agendas. Only an overly-abstract philosophical attitude could negate the existence
of such an ubiquitous phenomenon. More specifically, I will diagnose the root of this
mistaken negative attitude towards the existence conceptual change in two philosophical
theses commonly assumed in these discussions: meaning monism and metasemantic finality.
I will call meaning monism the thesis that an adequate explanation of the meaning of most
of our ordinary and scientific terms can be given relying on just one kind of component.
What I will call metasemantic finality is instead the thesis that the factors that ground the
meaning of linguistic entities are fixed and ascertainable in advance in their role, influence,
and nature. I will show how both these two theses, despite they are implicitly assumed in
contemporary metaphilosophical debates over conceptual engineering, are in stark contrast
with a vast philosophical literature related to scientific conceptual change. As such, I will
argue that an adequate account of conceptual change should embrace, instead of meaning
monism and metasemantic finality, two opposite theses that I will call meaning pluralism
and metasemantic plasticity.

In order to fully understand my defense of the existence of conceptual change, we first
have to take a look at Kripke’s and Putnam’s seminal works on externalist semantics and
at externalist solutions to the problem of conceptual change in philosophy of science.

2.3.1 Externalism, essentialism, and conceptual change
Kripke’s and Putnam’s works are often cited as clear evidence of why we should take a
externalist approach to meaning. Moreover, their frameworks compose the blueprint upon
which virtually all contemporary externalist (meta)semantics are based. Let us take a
closer look at these works, then.

The first thing to note about Kripke’s and Putnam’s approach to meaning change is
that, although they are both externalist and (to some extent) essentialist about meaning,
they both clearly stress the possibility of various kinds of conceptual and meaning change.

Kripke stresses how linguistic aspects of meaning such as identifying marks or opera-
tional criteria (i.e. the descriptive part of meaning according to him) change consistently
with our knowledge about a given kind, in a process directed (possibly) towards the reveal
of the kind-essence (Kripke, 1972, pp. 128-133). Moreover, in discussing Evan’s famous
example of ‘Madagascar’ reference shift, from referring to a part of the African continent to
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denoting the island we identify it with today, Kripke (Kripke, 1972, p. 163) explains that
his picture of meaning is consistent with the fact that radical shifts of speakers’ intentions
in a community determine a shift in the reference of the related term.

Putnam agrees with Kripke in his explanation of Evans’ ‘Madagascar’ example, leaving
open the possibility of radical reference shifts. He also, far more than Kripke, stresses
the significance of conceptual and intersubjective linguistic elements in the complex entity
that is the meaning of a given term (cf. Putnam 1970, 1973). In Putnam’s meaning
vector (Putnam, 1975, p. 269), in fact, the mental stereotype (understood as a kind of
prototype-like representation of significant features possessed by the members of a given
kind), together with the syntactic and semantic markers, are (amongst) the intra- and
inter-subjective components that shape how a community use and understand a given
term.

Putnam’s semantics allows us also to understand how significant meaning change can
co-exist with an externalist and essentialist semantics. Putnam in fact stresses that both
the externalist and the essentialist components of his semantics are a matter of degree. How
essential a given semantic marker is in the meaning of a given term is in fact, according
to Putnam, often not an all-or-nothing matter. The set of semantic markers of a given
term can be understood as (partially, perhaps) ordered in terms of how essential they are
to the meaning of the term. At one extreme of this order, one finds semantic markers
that are completely contingent and can be changed without any impact on a term’s overall
meaning, whereas at the other end lie the markers that are pivotal element in the essence
of a given term. In between these extremes, we can find a variety of semantic markers more
or less important for the overall meaning of the term. Similarly, the partial determination
of meaning by external factors can be understood as a gradual opposition between purely
subjective and purely objective factors that compose the two poles of Putnam’s meaning
vectors. In between the purely psychological and the purely worldly components of the
vectors, representing respectively the purely subjective and the purely objective meaning-
determining factors, we can find (depending on the specific account of meaning involved) a
variety of components that can be (partially) ordered from the most subjective and internal
to the most objective and external.

The semantic significance of conceptual change can thus be understood in Putnam’s
semantics as the gradual change in the components of the meaning vector, where the change
is more significant and more radical when it involves the change of more semantically
entrenched (i.e. essential) and more objective (i.e. external) components of the vector.
In such a picture, then, individual’s use and control of meaning varies dependently on
the structure of linguistic labor in a community and on the actual history of a given term.
Charitable cooperation between speakers’ intentions, uses, and interpretations allows inter-
community (and inter-theoretical) identities and successful meaning change (Putnam, 1973,
1995).

Moreover, it should be noted that both Kripke’s and Putnam’s work must be under-
stood as a reaction against the overly internalist and overly individualist semantics that
constituted the received view in philosophy at the time. Thus, they strongly stress the
external and communal character of some part of our language because that was the part
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of linguistic phenomena related to meaning that, according to them, it was neglected by
philosophers of their time. Putnam is very clear on this aim of his semantics:

“Grotesquely mistaken views of language which are and always have been
current reflect two specific and very central philosophical tendencies: the ten-
dency to treat cognition as a purely individual matter and the tendency to
ignore the world, insofar as it consists of more than the individual’s ‘obser-
vations’. (. . . ) Traditional philosophy of language, like much of traditional
philosophy, leaves out other people and the world; a better philosophy and a
better science of language must encompass both” (Putnam, 1975, p. 271).

Thus, we must not interpret Kripke and Putnam as claiming that external, communal,
and essential components of meaning are the only philosophically relevant components
of related linguistic phenomena. Kripke and Putnam showed instead that meaning is a
multi-faceted and complex phenomenon, where communal and external contributions are
not negligible by any philosophical or linguistic theory that aims at giving an adequate
description of language.

2.3.2 Meaning Pluralism in Philosophy of Science
This re-appraisal of Kripke’s and Putnam’s externalism as involving a plurality of meaning-
determining factors, and therefore open to the possibility of significant meaning and con-
ceptual change, is consistent with the development of externalist approaches to conceptual
change in science. Externalist semantics have in fact been studied and heavily discussed in
philosophy of science in connection with the aforementioned problem of conceptual change
in scientific theory change (cf. Section 2.1). As already stressed by Putnam (Putnam,
1973), meaning externalism can explain, better than internalist semantics, the referential
continuity of scientific terms. If internalist theories of meaning have to bridge the difference
between the theoretical languages of two scientific theories with a complex syntactic trans-
lation, the world-based determination of reference championed by externalists provides an
easy explanation of how different scientific theories can refer to the same entity. Even
radical changes in the scientific description of a given theoretical term, such as the one
common in scientific revolutions, do not pose a problem for the externalist. The sameness
of reference is, in fact, held fixed by the worldly causal relationship between the radically
different scientific descriptions and the natural phenomenon that they intend to describe
(cf. Hardin and Rosenberg 1982).

Meaning externalism makes it easy, then, for different scientific terms to refer to the
same natural phenomenon. Perhaps too easy, though. Externalist approaches to the
problem of conceptual change in science have in fact been accused of making referential
continuity trivial (cf. Laudan 1984b; Psillos 1999, 2018). If the burden of fixing the
reference is put solely on worldly factors, then almost all scientific theories proposed in
history of science successfully refer to the same natural phenomena referred to our best
scientific theories. No matter how bad or conceptually misguided the description given by
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a scientific theory of a certain phenomenon is, such a theory would correctly refer thanks
to the hidden properties of the related external phenomenon. Laudan (Laudan, 1981,
1984b) argued that such a purely externalist conception of how scientific terms refer to
the world gives us a completely unbelievable depiction of scientific activity. Even scientific
terms that have completely disappeared from the scientific image of the world without any
recognizable heir, such as the famous case of phlogiston, successfully referred according to
the purely externalist picture thanks to the causal relationship between oxygen and the
intended baptism of phlogiston theorists. So, phlogiston theorists, while they were trying
to prove that oxygen was not a fundamental element of reality, successfully referred to the
world thanks to the causal relationship between their theories and the very element they
were disproving the existence of. This depiction of scientific theories reference is, even for
defenders of scientific realism like Psillos (Psillos, 1999), utterly absurd, making referential
success an entirely trivial matter completely independent from actual scientific activity.

Note that this easiness of referential continuity in purely externalist semantics is the
same exact phenomenon behind the difficulty of conceptual engineering stressed by Cap-
pelen and its fellow externalist conceptual engineers. Intensionally changing a concept
extension is difficult because referential continuity is incredibly easy and vice versa. So,
the same historical arguments that Laudan and Psillos gave against overly externalist ac-
count of scientific term reference can be applied to Cappelen-like pictures of conceptual
engineering and conceptual change. These pictures make the history of science absurd,
locking the reference of failed scientific theory of the past to phenomena completely un-
known to (and even explicitly denied by) them and as such they should be abandoned.

Luckily, if philosophy of science provides strong arguments for the failure of extremely
externalist conception of meaning, it can also give us some possible solution to the prob-
lem of understanding conceptual change within an externalist (meta)semantics. A natural
solution to this problem is, consistently with our previous re-assessment of the original
pluralistic aim of Kripke’s and Putnam’s externalism, to hold a more inclusive view of
meaning and reference where a multiplicity of components determines how scientific term
refer to the world. As Psillos (Psillos, 1999) stressed, in fact, even strongly externalist ap-
proaches to scientific meaning have to take into considerations some kind of theory-laden
structural component in the process of fixing the reference of a natural kind term. If in
the case of proper names original baptism seems a transparent way of fixing reference, the
reference-fixing process for natural kind terms is often dependent on some kind of theoret-
ical framework, i.e. it happens inside a given theoretical picture of the world. Negating
this descriptive aspect of the reference-fixing process would lead to the trivial depiction of
referential success incompatible with the history of science that we have criticized before.
In order not to make referential success too easy, then, reference-fixing must include a
descriptive component. This is the main insight of the so-called causal-descriptive theories
of reference (Lewis, 1984; Kroon, 1985). Referential success is seen by these theories as
the combined product of external causation and theory-laden causal explanations. Psillos’
own version of such causal-descriptive theory of reference crucially involves the notion of
kind-constitutive properties (Enç, 1976) and it is particularly apt to show how the addi-
tion of a descriptive component allows externalists to have a non-trivial view of referential
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continuity in science.
Psillos’ (Psillos, 1999) theory of how scientific terms refer to the world is centered around

the notion of a core-causal description associate with a term, i.e. the set of properties
through which a theory explains the kind-constitutive properties by virtue of which the
referent of the term it is supposed to play a given causal role. A scientific term successfully
refers to a given entity when the kind-constitutive properties of the entity correspond to
the ones postulated by the core-causal description that a given theory associates with the
scientific term. In this way, in Psillos’ theory, the reference of a term is jointly determined
by an external causal element (i.e. the causal origin of the information that ultimately fixes
the reference) and by a descriptive element (i.e. the theory-laden core-causal description).
Consistently, referential continuity involves two conditions, the sameness of the causal role
played by the putative referents of the terms together with the identity of the core-causal
description associated with the terms. This required identity of core-causal descriptions
ensures that there is a substantial overlap between the properties through which two co-
referring theories explain the attributed causal role of a given term. In this amended
externalist semantics, then, referential continuity in science is not at all a trivial matter.
As Psillos shows, his theory allows scientific theories that share the central part of their
causal description of a given phenomenon to co-refer, while it forbids theories that give
radically opposite description of a given situation to refer to the same phenomenon. In this
way, causal-descriptive theories of reference can distinguish historical episodes of referential
continuity between subsequent theories, such as the case of luminous ether in 19th century
optics (Psillos, 1999, pp. 125-139, 282-287), and cases of reference change, such as the
aforementioned case of the chemical revolution.

The example of Psillos’ causal-descriptive theory of reference for scientific term teaches
us then the same moral than our previous re-assessment of Kripke’s and Putnam’s seminal
takes on externalism: meaning monism ought to be abandoned in favor of meaning plural-
ism, i.e. the recognition that a plurality of meaning-component is needed in order to have
an adequate metasemantic theory. In other words, a healthy attitude in (meta)semantics
must recognize a multiplicity of meaning-determining components in order to achieve an
adequate account of referential success, stability, and change. This is the first lesson that
traditional debates over conceptual change in philosophy of language and philosophy of
science can teach to metaphilosophical contemporary debates over conceptual change and
conceptual engineering.

2.3.3 Metasemantic plasticity and the conceptual change locks
After we saw how the philosophy of science literature related to scientific conceptual change
prompts us to abandon meaning monism in favor of meaning pluralism, it is now time to see
how the same literature gives convincing evidence for abandoning another metasemantic
assumption common in metaphilosophical debates over conceptual engineering and con-
ceptual change. At the beginning of this section, I claimed that contemporary discussions
over conceptual engineering are relying on a common yet completely unjustified assump-
tion that I dubbed metasemantic finality, i.e. the statement that the factors that ground
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the meanings of linguistic entities are monolithically fixed and ascertainable in advance in
their role, influence, and nature.

According to metasemantic finality, then, metasemantic philosophical theories can as-
certain which kind of factors (e.g. internal or external, cognitive or noncognitive, individ-
ual or communal, etc.) ground the meaning of a given (type of) element of our language.
Furthemore, these kind of theories postulate a given metasemantic kind of meaning and
reference for entire classes of elements of our language, such as proper names or natural
kinds, leaving up no space for individual differences in how specific terms of our language
are significant and refer to the world. This is the kind of overgeneralizing tendencies in phi-
losophy that Putnam’s semantical work reacted to (cf. Putnam 1970). More importantly,
this fixed conception of metasemantical facts is not argued for and arguably wrong.

The fixity and uniqueness of metasemantical facts stands in fact in stark contrast with
the long-recognized plasticity and context-dependency that many scientific terms exhibit
in how they are used in our best scientific theories (cf. Cartwright 1983; Batterman 2001;
Wilson 2006). Any reasonable account of scientific terms meaning and reference has to
take into account the complex bundle of semantic and pragmatic factors that allow our
best scientific theories to refer (perhaps directly or perhaps indirectly) to the world (Kuhn,
1976, 1990; Chang, 2012). A given term can have a very different meaning in the various
contexts in which it is used, complex semantic architectures cause terms to refer to different
things in different applications of the same theory, a certain kind of localized holism is
inevitably observed in many different parts of science (Wilson, 1982, 1994, 2017). Long
story short, synchronic and diachronic meaning change is omnipresent in scientific practice.
Contemporary semantics for scientific theories and terms semantic structure have no place
for the metasemantic finality that it is assumed in aforementioned debate over externalism
and conceptual engineering.

Instead of metasemantic finality, we must recognize a metasemantic plasticity in con-
ceptual affairs, i.e. we have to acknowledge that the factors grounding the meaning of our
scientific terms are often not general in nature, they are mostly bound to change according
to the practical need of science, and they are only gradually ascertainable via a case-by-
case painstaking analysis of the history of how a certain term was (and is) used in all the
related scientific contexts.

In order to understand better the implications of the metasemantic plasticity in con-
ceptual affairs that I am proposing, I will use an engineering metaphor inspired by Simon’s
seminal discussion of complexity (Simon, 1981). Assume that the meaning of a given term
is very generally understood, like Putnam did, as a kind of vector, the components of which
are all the factors that contribute to the meaning such as the related concepts, beliefs, syn-
tactic markers, semantic markers, speaker’s meanings, community meanings, indexicals,
contexts, stereotypes, extensions. Dependent on the quantity of meaning components that
one identifies, the meaning (understood, again, in the most general sense of the term) of
a term could be equated with a n-tuple m = ⟨c1, . . . , cn⟩ where c1, . . . , cn are the different
meaning components. Now, replace every component of the vector with the set of all pos-
sible entities that might figure as that component in the meaning vector of that term (in
contemporary metaphysical terms, the domain of the variance thesis for that component).
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So that, instead of each meaning component ci, we now have a (possibly infinite) set of
possible components Ci = {c1, . . . , ci, . . .}. Call the vector mC = ⟨C1, . . . , Cn⟩ so construed
the variance meaning vector of a given term. This is the vector having as components the
sets of all the possible components of the meaning vector of the given term.

Thus, all the possible changes in the meaning of a given term are represented by all
the meaning vectors that can be construed by taking a member from each set of possible
components Ci. Some of these meanings would be actually instantiated, some would be only
possibilities, others again would arguably be very likely to be never instantiated because
of their impracticality (e.g. incompatible intensions and extensions). Now, imagine to
print all the members of each set of possible components Ci on the wheel of a (quite big!)
lock that has n-wheels. Call this imaginary lock the conceptual change lock. Imagine that
this lock is programmed to open only if (one of) a certain (set of) combination(s), i.e. a
certain possible meaning vector for the term under focus, is reached. Think about this
sets of combinations as the favored meanings (again, in the general sense of the term)
that are optimal given a certain normative account of conceptual change for that term.
The nature of this normative account is not at issue here, pick your favorite one from the
existing literature on conceptual change and conceptual engineering, be it a metaphysical,
an epistemic, a pragmatic, or a social-political one. Of course, these combinations would
be constrained by a variety of semantic and meta-semantic, internal and external, factors.
Again, the nature of these combinations and how are they constrained is not at issue
here. What is important is that conceptual change and conceptual engineering can then
be thought as the activity of resolving this conceptual change. More specifically, the
general phenomenon of conceptual change corresponds to any resolution of this lock, while
conceptual engineering corresponds to specific intentionally designed resolutions.

Now, lock-puzzles can be of different kinds, corresponding to different levels of complex-
ity. Simon (Simon, 1981) distinguishes for instance between complex locks, i.e. locks where
each cog solution is completely independent from the ones of the other cogs, and simple
locks, i.e. locks where the solution of a given cog is constrained by the ones of other cogs.
Wimsatt (Wimsatt, 1986) proposed a mixed lock that he call the developmental lock, i.e.
a lock where solution are constrained only in one direction, as the lock more adequate to
describe the development of science. In general, different types of lock depend on whether
and how the solution to each wheel is dependent on the correct solution of other wheels.

Which kind of lock is then instantiated by the conceptual change lock? Strong exter-
nalism might be thought as assuming that the conceptual change lock is a lock where the
wheel corresponding to the extension determines all the other right combinations, while
strong internalists might assume that the wheels corresponding to the internal components
of meaning (such as the concept or a speaker’s meaning) determine all the others. In gen-
eral, metasemantic positions over the possibility of conceptual engineering and conceptual
change can be translated as claims over which type of lock the conceptual change lock
instantiates. The conceptual change lock helps us model also claims of degrees of con-
trol and knowledge in conceptual change and engineering. The degree of control over a
given meaning component might be represented by the degree of manual control in turning
the relate wheel, with the possibility of perfectly tuning a given wheel representing the
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complete control on that component, while the complete lack of any intentional rotation
represents an extreme lack of control over the related meaning component. Intermediate
degrees of control over a meaning component are then represented by imperfect control in
the intentional tuning of the related wheel. The degree of knowledge about a given meaning
component can then be represented by the amount of printed possible components in the
related wheel. Total (modal) knowledge over a component can be represented by a wheel
where all the possible components are printed, while complete absence of such knowledge
might be modeled by a blank wheel that tells us nothing about which component are we
choosing. Intermediate cases of incomplete knowledge can spelled out as wheels where only
a proper subset of the possible meaning components are printed.

So, which kind of lock is the conceptual change lock? How do its wheels work? Which
wheel depends on which wheel? Which amount of control on its wheel do we wave?
What is the amount of printed meaning components we can read? My answer to these
questions is that there is no reason to assume a single answer for all the possible conceptual
change locks. Different kinds of concepts can instantiate different kinds of locks. Take
formal mathematical concepts, for instance. Such concepts are likely to instantiate very
internalist and controllable kind of locks, since worldly factors have virtually no role in
determining their meaning. Natural kind concepts, instead, are likely to be instantiated
by more externalist and not fully controllable locks, since their meanings are dependent
also on how the world is actually structured. Moreover, even amongst concepts of the same
kind, locks for different terms would correspond to different kinds of locks, differing in the
complexity type, the functioning, the degree of control and knowledge that we can have.
My approach to the problem of conceptual change locks is that in order to know how a
given conceptual change lock works there is no substitute to actually trying to solve it.
Only by fiddling with it we can learn its exact nature. In plain words, there is no substitute
to actually study the history and the uses of a given term. No two terms are absolutely
the same. Even linguistic entities with similar properties and uses may hide significant
differences in the nature and the working of the factors that compose their meanings. This
is why the aforementioned metasemantic finality commonly assumed in recent debates over
conceptual engineering is a mistaken way of looking at the problem of conceptual change.
Only by studying a given conceptual history we can understand which kind of changes
a concept supported in the past and which kind of metasemantical facts grounded and
ground its meaning. Only after this necessary, painful and time-consuming, step, we can
make an informed judgment on whether and how it is possible to intentionally change
it. This is why any adequate theory of how concepts change must embrace metasemantic
plasticity.

Consistently with my approach to conceptual change based on meaning pluralism and
metasemantic plasticity, the novel methodology that I sketched in the Introduction and
that I will use in this work will allow lots of flexibility and context-dependency in analyzing
conceptual change. In the many models and historical episodes of conceptual change that I
will analyze, I will use a kind of charitable interpretation of what scientists and philosophers
involved in the episode claim to be happening in all the aspects of the meaning of the term
under focus. Thus, when scientists or philosophers spoke of conceptual change or of two
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different concepts, I will try to give an analysis as consistent as possible with the linguistic
practice of the people involved. This may cause, for readers supporting metasemantic
finality in conceptual affairs, a dose of semantic and metasemantic promiscuity. I pledge
guilty as charged, with the confidence that, on top of the aforementioned inconsistency of
metasemantic finality with our best accounts of scientific language use, the sum of the case
studies contained in this work will show that this promiscuity is an inevitable assumption
of any study of conceptual change in science and in philosophy that wants to be adequate
to the history of science and philosophy. Moreover, as I will show in the Conclusions
chapter, the collective analysis of the many different models of conceptual change and
related case studies carried out in this work will demonstrate how, despite this semantic
and metasemantic promiscuity, a general conception of conceptual change will emerge.

2.4 The Toolbox Framework: A Meta-Framework for
Evaluating and Comparing Models of Conceptual
Change

In this section, I will present a normative meta-framework for evaluating and comparing
models of conceptual change along nine dimensions. These dimensions are taken from the
components and the differences that we saw in this chapter as determining different opin-
ions in the philosophical and psychological literature about what concepts and conceptual
change are and why and how they are important to science and philosophy. I will call
this meta-framework the Toolbox framework and I will use it for assessing, judging, and
comparing all the four kinds of model of conceptual change that we will see in this thesis.
The Toolbox framework is made of nine evaluative dimensions: units of selection, concept
ontology, concept structure, kinds and degrees of conceptual change, degree of normativity,
effectiveness of normative judgment, assumptions and consequences for conceptual change
in science, assumptions and consequence for conceptual change in philosophy, metaphilo-
sophical assumptions and implications. Let us survey these dimensions one by one.

Units of selection Along this dimension, models of conceptual change are judged, as-
sessed, and compared by the level of abstraction at which they identify conceptual entities
as meaningful units of change. Options can range between very fine-grained level of ab-
straction, such as the one where single concepts or even single conceptual parts are taken as
units, to very coarse-grained levels where models work semi-holistically on macro-units of
change like clusters of interrelated concepts or entire theories. Amongst these two extremes,
several abstraction levels present themselves, differing in whether they use linguistic and
conceptual types or tokens as their units and in how they identify the meaningful struc-
tures of change. As we will see, some models can also be thought as having implementable
variants that can work at different levels of abstraction.
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Concept ontology This dimension focuses on the compatibility of a given model of
conceptual change with the different philosophical positions on the ontology of concepts. As
we saw in Section 1.1., the four major bundles of ontological positions are the psychological,
the abstract view, the linguistic, and the worldly view. As we will see, some models
of conceptual change are more compatible with a psychological or an linguistic view of
concepts, while others are instead more easy to be implemented together with an abstract
or a worldly view of conceptual entities. Other models are instead quite neutral on this
dimension, not imposing (almost) any constraint on which ontological view of concepts
they are coupled with. I will spell out for each model how a suitable implementation with
a given ontological view of concept would look like.

Concept structure This dimension focuses instead on how a given model of conceptual
change assumes the structure of concepts to be constituted. As we saw in Section 1.2,
there is a vast range of philosophical and psychological theories of conceptual structure.
Analogously to the conceptual ontology dimension, I will use this dimension to assess
the compatibility of a given model with the bundle of theories of concepts I presented in
the first section of this chapter. We will see that some models assume a specific theory of
conceptual structure as a necessary background, while others are compatible with a variety
of positions on what exactly the structure of concepts consists of.

Kinds and Degrees of conceptual change This dimension focuses on the kinds and
degrees of conceptual change that a given model of conceptual change identifies. We will
see that some models postulate a fine-grained hierarchy of kinds (or/and degrees) of con-
ceptual change, ordering these kinds of change by the severity of the change involved,
while other models treat very different episodes of conceptual change as examples of the
same phenomenon. Other models specifically target instead only certain types of concep-
tual change, due to certain background assumptions on their epistemological and semantic
significance.

Degree of normativity This dimension tracks the extent to which a given model of
conceptual change is more or less normative in judging episodes of conceptual change. Ex-
tremes can range between models that do not give us any way of normatively assessing
conceptual histories, confining themselves to a descriptive approach, and models that in-
stead come equipped with very normative selection mechanisms thanks to which we can
judge a given historical change to be more or less rational. We will see that many models
strike a middle ground between these two extremes, leaving a small place for a kind of
normativity heavily dependent on values and goals.

Effectiveness of normative judgment This dimension focuses on how effective the
normative judgment of a model of conceptual change is (in the case of models having such
a normative component). Different models give normative judgments that vary a lot in
their effectiveness, from pragmatic heuristic procedures for preferring a given concept to its
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competitors to truly algorithmic procedures of how a given episodes of conceptual change
should (have) go(ne). We will see that many models assign different normative kinds of
judgment to the different kinds of conceptual change they identify.

Assumptions/consequences for conceptual change in science In this dimension, I
will assess the assumptions and the consequences of a given model of conceptual change in
relation to the problems that scientific conceptual change poses in philosophy of science. As
we have seen in Section 2.1, conceptual change in science poses several issues for scientific
progress, objectivity, and rationality. Different models of conceptual change have then
different implications for these issues, being more or less compatible with different solutions.

Assumptions/consequences for conceptual change in philosophy In this dimen-
sion, I will assess the assumptions and the consequences of a given model of conceptual
change in relation to the problems that philosophical conceptual change poses in philos-
ophy. As we have seen in Section 2.2, different philosophical methodologies put different
degrees of significance in the phenomenon of conceptual change in philosophy. Different
models of conceptual change have then different implications for these issues, describing
conceptual change in philosophy as a more or less frequent and philosophically relevant
phenomenon and consequently being more or less compatible with different philosophical
methodologies.

Metaphilosophical assumptions and implications In this dimension I will focus on
the metaphilosophical background that a given model of conceptual change has. More
specifically, I will analyze which conception of philosophical activity lies behind a given
model and whether different metaphilosophical positions are compatible with it. I will also
discuss whether and how a given model of conceptual change could be an adequate basis
for the implementation of a conceptual engineering program.
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Chapter 3

Carnapian Explication

This chapter will focus on Carnapian explication, i.e. the pragmatic model of conceptual
change central to Carnap’s mature philosophical thought. After receiving a limited amount
of attention for years, the method of explication has been re-appraised, together with
the originality of Carnap’s later writings, by a more recent and more informed historical
scholarship (e.g. Coffa 1991; Friedman 1999, 2000; Carsten and Awodey 2004; Friedman
and Creath 2007; Carus 2007; Wagner 2012). In recent years, the procedure of explication
has also been discussed by philosophers outside the Carnapian tradition, thanks to the
aforementioned (cf. Chapter 2, Section 2.2) re-appreciation of normative methodologies in
analytic philosophy in the debates about conceptual analysis and conceptual engineering
in philosophy.

In this chapter, I will analyze Carnapian explication both from a historical and from
an abstract epistemological point of view. For what concerns the history of Carnapian
explication, I will trace back the development of the method of explication in Carnap’s
philosophical methodology, from the early focus on rational reconstruction to the later
explicit use of explication. More specifically, I will show how the ideal of explication
fully embodies five central ideals of Carnap’s metaphilosophy, the influence of which can
be traced throughout Carnap’s whole intellectual life. From an abstract epistemological
perspective, instead, I will present the features of Carnapian explication as a method of
conceptual change, focusing on the metaphilosophical debates about its features and its
alleged limitations. I will then propose two, complementary, improvements of Carnapian
explication that aim at broadening its scope and making it a more exact and useful model of
conceptual change. I will first propose a more fine-grained, three step version of Carnapian
explication, suitable to analyze more complex episodes of conceptual change from the
history of science. My second modification of Carnapian explication will consist instead
in an explication of the concept of explication itself. Specifically, I will show how the
procedure of explication can be formalized within the theory of conceptual spaces.

In Section 1, I will present the historical roots of Carnapian explication, focusing on
the development of Carnap’s philosophical methodology and showing how this development
can be understood from the perspective of five central ideals in Carnap’s metaphilosophy.
In Section 2, I will present the procedure of Carnapian explication from an abstract episte-
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mological perspective, discussing its steps, its scope, and its aims. I will specifically focus
on recent discussions about the desiderata of Carnapian explication and on general cri-
tiques of the usefulness of explication as a method of conceptual change and engineering.
In Section 3, I will present a modification of Carnapian explication that adds a mid-level
step to the procedure. With the help of a very detailed case study centered around the
Church-Turing Thesis and the different axiomatizations of the intuitive concept of calcu-
lability, I will show how my three-step version of explication is able to adequately treat
complex cases of explications for which the canonical two-step version of explication is
not fine-grained enough. In Section 4, I will instead present a formal model of the whole
procedure of Carnapian explication built inside the theory of conceptual spaces. With
the help of multiple examples and two case studies, I will show how my formal explica-
tion of ‘explication’ is able to make precise the procedure of explication and (many of) its
desiderata, defending it from critiques about the alleged narrowness and difficulty of its
application. Finally, in Section 5, I will assess the features of Carnapian explication as a
general method of conceptual change in science and in philosophy, analyzing it along the
nine dimension of my Toolbox framework.

3.1 The Development of Carnap’s Methodology: from
Rational Reconstruction to Explication

In this section, I will analyze the history of Carnap’s explication within the general de-
velopment of Carnap’s (meta)philosophical views. In recent years, the history of Carnap’s
philosophical development and the originality of his mature thought has been narrated
many times (e.g. Carus 2007; Leitgeb and Carus 2020). The aim of this section will not be
a full analysis of Carnap’s intellectual development, but a more specific focus on how the
concept of explication has evolved from Carnap’s early method of rational reconstruction
together with certain specific changes in Carnap’s overall philosophy.

I will analyze this evolution in a step-wise manner, focusing on three different moments
in Carnap’s metaphilosophical development, broadly corresponding to three time periods
in which Carnap’s intellectual biography can be divided. I will first focus on Carnap’s
method of rational reconstruction, biographically corresponding to Carnap’s early works
and paradigmatically exemplified by the Aufbau (Carnap, 1928a). The second metaphilo-
sophical moment in Carnap’s development that I will treat is the transition phase between
rational reconstruction and explication, broadly corresponding to the Vienna and Prague
years of Carnap’s life paradigmatically exemplified by his views as expressed in the Log-
ical Syntax (Carnap, 1934). Finally, I will describe, as the third metaphilosophical mo-
ment, Carnap’s explicit presentation and use of explication, biographically corresponding
to Carnap’s time in the United States and intellectually exemplified by his later works on
probability (Carnap, 1950b).

We will see how the description of these three different moments in Carnap’s metaphilo-
sophical development will show how Carnap’s explication is the byproduct of the more



3.1 From Rational Reconstruction to Explication 43

general evolution of Carnap’s philosophy and metaphilosophy. It will also be clear how,
in the passage from rational reconstruction to explication, the central characteristics of
Carnap’s metaphilosophy stay fixed, while their philosophical and technical implementa-
tion changed. So that we can trace in Carnap’s explication the output of how Carnap’s
ideal of rational reconstruction and its related metaphilosophical stance evolved due to the
environmental pressure of the technical and philosophical problems they faced.

3.1.1 A primer in Carnap’s metaphilosophy

Carnap’s approach to philosophy, since his early works, exhibits a metaphilosophical stance
radically different from the ones common in philosophy at the time (or even nowadays). I
will describe his distinctive metaphilosophy focusing on five central ideals that guided his
approach to philosophy: constructivism, positivism, logicism, structuralism, and pluralism.

Constructivism In direct contrast to most of philosophers, Carnap conceived philosoph-
ical activity mainly as a constructive effort. Philosophical problems were never for Carnap
meant to be merely discussed or analyzed, but they were instead meant to be solved. More-
over, this solution was not supposed to come only through philosophical reflections, but it
crucially involved the engineering-like activity of constructing tools for solving the problem
at issue (Creath, 1991; Richardson, 2013). This constructivist effort can be paradigmat-
ically seen in Carnap’s incessant construction of formal linguistic frameworks devoted to
the resolution of philosophical and scientific problems, from the constitution systems in
the Aufbau (Carnap, 1928a) to the systems of inductive logic that he developed up until
his last years (Carnap, 1950b, 1952; Carnap and Jeffrey, 1971).

Positivism A lasting influence on Carnap’s metaphilosophy was Neo-Kantianism, espe-
cially in the form of the scientifically-minded type championed by the so-called Marburg
school (cf. Friedman 2000; Carus 2007). The list of Neo-Kantian aspects of Carnap’s
philosophy is long, but a central one is Carnap’s central preoccupation with “the fact of
science”. This preoccupation is closely connected with Carnap’s everlasting positivism.
Throughout his developing views, in fact, Carnap always held the empirical sciences as
the benchmark of knowledge, from which philosophical reflection must always start and
ultimately defer, and empirical confirmation as the ultimate tribunal of any philosophical
or scientific theory. Carnap’s positivism is also exemplified by his lasting quest for over-
coming metaphysics (at least in its traditional pseudo-scientific form) (Friedman, 2012) or
the voluntarism that permeates much of Carnap’s philosophical attitude (Jeffrey, 1994).
Carnap’s positivism can be spotted throughout his philosophical activity, from the early
quest for revealing metaphysical issues as pseudo-problems (Carnap, 1928b) to the later
program of translating quasi-syntactical sentences into the formal mode of speech (Carnap,
1934).
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Logicism Together with Neo-Kantianism, the other main component of Carnap’s philo-
sophical heritage, as it is customarily presented, is constituted by Frege’s (Frege, 1884)
and Russell’s (Russell, 1914; Whitehead and Russell, 1910-1913) logically-minded philoso-
phies and the related technical advances in mathematical logic. The influence of Frege and
Russell is exemplified by the central role that logical methods play in Carnap’s philosophy
and the exceptional status of logic in Carnap’s general epistemological views. Logical tools
are the main technical tools through which Carnap pursues his aforementioned activity of
constructing formal linguistic frameworks. Moreover, analyzing language through the lens
of formal logics is for Carnap a central epistemological task in any tentative resolution of
philosophical and scientific problems. We can then speak of a broadly logicist attitude
in Carnap’s philosophy for describing the centrality of logic and logical tools in Carnap’s
overall philosophical projects1. Examples of this kind of logicism can be found in almost
every major work of Carnap, from the pivotal role of logical abstraction in the Aufbau
(Carnap, 1928a) to the technical efforts towards developing a satisfying intensional seman-
tics or towards clarifying the syntactic and semantic structure of logical languages in his
later works (e.g. Carnap 1934, 1947).

Structuralism Another ideal of Carnap’s metaphilosophy closely connected to Carnap’s
logicism is his structuralism. Carnap, in fact, understood his logical reconstruction of the-
ories as making evident their structural content. Carnap’s focus on the structural content
of theories pervades his works in epistemology, philosophy of mathematics, and philoso-
phy of science. In epistemology, Carnap reconstructed cognitive phenomena via logically
abstracting their structural relations, understanding this logical structure as the cogni-
tive component essential for epistemological purposes (Carnap, 1928a,b). In philosophy of
mathematics, Carnap gave several logical analyses of the structural content of mathemat-
ical theories, trying to spell out this structural content via axiomatic definitions, logical
constructions, and definitions by abstraction (Schiemer, 2020b). In philosophy of science,
Carnap repeatedly tried to devise logical frameworks in which the logical structure of
scientific theories could be analyzed, championing a double view of the language of scien-
tific theory that foresaw some central aspects of structuralist approaches in philosophy of
science (Carnap, 1956, 1961, 1966).

Pluralism Finally, the fifth ideal of Carnap’s philosophy can be identified in his plural-
ism on philosophical and scientific matters. In his career, Carnap always tried to mediate
between different philosophical and scientific positions, promoting a pluralist view of philos-
ophy and science in which multiple approaches to a problem could and should be pursued.

1Note that Carnap’s logicist ideal takes also the form of a logicist position in philosophy of mathematics
in some of his early work in philosophy of mathematics (cf. Goldfarb 1996). As we will see, however,
Carnap after the tolerance turn will assume a neutral position towards the foundational debate and as
such it cannot be considered anymore a logicist in this strict sense. Therefore, the broad logicism of
Carnap’s metaphilosophy stressed here should not be equated with a logicist position in philosophy of
mathematics.
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He also often tried to achieve a neutralist perspective on a given issue, showing the com-
mon assumptions and problems of rival views. This pluralist approach is evident in many
specific Carnapian theses, from his neutralist stance on the ultimate basis of our knowledge
in the Aufbau (Carnap, 1928a), to the famous proclamation of the principle of tolerance in
logic (Carnap, 1934) and his related meta-ontological pluralist attitude (Carnap, 1950a).

As we will see, these five ideals remained a constant guide for Carnap in his philosophical
development and they underlie all the different steps in philosophical methodology that I
am going to analyze in the rest of the section. However, as it will be clear in what follows,
how exactly the philosophical implications of these five ideals are spelled out varies in the
three different methodologies that we are going to see, consistently with the technical and
philosophical problems at issue and with the overall evolution of Carnap’s philosophical
views.

3.1.2 The method of rational reconstruction
The first step in my analysis of Carnap’s metaphilosophical development concerns the
method of rational reconstruction. This is how Carnap himself explicitly conceptualized
his approach to philosophical problems in his early works.

As stressed by many scholars (Friedman, 2000; Carus, 2007; Beaney, 2013), the philo-
sophical background of rational reconstruction can be traced back to Carnap’s double
heritage of Neo-Kantianism and Logicism. From the Neo-Kantian distinction between the
genesis and the validity of knowledge, Carnap’s method of rational reconstruction takes the
“as-if” approach to understanding the rationality of a given phenomenon. In rationally re-
constructing a certain process, in fact, Carnap does not aim at a faithful actual description
or history of it, but he wants instead to reconstruct its rational structure, understood as a
fictional construction able to justify how the actual process could have taken place. From
Logicism, instead, Carnap’s rational reconstruction takes the formal tools through which
the reconstruction is performed, such as the fundamental technique of logical abstraction.
It is only through logical analysis, for the early Carnap, that the structural rational content
of a given phenomenon can be adequately reconstructed.

The methodology of rational reconstruction consists then, for the early Carnap, in
the fictional reconstruction of a given phenomenon in a logical language, aimed at mak-
ing evident the rationality of its structural components. In Carnap’s own words, rational
reconstruction is “a schematized description of an imaginary procedure, consisting of ratio-
nally prescribed steps, which could lead to essentially the same results as the actual (. . . )
process” (Carnap, 1963a, p. 15).

The paradigmatic example of rational reconstruction is the reconstruction of our con-
struction of reality that Carnap attempted in the Aufbau (Carnap, 1928a)2. More specifi-
cally, Carnap wanted to show how all our concepts can be reduced by logical operations to

2As it is well known, Carnap’s attempted reconstruction project failed. However, in more recent years,
scholars have showed how weaker versions of Carnap’s reduction problem can be carried out (Mormann,
1994; Leitgeb, 2007, 2011)



46 3. Carnapian Explication

a given basis of knowledge, thus logically justifying the possibility of knowledge itself. This
rational reconstruction is framed in terms of what Carnap calls ‘constitution systems’, i.e.
logical conceptual frameworks where concepts are hierarchically ordered in terms of their
logical complexity, from the basic concepts to all the other concepts that can be logically
constructed from them.

The rational reconstruction of cognitive phenomena via constitution systems attempted
by Carnap in the Aufbau shows how the methodology of rational reconstruction embodies
the aforementioned five ideals of Carnap’s metaphilosophy: constructivism, positivism,
logicism, structuralism, and pluralism.

Carnap’s constructivist ideal is exemplified by Carnap’s constitution systems, one of
the first forms in which Carnap’s linguistic engineering manifests itself. Moreover, Car-
nap’s engineering attitude towards philosophical problems can be seen by the fact that the
actual construction of the phenomenalist constitutional system, carried out in detail, occu-
pies a significant part of the Aufbau pages (Carnap, 1928a, Part IV). Carnap does not just
offer a programmatic sketch of a constitution system, he actually constructs one, aiming
to show how the alleged construction of reality envisaged by Russell (Russell, 1914) can
be carried out. Carnap’s positivist ideal is exemplified by Carnap’s general philosophical
motivations in the Aufbau (Carnap, 1928a, pp. 5-11), namely the desire of establishing a
scientific epistemology and the related strive to purge philosophical discussion from any
metaphysics and ambiguity in methods and language (which, according to the early Carnap
were two inherently connected phenomena, cf. Carnap 1928b). The rational reconstruc-
tion of cognitive phenomena attempted in the Aufbau is then Carnap’s way of replacing
traditional epistemological debates with a scientifically minded epistemology. Carnap’s
logicism can be seen in the centrality of logical methods in Carnap’s (re)construction
project. Constitution systems are, in fact, nothing but logical hierarchies of types strongly
inspired by Whitehead’s and Russell’s works in mathematical logic (Whitehead and Rus-
sell, 1910-1913). Moreover, the construction of complex concepts from basic ones within
the phenomenalist constitution system carried out in the Aufbau crucially uses Frege’s and
Russell’s methodology of logical abstraction and explicit definitions in logically reducing
objects of a given type to objects of a simpler one. The structuralist ideal is also central
to the Aufbau project. Carnap’s reconstruction of cognitive phenomena is in fact explicitly
focused on reconstructing the structural content of knowledge processes, understood by
Carnap as the essential epistemological component of our cognition that logical tools can
reveal. Finally, in Carnap’s neutralist stance towards traditional debates over the ultimate
basis of knowledge and in the related plurality of possible constitution systems we can see
the exemplification of Carnap’s pluralism. Even though, in the Aufbau, Carnap actually
constructs only a constitution system with a phenomenalist basis, he explicitly mentions
the possibility and viability of constructing constitution systems with a physicalist and
even a cultural basis.

We have then seen how the methodology of rational reconstruction, as exemplified in
the Aufbau, embodies the five aforementioned ideals of Carnap’s metaphilosophy. Rational
reconstruction provides, for the early Carnap, a way of replacing actual phenomena with
their reconstructed logical structure, allowing a resolution of traditional philosophical prob-
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lems that can be seen, from the perspective of rational reconstruction, as stemming from
the ambiguity and confusion of the traditional language and methodology of philosophy.

3.1.3 From rational reconstruction to explication
My second step in the analysis of Carnap’s metaphilosophical development will be devoted
to a transition phase in Carnap’s methodology between the early focus on rational recon-
struction and the mature explicit embrace of explication. Biographically, this transition
phase broadly correspond to the Vienna and Prague years of Carnap (roughly from 1926
to 1934) and to the heyday of the Vienna Circle and Carnap’s involvement in it.

The history of Carnap’s intellectual development in the Vienna years (and the related
rise of the Vienna Circle movement) has been narrated many times in philosophical and
historical literature (cf. Carus 2007; Stadler 2015) and I will not recount it here. My
narrower focus will be instead on Carnap’s evolving philosophical methodology in the
Vienna years and especially on how some technical problems and philosophical tension
prompted a gradual change in Carnap’s method of rational reconstruction, the output
of which was his later procedure of explication. As a paradigmatic example of Carnap’s
evolving methodology, I will take Carnap’s efforts in philosophy of mathematics contained
in the Logical Syntax (Carnap, 1934).

The main philosophical aim of the Logical Syntax is the construction of a canonical
meta-language for science, where logical analysis of a given scientific theory or phenomenon
can be carried out. More specifically, Carnap wanted to show how such a logical meta-
language for science could be constructed by purely syntactical means. The main technical
part of the book is devoted to the construction of two such formal languages, Language I
and Language II, devoted to the reconstruction of mathematical theories and, according
to Carnap, broadly corresponding to (respectively) intuitionistic and classical mathemati-
cians stances on the foundations of mathematics. The history and the actual aims and
scope of Carnap’s Logical Syntax are quite complex and have been at the center of much
historical and philosophical debates (e.g. Friedman 1999; Awodey and Carus 2003, 2007;
Wagner 2009; Creath 2012). For our present aim, i.e. the appreciation of Carnap’s evolv-
ing philosophical methodology, there are two crucial metaphilosophical ideas in the Logical
Syntax : the principle of tolerance and the distinction between the material and the formal
mode of speech.

The principle of tolerance, which has been the center of a lot of philosophical discussion
(e.g. Awodey and Carus 2009; Creath 2009; Yap 2010; Steinberger 2016), states a(n almost)
complete pluralism in matters of formal language construction. This pluralist position was
in total contrast with the (at the time) heated disputes on which features of the language
of science should or should not be admitted, such as for instance the discussion on the
viability of non-constructive methods in mathematics (Mancosu, 1997) or the so-called
protocol-sentence debate within the Vienna Circle (Uebel, 2007). Carnap’s revolutionary
solution to these disputes is to transform intransigent positions over the correct language
of science into different linguistic proposals that might be useful for different purposes. In a
slogan, according to Carnap, in philosophy and science we ought to pass from prohibitions
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to conventions:

“Principle of Tolerance: It is not our business to set up prohibitions, but
to arrive at conventions. (. . . ) In logic, there are no morals. Everyone is at
liberty to build up his own logic, i.e., his own form of language, as he wishes.
All that is required of him is that, if he wishes to discuss it, he must state his
methods clearly, and give syntactical rules instead of philosophical arguments”
(Carnap, 1934, pp. 51-52).

The other main metaphilosophical idea that Carnap presented in the Logical Syntax is
the distinction between the material and the formal mode of speech (Carnap, 1934, p. 239).
In a nutshell, the material mode of speech involves reference to extra-linguistic objects and
relations, while reference in the formal mode of speech is exclusively intra-linguistic. So
that, for instance, the sentence ‘five is a number’ is in the material mode of speech, but it
can be rendered into the formal mode of speech as “five’ is a number-word’. This distinction
is a crucial part in Carnap’s aforementioned plan of substituting philosophy with logical
analysis in the canonical meta-language of science. In the logic of science, in fact, seemingly
metaphysical statements (called by Carnap ‘pseudo-object’ or ‘quasi-syntactical’ sentences
Carnap 1934, pp. 284-285) such as existence statements about abstract entities can be
rationally reconstructed as purely syntactical statements about the syntactical structure
of the related linguistic entities in the language of science.

The combination of the principle of tolerance and the distinction between the material
and the formal mode of speech has then to be understood as a central part of Carnap’s
general dream of a canonical meta-language for science and the related logic of science. This
cluster of ideas exemplifies the metaphilosophical stance at work in Carnap’s transition
from his earlier method of rational reconstruction to his later ideal of explication. The
significance of this transition is clearer when we look at how, in the transition phase,
Carnap’s metaphilosophical ideas of constructivism, positivism, logicism, structuralism
and pluralism are exemplified.

Carnap’s constructivism can be seen in the transition phase by his quest for a canonical
meta-language of science, exemplified by the actual construction in the Syntax of the two
languages Language I and Language II. Carnap’s constructivism is also expressed by his
many actual examples of translations from the material to the formal mode of speech, of
which part V of the Syntax is full (Carnap, 1934, pp. 277-333). Carnap’s positivism is the
central ideal behind the Syntax explicit aim: the construction of a canonical meta-language
for science in which the logic of science can be carried out by purely syntactical means. Such
a syntactic logic of science would be the scientific successor of philosophical activity. In the
logic of science, there is no place for traditional metaphysics disputes, the pseudo-problems
of which are understood as misunderstanding of the logical structure of language, whose real
syntactic form can be revealed by translating them (when possible) in the formal mode of
speech. Carnap’s logicism transpires from the exceptional epistemological status of logical
analysis, still considered to be the main tool by which the rational content of scientific
theories and phenomena can be revealed. Even if Carnap in the Syntax abandoned his
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early logicist positions in philosophy of mathematics, due to the new tolerance principle on
foundational matters, logical analysis (especially the one conducted by syntactic means)
is still the central tool of his methodology. Carnap’s structuralism is, just like in the
earlier rational reconstruction period, exemplified by Carnap’s focus on the logical structure
of mathematical theories, as it is clear from Carnap’s construction of Language I and
Language II in the Syntax. In comparison to the Aufbau, Carnap develops new logical
methods for specifying the structural content of mathematical theories (Schiemer, 2020b).
Finally, Carnap’s pluralism in the Syntax phase is of course crystallized in the principle
of tolerance and its radical statement of freedom in the construction of logical languages.
The neutralism with respect to metaphysical positions of the Aufbau period is strongly
widened towards a neutralism even with respect to different meta-scientific disputes such
as the foundation one in philosophy of mathematics. However, if Carnap achieves such
a radical pluralism in philosophical and scientific matters in the Syntax, the resolution of
pseudo-disputes must still be a purely algorithmic matter, bound to be resolved internally
to the syntax of science. There is not, at this point in Carnap’s metaphilosophical ideas
evolution, already space for the pragmatics and semantics of science typical of his later
views (Richardson, 2012; Uebel, 2012, 2018).

We have then seen how Carnap’s philosophical methodology, in the transition from
rational reconstruction to explication, stays faithful to these five metaphilosophical ideals,
while gradually changing the specific way in which these ideals are exemplified in Carnap’s
philosophical projects. As our look at the metaphilosophical ideas contained in the Log-
ical Syntax showed, Carnap widened the scope of his pluralism, championing an almost
complete freedom in how the meta-language of science is constructed. Moreover, Carnap’s
“formal mode of speech” program of translating (some) pseudo-problems of metaphysics
into (meta)syntactical statements within the logic of science shows, in comparison to Car-
nap’s earlier methodology of rational reconstruction, a less radical opposition to traditional
philosophical discourse and a more open-ended idea of conceptual change. At the same
time, Carnap’s insistence on a purely syntactical logic of science, inside which all scientific
and philosophical questions must be translated and resolved, is indeed in tension with the
radical freedom that the principle of tolerance prescribes. A truly tolerant metaphilosophy
needs a truly tolerant methodology. Carnap’s development of such a methodology, i.e. a
procedure able to correspond to the freedom expressed by the principle of tolerance, will
be the focus of the next subsection.

3.1.4 The ideal of explication
The third and last step in my analysis of Carnap’s metaphilosophical development will focus
on Carnapian explication, i.e. the philosophical methodology with which Carnap explicitly
identifies his later work. Biographically, the explication period corresponds to Carnap’s life
in the USA. Intellectually, the explication methodology corresponds to Carnap’s increasing
focus on inductive logic (Sznajder, 2018), it is introduced for the first time in Meaning and
Necessity (Carnap, 1947), and it is paradigmatically exemplified by the work contained in
the Logical Foundations of Probability (Carnap, 1950b).
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In the Logical Foundations of Probability, the first chapter is explicitly devoted to
presenting the procedure of explication, of which the work on the concept of probability
contained in the rest of the book is an example. I will analyze the procedure of explication
in full detail, from an abstract epistemological point of view, in the next section. Here
I will just give a brief account of its significance for Carnap’s overall metaphilosophical
development. Carnap presents explication with the following words:

“By the procedure of explication we mean the transformation of an inexact, presci-
entific concept, the explicandum, into a new exact concept, the explicatum. Although
the explicandum cannot be given in exact terms, it should be made as clear as possible
by informal explanations and examples.” (Carnap, 1950b, p. 3. Original emphases)

Explication involves then the transformation of a inexact concept into a more exact
one. More accurately, as Carnap makes clear in his reply to Strawson’s critique of expli-
cation (Strawson, 1963; Carnap, 1963b), the exactness of a concept has to be understood
relative to a certain task or goal. Explication then replaces a certain concept, inadequate
for a certain task, with another, more adequate concept. This dependency on a given task
or goal is the first crucial difference between explication and its predecessors, i.e. ratio-
nal reconstruction and the translation from the material to the formal mode of speech.
Carnap’s earlier methodologies had in fact a more absolute character, replacing a certain
concept (or statement or question or theory) with its scientific substitute in the language(s)
of science. The replacement performed by rational reconstruction and the translation into
the formal mode of speech were also both understood as one-way processes, in which the
replaced concept had no role in philosophy or science once the replacement had taken place.
The procedure of explication, instead, has a dialectical, open-ended character (Stein, 1992;
Carus, 2007, 2012b; Uebel, 2012). The concept that gets explicated, i.e. the explicandum,
is not replaced away from its successor, i.e. the explicatum, but it can always be the
starting point of other explications.

Moreover, the explicandum plays also a crucial role in the assessment of an explication
overall success. Explication is in fact an inherently pragmatic procedure, i.e. its adequacy
is not a matter of right or wrong, but of what is more or less satisfactory for the task
that the explicator has in mind. Judging this adequacy is then never an all or nothing
matter. The explicator has always a certain degree of freedom in choosing the explicatum
for substituting a given concept. In Carnap’s (Carnap, 1950a) late terminology, as Stein
stressed, questions about explication adequacy are thus external questions:

“The explicatum, as an exactly characterized concept, belongs to some formal-
ized discourse – some ‘framework’. The explicandum (. . . ) belongs ipso facto
to a mode of discourse outside that framework. Therefore any question about
the relation of the explicatum to the explicandum is an ‘external’ question; this
holds, in particular, of the question whether an explication is adequate.” (Stein,
1992, p. 280).
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The adequacy of an explication is thus an external question, bound to be pragmatically
judged outside the linguistic framework of the explicatum. This is the crucial difference
between explication and Carnap’s earlier methodology of translating pseudo-syntactical
sentences into the formal mode of speech. The adequacy of an explication is not an algo-
rithmic matter to be decided within a language of science by purely syntactical means. The
adequacy of a given explication has to be discussed outside scientific frameworks, relative
to a given goal and context, with the normative tools of instrumental rationality (Carus,
2007, 2017). In assessing this adequacy, then, the original explicandum works as a central
measure of the satisfactoriness of the explicatum. Just like in engineering sciences, the
satisfactoriness of a certain tool can be judged only with respect to its goals, its prede-
cessors and its alternatives. This centrality of the explicandum in the assessment of the
overall success of an explication allows what Carus (Carus, 2007, 2012b) calls the “feedback-
relation”between evolved and constructed languages in Carnap’s mature (meta)philosophy.
Formally constructed languages, in fact, offer replacements (i.e. explicata) for particular
parts (i.e. explicanda) of evolved ones, which are judged externally to the constructed
frameworks by the pragmatic mode of discourse typical of evolved languages.

The procedure of explication can then be seen as a bridge between different (types of)
linguistic and conceptual frameworks. Explication bridges different frameworks in an in-
herently pluralist and goal-dependent way, connecting parts of different languages that can
perform a similar function with respect to a specific problem at hand. As such, the method-
ology of explication connects and justifies all Carnap’s incessant construction of linguistic
and conceptual frameworks as the development of possible explications for our philosophi-
cal concepts. We can now see how explication fully embodies Carnap’s metaphilosophical
ideals of constructivism, positivism, logicism, structuralism, and pluralism.

The ideal of explication clearly embodies Carnap’s constructivism in its engineering-like
view of philosophical activity and progress. The main activity of philosophers, according to
the explication ideal, ought to be the construction of multiple frameworks from which ex-
plicata of our concepts can be obtained. Philosophical progress is then seen as the repeated
explication of our philosophical and scientific concepts, an advancement akin to technolog-
ical progress in which more reliable and more specialized tools are constantly produced.
The figure of the philosopher becomes then in the later Carnap an engineer figure involved
in a kind of conceptual metrology (Richardson, 2013). This engineering-like view of philo-
sophical progress exemplifies, of course, also Carnap’s positivism, according to which a
better, more scientifically-minded philosophy needs the development of better conceptual
tools. The positivist ideal permeates also Carnap’s stress of a paradigmatic kind of explica-
tion, which is the step from qualitative to quantitative concepts (Carnap, 1950b, pp. 8-15).
The replacement of qualitative concepts with quantitative ones achieved by (almost) all
natural sciences is in fact for Carnap the paradigmatic example of the conceptual progress
around which explication is centered. Carnap’s logicism can be similarly seen in Carnap’s
late efforts in explication, such as the work on intensional semantics (Carnap, 1947) or the
work on inductive logic (Carnap, 1950b, 1952; Carnap and Jeffrey, 1971), where the expli-
cata are all framed within formal logical languages. Even though Carnap (Carnap, 1963b,
p. 935) explicitly stresses the possibility of purely informal explications, the paradigmatic
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example of conceptual progress remains for him the formalization of concepts and theo-
ries in logical languages. Carnap’s pluralism is fully embraced in the explicit reject of an
absolute right or wrong judgment in matters of explication adequacy. Carnapian expli-
cation embraces then the full radical pluralism, proclaimed already in the Logical Syntax
by Carnap’s principle of tolerance, of not setting (almost) any prohibition to philosophical
and scientific freedom. As long as the explication proposal is clearly stated, every possible
proposal for transforming a given concept should be welcomed and discussed. Consistently
with this wider scope of Carnap’s later pluralism, the tools for discussing explication mat-
ters are not bound to logical or syntactic strict rationality, but they belong instead to the
goal-dependent, pragmatic kind of rationality known as instrumental rationality.

Carnap’s structuralism, at a first glance, is not so evident in his explication methodol-
ogy like the other four metaphilosophical ideals. In contrast to rational reconstruction, in
fact, a given concept is not necessarily replaced by another concept exhibiting its logical
structure. An explicatum is always dependent on the particular goal and context of a
given explication. Nevertheless, there is an inherently structuralist component in the ideal
of explication. It is, however, a kind of methodological structuralism, akin to the one of the
Erlangen program (Schiemer, 2020a). The bridge-function that explication performs in con-
necting different linguistic frameworks is in fact akin to the transfer-principle methodology
common in nineteenth-century projective geometry. As exemplified by the Erlangen pro-
gram, projective geometers increasingly focused on the geometrical (and later topological)
invariants under abstract transformations. This quest for increasingly abstract geometrical
invariants was carried out with the method of transfer-principles (Schiemer, 2020a), i.e.
analytically defined mappings between different geometrical domains that preserve the rel-
evant projective properties of chosen configurations. A transfer-principle, then, is able to
transfer certain geometrical or topological properties from one geometrical domain to the
other, allowing geometers to preserve certain structures and related functions in a changing
domain. It has been argued (Schiemer, 2020a) that the methodology of transfer-principles
embodies two key structuralist ideas, i.e. the indifference to the nature of primitive spatial
elements and the emphasis on structures-preserving mapping across domains. Carnap’s
methodology of explication can then be thought as a metaphilosophical analogous of the
transfer principle method. If in the context of the Erlangen program, transfer princi-
ples were used for preserving structural properties across different geometrical domains,
in Carnap’s metaphilosophy explication is used for preserving functional and conceptual
properties across linguistic frameworks. Explication is then a kind of transfer-principle for
conceptual utility or (if one is a functionalist or an inferentialist about concepts) concep-
tual structure, a method for preserving a certain conceptual role or function in a different
linguistic context. The set of all possible explicata of a given philosophical explicandum
can then be considered the set of its possible counterparts across philosophical domains.
The ideal of explication embodies Carnap’s structuralism as a methodological structural-
ism, exemplified by its indifference with respect to the nature of the particular linguistic
framework in which a given concepts is framed and in its emphasis on function-preserving
mappings that transfer conceptual virtues across different frameworks.

We have then seen how the ideal of explication fully embodies Carnap’s metaphilosoph-
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ical ideals of constructivism, positivism, logicism, structuralism, and pluralism. Moreover,
we saw how the procedure of explication is the result of the gradual evolution of Carnap’s
philosophical methodology that, while staying faithful to his metaphilosophical stance,
changed through the years consistent with the philosophical and scientific issues faced by
Carnap. The result of this evolution is the ideal of explication, as an example of which
the whole philosophical activity of Carnap can be retrospectively assessed. The ideal of
explication prescribes in fact to the wannabe philosopher a constant engineering quest to
develop better tools for making philosophical discussions advance to a more exact and more
scientifically-minded phase. What Carnap did throughout all of his philosophical activity
can be perfectly identified in these terms.

3.2 The Procedure of Carnapian Explication
After having traced the development of the notion of explication in the more general
progression of Carnap’s philosophical views, I will analyze Carnap’s method of explication
from an abstract epistemological point of view.

We saw in the previous section that explication is a procedure involving two concepts.
On one side, there is the explicandum, belonging to natural language (or more generally
an evolved language), the scope of which thus contains arguably an amount of vagueness
and ambiguity. On the other side, there is the explicatum, belonging to a (more) precise
language, the scope of which is rigidly characterized by explicit and precise rules of use.

Explication is traditionally seen as a two-steps procedure. First of all, one has to clarify
the explicandum, trying to explicitly state the intended meaning of the concept that one
wants to explicate. Since the explicandum is still expressed in a natural language, an
exact definition is not required. What Carnap (Carnap, 1950b, pp. 3-5) requires from the
explicator, instead, is to state some positive and negative instances of the explicandum,
together with some description or (partial) rules of use.

This step clarifies and (if necessary) disambiguates the concept that one seeks to ex-
plicate. It is, in fact, possible that in trying to clarify the explicandum, the explicator
realizes that there are two or more different concepts that are ambiguously grouped in nat-
ural language within a single notion. A famous example of this phenomenon occurred in
Carnap’s (Carnap, 1950b) explication of probability. In clarifying this concept, Carnap in
fact realized that behind the intuitive understanding of probability lie two different notions,
the logical and the frequentist concepts of probability. In clarifying the explicandum, the
explicator also freely chooses the context of the explicandum that she wants to explicate.
It is, in fact, often the case that a given explication wants to replace only some contexts
or uses of the intuitive notion. A classical example of this decision of context are Tarski’s
opening remarks (Tarski, 1933) before his explication of the concept of truth, where he
states that he is interested in explicating the context of truth-assertions like “‘snow is
white’ is true” and not in explicating uses such as “you are a true friend”.

Then, there is the second step of the explication, i.e. the formulation of the explicatum
in a certain target theory via an explicit definition or by stating its rules of use (Fig. 3.1).
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Figure 3.1: The two-step structure of Carnapian explication.

The purpose of explication is the substitution, relative to a specific function-context, of
a less satisfactory concept with a (more) satisfactory one. As we saw in the last section, the
adequacy of a given explication can never be absolutely correct or wrong, but it is instead
a matter of relative satisfactoriness with respect to the explicator’s goals. Even though
explication is not a matter of right or wrong, one can still judge whether an explication
is a good one or a bad one. In fact, external questions for Carnap can still be objects
of rational discourse, although of the pragmatic kind of rationality that is often called
instrumental. Relative to a specific purpose or function, one can state certain pragmatic
meta-principles that a concept has to respect in order to qualify as a good explicatum for a
certain explicandum. Carnap (Carnap, 1950b, pp. 5-8) stated four desiderata that a good
explicatum has to respect:

• Similarity: to the extent to which the other desiderata allow it, the explicatum ought
to be as much as similar to the explicandum (exact similarity, i.e. identity, is explicitly
not required).

• Fruitfulness: the explicatum ought to be connected with other scientific concepts, in
order to make as many generalizations as possible expressible within the theory in
which it is framed.

• Exactness: rules of use of the explicatum ought to be stated in an exact form (e.g.
definitions, axioms).

• Simplicity: the explicatum ought to be as simple as the other desiderata allow it to
be.

These principles give a hint of the virtues that a good explicatum has to possess,
but they are intrinsically pluralist in their intent. Carnap, in fact, stresses how it is
always possible to have different explicata that are equally adequate in respect to a given
explicandum. In matters of explication, there is no absolutely correct answer to the problem
of capturing an informal notion with a (more) formal one.

A problem central to much of recent debates about explication as a philosophical proce-
dure is the extreme inexactness of these desiderata stated by Carnap. The four principles
above hint, in fact, at the theoretical virtues that a good explicatum must have, but they
are too vague and ambiguous to constitute a practical guide for explicating a certain con-
cept. Carnap never attempted to further develop these criteria. He instead developed
various practical examples of what he considered good explicata for fundamental philo-
sophical concepts, e.g. his works on logical probability as an explication of confirmation



3.2 The Procedure of Carnapian Explication 55

(Carnap, 1950b) or his efforts towards explicating our concepts of modality and analytic-
ity (Carnap, 1947). Using these and other examples, in science and philosophy, of formal
notions that have replaced informal ones, various scholars have proposed refined and more
precise versions of these. Let us survey this debate, then.

3.2.1 Discussing explication desiderata
To better structure the discussion, let us treat Carnap’s four desiderata, one by one.

Similarity. This is perhaps the desideratum that has most attracted the attention of
scholars, due to its pivotal role in distinguishing explication from other methods of con-
ceptual change. Since, as we have seen, the explicandum is normally a vague, informal
concept and the explicatum is instead a (more) precise, formal notion, exact similarity is
not required3. If, then, an explicatum is allowed to have a different extension than the
explicandum, the question at issue is to which degree an explicatum has to be similar to
the related explicandum.

Hanna argued that the explicatum has to agree with the explicandum in all clear-
cut cases where the latter can be applied (Hanna, 1967, pp. 34-36). This strict reading
of the similarity requirement makes explication, as Hanna himself acknowledges, just a
procedure for eliminating any vagueness from our informal concepts and it thus makes
the explicatum a precisification of the explicandum. This can be clearly seen in Hanna’s
formal explication of ‘explication’ where the (formal notion that seeks to explicate the)
explicatum is technically a precisification of the (formal notion that seeks to explicate the)
explicandum (Hanna, 1967, pp. 37-38).

Another strict reading of the similarity requirement is Quine’s “synonymy in favored
contexts” i.e. synonymy with respect to all the contexts where the use of the explicandum
is clear and precise (Quine, 1961, p. 25). Both these readings seem in direct contrast with
Carnap’s own examples, e.g. the explication of the concept fish (Carnap, 1950b, p. 6),
where he allows explicata to be concepts that explicitly reject clear, non-defective, positive
instances of the explicandum. They also appear too narrow for any general procedure of
conceptual engineering for science and philosophy. Often, in fact, as even Quine himself
acknowledged later (Quine, 1960, pp. 258-260), scientists change meanings and uses of
pre-theoretical concepts for purely theoretical reasons, despite how clear a certain use of
an explicandum originally is4.

Brun has recently argued for a more liberal reading of the similarity requirement, which
he understands as requiring the explicatum to preserve all the context-dependent instances
of the explicandum (Brun, 2016, pp. 1218-1219). The context is freely decided by the ex-
plicator in relation to the purpose for which the explicatum is expected to substitute the

3Famously, this lack of exact similarity is the core of Strawson’s famous “subject-change” critique of
explication as a philosophical method in (Strawson, 1963).

4It should be noted that Quine developed also his own version of the explication procedure, quite
different from Carnap’s one, understanding it as a form of transformative conceptual analysis (Gustafsson,
2013).



56 3. Carnapian Explication

explicandum. As we already saw, Carnap himself stressed that in clarifying the explican-
dum, the explicator must decide the intended context of the explication, just like Tarski
did in his aforementioned explication of truth. Thus, according to this interpretation, an
explicatum is allowed to diverge from the scope of the explicandum even in clear-cut cases
of application of the latter if they are not within the specific context freely chosen by the
explicator.

Brun also proposed, in a more recent work, to split the similarity requirement into two
steps. The first step consists in adjusting the extension of the explicandum (implicitly fix-
ing the context), thereby obtaining a sharpened ‘explicandum2’. The second step requires
what Goodman calls ‘extensional isomorphism’, i.e. an injection from the extension of
explicandum2 to the extension of the explicatum (Brun, 2020, pp. 11-13). This two-step
reading is connected with Brun’s more general proposal of merging explication with (a par-
ticular interpretation of) Goodman’s method of reflective equilibrium. Brun acknowledges
that the injection-requirement seem trivial for a single concept, but stresses its significance
for explicating a system of concepts and overcoming some limitations of (what he takes to
be) the linear-monoconceptual Carnapian picture of explication (Brun, 2020).

Fruitfulness. Carnap vaguely described this desideratum in terms of relations to other
concepts and generalization-power. He distinguished the generalizations that a fruitful
explicatum ought to produce between two cases, i.e. “empirical laws in the case of a non-
logical concept, logical theorems in the case of a logical concept” (Carnap, 1950b, p. 7).
This seems indeed a necessary condition for a good explication of certain kinds of concepts,
but as a general rule, it seems not really useful (by itself). After all, every formal concept
whatsoever can produce an infinity of generalizations and truths5.

Dutilh Novaes and Reck proposed to read fruitfulness as the improvement of the prag-
matic and epistemic situation of an agent. They claimed that a fruitful explicatum has to
make our reasoning more effective and more reliable, thereby proving itself to be a better
cognitive tool (for a certain purpose) than the explicandum (Dutilh Novaes and Reck, 2017,
pp. 205-211).

Shepherd and Justus took fruitfulness to be, like similarity, a context-dependent desider-
atum, relative to the type of concept the explicandum is and the purpose that the expli-
catum has to perform (Shepherd and Justus, 2015, pp. 395-400).

Exactness. Here the main question is whether exactness means (a certain level of) for-
mal rigor. Formal frameworks were considered by Carnap, even after his tolerance turn,
the benchmark of exactness and rigor. If one looks at his own efforts in explicating con-
cepts like analyticity or confirmation, one finds always the explicatum defined in a formal
framework. Should we therefore understand the exactness requirement simply as the re-
quest of formulating the explicatum within a formal framework? Hanna believes that this
is not enough. He, in fact, claimed that a certain explicatum has always to have a perfectly

5Dennett humorously stressed this point in his general critique of (some) contemporary analytic phi-
losophy (Dennett, 2006).



3.2 The Procedure of Carnapian Explication 57

clear extension, thereby (together with his aforementioned extensional reading of similar-
ity) making the explicatum a complete precisification of the explicandum (Hanna, 1967, p.
36).

These strictly-formal readings of the exactness requirement seem too narrow for a gen-
eral procedure of conceptual engineering, especially considering the fact that Carnap ex-
plicitly warned us against a strictly formal reading of the exactness requirement:

“The use of symbolic logic and of a constructed language system with ex-
plicit syntactical and semantical rules is the most elaborate and most efficient
method. For philosophical explications the use of this method is advisable only
in special cases, but not generally” (Carnap, 1963b, p. 935).

Therefore, the exactness requirement has been understood in a comparative way, rela-
tive to the explicandum (Dutilh Novaes and Reck, 2017, p. 201), allowing a certain open-
endedness in the offspring of the procedure of explicating a certain concept. This compar-
ative reading of exactness can be easily cashed-out in terms of vagueness, by requiring the
explicatum to be less vague than the explicandum.

Brun favored a weaker reading of comparative exactness, i.e. the explicatum should
not be vaguer than the explicandum. Using as evidence Carnap’s aforementioned fish
example, he argued that in some cases the explicatum is as vague as the explicandum
(Brun, 2016, pp. 1220-1221). He also stresses that Carnap hinted at an additional aspect
of the exactness requirement in discussing the temperature example, namely, that usually
quantitative concepts are preferable over qualitative and comparative ones because they
allow us to make more fine-grained distinctions (Brun, 2020, p. 1220).

Simplicity. Last and explicitly least, this desideratum is often left aside in the discussion
about explication. Carnap stresses that simplicity is only a last resort when the explicator
has to choose between different explicata that fulfill to the same degree the other, more
important, desiderata (Carnap, 1950b, p. 7). Therefore, there is not much debate over
what the simplicity requirement means.

To my knowledge, only Brun’s treatment of explication includes a discussion of sim-
plicity. He stresses that simplicity has to be understood not in the ontological occamian
sense (i.e. ontological parsimony) but as a syntactical-logical requirement on the definition
of the explicatum and perhaps also on the overall structure of the target theory in which
the explicatum is defined (Brun, 2016, p. 1221).

Of course, one may add to these four desiderata other theoretical virtues that a good
explicatum should possess. Perhaps, other possible desiderata could be general pragmatic
and theoretic virtues that good scientific theories embody, such as explanatory power,
predictive power, novelty, unification power, trans-theoretic coherence, and so on. Philoso-
phers of science have discussed at length the role of these epistemic values in scientific
activity and whether they can be sharply separated from non-epistemic values (e.g. Kuhn
1977; Longino 1990; Solomon 2001; Haack 2003; Douglas 2009; Okasha 2011).
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Another, interesting, possible desideratum is due to Karl Menger, to whom Carnap
(Carnap, 1950b, p. 7) acknowledged a certain debt in developing the idea of explication,
who in discussing geometrical definitions stresses that a good explicatum “should extend
the use of the word by dealing with objects not known or not dealt with in ordinary
language” (Menger, 1943, p. 5).

3.2.2 A note on recent critiques of explication

The discussion about the desiderata that a good explicatum has to respect has also sparked
a more general methodological discussion about the viability of explication as a procedure
of conceptual engineering. Apart from the aforementioned well-known critique of Strawson,
new critiques have emerged6.

For instance, Dutilh Novaes and Reck have recently argued that explication (and, more
generally formalization) is an inherently paradoxical enterprise. Explication is paradoxical,
according to them, because there is a tension between two of its most important desider-
ata, namely fruitfulness and similarity: similarity allegedly calls for a close relationship
with the explicandum, while fruitfulness pushes the explicatum towards a more radical
departure from the explicandum. They named this phenomenon “the paradox of adequate
formalization” (Dutilh Novaes and Reck, 2017, p. 211), claiming that it is nothing but
another form of the well-known “paradox of analysis” (Beaney, 2021).

Reck in another work stresses, in a Strawsonian fashion, that Carnapian explication
has some blind spots, such as its strong focus on formal aspects, its strive for exactness, its
unwillingness to take into account methodologically different alternatives (Reck, 2012, pp.
106-114). Reck acknowledges that these blind-spots are far from being impossible to be
mitigated by a more pragmatic and liberal theory of explication, but he argues that such a
theory would lead us back to philosophical disputes of the very kind that explication was
meant to overcome.

Other two limitations of explication as a general procedure for conceptual engineering
are stressed, instead, by Brun, who argues that Carnapian explication is heavily limited
by its focus on individual concepts (i.e. it does not take into account more complex
entities such as systems of concepts) and by its linear structure that seems to describe a
no-turning-back triumphant engineering from the explicandum to the explicatum, hiding
thus the complexity of the dialectics between the two parts of explication7. Brun (Brun,
2020) argues that these two points can be mitigated via a more liberal recipe-approach to
conceptual engineering, merging explication with Goodman’s reflective equilibrium.

6For Strawson’s original take, see (Strawson, 1963). Carnap responded in (Carnap, 1963b). For more
recent responses see (Maher, 2007; Justus, 2012).

7See his discussion in (Brun, 2016, pp. 1229-1232). A possible line of response, already stressed by
Brun, can be found in Carus’ remarks about the dialectic between evolved and constructed languages in
explication. See (Carus, 2007, pp 273-284).
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3.3 Explication as a Three-Step Procedure:
Computability as a Case Study

We have then seen how, in recent years, there has been a renewal of interest in Carnapian
explication as a philosophical method. In recent debates over explication, most of the focus
has been put onto the explicandum and the explicatum, i.e. the starting and the ending
point of the procedure of explicating a given concept. In contrast, only few scholars have
tried to analyze what happens during the transformation of a given explicandum into an
explicatum (Shepherd and Justus, 2015; Quinon, 2019).

In this section I will focus on the breakdown of explication as the step-by-step transfor-
mation of an intuitive concept into a more precise one. In order to do that, I will apply the
method of explication to (some specific versions of) the Church-Turing Thesis (CTT), i.e.
the statement according to which our intuitive notion of effective calculability is captured
by the formal notion of mechanical computability8. More specifically, I will apply the
method of explication to two recent axiomatic approaches to CTT: Sieg’s axioms for com-
putors (Sieg, 2013) and Dershowitz’s & Gurevich’s axioms for computations (Dershowitz
and Gurevich, 2008).

In recent years, building upon Robin Gandy’s seminal work(s) in the 1980s, Wilfried
Sieg has proposed axioms for human and mechanical computers. In 2008, Dershowitz
& Gurevich, coming from a completely different background, proposed another axiomatic
characterization of computability. Following Gurevich, I will refer to these axiomatizations
as “Foundational Analyses of Computability” (Gurevich, 2012). Carnapian explication has
been previously applied to two classical explications of effective calculability, namely Turing
computability (Floyd, 2012) and general recursiveness (Hanna, 1967; Quinon, 2019), but
not to more recent models of computability9.

We will see that, from the perspective of Carnapian explication, these two foundational
analyses of computability differ in how they clarify and restrict the boundaries of the intu-
itive notion of computability. These two different ways of analyzing the notion of effective
calculability can be traced back to two pioneers of computability, Turing (Turing, 1936)
and Kolmogorov (Kolmogorov, 1953). I will argue that the main conceptual difference
between them lies in the different outputs of their respective informal analyses of effective
calculability, i.e. two informal axiomatizations of what is effectively calculable. These ax-
iomatizations implicitly define two semi-formal notions of computability: computorability
and algorithmability. I will then argue that, in order to adequately capture the conceptual
differences between these two semi-formal notions, the classical two-step picture of expli-
cation is not enough. In order to overcome this problem, I will present a more fine-grained
three-step version of Carnapian explication. I will call the new mid-level step of this refined

8I use ‘mechanical computability’ as a neutral term of art to denote all the extensionally equivalent
notions for which one can state a version of CTT, e.g. general recursiveness, Turing computability, λ-
definability, etc. ‘Effective calculability’ denotes instead the intuitive notion of calculability.

9Considering the robustness and the success of the concept of mechanical computability in capturing
an intuitive notion, one may wonder why Carnap does not mention CTT as a paradigmatic example of
explication. For an analysis of this issue and a possible answer to it, see (Quinon, 2019).
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version of explication the semi-formal sharpening of the clarified explicandum.
I will show how my three-step version of Carnapian explication is able to explain the dif-

ferences between the Turing-Gandy-Sieg and the Kolmogorov-Dershowitz-Gurevich groups
of explications, allowing a better conceptual understanding of foundational analyses of
computability. More generally, this case study will demonstrate that the three-step ver-
sion of Carnapian explication is a better tool than the original two-step version for treating
complex cases of explications with several explicata for a given explicandum. By adding
the new mid-level step of the semi-formal sharpening of a clarified notion between the
clarification of the intuitive concept and the formulation of a new one, this refined version
of Carnapian explication allows more fine-grained distinctions between different explica-
tions of a given concept. Even two explications that clarify the same intuitive concept
in the same way (i.e. they output the same clarified explicandum after the clarification
step), such as Turing’s and Kolmogorov’s “analyses” of effective calculability, can be semi-
formally sharpened in different ways (i.e. they output two different concepts after the
semi-formal sharpening step). The new mid-level step also provides further evidence for
the importance of the intermediate steps in the evolution of an explication (cf. Quinon
2019). These intermediate steps have often been overlooked in philosophical discussions
about explication, which have often focused only on the explicandum and the explicatum,
but the case of CTT shows that without analyzing these steps it is sometimes impossible
to properly understand the conceptual differences between two explicata.

3.3.1 The Turing-Gandy-Sieg explications of effective calculabil-
ity

In this subsection, I will focus on the first group of explications of effective calculability
that I will analyze through the lens of Carnapian explication in this case study, namely,
the Turing-Gandy-Sieg explications.

In introducing Sieg’s foundational analysis of computability, I said that he presented
axioms for calculability. More exactly, he gave axioms for calculators, both human and
mechanical ones. Why did he state his explication in terms of calculators? In Sieg’s
own words, “to investigate calculations is to analyze symbolic processes carried out by
calculators; that is a lesson we owe to Turing” (Sieg, 2002b, p. 390). Then, in order
to properly understand Sieg’s work one has to grasp the significance of concepts such as
human calculator, mechanical device, and symbolic process.

Turing’s analysis and Gandy’s principles for mechanisms

In the 30’s, the idea(l) of CTT arouse from the conceptual offspring of the so-called founda-
tional crisis. The main reason why a (group of) formal equivalent(s) of effective calculability
was sought and developed is usually considered to be the growing skepticism for a positive
solution to the Entscheidungsproblem (i.e. the problem of finding an effective procedure
for deciding the validity of first-order logical formulas) and the consequent wait for a proof
of its undecidability. Moreover, Gödel’s incompleteness results called for a generalization
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via a notion capable of explicating what a suitable formal system was. Thirdly, a formal
concept of decision procedure was needed in order to negatively solve some open mathe-
matical problems of the time, such as the Diophantine equations problem and Thue’s word
problem for semi-groups.

It was precisely this nest of related problems that caused the praised “confluence of
ideas” (Gandy, 1988) of 1936. Already in 1934, two soon-to-be extensionally equivalent
instances of mechanical computability had been already developed: general recursiveness
and λ-definability10. In 1935, Church boldly stated what is now known as Church’s The-
sis, i.e. the proposition that our intuitive concept of effective calculability is adequately
captured by the formal notion of general recursiveness.

However, before Turing, with the important exception of Post’s unpublished drafts
(Post, 1941), one cannot find any (significant) occurrence of the term ‘computor’ or ‘calcu-
lator’ in any seminal work on computability. Even though the scope of their explications
was human effective calculations, pre-Turing explications of calculability, such as Church’s
(Church, 1936), Gödel’s (Gödel, 1934), and Kleene’s (Kleene, 1936) do not take in account
any sort of calculator11. Nowadays it seems natural to us to think about calculability in
terms of an abstract computor, but this only shows the impact of Turing’s work on our
perception of computation. Before Turing, the problem of adequately defining mechanical
computability was centered around the possible ways in which numeric functions can be
deduced in a suitable formalism. The attention and the work of the scholars focused almost
entirely on the formal side of CTT, leaving the intuitive concept of effective calculability
as something of which nothing meaningful can be said.

An important exception is Church’s (Church, 1936, p. 101) so-called ‘step-by-step’
argument. It has the form of a division into cases argument. According to Church, an
effectively calculable function is evaluated either by the application of an algorithm or by
the method of ‘calculability within a logic’, namely, for a certain function F , by deriving
in a certain “logic” a theorem f(µ) = ν that holds if and only if F (m) = n, where f is an
expression of the language of that “logic” and µ and ν are expressions that respectively
represent arbitrary positive integers m and n. Church, then, shows how in both ways is
involved a series of steps, which he assumed to be recursive. Being all the steps involved
in the computation recursive, the function itself is recursive.

From a epistemological point of view, however, this argument has a major problem.
As it was stressed by Sieg, Church gives no justification for imposing the recursiveness
condition on the computational steps, a limitation that is clearly pivotal to the cogency
of the argument (cf. Sieg 1997). Moreover, as an analysis of our intuitive concept of
calculability, Church’s reflections lack any appeal to common intuition, paying attention
only to the calculation process of numerical functions in a formal systems of some sort.

It could be said, then, that the problem of pre-Turing analyses of computation was
to motivate the recursiveness of the computational steps of numeric functions. How does

10For an historical account of the development of these two notions see (Kleene, 1981; Gandy, 1988).
11Following Gandy, I take the term ‘computor’ to denote an idealized human calculator. I use the terms

‘computer’ and ‘calculator’ to refer to any kind of computing agent, being it a human or a mechanical
device of some sort.



62 3. Carnapian Explication

Turing solve this problem? The short answer is that he changed the level of analysis.
Considering computable numbers, Turing understood that in order to analyze the intuitive
notion of effective calculability, one has to focus not on the superficial calculus of the
numerical function, but instead on the symbolic processes underneath:

“The real question at issue is ‘What are the possible processes which can
be carried out in computing a number?’” (Turing, 1936, p. 135).

Changing the question to address allowed Turing to put the computor at the center
of his analysis of effective calculability. Roughly speaking, Turing’s take on calculability
is that a function is computable if and only if it can be computed by an idealized human
being working in a clerical fashion. Restrictions on the calculation process can then be
stated as bounds on the possible actions of the abstract computor, motivated by human
physical-cognitive limitations12.

Turing imagined a computor working on a one-dimensional paper, something like ‘a
child’s arithmetic book’, printing only a finite number of symbols. Infinity is forbidden
because “if we were to allow an infinity of symbols, then there would be symbols differing
to an arbitrary small extent” (Turing, 1936, p. 135). Ruling out any form of ingenuity,
the behaviour of the abstract computor is fully determined by the symbols at which he is
looking at the moment, together with his state of mind. Actions of the Turing computor
have, then, to meet some natural, physical and cognitional, limitations: only a fixed number
of symbols can be observed at one glance by the computor, only a fixed number of states
of mind can be involved in the calculation, all the actions of the computor can be divided
into elementary operations, and so on.

In Sieg’s reconstruction of Turing’s analysis, these limitations are summarized by three
general bounds13:

• “(B) (Boundedness) There is a fixed bound on the number of configurations a computor
can immediately recognize.

• (L) (Locality) A computor can change only immediately recognizable (sub-) configurations.

• (D) (Determinacy) The immediately recognizable (sub-)configuration determines uniquely
the next computational step (and id).” (Sieg, 2002b, pp. 249-250).

It is easy to see that these informal axioms suitably represent the several bounds in-
formally imposed by Turing on symbolic processes in his analysis. Then, Turing argues
that every function computable by a computor, who respects these restrictive conditions,

12It is important to stress that Turing, even though his bounds on calculations are motivated by human
limitations, did not have what is sometimes called a cognitivist approach to computation. In other words,
pace Gödel (Gödel, 1972) , Turing never claimed that his analysis captured the richness of human proce-
dures nor did he want to state something about human cognitive abilities. See the analysis contained in
(Copeland and Shagrir, 2013).

13Sieg, following Post, imposes these bounds on instantaneous descriptions (ids). For my analysis, this
makes no difference.
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is Turing computable. This claim is splittable in two sub-parts. First, we have what Sieg
calls Turing’s Central Thesis, i.e. “computations carried out by a computor satisfying the
boundedness and locality conditions can be directly simulated by a string machine” (Sieg,
2002a, p. 397). The determinacy condition is achieved by the sum of boundedness and
locality and it is therefore not necessary. Then, we have the mathematical proof that
computation by a string machine can be simulated by a letter machine.

Thus, Turing’s analysis can be seen as an informal two-steps argument. First, he im-
poses several bounds on the vague notion of effective calculability sharpening it into the
notion of computability by an idealized human calculator. Then, he argues that com-
putations by such a computor can be faithfully represented by what we now call Turing
machines. Only after this last step, we have reconstructed the whole of Turing’s analysis.
Such a detailed analysis, as Sieg himself recognizes, makes Turing’s assumptions, upon
which the analysis is built, fully evident:

“The separation of informal conceptual analysis and mathematical equivalence
proof is essential for recognizing that the correctness of Turing’s Thesis (taken gener-
ically) rests on two pillars; namely, on the correctness of boundedness and locality
conditions for computors, and on the correctness of the pertinent central thesis. The
latter asserts explicitly that computations of a computor can be mimicked directly
by a particular kind of machine.” (Sieg, 2002a, p. 399).

One of Sieg’s explicit aims is then to sharpen Turing’s informal argument via the ax-
iomatic method. This is why he stated his foundational analysis in terms of calculations
by abstract calculators. The other explicit aim of Sieg’s axioms is to axiomatically char-
acterize another, more general class of calculators, i.e. mechanical devices. Where in the
case of computors his work builds upon Turing’s analysis, in the case of mechanical devices
Sieg attacked the problem by improving and simplifying Gandy’s treatment of machine
computability. In fact, even though it is sometimes claimed in the literature (especially
the popularized one) that Turing proved something about machines, Turing’s 1936 analysis
pays attention only to human calculators. More generally, it is safe to say that the scope
of the entire confluence of 1936 was human effective calculability and that therefore CTT
has nothing to do with machines. It was Gandy (Gandy, 1980) who firstly addressed the
problem of ‘Thesis M’, namely the proposition stating that what can be computed by a
machine is Turing computable. In order to address Thesis M, Gandy followed the exam-
ple of Turing’s analysis of effective calculability and imposed some limitations upon our
intuitive concept of mechanical device.

The term machine is understood by Gandy “with its nineteenth century meaning”
(Gandy, 1980, p. 125). More specifically, he thinks that machines are discrete deterministic
mechanical devices. With this wording, he excludes analogue machines and other devices
the calculations of which cannot be described in discrete terms or that are not entirely
deterministic. Examples of machines in Gandy’s restricted sense are Turing machines,
Von Neumann’s crystalline automata and John Conway’s ‘the game of life’. According
to Gandy, the main difference between a computor and a mechanical device is that the
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latter is able to act in parallel, performing a finite though unbounded number of bounded
computations at the same time. Any machine of this kind must satisfy four principles.

The first principle states how one should be able to describe a machine. Gandy chooses
(isomorphic classes of) hereditarily finite sets to suitably describe each state of the machine.
From a given machine state, a structural operation gives us the next state of the machine.
After having stated the form of description of his machines, Gandy imposes three different
bounds on their working. These limitations should be understood as aiming to avoid
the possibility of an omniscient device. Principle II expresses the requirement that the
hierarchy of structures describing the machine has a maximum height. Principle III instead
requires that any device can be uniquely reassembled from parts of bounded size. Gandy
himself remarked that almost any kind of machine (in the general sense of the term) can
be described in a way for which Principle II and III are satisfied. The most important
principle is then the fourth, the Principle of Local Causality, which contains Gandy’s core
idea of how a machine computes:

“Principle IV. (Preliminary version [of the Principle of Local Causality]) The
next state, Fx, of a machine can be reassembled from its restrictions to overlapping
‘regions’ s and these restrictions are locally caused. That is, for each region s of Fx

there is a ‘causal neighborhood’ t ⊆ TC(x) of bounded size such that Fx ↑ s depends
only on x ↑ t.”(Gandy, 1980, p. 135).

This principle forbids globally instantaneous signal propagation in the machine, allow-
ing it only for locally determined regions from which a given state depends. This principle
mirrored, in a more general way, both the locality and the boundedness conditions imposed
by Turing on human calculations. Where in the case of human computors those restrictions
were motivated by an appeal to human memory and intellectual natural limitations, Gandy
motivates his fourth principle appealing to physics, specifically to the ban of instantaneous
action at distance contained in General Relativity theory. This impossibility, together with
Gandy’s second physical assumption, namely that there is a lower bound on the size of
distinguishable atomic components of the machine, provides the pivotal finiteness of the
causal neighborhood on which the machine at every step of the computation operates14.

We have now everything that we need in order to properly understand Sieg’s axioms
for calculators. Let us turn to them, now.

Sieg’s axioms for computors and the notion of computorability

Sieg has presented his axioms in various works throughout the last two decades (Sieg,
2002a,b, 2009). Throughout the years, he changed the presentation of his axioms. Tech-
nically speaking, he repeatedly simplified his set-theoretic framework by changing some
secondary definitions of operations and sets. Philosophically speaking, the latest presenta-
tions of his axioms place more emphasis on Turing’s symbolic view of calculation than on

14For a more detailed discussion of Gandy’s constraints and his underlying physical assumptions, see
(Sieg and Byrnes, 1999).
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the boundedness and the locality conditions, thereby making Turing’s ideas appear closer
to Post than they are usually considered to be15. However, the conceptual core of his work
has remained steadily the same for almost two decades and this is what matters for my
analysis.

For the computor case, Sieg reformulates Turing’s informal limitations, emphasizing
the pivotal role of working with finite symbolic configurations, à la Post. According to
him, the following aspects of the computors’ work are what characterize them:

• (i) “they operate deterministically on finite configurations

• (ii) they recognize in each configuration exactly one pattern (from a bounded number of
different kinds of such)

• (iii) they operate locally on the recognized patterns

• (iv) they assemble the next configuration from the original one and the result of the local
operation.” (Sieg, 2009, p. 587).

These four semi-formal bounds axiomatically define the notion that I call computora-
bility, i.e. the mid-level notion of computability obtained via Turing analysis.

The mathematical formulation of Sieg’s explicata on suitably defined systems uses the
concept of ‘discrete dynamical system’, i.e. a system described by a class of syntactical
configurations D together with an operation F : D → D. States are presented within
the same set-theoretic framework of Gandy’s (Gandy, 1980) work, as hereditarily finite
sets. These sets are obtained from a potentially infinite set U of primitive elements via
a finite iteration of the power set operation. This hierarchy of sets has the remarkable
properties of being cumulative and the ∈-relation on its members being well-founded.
This allows one to define operations on HF trough recursion on ∈-relations. Abstracting
from specific representations, following Gandy, states of the computational processes are
represented by structural classes. A structural class S is a class of states closed under
∈-isomorphisms. In order to formally define it, Sieg introduces the transitive closure of x
(Tc(x) := x ∪ ⋃{Tc(y)|y ∈ x} ; ∀a ∈ U Tc(a) = {a}) and the support of x (Sup(x) :=
Tc(x) ∩ U). Two states x, y are, then, said to be ∈-isomorphic if and only if there is a
bijection F : Tc(x) → Tc(y), such that ∀z ∈ Tc(x), ∀w ∈ Tc(z) we have w ∈ z ↔ F (w) ∈
F (z) and ∀z ∈ Tc(x), ∀r ∈ Sup(z) we have r ∈ z ↔ F (r) ∈ F (z). For any state x, the
corresponding structural class Sx is defined to be the equivalence class for the equivalence
relation of being ∈-isomorphic. This class is called à la Gandy the stereotype of x.

In order to achieve a real abstract description of the system, Sieg makes all operations
G work structurally. Two states x, y are isomorphic over (the support of) a certain state
z (x ∼=z y) if and only if there is a permutation π on U (that can be extended to the
universe of all sets) such that π(x) = y ∧ ∀r ∈ Sup(z)(π(r) = r). Then, an operation G on

15That said, it should not be thought that Sieg equates Turing’s and Post’s takes on computability. See,
in this respect, (Sieg, Szabó and McLaughin, 2016).
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a structural class S (G : S → S) is called structural if and only if for all permutations π
and all x ∈ S: G(π(x)) ∼=π(x) π(G(x)).

Thus, a computor can be described with a pair ⟨S, G⟩, where S is a structural class and
G a structural operation on S. In order to express the ability of the computor to assemble a
new state from the actual state, a process we believe to be philosophically crucial in Sieg’s
take on computability, and the two Turing’s bounds imposed on the actions of the com-
putor, Sieg introduces two important notions: causal neighborhood (Cn) and determined
regions (Dr). A causal neighborhood is a member of a fixed finite class of isomorphism
types, such that there does not exist another member into which is ∈-embeddable. More
precisely, y is a part for x (y <∗ x) if y ̸= x∧y ̸= ∅∧y ⊂ {v|(∃z)(v <∗ z∧z ∈ x)}∪{r|r ∈ x}.
Let T be a fixed finite class of stereotypes. Then, y is a T -part for x if y <∗ x ∧ y ∈ T .
A T -part y for x is a causal neighborhood for x (y ∈ Cn(x)) if there is no T -part y∗ for x
such that y is ∈-embeddable into y∗.

The determined regions of a state z (Dr(z, x)) are, instead, a set of states who are,
roughly speaking, isomorphic over a certain causal neighborhood of a given state x and
their new atoms structurally correspond to each other. Formally, v ∈ Dr(z, x) if and only
if v ⊆ z ∧ ∃y ∈ Cn(x)(G(y) ∼=y v ∧ Sup(v) ∩ Sup(x) ⊆ Sup(y)).

We can finally see the definition of a Turing computor, suitably representing Turing
locality and boundedness conditions:

“M = ⟨S; T, G⟩ is a Turing computor on S, where S is a structural class, T a
finite set of stereotypes, and G a structural operation on ∪T , if and only if, for every
x ∈ S there is a z ∈ S, such that:

(LC.0) (∃!y)y ∈ Cn(x)

(LC.1) (∃!v ∈ Dr(z, x))v ∼=x G(Cn(x))

(A.1) z = (x \ Cn(x)) ∪ Dr(z, x).” (Sieg, 2009, p. 589).

Together with this definition of a Turing computor, Sieg presents a dependent notion
of Turing computability. Namely, a certain function F is Turing computable if and only if
there is a Turing computor M who computes the values of any argument of F .

The extension of this set-theoretic framework to the notion of a mechanical device is
pretty straightforward. The main problem that the parallel computation of Gandy ma-
chines poses to an axiomatic characterization of this kind is the phenomenon of overlapping
(determined) regions. This simultaneous appearance of new atoms in bounded regions can
cause an ambiguity on whether a certain state depends on certain determined regions. This
is obviously understandable because it technically underlies what is considered by Gandy
the core difference between a computor and a mechanical computer, namely, that a Gandy
machine is able to do (certain kinds of) parallel computations.

In order to avoid overlapping ambiguity in the process of assembling the next state from
determined regions, Sieg introduces another structural operation, say G2. This operation
must satisfy the same restrictions of the original G, “except that regions determined by
it need only be unique up to isomorphism over x” (Sieg and Byrnes, 1999, p 160). In
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this way we can isolate isomorphic stereotypes over x, avoiding ambiguity in overlapping
regions. Together with G2, we have also suitable T2, Cn2, Dr2. We refer to the original
notions, writing G1, T1, Cn1, Dr1. These are needed to assure us that for every given state
x, the subsequent state F (x) can be uniquely assembled from the determined regions of
G1 and the (structurally) determined regions of G2. Sieg also defines, for any two states z
and x, A(z, x) := (Sup(z) \ Sup(x)). With the aid of this new set of notions, we have the
following definition of a Gandy machine:

“M = ⟨S; T1, G1, T2, G2⟩ is a Gandy machine on S, where S is a structural class,
Ti a fine set of stereotypes, Gi a structural operation on Ti, if and only if, for every
x ∈ S there is a z ∈ S, such that:

(L.1) (∀y ∈ Cn1(x))(∃!v ∈ Dr1(z, x))v ∼=x G1(y);

(L.2) (∀y ∈ Cn2(x))(∃v ∈ Dr2(z, x))v ∼=x G2(y);

(A.1) (∀C)(C ⊆ Dr1(z, x)∧
⋂

{Sup(v)∩A(z, x)|v ∈ C} ≠ ∅ → (∃w ∈ Dr2(z, x))(∀v ∈
C)v <∗ w);

(A.2) z =
⋃

Dr1(z, x).” (Sieg, 2009, p. 591).

As in the case of Turing computability, Sieg defines a dependent notion of computability
in parallel or Gandy computability, together with a representation theorem that states that
any such Gandy machine is computationally equivalent to a two-letter Turing machine.

One can now see how Sieg’s explication of effective calculability achieves its two in-
tended aims. He manages to axiomatically characterize the informal bounds imposed by
Turing in his analysis of the intuitive concept of effective calculability. The boundedness
and the locality conditions are expressed through a uniqueness restriction to the causal
neighborhood of the state at which the computor is looking and to the determined regions
considerable by the computor in the process of assembling the next state. In the case of a
Gandy machine, these conditions are loosened up in order to allow the computer to perform
an unbounded number of bounded computations at the same time. This looseness shows
how the concept of a discrete deterministic mechanical device generalizes the concept of a
computor.

Representing a simple Turing machine in Sieg’s and Gandy’s formal framework

In order to better understand how Sieg’s definitions work, let’s see how an easy example of
a Turing machine can be represented in Sieg’s formal framework. For historical pleasure, I
take Turing’s (Turing, 1936, p. 119) first example of a Turing machine; namely, the Turing
machine that alternatively prints 0 and 1 (leaving every time a blank square between them).

The alphabet of this Turing machine is composed by three different symbols Σ =
{∗, 0, 1}, where ∗ represent a blank state. The machine is able to perform three different
operations C = {P0, P1, R}, i.e. respectively to print zero, print one, move right. The tape
contains a finite number n of squares T = {1, . . . , n}, which we assume to be all blank. The
tape can be potentially infinitely extended with an unbounded number of blank squares.
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The machine has six different internal states Q = {q1, . . . , q6}. The program of the machine,
and thus the Turing machine, consists of the following 6 instructions16:

1. q1 ∗ P0q2

2. q20Rq3

3. q3 ∗ Rq4

4. q4 ∗ P1q5

5. q51Rq6

6. q6 ∗ Rq1

Every instruction of the form qiσckqj means that if the machine at the internal state
qi scans the symbol σ, then it performs the action ck changing its internal state into qj. I
assume that the machine starts by scanning the leftmost square 1:

∗ ∗ ∗ ∗ . . .

q1

Then, the machine will start printing alternatively zero and one and, for instance, after
6 steps the situation will be this one:

0 ∗ 1 ∗ ∗

q1

. . .

Then, we can represent this machine in Sieg’s formalism and check that its set-theoretic
representation is a Turing computor. We have already seen that Sieg represents Turing
machines à la Post, i.e. via instantaneous descriptions (ids) of the form αqiσjβ, where
α and β are possibly empty strings of symbols, qi is the current internal state of the
machine and σj the symbol currently scanned by the machine head. Then, every instruction
becomes a rule for obtaining a new id from a given one: αqiσjβ ⇒ γqlσkδ. Set-theoretically
an id is represented as the union of three sets of ordered pairs ID := Tp ∪ Ct ∪ St.
Tp := {⟨b, b⟩, ⟨b, a1⟩, . . . , ⟨an, e⟩, ⟨e, e⟩} represents the tape of the machine, where a1 is the
leftmost square, an its rightmost one, b and e special atoms signaling, respectively, the
beginning and the end of the tape. Ct := {⟨σj(0), a1⟩, . . . , ⟨σj(n−1), an⟩} represents the
tape content, where any σj is a certain symbol in the machine alphabet. St := {⟨qi, ar⟩}

16Turing, in his original exposition, allows the machine to print a symbol and then to move right within a
single instruction, thereby getting a machine program consisting only of 4 different instructions. I preferred
to stick to the limit of one atomic operation for instruction.
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represents the current internal state of the machine and the square that is currently scanned
by the machine head.

The structural set of states S is obtained as the ∈-isomorphic closure of all possible ids.
Causal neighborhoods are uniquely determined by the current scanned symbol σj and the
current internal state qi, that uniquely denote a certain instruction. Then, causal neigh-
borhoods, i.e. the local part on which the structural operation G operates, have, for some
squares ar, some internal state qi and some symbol σj, the form {⟨qi, ar⟩, ⟨σj, ar⟩, ⟨ar−1, ar⟩,
⟨ar, ar+1⟩}.

Thus, we have all that we need now to represent the aforementioned Turing machine.
Let’s take for instance its initial state, when the machine is in the situation sketched in the
first picture. The (stereotype of the) initial id is represented as {⟨q1, a1⟩, ⟨∗, a1⟩, . . . , ⟨∗, an⟩,
⟨b, b⟩, . . . , ⟨e, e⟩}. Thus, the causal neighborhood on which G operates is {⟨q1, a1⟩, ⟨∗, a1⟩,
⟨a1, a2⟩}. G(x), i.e. the next state of the computation (obtained by instruction 1), is
then {⟨q2, a1⟩, ⟨0, a1⟩, ⟨a1, a2⟩, . . .}. From this state, another application of G yields
{⟨q3, a2⟩, ⟨0, a1⟩, ⟨∗, a2⟩, ⟨a1, a2⟩, . . .}, and so on. All the other instructions can be repre-
sented in a similar way. When the computation reaches the nth square and it needs a new
atom in order to move right, the next state can be easily assembled introducing a new blank
square, say ap, like G({⟨qi, an⟩, ⟨σj, an⟩, ⟨an, e⟩, . . .}) = {⟨qk, ap⟩, ⟨σj, an⟩, ⟨∗, ap⟩, ⟨an, ap⟩,
⟨ap, e⟩, . . .}.

It is, then, quite evident that our Turing machine, set-theoretically represented in
this way, satisfies all Sieg’s axioms for computors and it is thus an example of a Tur-
ing computor. In fact, we noticed before that, for any stereotype x, its causal neigh-
borhood is uniquely determined by (the ordered pairs containing, together with the cur-
rently scanned square) the current internal state qi and the currently scanned symbol σj.
Therefore, at a certain state x = {{⟨qi, ar⟩, ⟨σj, ar⟩, ⟨ar, ar+1⟩, . . .}}, LC.0 is satisfied by
y = {⟨qi, ar⟩, ⟨σj, ar⟩, ⟨ar, ar+1⟩}. Then, as we have sketched, all the possible six different
applications of G to y maintain this uniqueness for the determined region v that is ∈-
isomorphic over (the support of) x to G(y), thereby satisfying LC.1. For example, if i = 4
and σj = ∗, we have that v ∼=x G(y) = {⟨q5, ar⟩, ⟨1, ar⟩, ⟨ar, ar+1⟩}. Finally, as A.1 requires,
the next state z can always be uniquely reassembled via the union of the complement of y in
x and v: z = {⟨q5, ar⟩, ⟨1, ar⟩, ⟨ar, ar+1⟩, } ∪ {⟨σj, a1⟩, . . . , ⟨σj, ar−1⟩, ⟨σj, ar+1⟩, . . . , ⟨σj, an⟩,
⟨b, b⟩, . . . , ⟨ar−1, ar⟩, ⟨ar+1, ar+2⟩, . . . , ⟨e, e⟩}.

Now, we can better appreciate how the concept of assembly plays a pivotal role in Sieg’s
axioms. It is in fact this concept that, throughout the restrictions on causal neighborhood
and determined regions, technically represents Turing’s way of thinking about effective
calculability in terms of the possible actions that a computor can perform on symbolic
processes. Furthermore, these restrictions can quite naturally be widened in order to
account for the additional freedom of action that a machine calculator is allowed to have.

The two-step reconstruction of the Turing-Gandy-Sieg explications

I can then reconstruct this group of explications of effective calculability in terms of Car-
napian explication. The pivotal first-step, what is usually known as Turing analysis, is the
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clarification of the explicandum. The intuitive notion of effective calculability gets clarified
and disambiguated, the context of uses and the scope of the concept becomes clearer. The
output of this clarification is what is defined by Sieg’s semi-formal axioms for computors,
what I have called computorability. This was firstly achieved informally by Turing, rec-
ognized (and used as a basis for the case of machine calculability) by Gandy, and finally
made explicit by Sieg. Then, from the notion of computorability, different explicata can
be formulated, such as Turing machines or the Gandy-Sieg set-theoretical notions of cal-
culators. Here is a diagram of the conceptual structure of this group of explications (Fig.
3.2):

EC computorability

Sieg-Gandy

Turing

Turing analysis

Figure 3.2: The two-step structure of the Turing-Gandy-Sieg explications of effective cal-
culability

I have thus presented Sieg’s foundational analysis of computability, together with the
related works of Turing and Gandy, showing how it can be understood as a Carnapian
explication. I will now turn to Dershowitz’s & Gurevich’s alternative foundational analysis.

3.3.2 The Kolmogorov-Dershowitz-Gurevich explications
As in Sieg’s case, Dershowitz’s & Gurevich’s axiomatization (Dershowitz and Gurevich,
2008) of the intuitive properties of calculability is the result of decades of work on com-
putability. I will thus recall Gurevich’s previous work on computability, specifically focus-
ing on the history, the ideas, and the aims of the ASM project17, the results of which led
to Dershowitz’s & Gurevich’s axiomatization.

According to Gurevich’s own reconstruction, the original idea behind the ASM project
was to provide an operational semantics for algorithms by elaborating on what he calls the
“implicit Turing thesis” (Gurevich, 1991, p. 267), i.e. the proposition stating that every
algorithm can be simulated by an appropriate Turing machine. It was the aim of finding
a more efficient simulation of algorithms, something closer and more faithful to computer
scientists’ actual view of algorithms, that moved him to start the ASM project.

In order to achieve a better simulation of algorithms, the main conceptual idea is to
work at an arbitrary abstraction level, thereby considering any algorithm as an independent
entity, without imposing a specific data-representation level on its simulation. This con-
ceptual approach to explicating effective calculability can be traced back to Kolmogorov’s
take on computability. Gurevich repeatedly highlighted the significance of Kolmogorov’s

17ASM stands for Abstract State Machines, previously known also as Evolving Algebras. As the name
tells us, these are idealized machines designed to emulate various classes of algorithms.
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work for his own approach to computability. I take the connection between Gurevich’s and
Kolmogorov’s work to be crucial to understand Dershowitz’s & Gurevich’s axiomatization
of calculability. Since Kolmogorov’s take on computability is not so well known, I will
briefly present his ideas on computability.

Kolmogorov’s hidden analysis

If Turing’s approach to the problem of explicating the notion of effective calculability was
to look at the possible actions of the computor performing the symbolic calculation process,
Kolmogorov instead tried to impose restrictions onto the evolution of the computation in
a different way. Together with his own student Uspenski, he seemed to be conceptually
dissatisfied with the approach of Turing and the other pioneers of the 1936 confluence to
computability. He wanted to find a new approach, trying to apprehend the concept of
an algorithmic process in all its generality (Kolmogorov and Uspenski, 1958, pp. 62, 68)
(Uspenski and Semyonov, 1993, pp. 253, 258).

Uspenski tells us that a fundamental idea in Kolmogorov’s work on computability was to
view calculation steps as objects, analyzable independently from any computer whatsoever
(Uspenski and Semyonov 1993, pp. 253-254, Uspenski 1992, p. 395). Komogorov tried
to outline the structure of an arbitrary algorithm, without reference to the specific agent
computing it18.

Kolmogorov proposed what Uspenski calls a “philosophical scheme” (Uspenski, 1992,
p. 394), i.e. a semi-formal axiomatic characterization of what an algorithm is:

1. “An algorithm Γ applied to any ‘condition’ (‘initial state’) A from some set
D(Γ) (‘domain of applicability’ of the algorithm Γ) gives a ‘solution’ (‘conclud-
ing state’) B.

2. The algorithmic process may be subdivided into separate steps of apriori bounded
complexity; each step consists of an ‘immediate processing’ of the state S (that
occurs at this step) into the state S∗ = ΩΓ(S).

3. The processing of A0 = A into A1 = ΩΓ(A0) , A1 into A2 = ΩΓ(A1), A2 into
A3 = ΩΓ(A2), etc., continues until either a nonresultative stop occurs (if the
operator ΩΓ is not defined for the state that just appeared) or until the signal
saying that the ‘solution’ has been obtained occurs. It is not excluded that
the process will continue indefinitely (if the signal for the solution’s appearance
never occurs).

4. Immediate processing of S into S∗ = ΩΓ(S) is carried out only on the basis of
information on the form of an apriori limited ‘active part’ of the state S and
involves only this active part.” (Kolmogorov, 1953).

18Gurevich reported that Leonid Levin, in private conversation, told him that Kolmogorov viewed com-
putations as physical processes. See (Gurevich, 2012, p. 6) and (Gurevich, 2015, p. 197). For my analysis,
what matters is that Kolmogorov saw computations as objects that can be treated independently from
any computer whatsoever, besides them being either abstract or physical entities.
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At first glance, the philosophical originality of Kolmogorov’s take is not evident. Kol-
mogorov’s philosophical scheme seems another definition of what I called computorability,
i.e. the output of Turing’s praised analysis. After all, does not Kolmogorov, as Turing did
first, sharpen effective calculability by imposing a boundedness and a locality condition?
Is his proposal, then, just another example of Turing’s praised way of thinking about com-
putability? With the help of the previous philosophical considerations, a second look at
Kolmogorov’s axiomatization shows that this is not the case.

Terminological similarities between the two formulations should not trick one into
equating these two informal characterizations. In fact, if Turing framed the two bounds by
imposing constraints on the possible actions of the computor, in Kolmogorov’s axiomati-
zation what is bounded and local is every step of the computational process, which is seen
as the structural evolution from the input to the (possible) output. We can better appre-
ciate Kolmogorov’s originality by noting that no specific set of initial states or elementary
operations is singled out by his definition of an algorithm. The restrictions imposed by
these four intuitive considerations are structural limitations on the computational process.
Specifically, all the steps of the algorithm must be bounded in their complexity and each
of these steps must consist of an elementary transformation that depends only on a limited
active part of the state under consideration. Both the boundedness and the locality con-
straint, then, are understood in a completely different way than in Turing’s analysis. Thus,
in stating his informal bounds, Kolmogorov focuses on the computational process and not,
as Turing did, on the actions of the computor. From the point of view of the computational
process, then, effectiveness is achieved by restricting our attention to those processes whose
steps satisfy the bounded complexity and the limited active part requirements.

This focus on the computational process is connected with Kolmogorov’s aforemen-
tioned programmatic aims of characterizing the general structure of an arbitrary algorithm.
Kolmogorov and Uspenski stressed this point by stating that the Kolmogorov thesis is
stronger than the Turing thesis, claiming that Kolmogorov did not want to just reduce
computations to his definition, but also to capture their actual structure (Kolmogorov and
Uspenski, 1958, p. 74) (Uspenski, 1992, p. 396) (Uspenski and Semyonov, 1993, p. 251).
Coherently with this more abstract aim, Kolmogorov and his students repeatedly stressed
how Kolmogorov’s approach to computability is more general than previous ones.

I will then refer to the hidden process that led Kolmogorov to his 1953 philosophi-
cal scheme as Kolmogorov analysis. Despite not being explicit, we have seen that there
is evidence in the writings of Kolmogorov and his own students that Kolmogorov analy-
sis is philosophically different from Turing’s one. Kolmogorov analysis wants to capture
the structure of an arbitrary algorithm, stating the non-trivial restrictions characterizing
classical computability on the general evolution of the computational process.

Note that here I stress a generality of Kolmogorov’s approach to computability that,
coherently with the philosophical perspective of my analysis, is purely conceptual and
lies in its semi-formal axiomatization of an arbitrary algorithm. Kolmogorov’s work on
computability can also be said to be technically more general than Turing’s, because Kol-
mogorov machines work on bounded graphs and are known to be able to implement more
algorithms than classical Turing machines. This is a historically interesting fact, but should
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not be confused or merged with the conceptual generality stressed above. Also, Sieg and
Byrnes have shown that Turing’s approach to computability can be suitably generalized to
bounded graphs, achieving with the so-called K-graph machines the same level of technical
generality as Kolmogorov machines (Sieg and Byrnes, 1996).

Kolmogorov achieved a semi-formal axiomatization of effective computability which is
conceptually different from Turing’s one. In what follows, I will show how Dershowitz’s
& Gurevich’s axiomatization of computability recovers the conceptual approach of Kol-
mogorov’s work on computability.

Dershowitz’s and Gurevich’s axioms for computations and the notion of algo-
rithmability

Dershowitz & Gurevich presented their characterization of effective calculability (Der-
showitz and Gurevich, 2008), adding a restriction to the initial states allowed by Gurevich’s
postulates for sequential algorithms (Gurevich, 2000)19. Gurevich thinks about algorithms
in terms of objects independent from any computer: “in our view, rather common in com-
puter science, algorithms are not humans or devices; they are abstract entities” (Gurevich,
2014, p. 38). What Gurevich wants to stress with this wording is not the (quite trivial) fact
that algorithms should not be identified with their computing agents, something that ev-
ery computability pioneer would obviously agree with. Gurevich, following Kolmogorov’s
footsteps, stresses instead that his explication of calculability treats algorithms and ef-
fective computations independently from their calculators. This philosophical standpoint
justifies the technical motto of the ASM project of simulating algorithms at an arbitrary
abstraction level, which can be traced back to Kolmogorov’s and Uspenski’s aforementioned
programmatic aims.

According to Gurevich, then, it is possible to informally characterize any classical (i.e.
sequential) algorithm by three non-trivial constraints on the evolution of the computational
process, called the Sequential Postulates. For any sequential algorithm A:

“POSTULATE I (Sequential time). An algorithm is a state transition system.
Its transitions are partial functions.” (Dershowitz and Gurevich, 2008, p. 313).

The first postulate tells us that a sequential algorithm, taking this wording in its vague
acceptation, is a sequence of discrete computational steps. Gurevich excludes from the
scope of his analysis continuous (analog) processes, transfinite computation sequences (in-
volving limits), nondeterministic transitions, and nonprocedural input-output specifica-
tions.

“POSTULATE II (Abstract state). States are structures, sharing the same fixed,
finite vocabulary. States and initial states are closed under isomorphism. Transitions
preserve the domain, and transitions and isomorphisms commute.” (Dershowitz and
Gurevich, 2008, p. 317).

19Classically, a sequential algorithm (sometimes called sequential-time algorithm) is an algorithm that
executes determined, isolated computations bounded step after bounded step.
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The second postulate tells us how algorithmic states are represented. It states that any
algorithm, on his native level of abstraction, can be represented by (and actually, according
to Gurevich, is) a (series of) first-order logical structure(s). There is obviously a certain
degree of speculation in this thesis and Gurevich did not present any kind of justification
for this proposition except for a classical argument by example: “logic experience shows
that any kind of static mathematical situation can be adequately described as a first-order
structure” (Gurevich, 1999, p. 10). This representational tenet is shared also by Uspenski
(Uspenski, 1992, p. 395).

Moreover, this postulate tells us that neither the vocabulary nor the base set of the
algorithm states change during the computation. The evolution of the computational
process is thereby given by suitable changes in the values of the functions of a given state20.
The isomorphic closure is then imposed on the states and transitions of the algorithm for
the same reasons adduced by Gandy and Sieg.

“POSTULATE III (Bounded exploration). Transitions are determined by a fixed
finite ‘glossary’ of ‘critical’ terms. That is, there exists some finite set of (variable-
free) terms over the vocabulary of the states, such that states that agree on the values
of these glossary terms, also agree on all next-step state changes” (Dershowitz and
Gurevich, 2008, p. 319).

The third postulate expresses the effectiveness requirement, a fundamental limitation
imposed on transitions. It can be seen as a generalization of Kolmogorov’s bounded com-
plexity and limited active part ideas. This restriction is pivotal to characterize sequen-
tial algorithms and, a fortiori, effectively calculable functions. Specifically, this postulate
bounds the number of terms that have to be considered in order to make a transition
from a given state to the next one. Unbounded searches and infinitary rules are therefore
forbidden.

Philosophically speaking, this postulate is informally justified by what Gurevich calls
the “Accessibility Principle”, i.e. the assertion that, from the point of view of process-
evolution, the only way in which a given algorithm A can access an element a of a given
state X is to produce a ground term suitably evaluating that element. Then, the finite set
T , which this postulate is about, is nothing but the set of all these terms.

The accessibility principle shows how Dershowitz’s & Gurevich’s postulates conceptu-
ally differ from Sieg’s. This principle makes explicit a philosophical tenet of Kolmogorov
analysis, namely the idea of explicating effective calculability independently from any cal-
culator. If the central concept in Sieg’s formal treatment is the notion of assembly (together
with the related notions of causal neighborhood and determined regions), i.e. the formal
representation of the actions that the computing agent can perform during the process of
assembling a new state from a given one, in Dershowitz’s & Gurevich’s account the comput-
ing agent is completely out of the conceptual picture. Technically, the absence of a specific

20This encompasses also formulas usually expressed by relations. In fact, in Gurevich’s formal frame-
work relations are represented by functions and boolean values. Therefore first-order logical formulas are
expressed in a quantifier-free way.
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data-representation level makes it impossible to say something about how the computation
process is carried out by the computing agent. Gurevich stresses this inability:

“Imagine yourself being an executor of A at a state X. Since you cannot take
advantage of a particular representation of the elements, the only way to access
elements of X is to use the basic functions of X. Essentially you use X as an
oracle”21 (Gurevich, 1999, p. 14, my emphasis).

Gurevich presented these three postulates, proving a representation theorem between
processes satisfying these axioms and a particular type of abstract transition system, called
abstract state machine (ASM) (Gurevich, 2000). ASMs are a particular version of static
algebras, i.e. first-order structures without relations, including in their language three
Boolean values as primitive (true, false, undef), as well as the usual Boolean operations.
Basic transition rules are recursively constructed by two constructors working on basic
update instructions. The problem of representing the addition of new atomic elements,
something common in many sequential algorithms, is solved by using a Reserve universe,
a naked set from which an appropriate constructor can take an element when it is needed.
A sequence of rules is called a program. An ASM is then defined in the following way22:

“An abstract state machine (ASM) is given by: a set (or proper class) S of algebraic
states, closed under isomorphism, sharing a vocabulary F ; a set (or proper class)
I ⊆ S of initial states, closed under isomorphism; a program P , consisting of finitely
many commands, each taking the form of a guarded assignment: if p then t := u for
terms t and u over F and conjuction p of equalities and disequalities between terms”
(Dershowitz and Gurevich, 2008, p. 321, original emphases).

Gurevich proved a representation theorem, known as the “ASM Theorem” (Dershowitz
and Gurevich, 2008) or the “Main Theorem” (Gurevich, 2000), ensuring that every algo-
rithm that satisfies the three sequential postulates is step-by-step equivalent to a certain
ASM program.

In order to adequately characterize computable functions, Dershowitz & Gurevich
added another postulate to this characterization. In fact, one cannot be sure that a pro-
cess satisfying the sequential postulates computes only calculable functions, because initial
states are not restricted to computable ones and the other bounds work at a high level
of abstraction. Recall that the computing agent is conceptually out of the picture and it
technically acts as a kind of oracle. If, then, the initial state of a certain process is an
oracle-like non-computable input, the resulting output of the computation can be outside
the scope of Turing computable functions. Thus, Dershowitz & Gurevich need to impose,
differently from Sieg’s axiomatization, an explicit limitation on the set of possible initial
states:

21Note that I have changed the symbols used by Gurevich to denote an algorithm and its state in order
to make the quote coherent with the present terminology.

22For a full technical presentation of ASMs see (Gurevich, 1995) or (Gurevich, 2000).
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“POSTULATE IV (Arithmetical State). Initial states are arithmetical and blank.
Up to isomorphism, all initial states share the same static operations, and there is
exactly one initial state for any given input values.” (Dershowitz and Gurevich, 2008,
p. 325).

The fourth postulate restricts the set of initial states only to arithmetical blank states23,
thereby restricting the domain of the algorithmic processes allowed only to the numerical
ones. A process satisfying both the sequential postulates and this fourth postulate is
called an arithmetical algorithm. An ASM that satisfies the fourth postulate is called
an arithmetical ASM. Using the concept of arithmetical ASM the authors proved that
every arithmetical algorithm can be emulated by a certain arithmetical ASM and the co-
extensiveness of arithmetical ASMs and partial recursiveness.

Then, Dershowitz & Gurevich recovered Kolmogorov’s and Uspenski’s forgotten con-
ceptual approach to the problem of explicating effective calculability. They gave a new
characterization of Kolmogorov’s semi-formal axiomatization. Their postulates make ex-
plicit the philosophical elements behind Kolmogorov’s philosophical scheme, such as the
aim of capturing the general structure of an arbitrary algorithm, the emphasis on a more
direct simulation of computations, the pivotal restrictions imposed on the evolution of the
computing process. I will refer to the semi-formal notion of calculability implicitly defined
by the Kolmogorov-Dershowitz-Gurevich postulates as algorithmability.

Representing a simple Turing machine in Dershowitz’s and Gurevich’s formal
framework

Just like in the previous subsection, in order to properly understand Dershowitz’s and
Gurevich’s formal definitions, let us look at an example of an algebraic representation of a
Turing machine and of an equivalent ASM program.

In this formal framework, an algorithm A is associated with a set S(A) whose elements
will be called states of A, a subset I(A) of S(A) whose elements will be called initial states
of A, and a map τA : S(A) → S(A) that will be called the one-step transformation of A.
Two algorithms, A and B are then equivalent if S(A) = S(B), I(A) = I(B), and τA = τB.

States of A are first-order structures, sharing the same vocabulary. A vocabulary is a
finite collection of function names, always including the equality sign ‘=’, nullary names
‘true’, ‘false’, ‘undef’, unary name ‘Boole’, and the names of the usual boolean operations.
Terms are inductively defined from nullary functions in the usual way and they are always
ground. Then, a structure X of vocabulary Γ is a nonempty set S (called the base set of
X), together with interpretations of the function names in Γ over S. Nullary functions are
identified with their respective values and the equality sign is interpreted with the identity
relation on the base set. The value of a term in a given structure is inductively defined as

23The authors definition of an arithmetical state is quite long. Roughly speaking, an arithmetical state
is a combination of natural numbers, truth values (true, false and undefined), dynamic functions and
arithmetical operations. Such an arithmetical state is considered blank when all operations, except the
input, have an undefined value.
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usual. The one-step transformation τA does not change the base set of the algorithm. The
set of states is closed under isomorphisms.

If f is a j-ary function name and a is a j-tuple of elements of X, then the pair (f, a)
is called a location of X. ContentX(f, a) is the element f(a) in X. If (f, a) is a location
of X and b is an element of X, then (f, a, b) is an update of X. In order to execute such
update, one has to replace the current ContentX(f, a) with b. X + ∆ denotes the result
of executing a certain set of updates ∆ over a state X. For any algorithm A and any of
its state X, we define ∆(A, X) := τA(X) − X. We say that two structures X and Y of
the same vocabulary Γ coincide over a set T of Γ-terms if ∀t ∈ T (V al(t, X) = V al(t, Y )).
Then, the bounded exploration postulate assures us that, if A is a sequential algorithm,
there exists a finite set T of terms in the vocabulary of A such that ∆(A, X) = ∆(A, Y )
whenever states X, Y of A coincide over T .

We, then, can easily represent (the computation of) a Turing Machine in this framework.
The base set of our structure(s) will be the union of the following three sets, together
with the Boolean set. The Control set (Control = {q1, . . . , qn}) contains n elements
representing all the possible internal states of the machine. The Alphabet set (Alphabet =
{σ1, . . . , σk}) contains k different elements representing all the symbols that our machine
is able recognize. Finally, the Tape set (Tape = {a, b, c, . . .}) contains an infinite number
of positive integers which represent the (potentially) infinite squares of the Turing machine
tape, together with the unary operations Successor and Predecessor adequately defined
on the elements of the set, representing the structure of the machine tape.

The vocabulary of our algebraic representation of a Turing machine contains, together
with the logical names, the following function names: the CurrentControl nullary function
name, shifting values amongst elements of the Control set, denoting the current internal
state of the machine; the nullary function name Head, shifting values amongst elements
of the Tape set, denoting the square currently scanned by the machine head; the unary
function name Content : Tape → Alphabet, representing the symbols contained in every
square of the tape.

In order to make as clear as possible the differences between ASMs and Turing com-
putors formalism, I will use the same Turing machine that we represented in Sieg’s formal
framework: the Turing machine that alternatively prints 0 and 1, leaving every time a
blank square between them.

As I did in Sieg’s formalism, we assume for simplicity that every square of the tape
is blank and that our Turing machine can only move right. Initially, we assume that our
Turing machine starts in the internal state q1, scanning the leftmost square of the tape.

Then, the initial state of the computation of our Turing machine would be represented
(up to isomorphisms) by the following structure. The fixed base set of our initial state X1 is:
{q1, q2, q3, q4, q5, q6}∪{0, 1, ∗}∪{a, b, c, . . .}, together with the boolean set. Non-logical func-
tions take the following values: CurrentControl = q1, Head = a, ∀s ∈ Tape(Content(s) =
∗). Then, changes in the non-logical function values in next state of the computation, X2,
are contained in the update set ∆(A, X1) = {(CurrentControl, q2), (Content, Head, 0)}.
Changes between X2 and X3 are, instead, given by the different update set ∆(A, X2) =
{(CurrentControl, q3), (Head, Successor(Head))}, and so on.
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We, then, can easily write the program of an ASM simulating step-by-step the com-
putation of our Turing machine, i.e. the update sets for all the states of the computation,
nesting do-in-parallel guarded assignments:

if CurrentControl = q1 and Content(Head) = ∗, then
par: CurrentControl := q2;Content(Head) := 0

else if CurrentControl = q2 and Content(Head) = 0, then
par: CurrentControl := q3;Head := Successor(Head)

else if CurrentControl = q3 and Content(Head) = ∗, then
par: CurrentControl := q4;Head := Successor(Head)

else if CurrentControl = q4 and Content(Head) = ∗, then
par: CurrentControl := q5;Content(Head) := 1

else if CurrentControl = q5 and Content(Head) = 1, then
par: CurrentControl := q6;Head := Successor(Head)

else if CurrentControl = q6 and Content(Head) = ∗, then
par: CurrentControl := q1;Head := Successor(Head)

The two-step reconstruction of the Kolmogorov-Dershowitz-Gurevich explica-
tions

Let me reconstruct the conceptual structure of this group of explications of effective cal-
culability in terms of Carnapian explication. The clarification of the explicandum was
implicitly achieved by Kolmogorov in the process that led him to his 1953 philosophical
scheme, i.e. Kolmogorov analysis. I called the conceptual offspring of his efforts algorithma-
bility, i.e. what is defined by the Kolmogorov-Dershowitz-Gurevich semi-formal axioms for
computations. From this notion, different explicata can be formulated, such as the classi-
cal Kolmogorov machines or the more recent ASMs. Here is a conceptual diagram of this
second group of explications (Fig. 3.3):

EC algorithmability

Kolmogorov-Uspenski

Dershowitz-Gurevich

Kolmogorov analysis

Figure 3.3: The two-step structure of the Kolmogorov-Dershowitz-Gurevich explications
of effective calculability

I have thus presented Dershowitz’s & Gurevich’s foundational analysis of computability,
together with Kolmogorov’s seminal take, explaining how it can be understood as a Car-
napian explication. In what follows I will conceptually compare this group of explications
with the Turing-Gandy-Sieg ones.
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3.3.3 Foundational analyses of computability as three-step expli-
cations

We have seen how Sieg’s and Dershowitz’s & Gurevich’s axiomatizations build upon differ-
ent approaches to computability and how some of the differences between their technical
frameworks depend on their different conceptual background. Specifically, Sieg proposed
axioms for calculators, building upon Turing’s and Gandy’s seminal works on computabil-
ity. The conceptual core of his axioms for computors and mechanical devices is the de-
gree of freedom that the calculator is allowed to have. Dershowitz & Gurevich, following
Kolmogorov’s footsteps, instead proposed axioms for computations, considering them in-
dependently from any calculator whatsoever. The core of their axioms are the abstract
state and the bounded work postulates, i.e. non-trivial representational and procedural
limitations of the calculation process itself.

These approaches can be traced back, respectively, to Turing’s praised analysis of cal-
culability and Kolmogorov’s seminal ideas about the intuitive notion of algorithm. In
explication terms, it seems prima facie that Turing and Kolmogorov clarified the notion
of effective calculability in two different ways, arriving respectively at the notions of com-
putorability and algorithmability.

However, where exactly lies the conceptual difference between these two groups of
explications? Several possibilities should be considered. These authors could for instance
have explicated different intuitive concepts. Alternatively, there could be two possible
disambiguations of effective calculability, as in the case of logical and statistical probability
(Carnap, 1950b). Another possibility could be that these two groups of explications differ
in the way in which they clarify their common explicandum or in the way in which they
formulate their explicatum. In other words, where does the branching between these two
groups of explications happen? Does it happen at the stage of the clarification of the
explicandum or does it happen at the stage of the formulation of the explicatum? My
proposal is that this difference lies neither in the first clarification step nor in the final step
of the formulation of the explicatum, but rather in an additional step between the two.

The difference between these two approaches to computability cannot lie in the final
step of the formulation of the explicatum. After all, there are many other instances of
mechanical computability, extensionally equivalent to Turing computability, that do not
show any such conceptual difference. Take Post’s explication of effective calculability, for
instance. Post’s notion of normal system generability is indeed a different formalization
of the intuitive concept of calculability than Turing’s one. According to Post, a function
is effectively calculable if and only if it(s symbolic representation) can be generated via
the iterative application of certain substitution rules (Post, 1943). This characterization of
computability is then by no means conceptually reducible to Turing’s one. However, Post’s
work can be completely subsumed under the conceptual approach of the Turing-Gandy-
Sieg explications (cf. Sieg 2018). Even though Post does not specify a semi-formal notion
of computability, his work seems to implicitly make use of the notion of computorability.
In fact, what matters in Post’s systems are the possible moves that one is allowed to make
in order to solve the specific symbolic substitution puzzle, i.e. in order to calculate a certain
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function. In order to explicate the notion of effective calculability, Post then pays attention
to the symbolic processes that can be carried out by an idealized human being working in a
clerical way, just as Turing did24. Thus, the difference between Turing’s and Kolmogorov’s
approaches must be sought elsewhere.

Does perhaps the difference between these two groups of explications lie in the first step
of these explications, i.e. in the clarification of the explicandum? Are these two founda-
tional analyses two distinctive way of disambiguating or clarifying the intuitive notion of
effective calculability? Even though it is certainly tricky to give arguments for the unique-
ness of an intuitive, vague concept that different people tried to capture, some evidence
can be provided. Despite their conceptual differences, Kolmogorov and Turing were trying
to explicate the same informal notion: effective calculability. Compare the examples and
the initial discussion contained in (Kolmogorov and Uspenski, 1958) with the ones in (Tur-
ing, 1936). Moreover, if one looks at the two foundational analyses of computability here
treated, both Sieg and Dershowitz & Gurevich explicitly state that the aim of their work
is to capture the intuitive notion of effective calculability, as traditionally understood and
clarified (Sieg, 2009; Dershowitz and Gurevich, 2008). Turing and Kolmogorov explicated
also the same contexts and uses of the term, i.e. the same clarified explicandum. Just like
Turing, Kolmogorov was interested in explicating classical calculability in all its symbolic
generality, abstracting away from the actual limitations of any computer or any domain.
The difference between these two groups of explications is thus not explainable as a differ-
ence in the clarification of effective calculability such as the one at play in Church’s work
on general recursiveness (Quinon, 2019, pp. 22-25).

Where then does the conceptual difference between Turing’s and Kolmogorov’s ap-
proaches to computability lie? It seems that the traditional, two-step version of Carnapian
explication is not fine-grained enough to capture the differences between the semi-formal
notions of computorability and algorithmability. In what follows I will present a refined
three-step version of Carnapian explication that is able to capture the conceptual differ-
ences between these two groups of explications.

Explication as a three-step procedure: the semi-formal sharpening of the clar-
ified explicandum

As I repeatedly stressed in this chapter, Carnapian explication is originally a two-steps
procedure. I am now going to propose a refinement of the explication with the help of which
I will achieve a better analysis of the two groups of explications of effective calculability
treated above. This refinement adds another mid-level step, the semi-formal sharpening of
the clarified explicandum, to the procedure, making it thus become a three-step method.

In the first step of Carnapian explication, i.e. the clarification of the explicandum,
the explicator ought to clarify and (possibly) disambiguate the concept that she seeks to
explicate, relative to a given context of use. My claim is that after this first, classically
recognized step, in some cases the explicator sharpens this notion into a semi-formal one,

24In order to better appreciate this connection, see Turing’s late take on solvable and unsolvable puzzles
in (Turing, 1954).
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a mid-level ExplicanDum∗∗. Only after this sharpening, the explicator passes to the final
third step of the procedure of explication, i.e. the formulation of the explicatum (Fig. 3.4).

ED ED∗ ED∗∗ ETsharpened concept
sharpeningclarification formulation

Figure 3.4: The structure of the refined three-step version of explication.

The process of getting from ED∗ to this semi-formal mid-level notion ED∗∗, i.e. the
semi-formal sharpening of the clarified explicandum, is not a theoretically neutral step.
Here the explicator has to make a theoretical choice amongst various possible directions in
the sharpening. Every sharpening must in fact possess a given theoretical focus, which is
given by the core aspects of the concept on which the sharpening focuses. The explicator
highlights certain aspects of the concept, while she leaves other aspects at the borders of
the conceptual sharpening.

Using a visual analogy, think about the action of shooting a picture of a landscape
with a reflex camera. In order to take a good picture of the landscape, one has to focus
the reflex camera on certain parts of the landscape, inevitably blurring the rest. It is
impossible to focus on every element of the landscape at the same time. In order to take
a good picture one has to choose what to focus on. Perhaps one wants to get a clear shot
of the background of the landscape or perhaps one wants to put into focus the foreground.
You cannot have both at the same time.

(a) ED (b) ED∗

(c) ED∗∗
1 (d) ED∗∗

2

Figure 3.5: Succession of shots of the same landscape with different focuses, representing
the evolution of a given explicandum during the first two steps of the refined three-step
version of explication.

This is completely analogous to what happens in the process of semi-formally sharp-
ening the clarified explicandum. The succession of shots of the same landscape in (Fig.
3.5) represents the possible evolution of a given explication. In (a) we can see a com-
pletely blurred landscape with unclear boundaries. This represents the starting point of
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any explication, i.e. a given intuitive explicandum ED, the scope of which is undefined
and that perhaps contains a great deal of ambiguity and vagueness. In (b) we can instead
see the same blurred landscape, this time framed inside clear boundaries. This represents
the clarified explicandum ED∗, which is obtained from the original explicandum through
the clarification and the disambiguation of the uses and the contexts for which the notion
is being explicated. Pictures (c) and (d) represent instead two different ways of putting
the landscape into focus, respectively highlighting the foreground and the background of
the picture, while inevitably blurring the rest of the image. The passage from (b) to one
of these two pictures represents the semi-formal sharpening of the clarified explicandum.
In this second step, the explicator sharpens the clarified explicandum ED∗ onto a semi-
formal sharpened ED∗∗. By stating semi-formal axioms or definitions, the explicator freely
chooses the parts and features of the clarified explicandum that she wants to highlight.
The parts and features to highlight and therefore the direction onto which the clarified ex-
plicandum is sharpened is never a philosophically neutral step. As represented by Pictures
(c) and (d), multiple choices are always possible25. The semi-formal sharpening step thus
changes neither the uses nor the context in which the explicandum is explicated, but it
makes more precise the notion via a theoretically-laden semi-formal definition.

Finally, there is the last step of the explication, i.e. the formulation of the explicatum.
I left this step out of the landscape-picture analogy because this step is different from all
the others, due to its focus on the explicatum and not on (a disambiguated or clarified or
sharpened version of) the explicandum. The explicatum can be a fully formalized notion
or even an informal one in some cases (e.g. the fish-piscis example in Carnap 1950b), but
it is always a whole other concept, fully detached from the explicandum.

Let me stress that one should not expect the mid-level step of the sharpening of the
clarified explicandum to occur in every explication whatsoever, but only in certain com-
plex cases where many different formal explicata are meant to replace a single explicandum.
Apart from the CTT case, other examples of concepts that may exhibit different sharpen-
ings of the same clarified explicandum and for which the three-step explication seems an
appropriate tool of analysis are formal theories of truth (Horsten, 2011; Halbach, 2014),
different conceptions of set (Incurvati, 2020), theories of informal proofs (Leitgeb, 2009;
Sjögren, 2011), notions of logical consequence (Etchemendy, 1990), and mathematical con-
ceptions of infinity (Mancosu, 2009).

In what follows, I will show how this refined three-step version of explication is able
to account for the conceptual differences between the two foundational analyses of com-
putability seen in Section 3. Specifically, the step of the semi-formal sharpening of the
clarified explicandum will prove itself to be pivotal into adequately capturing the differ-
ence between the notions of computability and algorithmability.

25Some scholars outside the Carnapian tradition have also highlighted this possibility of sharpening
concepts in multiple directions. See for instance (Smith, 2011, pp. 27-29). Shapiro also stressed, in a
Waismannian fashion, the possibility of this multiple sharpening in (Shapiro, 2013). However, it should
be noted that despite some similarities, my concept of sharpening is a technical term that has to be
understood inside the proposal of the three-step version of explication.
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Computorability vs Algorithmability26

Applying my refined three-step version of Carnapian explication to the two aforementioned
groups of explications of effective calculability gives us this conceptual picture (Fig. 3.6):

EC EC∗

computorability

algorithmability

Sieg-Gandy

Turing

Kolmogorov-Uspenski

Dershowitz-Gurevich

Figure 3.6: The three-step structure of the Turing-Gandy-Sieg and the Kolmogorov-
Dershowitz-Gurevich explications of effective calculability

The branching between these two groups of explications happens neither in the first
step of clarifying the explicandum nor in the final step of the formulation of the explicatum,
but instead on the mid-level. The second-step, the semi-formal sharpening of the clarified
explicandum, is where the two foundational analyses of computability differ. From the
perspective of this refined version of explication, then, the notion of computorability and
the notion of algorithmability are two semi-formal sharpenings of the clarified notion of
effective calculability. Despite sharpening the same clarified notion, namely the classical
concept of calculability clarified in terms of symbolic processes, they do that in two different
ways, paradigmatically exemplified by Turing’s praised analysis and Kolmogorov’s hidden
analysis of computability.

Let me state more precisely what these two semi-formal sharpenings of the clarified
notion of effective calculability underlie:

• Computorability.
The sharpening is achieved in terms of the possible actions of the computor. Bottom-
up bounds are imposed on the freedom of the agent of the computation. The con-
ceptual focus of the analysis is at the calculation level.

• Algorithmability.
The sharpening is achieved in terms of non-trivial structural features of the process
of computation. Top-down restrictions are imposed on the evolution of the compu-
tational objects. The conceptual focus of the analysis is at the abstract algorithmic
level.

Then, the difference between the notion of computorability and the notion of algo-
rithmability can be understood in terms of two different semi-formal sharpenings of the
same clarified explicandum.

26It should be noted that both computorability and algorithmability are to be understood as technical
terms, as I explain in my definition of these two notions that can be found in this page.
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Turing was the first one to sharpen the clarified notion of effective calculability, in what
is usually called Turing analysis. Technically, I want to stress that this name is misleading.
This is not a conceptual analysis, this is conceptual engineering of an intuitive notion into,
first, a clarified notion and then into a sharpened one. Turing merged these two steps in
his famous informal exposition of 1936. In his ‘analysis’, he fixed the use and the context
of his explication of effective calculability, abstracting the notion of effective calculability
from practical limitations, ruling out infinity and any kind of ingenuity, and focusing
on the symbolic processes underneath any calculation process. This disambiguation and
clarification of effective calculability belongs to the explication step of the clarification of the
explicandum. At the same time, Turing sharpened this clarified explicandum by arguing
that what is effectively calculable has to be computable by an abstract human calculator
respecting in his actions the bounds that we are now all familiar with, thereby implicitly
giving a semi-formal definition of the notion of computorability. This implicit semi-formal
axiomatization of effective calculability in terms of actions of a computor belongs instead
to the mid-level step of the sharpening of the clarified explicandum.

Turing’s approach has been the prevailing way of semi-formally sharpening effective
calculability since his 1936 analysis. After Turing, Gandy improved and made (some) as-
sumptions underlying Turing’s approach explicit, using them in order to attack the general
problem of machine computability and thereby generalizing Turing’s analysis of an abstract
computor with his four ‘principles for mechanisms’. Sieg continued this tradition with a
detailed historical analysis of the conceptual background of the 1936 confluence and by
axiomatically improving Turing’s and Gandy’s foundational analyses of computability.

The first occurrence of the Kolmogorov’s approach to explicating effective calculabil-
ity was instead Kolmogorov’s own 1953 informal axiomatization of an algorithm. Kol-
mogorov, like Turing, implicitly clarified and sharpened effective calculability, merging
these two steps into the hidden analysis behind his semi-formal definition of algorithma-
bility. Together with Uspenski, he improved the 1953 treatment, arriving at the definition
of a Kolmogorov machine, the first explicatum obtained via the sharpened notion of al-
gorithmability. Despite the fruitfulness of Kolmogorov’s model of computation (Uspenski,
1992; Sieg and Byrnes, 1996), the originality of his conceptual take has not been equally
recognized. Gurevich and the ASM project revitalized Kolmogorov’s approach to expli-
cate effective calculability and the notion of algorithmability. As I stressed in Section 3,
the ASM project approach to computability was mainly motivated by technical reasons,
but nevertheless it recovered Kolmogorov’s forgotten conceptual approach. A remarkable
offspring of this project is Gurevich’s axiomatic characterization of sequential algorithms,
which makes evident the originality of the Kolmogorov-focus based view of computation.
Together with Dershowitz, Gurevich then restricted his axioms in order to capture effective
computations, thereby achieving a foundational analysis of computability deeply rooted in
Kolmogorov’s approach.

The refined three-step version of explication is also able to explain some debates about
these two foundational analyses of computability. Recall that the semi-formal sharpening
of the clarified explicandum always implies a theoretical choice. Two different semi-formal
sharpenings of the same clarified explicandum are therefore conceptually incompatible.
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This can be seen in some remarks made by Sieg and Gurevich on each other’s foundational
analysis.

Sieg doesn’t recognize the originality of Dershowitz’s & Gurevich’s axioms, objecting
to their claim of their approach being more general than the Gandy-Sieg one (Sieg, 2013,
pp. 119-121). We have seen that the generality stressed by Dershowitz & Gurevich is of a
conceptual nature, being namely the fact that Kolmogorov’s semi-formal sharpening of the
clarified notion of calculability into algorithmability focuses on the abstract algorithmic
level and not on the level of computation. This cannot be captured nor fully understood
from the perspective of Turing’s sharpening and thus within Sieg’s framework.

This conceptual tenet of Turing’s way of semi-formally sharpening effective calculabil-
ity also has a formal correlate in the technical framework of Sieg’s explicatum, in its focus
on how a certain state of the computation is assembled, i.e. the input-output behavior
on the specific level of data-representation at which the calculator works. Symmetrically,
in Dershowitz’s & Gurevich’s treatment there is no place for any concept of calculator
whatsoever. There is no trace of a computor in their formal framework or in their pos-
tulates, and Gurevich’s accessibility principle explicitly forbids any meaningful notion of
calculator. The technical correlate of this principle is the abstraction from any specific data-
representation that makes the evolution of the state work via an oracle-like ground-term
production. The assumption of Kolmogorov’s way of semi-formally sharpening effective
calculability explains their aforementioned claims of conceptual generality and also their
critiques of Gandy’s machines as a model of parallel computation. From the perspective
of the notion of algorithmability, since the calculator is out of the conceptual picture, a
Gandy machine seems then an unnatural layering of mechanical devices (Gurevich, 2012,
pp. 271-272). More generally, since both Gandy’s and Gurevich’s treatment of machine
calculability heavily builds on their respective explications of effective calculability, con-
ceptual differences between their formal models of machine computability can be explained
by their opposite way of semi-formally sharpening effective calculability.

Another philosophical difference between these two groups of explications that can be
explained by my refined three-step version of explication is the one stressed by Smith in
the context of his idea of a squeezing argument for effective calculability (Smith, 2013,
pp. 357-364). He stressed how Kolmogorov imposed limitations on the concept of effective
computation as top-down restrictions, in sharp contrast to Turing’s bottom-up bounds on
the actions of the computor. This difference is a consequence of the different semi-formal
sharpening of the clarified explicandum achieved by these two pioneers of computabil-
ity. Turing, in order to arrive at the notion of computorability, had to impose bottom-up
bounds on the possible actions of the computor, having chosen to highlight the agent of the
computation. Kolmogorov, instead, highlighted the abstract structure of an arbitrary algo-
rithm and its evolution process and thus, in order to define the notion of algorithmability,
imposed the pivotal limitations as top-down restrictions.

We have then seen how, with the help of my refined three-step version of Carnapian
explication, we can adequately capture and conceptualize the difference between algo-
rithmability and computorability in terms of two different semi-formal sharpenings of the
same clarified explicandum. More generally, this case study shows the significance of the
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intermediate steps in the evolution of a given explication. As we saw in the case of CTT,
even small conceptual differences in a crucial mid-level step of the explication procedure can
cause heavy formal differences and related conceptual oppositions in the formal explicata.
It seems likely, thus, that one could resolve some conceptual oppositions between formal
explications of the same notion in the same way. Examples of explications structurally
similar to CTT, such as formal theories of truth, logical consequence, informal provabil-
ity, conceptions of set, and infinity seem promising future applications for the three-step
Carnapian explication.

3.4 Formalizing Carnapian Explication in the Theory
of Conceptual Spaces

After having focused our attention on the structure of Carnapian explication in the last
section, let us go back to the epistemological debates concerning the viability of explication
as a philosophical method. In Section 2, we saw that a significant part of the philosophical
debate over explication has focused on the desiderata that a good explicatum has to respect.
More specifically, many different ways of spelling out the four desiderata singled out by
Carnap have been proposed and some critics have stressed the tension between some of
them. A problem with these discussions over explication desiderata is that both the specific
proposals and the critiques are often difficult to judge due to the aforementioned vagueness
and ambiguity of Carnap’s four desiderata.

With the hope of improving this situation, in this section I will propose a way of
making precise the procedure of explication and its desiderata by means of the theory of
conceptual spaces. Specifically, I will show how different readings of these desiderata can be
made precise in terms of geometrical and topological constraints over the conceptual spaces
of the explicandum and the explicatum. Moreover, I will demonstrate how, thanks to this
explication of the concept of explication itself, the specific proposals of desiderata in the
philosophical literature can be assessed and compared. I will also argue that my proposal
is able to answer the aforementioned critiques of explication as a philosophical procedure
by reconstructing Carnapian explication in a pragmatic yet precise meta-framework where
one can have more fine-grained readings of explication desiderata.

As a formal background for my explication of ‘explication’, I will rely on the theory
of conceptual spaces (Gärdenfors, 2000, 2014). Conceptual spaces have been successfully
applied in different fields, proving themselves to be a powerful tool for representing differ-
ent types of linguistic and conceptual phenomena, such as concept formation, metaphors,
contextual effects, meanings (Gärdenfors, 2000, 2014; Zenker and Gärdenfors, 2015a). In
philosophy, conceptual spaces have been used to account for vagueness-related phenomena
for classificatory and comparative concepts and to model inductive inferences and other
forms of conceptual manipulation (Douven et al., 2013; Decock, Dietz and Douven, 2013;
Decock and Douven, 2014; Gärdenfors, 2000; Sznajder, 2016; Osta-Vélez and Gärdenfors,
2020). In philosophy of science, conceptual spaces have been used to model various types of
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theory-change in physics as transformation of the related conceptual space(s) (Gärdenfors
and Zenker, 2011, 2013; Zenker and Gärdenfors, 2015a; Masterton, Zenker, and Gärdenfors,
2017).

The plan for the rest of the section is the following. I will first present the theory of
conceptual spaces, both from a philosophical and a technical point of view. I will focus
on some recent technical extensions of the theory, developed in order to treat vague and
comparative concepts in the framework of conceptual spaces. Then, I will make method-
ologically precise the goal of my explication of ‘explication’, by distinguishing two senses
in which one can explicate the concept of explication itself. I will also focus on two pivotal
assumptions concerning the concepts and the desiderata involved in the procedure of ex-
plication that my proposal requires. After these methodological matters, I will show how
the procedure of explication can be made precise inside the theory of conceptual spaces.
Specifically, we will see how different readings of explication desiderata presented in the
literature can be formalized as topological or geometrical constraints on the conceptual
spaces related to the explicandum and the explicatum. I will also make evident how the
representation of the explicandum and the explicatum in conceptual spaces allows us to
state more fine-grained desiderata for the adequacy of an explication, which arguably show
how explication can be successfully defended against some recent critiques. Finally, in
order to make clearer my proposal, I will show how two paradigmatic cases of successful
explications from the history of science can be represented and assessed in the context of
my explication of ‘explication’: the scientific concept of temperature and the morphological
concept of fish.

3.4.1 Conceptual spaces
The theory of conceptual spaces (Gärdenfors, 2000, 2014) has to be understood as a theory
of mental representation. According to it, we represent information at three different levels
(in order of ascending complexity): subconceptual (e.g. neural networks), conceptual, and
symbolic (e.g. Fodor’s language of thought). The conceptual level is where the catego-
rization process takes place and where we construct properties, concepts, meanings, and
categories. The main tenet of conceptual spaces theory is that we can model what happens
at this level geometrically.

Pivotal in the theory of conceptual spaces is the notion of quality dimension. The
idea is that a quality dimension represents a particular (aspect of a) quality with respect
to which objects can be judged as more or less similar. The more similar two objects
are with respect to that quality, the closer their related points in that quality dimension.
Examples of familiar concepts that can be modeled as quality dimensions include time,
weight, size, and brightness. A quality dimension is a dimension in a strict geometrical
sense, i.e. every quality dimension is equipped with a specific geometrical or topological
structure. Quality dimension often come with a metric, i.e. with a distance function, but
also qualitative measures of distances are allowed. Neither dimensions or the metrics are
arbitrary, but are usually determined on the basis of a large set of similarity judgments
via suitable techniques such as multidimensional scaling or principal component analysis
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(Douven and Gärdenfors, 2019, p. 5).
Quality dimensions can be integral or separable. Two dimensions are integral iff to

assign a value to an object in one of them implies simultaneously assigning a value in
the other one. Dimensions that are not integral are called separable. Color perception
dimensions, such as saturation and hue, are a familiar example of integral dimensions.
Dimensions of shape and weight are instead examples of separable dimensions. Quality
dimensions appear often related together in stable groups. A set of integral dimensions
that are separable from all the other ones is called a domain. Examples of domains are the
color domain (constituted by the dimensions of hue, saturation, and brightness) and the
space domain (height,width, and depth). A conceptual space is, then, a collection of one
or more domains.

A conceptual space is able to represent objects, properties, and concepts. Objects
are represented as vectors. Properties are represented as certain kinds of regions in a
domain. Natural properties are hypothesized to be (representable as) convex regions of a
domain (Gärdenfors, 2000, p. 71). Concepts, then, are certain kinds of sets of regions in a
(possibly open-ended) number of domains. Natural concepts are sets of regions in a number
of weighted domains equipped with information about how regions in different domains
are correlated (Gärdenfors, 2000, p. 105). It is then possible to distinguish between core
and peripheral properties of concepts, by assigning different salience weights to different
domains. In a similar fashion, singular dimensions can be weighted in order to account for
contextual effects of various kind.

Gärdenfors then takes convexity to be the pivotal feature of regions representing nat-
ural properties and concepts. The necessity of convexity as a criterion of naturalness in
conceptual spaces has been criticized by various scholars. Mormann highlighted that con-
vexity requires the underlining conceptual space to be metrical or linear and it therefore
strongly restricts the possible structure of the conceptual space (Mormann, 1993, p. 220).
He instead favored a pluralist approach to naturalness criteria, arguing that in many cases
weaker topological notions such as connectedness or closedness are as good as convexity and
they do not impose strong restrictions on the underlining structure of the space (Mormann,
1993, p. 226, p. 239).

Recently, Hernández-Conde has strengthen the case against convexity as a naturalness
criterion, arguing that this constraint is problematic both from a theoretical and a practical
perspective. He claimed that the main arguments that Gärdenfors gave for convexity either
require very strong assumptions on the underlining structure of the space or they work also
for weaker requirements such as star-shapedness (Hernández-Conde , 2017). Moreover, he
showed how convexity appears to be problematic also from the inner perspective of con-
ceptual spaces theory (Hernández-Conde , 2017, pp. 4027-4034). Gärdenfors (Gärdenfors,
2019) replied to these critiques, claiming that it is an open empirical matter which of these
criteria is the more adequate one. I remain neutral on whether convexity is the right cri-
terion of naturalness in conceptual spaces. In Section 4.4, I will show how a plurality of
geometrical constraints can be used to make precise in conceptual spaces the fruitfulness of
an explication, but I will not endorse any reading of explication desiderata as the correct
one.
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Technicalities

In the theory of conceptual spaces the fundamental notion of a quality dimension has to
be understood as a proper geometrical dimension. Axioms and primitive relations of any
dimension can be of any kind. Minimal requirements can be defined in terms of the relations
of betweenness (B(a, b, c)) and equidistance (E(a, b, c, d)). Since the most fundamental task
of a quality dimension is the assessment of similarities, what specifically characterizes a
certain dimension is the notion of distance with which it is equipped. Dimensions can
have either a qualitative (e.g. a notion of equidistance) or a quantitative (e.g. a certain
metric) notion of distance. If a certain dimension is equipped with a quantitative distance
function, it is then called a metric space. A function d : S × S ⇒ R+

0 is called a distance
function iff ∀x, y, z ∈ S: d(x, y) ⩾ 0, d(x, y) = 0 ↔ x = y, d(x, y) = d(y, x), and
d(x, y)+d(y, z) ⩾ d(x, z). Examples of metrics, for a n-dimensional space, are the Euclidean
metrics (dE(x, y) =

√
Σi(xi − yi)2) and the city-block metrics (dC(x, y) = Σi|xi − yi|)27.

We can easily vary the scales of the different dimensions of a certain conceptual space by
putting a weight wi on the distance function of the dimension i. Similarity is, then, an
exponentially decaying function of distance (e.g. Shepard’s universal law of generalization
sij = e−c·dij ).

In a certain conceptual space S, consisting of a set of domains {D1, . . . , Dn}, each
made up of a set of integral dimensions {d1, . . . , dm}, we can represent objects as vectors
⟨v1, . . . , vj⟩. Properties, then, are represented by regions S of a domain. We can define
a region of a space as a set of points that respect certain criteria that we impose on the
primitive relation: C(X, Y ), X connects with Y is minimally constrained by symmetry and
reflexivity. A possible criterion for defining a region is connectedness, i.e. X is connected iff
∀Y, Z(Y ∪ Z = X → C(Y, Z)). A stronger criterion that can be imposed as a definition of
region is star-shapedness relative to a point, i.e. X is star-shaped relative to a point x0 iff
∀z, ∀x ∈ X(B(x, z, x0) → z ∈ X). An even stronger criterion is convexity, i.e. X is convex
iff ∀z, ∀x, y ∈ C(B(x, z, y) → z ∈ C). Concepts are represented, then, as multi-domain
bundles of properties X1, . . . , Xn, together with salience weights wi on the domains and
cross-domain correlations.

(a) (b)

Figure 3.7: A convex (a) and a star-shaped (b) region.

One of the most promising applications of conceptual space is concept formation and
categorization. Gärdenfors’ account of concept formation and categorization in conceptual

27For a survey of other possible metrics, see (Tversky et al., 1971-1989-1990, Volume 2, pp. 51-77).
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spaces combines prototype theory (Rosch 1975, cf. Chapter 2, Section 1.2) and the spatial
tessellation technique called Voronoi diagrams (Okabe et al., 2000). A Voronoi diagram
is a tessellation of a space that, provided with a set of points, divides the space in cells,
each cell having as a center one of the points in the original set and containing all the
points that lie closer to its center than to the centers of the other cells. More accurately,
for any n-dimensional space and any set of pairwise distinct points of S P = {p1, . . . , pk},
the Voronoi diagram generated by P is the set V (P ) = {v(pi)|pi ∈ P}, where v(pi) is
the region v(pi) = {p|d(p, pi) ⩽ d(p, pj)∀j ∈ {1, . . . , k}} and it is called the Voronoi
polygon/polyhedron associated with pi.

(a) (b)

Figure 3.8: A normal (a) and a collated (b) Voronoi Diagram.

The theory of conceptual spaces has been recently extended in order to treat vague
(Douven et al., 2013) and comparative concepts (Decock and Douven, 2014; Dietz, 2013;
Decock, Dietz and Douven, 2013). The first step for dealing with vagueness in conceptual
spaces is to substitute unique prototypes with prototypical areas, thereby making the
generator set P become a set of regions. Then, the basic idea is to consider all the possible
Voronoi diagrams that can be built from choosing a single point in each generator region.
Intuitively, we treat vagueness in a way similar to the supervaluationist account, because
every possible Voronoi diagram represents a possible completion of the tessellation of the
space and thus a possible way of deciding the borderline cases of the concept involved.
Then, we project all these possible Voronoi diagrams onto each other. From the result
of this projection, called a collated Voronoi diagram, we can define boundary regions of
categorization in order to accurately represent borderline cases of concepts.

More formally, consider the restricted Voronoi polygon associated with pi, i.e. the region
made of all points that lie strictly closer to pi than to the other central points: v(pi) =
{p|d(p, pi) < d(p, pj)∀j ∈ {1, . . . , k}}. Then, let R = {r1, . . . , rk} be a set of pairwise
distinct regions and consider the set Π(R) = ∏k

i=1 ri = {⟨p1, . . . , pk⟩|pi ∈ ri}, i.e. the set of
all sequences containing exactly one point out of each region of R. Consider, then, the set
of all Voronoi diagrams generated by elements of Π(R), i.e. V(R) = {V (P )|P ∈ Π(R)};
the set of all Voronoi polygons associated with the various points in a region ri ∈ R,
i.e. {v(p)}ri∈R := {v(p)|p ∈ ri ∧ v(p) ∈ V (P ) ∈ V(R)}; and the set of all restricted
Voronoi polygons associated with the various points in a region ri ∈ R, i.e. {v(p)}ri∈R :=
{v(p)|p ∈ ri ∧ v(p) ∈ V (P ) ∈ V(R)}. We can then construct the collated Voronoi diagram
generated by R, U(R) = {u(ri)|1 ⩽ i ⩽ k}, where each u(ri) = ⋂{v(p)}ri∈R is the collated
polygon associated with ri, i.e. the set of all points that lie in the restricted polygon of
ri in all the possible Voronoi diagrams V (P ) ∈ V(R). Recovering our analogy with the
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supervaluationist treatment of vagueness, the notion of the collated polygon associated
with a region corresponds to the notion of super-truth in supervaluationism. We also
have the expanded polygon associated with a region u(ri) = ⋃{v(p)}ri∈R, which is the
dual notion of the restricted one and thus it is analogous to the supervaluationist notion
of sub-truth. Then, we can define the boundary region associated with a collated polygon
u(ri) ∈ U(R) as the set u(ri) \ u(ri), which is the set of all points that lie in the expanded
polygon but not in the collated polygon associated with a given region.

The account of comparative concepts builds upon the vagueness framework, by adding
to it an account of graded-membership in conceptual spaces. The informal idea for graded-
membership in this account, which traces back to a proposal by Kamp and Partee, is that
the degree to which an object falls under a concept is given by the amount of possible
completions that group the object with the clear-cut instances of the concept (Kamp and
Partee, 1995). Extreme cases of graded membership are, then, objects that always fall
under the concept, which receive a degree of membership of 1, and objects that never fall
under that concept, which get a degree of membership of 0.

In the conceptual spaces framework, elements of the set Π(R) play the role of comple-
tions. The simplified idea (for concepts with a finite amount of prototypes) behind the
membership function for a given object is to calculate the ratio between the k-tuples of
Π(R) that generates Voronoi diagrams including the object into the scope of the concept
and the number of elements in Π(R). The general idea for constructing a membership
function for prototypical areas containing an infinite number of prototypical instances is
to measure the set of positive completions for a given object in terms of the volume occu-
pied by the related coordinates in the related product space. More formally, we represent
each completion by means of a m×k-tuple ⟨x11 , . . . , x1m , . . . , xk1 , . . . , xkm⟩ of real numbers,
where ⟨x1, . . . , xk⟩ ∈ Π(R) and xi1 , . . . , xim are the spatial coordinates of a prototypical
instance pi. Then we can build for any point a, any concept Ci with prototypical area
ri, and any distance function d the proportions of completions Sa,i (volume of positive
completions), relative to the set Π(R):

µ∗(Sa,i) = µ(Sa,i)
µ(Π(R))

Where µ(Sa,i) measures the set of positive completions, i.e. :

{⟨x11 , . . . , x1m , . . . , xk1 , . . . , xkm⟩|d(a, ⟨xi1 , . . . , xim⟩) <

d(a, ⟨xj1 , . . . , xjm⟩)∀⟨xj1 , . . . , xjm⟩ ∈ rj s.t. i ̸= j}
and µ(Π(R)) measures the set of all possible completions, i.e.∫

IΠ(R)(⟨x11 , . . . , x1m , . . . , xk1 , . . . , xkm⟩)dx11 . . . dxkm .

We can then define the membership function of an object a relative to a concept Ci as
MCI

(a) = µ∗(Sa,i). Thanks to this function we obtain a very smooth treatment of com-
parative concepts defining, for two individuals i, i′, i is C-er than i′ iff MC(i) > MC(i′).
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Comparative concepts of different types, such as ‘a is more typically C then b’ or ‘a is more
C-ish then b’, can be defined more easily in terms of the Hausdorff distance (a general way
of calculating the distance between sets of points) (Decock, Dietz and Douven, 2013, pp.
76-77).

3.4.2 Explicating ‘explication’
I stated at the beginning of this section that I want to give an explication of ‘explication’.
What does it mean, then, to explicate the concept of explication itself? It seems to me
that this phrase can be understood (at least) in two different ways.

First, explicating ‘explication’ could consist in formally or informally giving a specific
method for substituting a certain explicandum with a certain explicatum. This is the
sense in which Hanna proposed his explication of ‘explication’ (Hanna, 1967) and Brun
recently gave us a recipe for explication (Brun, 2016, 2020). Hanna’s explication is a formal
procedure, Brun’s is stated as an informal method but both try to explicate ‘explication’
as a specific (formal/informal) procedure for replacing a particular reading of explication
and its desiderata. There are of course further differences between the two proposals.
As I said, Hanna is clearly explicating a very narrow, and very not Carnapian, sense of
explication, while Brun gives a recipe for a very liberal clarification of what explication
is. Nevertheless, for our current methodological discussion, they both instantiate the same
sense of explicating ‘explication’. Let me refer to this sense of explicating ‘explication’ as
the single-explicatum sense.

Secondly, a more general sense in which the task of explicating ‘explication’ could be
understood is as the task of providing a precise bridge-theory in which the explicandum
and the explicatum could be represented, thereby allowing a (more) precise judgment of the
adequacy of explication efforts and a (more) exact representation of the (different readings
of the) desiderata. This is what I will try to do using the theory of conceptual spaces in this
work and, to my knowledge, is the first attempt of explicating ‘explication’ in this specific
sense28. This sense is more general because it does not only explicate a given clarification
of a subset of explication desiderata, but it proposes instead some kind of meta-theory
in which different readings of various desiderata of explication can be made precise. If
the single-explicatum sense amounts to give a practical equivalent of a specific reading of
explication, this more general sense of explicating ‘explication’ amounts to give a theory of
explication. With the help of such a general explication of ‘explication’, external questions
about explication adequacy can then be represented in a more precise manner while still
remaining subject to instrumental rationality and pragmatical factors. The outcome of
this sense of explicating ‘explication’ is a bridge theory within which (certain kinds of)
different readings of explication and its desiderata can be precisely compared and applied
to specific cases of conceptual engineering. Let me call this sense the meta-theoretical sense
of explicating ‘explication’.

28Some remarks of Kuipers hinted towards a meta-explication of ‘explication’ in a sense similar to what
I will try to do in this section. See his discussion in (Kuipers, 2007, pp. viii-xviii).
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In what follows, I will explicate ‘explication’ in the meta-theoretical sense. I will also
show some examples of possible explications in the single-explicatum sense that can be
proposed within my framework, but I will not endorse anyone of them as the favored
reading of explication and its desiderata. Moreover, my theory will target only certain
kinds of explications. More specifically, the applicability of my explication of ‘explication’
to a given case of explication rests on two pivotal assumptions:

Assumption 1.
Both the explicandum and the explicatum are representable in conceptual

spaces. Moreover, if the explicandum and the explicatum are represented in two
different conceptual spaces, a suitable structure-preserving mapping from the
conceptual space of the explicandum to the conceptual space of the explicatum
is available.

Assumption 2.
In assessing the adequacy of the given explication, all the desiderata are

strictly-conceptual ones, i.e. they impose constraints only on the intrinsic rela-
tions between the explicandum and the explicatum.

The purpose of Assumption 1 is to ensure that all the concepts involved in a given ex-
plication can be adequately represented in conceptual spaces. The adequacy of conceptual
spaces representation of concept formation and manipulation has been empirically tested
for many types of concepts (Gärdenfors, 2000; Zenker and Gärdenfors, 2015b), but the
exact scope of applicability of the theory is still unclear. It may be that very abstract
concepts, such as Truth for instance, whose representational content is dubious, cannot
be adequately modeled using conceptual spaces. That said, the many applications of con-
ceptual spaces in different scientific fields arguably show that this assumption is not too
restrictive. Furthermore, I will show, in the final part of this section, how my explication
of ‘explication’ by means of conceptual spaces theory is applicable to two paradigmatic
cases of explication from the history of science, adding more support to this assumption.

As for Assumption 2, conceptual spaces are a tool for conceptual representation and as
such they can represent just the intrinsic relations between concepts. Thus, as I will stress
case by case in the next subsection, it would be unclear at the very least how to represent in
the context of conceptual spaces theory some desiderata that pose limitations on the target
theory in which the explicatum is defined (such as being defined in a consistent theory, for
instance) or other more pragmatical meta-theoretical virtues (such as predictive power)
the scope of which is not restricted to the concepts involved in the explication. This
assumption is required by the very nature of conceptual spaces theory. Nevertheless, I
will provide some support to it, by showing how many different readings of explication
desiderata proposed in the literature can be made precise by means of conceptual spaces
theory.

In order to understand why these two assumptions are pivotal to the applicability of
my meta-theoretic explication of ‘explication’, I will spelled out the procedure for applying
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my proposal to a given case of explication. The applicability of my proposal to a given
explication is then a three-step procedure:

1. Representation: the explicator needs to represent all the concepts involved in the
explication in conceptual spaces.

2. Choice of desiderata: the explicator needs to choose her favorite group of expli-
cation desiderata and represent them in conceptual spaces.

3. Adequacy assessment: the explicator needs to check whether the (conceptual
spaces representations of the) desiderata are satisfied by the (conceptual spaces rep-
resentations of the) concepts involved in the explication.

Long story short, one needs to do three things. First, one needs to represent the
explicandum and the explicatum in conceptual spaces. Then, one needs to choose one’s
favorite reading of explication desiderata. Finally, the adequacy of the explication can be
mathematically assessed.

It should be clear now why the two aforementioned assumptions are needed for applying
my proposal. The first step of this applicability procedure, i.e. the representation step,
makes pivotal use of Assumption 1. In fact, in order to represent all the concepts involved
in the explication in conceptual spaces theory, the explicatum and the explicandum have
to be representable in conceptual spaces. The second step, i.e. the choice of desiderata,
requires instead Assumption 2, because (as we will see in the next subsection) arguably
only strictly-conceptual desiderata can be surely represented in conceptual spaces as ge-
ometrical or topological constraints on the conceptual spaces representations of the two
concepts, on their conceptual space(s), and on the transition from the (representation of
the) explicandum to the (representation of the) explicatum. Finally, the third step of the
adequacy assessment requires Assumption 1 to make sure that, if needed by the concepts
and the desiderata, a suitable mapping from the conceptual space of the explicandum and
the conceptual space of the explicatum exists.

Now that it is clear what I mean with explicating ‘explication’ and the methodolog-
ical assumptions and the applicability procedure of my meta-theoretical explication are
spelled out, we can finally turn to the heart of my proposal, namely, the representation of
explication desiderata in conceptual space theory.

3.4.3 Explication in conceptual spaces
In what follows, I will focus on the representation of explication desiderata in conceptual
spaces. More precisely, I will show how many readings of explication desiderata that we
saw in Section 2 can be made precise in terms of geometrical or topological constraints on
the conceptual spaces representations of the two concepts, on their conceptual space(s),
and on the transition from the (representation of the) explicandum to the (representation
of the) explicatum. I will also show how the richness of conceptual spaces representation of
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concepts allows us more fine-grained readings of some desiderata that a good explicatum
has to satisfy.

Then, let the ExplicanDum be a given concept (in the intuitive sense of the term),
represented in a conceptual space CSED by a certain concept (in the technical sense of
conceptual spaces teory) CED = {rED1 , . . . , rEDk

}. Assume also that any region rEDi
of

the concept is obtained from a prototypical region prEDi
29. Similarly, let the ExplicaTum

be represented in a conceptual space CSET by a certain concept CET = {rET1 , . . . , rETt}.
Any given region rETj

of the concept is then obtained from a prototypical region prETj
.

Note that in the definitions we have not required that the explicandum and the explicatum
are represented in the same conceptual space. As a matter of fact, I will argue that often
it is not the case. In order to make precise many explication desiderata we will need a
mapping from the elements of CSED to the elements of CSET . Assumption 1 guarantees
the existence of such an adequate mapping, call it ϕ (ϕ : CSED → CSET )30.

In order to structure more clearly my discussion, I will use for every reading of a
desideratum the following format. First, when it is needed, I will informally discuss the
desideratum and the strategy for representing it in conceptual spaces, then I will give the
informal norm behind the desideratum. Then, I will draw a picture of a two-dimensional
toy-case of an explicandum and/or an explicatum represented in conceptual spaces in
order to show how the desideratum can be understood in conceptual spaces. Finally, as
promised, I will present a formalized version of the desideratum. Consider, then, the
following representation of explication desiderata in conceptual spaces theory.

Similarity

(S1) Clear-cut extension preservation (Hanna).
Hanna (Hanna, 1967) requires the explicatum to preserve the clear-cut extension of the

explicandum. In conceptual spaces, the clear-cut extension of a possibly vague concept
is given by all the collated polygons (the notion mirroring the super-truth of superval-
uationism) associated with its regions. We can then see in the toy-example below (Fig.
3) how the explicatum preserves the clear-cut extension and the anti-extension of the ex-
plicandum while deciding part of its borderline region. Since I will use the same format
for all the toy-pictures in this section, here is a little guide for understanding them: in
a given picture, the inner-polygon represents the clear extension of a concept, the outer
polygon (when is present) represents the borderline region of that concept, the rest of the
space is the anti-extension of the concept; for simplicity, in these toy-cases I always assume
that the explicandum and the explicatum live in the same conceptual space, namely the
two-dimensional one represented by the pictures.

29For the sake of brevity, I am only considering here the case of categorical concepts. Nonetheless, the
different desiderata can also be applied to comparative concepts as I will show in my case study on the
concept of temperature.

30Note, thus, that the requirements that use the mapping function are not technically norms, but scheme
of norms over a given mapping.
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Norm: The clear-cut extension of the explicandum ought to be preserved by the expli-
catum.

(a) (b)

Figure 3.9: The explicatum (b) preserves the clear-cut extension (the inner-polygon) and
the anti-extension (what is not in the outer polygon) of the explicandum (a), while deciding
the borderline cases (what is in the outer polygon, but not in the inner one).

Formalization: For the simple case in which the set of elements of CSED is a subset of
the one of CSET , the requirement is simply: ∀a, ∀i, ∃j : a ∈ u(rEDi

) → a ∈ u(rETj
) and

a /∈ u(rEDi
) → a /∈ u(rETj

).
For the general case, in which we do not assume this relation between the base sets of

the two spaces, we have to rely on the mapping ϕ: ∀a, ∀i, ∃j : a ∈ u(rEDi
) → ϕ(a) ∈ u(rETj

)
and a /∈ u(rEDi

) → ϕ(a) /∈ u(rETj
).

(S2) Favored-contexts preservation (Quine).
Quine’s (Quine, 1960, 1961) reading of similarity can be represented in the same way

of Hanna’s, relativizing the requirement to favored (i.e. non-deficient) contexts of the ex-
plicandum. Assume that a favor context rF CEDl

is a subset of one of the regions belonging
to the clear-cut extension of the explicandum, i.e. FCED = {rF CED1

, . . . , rF CEDt
} where

∀l ⩽ k, ∃i : rF CEDl
⊆ rEDi

. We can see, then, in the picture below (Fig.4) how the ex-
plicatum preserves the favored-context and the anti-extension of the explicandum, while
changing its non-favored clear-extension and the borderline cases.

Norm: The clear-cut extension of the explicandum in favored contexts ought to be
preserved by the explicatum.

(a) (b)

Figure 3.10: The explicatum (b) preserves the favored contexts (FC) and the anti-extension
of the explicandum (a), while changing some parts of its non-favored extension (inner
polygon not in FC) and deciding its borderline region.

Formalization: For the simple case when the set of elements of CSED is a subset of the
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one of CSET : ∀a, ∀l, ∃j : a ∈ u(rF CEDl
) → a ∈ u(rETj

) and ∀a, ∀i, ∃j : a /∈ u(rEDi
) → a /∈

u(rETj
).

For the general case: ∀a, ∀l, ∃j : a ∈ u(rF CEDl
) → ϕ(a) ∈ u(rETj

) and ∀a, ∀i, ∃j : a /∈
u(rEDi

) → ϕ(a) /∈ u(rETj
).

(S3) Extension adjusting + injection (Brun).
Brun’s (Brun, 2016) two-steps reading of similarity requires first that the extension

of the freely created mid-level concept (call it explicandum2) overlaps with the extension
of the original explicandum. Assuming that explicandum2 is represented by the concept
CED2 = {rED21 , . . . , rED2j

}, we require the intersection of the collated polygons associated
with regions of the two concepts not to be empty. Then, Brun requires an injection
from the extension of this mid-level concept to the one of the explicatum. The most
straightforward way of representing this step of the desideratum would be to require an
injective mapping f from the set of clear-cut instances of explicandum2 to the clear-cut
extension of the explicatum31. It is easy to note that this injection requirement is rather
trivially satisfied by almost every case of conceptual engineering that one can imagine32.
A possible stronger requirement would be that every mapping from explicandum2 to the
explicatum be injective.

Norm: A subset of the clear-cut extension of the explicandum must be preserved by
the mid-level concept. Furthermore, there ought to be an injection from the extension of
this mid-level concept to the extension of the explicatum.

(a) (b)

Figure 3.11: In (a), the explicandum2 (ED2) overlaps with the original explicandum (ED).
In (b) there is an example of an explicatum that satisfies the injection requirement of the
second step of Brun’s reading of similarity.

Formalization: (Step 1) u(rEDi
) ⋂

u(rED2i′ ) ̸= ∅.
(Step 2) There exists an injective function finj from u(rED2i′ ) to u(rETj

).

31Assuming, of course, the existence of such a mapping. If one favors Brun’s reading of similarity, one
has to slightly change our Assumption 1, assuming the existence of a mapping from the conceptual space
of the explicandum2 to the conceptual space of the explicatum.

32As already mentioned in Section 2.1, Brun acknowledges this triviality, but he claims that the require-
ment becomes more significant if we take into consideration a system of connected notions instead of a
single concept. This alternative requirement can be straightforwardly explicated in the present framework.
Alternatively, Brun, in private conversation, suggested that another way of formalizing his similarity re-
quirement could be a combination of Quine’s (S2) reading of similarity and a mapping assumption similar
to the one contained in my Assumption 1.
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(Alternative, stronger, Step 2) All the possible functions f from u(rED2i′ ) to u(rETj
)

are injective.

(S4) Contextual quasi-isometry.
Thanks to the malleability of conceptual spaces and the adoption of a prototypical

view of concepts, more fine-grained readings of the similarity desideratum are possible.
I would like to propose, as an example, a reading of the similarity requirement which is
philosophically particularly interesting. The informal idea behind it is that the similarity
requirement is not adequately understood in terms of extension or intension, but should
be modeled instead as the preservation of the large-scale conceptual structure of the expli-
candum. Under this reading, the explicator can thus change quite freely single instances
of the explicandum, but she ought to preserve its general conceptual structure. In order to
make precise this idea of large-scale structure preservation, I am going to use the concept
of quasi-isometry (Bridson, 2008, 443-444). A function f from one metric space (M1, d1)
to another metric space (M2, d2) is called a quasi-isometry, let us write fQI , if there exist
constants A ⩾ 1, B ⩾ 0, C ⩾ 0 such that:

1) ∀x, y ∈ M1 : 1
A

d1(x, y) − B ⩽ d2(f(x), f(y)) ⩽ Ad1(x, y) + B
2) ∀z ∈ M2, ∃x ∈ M1 : d2(z, f(x)) ⩽ C.
Informally, condition 1 tells us that the second metric space is allowed to distort suf-

ficiently large distances by (at most) a constant factor, while condition 2 instead consists
of a sort of ‘quasi-surjection’, i.e. it tells us that every element of the second metric space
is close to the image of an element of the first one. We can, then, make precise this idea
of large-scale preservation by imposing some contextual restrictions on the three constants
used in the weak-inequalities of the quasi-isometry. We can, for instance, restrict the
constants relative to the diameter diam(X) : sup{d(x, y) : x, y ∈ X}, i.e. the maximal
distance between two elements of a metrical spaces, of the related conceptual spaces. The
intuitive idea behind this restrictions is that the explicatum should not distort too much
the conceptual structure of the explicandum, where too much is cashed out in terms of the
diameter of the conceptual spaces where the two concepts are represented33.

Norm: The large-scale conceptual structure of the extension of the explicandum ought
to be preserved.

Formalization: There exists a quasi-isometric function fQI from CSED to CSET with
A + B ≤ sup{diam(CSED), diam(CSET )} and C ≤ diam(CSET ).

Fruitfulness

As we have seen in Section 2.1, the fruitfulness of a given explicatum is often understood in
terms of generalization power and connections with other parts of science and philosophy.

33Many alternative ways of making this idea of large-scale structure preservation are of course available.
For instance, other intuitive ways of restraining the constants of the quasi-isometry would be to require a
strict isometry for the prototypical regions or to have graded constraints for different parts of the space.
Again, this desideratum, like the others, should be considered just an example of the kind of readings of
explication desiderata that conceptual spaces allow.
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(a) (b)

Figure 3.12: The large-scale structure of the explicandum (a) is preserved by the explicatum
(b).

Under this reading fruitfulness is not a strictly-conceptual desideratum and therefore an
explication of its possible readings is outside the scope of the present proposal. That said,
I believe that it is possible to propose some strictly-conceptual readings of fruitfulness,
looking at some characteristics of the representation of the concept by means of conceptual
spaces that make an explicatum a good candidate for being a fruitful notion.

(F1) Convexity.
The main idea is to use Gärdenfors’ (Gärdenfors, 2000) “criterion P” for natural prop-

erties as a normative and theoretical benchmark of (alleged) fruitfulness. Both from a
point of cognitive fruitfulness, in the sense of Dutilh Novaes and Reck (Dutilh Novaes and
Reck, 2017), and of general conceptual fruitfulness, it seems natural to take as good candi-
dates for fruitfulness concepts the conceptual structure of which resembles the one of our
natural concepts. After all, if one takes the engineering metaphor seriously, to require the
explicatum to have a conceptual space similar to the ones of natural concepts is just like
to require user-friendly products to engineers. We can then require the regions composing
the extension of our explicatum to be convex.

Norm: The conceptual-structure of the explicatum ought to resemble the one of our
natural concepts.

(a) (b)

Figure 3.13: A non-convex (a) and a convex (b) explicatum.

Formalization: ∀x, y ∈ u(rETj
), ∀z : B(x, z, y) → z ∈ u(rETj

).

(F2) Star-shapedness relative to a prototype region.
As mentioned earlier in Section 4.1, there are various reasons for thinking that convexity

is too strong as a criterion for natural concept. Thus, one may also want to have a weaker
geometrical reading of fruitfulness. The concept of star-shapedness relative to a point p,
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i.e. convexity relative to a given point, seems to share many attractive feature of convexity
without imposing so many restrictions on the underling structure of the space (Hernández-
Conde , 2017). We can then require the regions of the explicatum to be star-shaped
relative to the prototypes of the concept. Since arguably the explicatum can also have
boundaries which are not sharp and thus have not a unique prototype, it seems natural to
define the star-shapedness requirement in relation to the set of prototypical instances of
the explicatum, i.e. prETj

.
Norm: The conceptual structure of the explicatum ought to resemble the one of our

natural concepts.

(a) (b)

Figure 3.14: A non-star-shaped (a) and a star-shaped (b) explicatum

Formalization: ∀x ∈ u(rETj
), ∀y ∈ prETj

, ∀z : B(x, z, y) → z ∈ u(rETj
).

(F3) Connectedness.
Another, even weaker alternative to convexity that has been discussed in the debate over

the right naturalness criterion in conceptual spaces is connectedness (Mormann, 1993). We
can then use it as another possible reading of fruitfulness, by imposing it as a requirement
for the regions of the explicatum.

Norm: The conceptual structure of the explicatum ought to resemble the one of our
natural concepts.

(a) (b)

Figure 3.15: A non-connected (a) and a connected (b) explicatum

Formalization: ∀j, ∀s, t : (s ∪ t = u(rETj
) → C(s, t)).

Exactness

(E1) Clear extension (Hanna).
A concept with a clear extension is a concept that does not have any boundary case,

i.e. without what we have called boundary regions. Thus, we can easily make precise this
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reading of the exactness desideratum by requiring the boundary region(s) of the explicatum
to be empty.

Norm: The explicatum ought to have a sharp extension with no borderline cases.

(a) (b)

Figure 3.16: A non-sharp (a) and a sharp (b) explicatum

Formalization: ∀j : u(rETj
) \ u(rETj

) = ∅.

(E2) Vagueness reduction.
Similarly, a concept is less vague than another one when the first has fewer boundary

cases than the latter. For the simple case in which the explicatum is sufficiently similar (i.e.
it has the same clear-cut extension) to the explicandum, we can define this requirement in
a qualitative way, requiring the boundary regions of the explicatum to be a proper subset of
the ones of the explicandum. However, the explicatum, according to various liberal readings
of the similarity requirement, can change even the clear-cut extension of the explicandum.
Thus, in the general case, we need a quantitative way of comparing the vagueness of the
two concepts. What we need is to add a proper measure to the conceptual spaces of the
two concepts, thereby technically making them two measure spaces. Of course, according
to the peculiarities of the given conceptual spaces, one has to choose an adequate measure.
Generally speaking, assuming a non-negative measure µ on both the conceptual space of
the explicandum and the one of the explicatum, we require the measure of the boundary
regions of the explicandum to be strictly bigger than the one of the boundary regions of
the explicatum.

Norm: The explicatum ought to be less vague than the explicandum.

(a) (b)

Figure 3.17: The explicatum (b) has a smaller boundary region than the explicandum (a)
and it is therefore less vague.

Formalization: (simple case) ∀i, ∃j : u(rEDi
) \ u(rEDi

) ⊃ u(rETj
) \ u(rETj

).
(general case)
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µ({u(rEDi
) \ u(rEDi

)|1 ⩽ i ⩽ k}) > µ({u(rETj
) \ u(rETj

)|1 ⩽ j ⩽ t}).

(E3) No addition of vagueness.
If one wants, following Brun (Brun, 2020), to read the exactness desideratum as the

requirement for the explicatum to be not vaguer than the explicandum, it suffices to weaken
the precedent desideratum in the obvious way.

Norm: The explicatum ought not to be vaguer than the explicandum.

(a) (b)

Figure 3.18: The boundary region of the explicatum (b) has the same size as the region of
the explicandum (a), thereby making the explicatum at most as vague as the explicandum.

Formalization: (simple case) ∀i, ∃j : u(rEDi
) \ u(rEDi

) ⊇ u(rETj
) \ u(rETj

).
(general case)
µ({u(rEDi

) \ u(rEDi
)|1 ⩽ i ⩽ k}) ⩾ µ({u(rETj

) \ u(rETj
)|1 ⩽ j ⩽ t}).

Simplicity and other desiderata

Simplicity, like fruitfulness, seems prima facie a desideratum that cannot arguably be
expressed in terms of intrinsic relations amongst the concepts used in the explication, i.e.
not a strictly-conceptual desideratum. It could be clarified in terms of the simplicity of
the syntax of the target theory in which the explicatum is defined or perhaps in terms
of parsimony of new formal tools (i.e. cognitive simplicity for scientists or philosophers).
Either way, these readings cannot be made precise with the help of conceptual spaces
theory alone. Nevertheless, as in the case of fruitfulness, the structure of the conceptual
space of the explicatum can indicate the simplicity of that concept and thus allow for a
strictly-conceptual reading of this desideratum.

Furthermore, I will present two other possible desiderata that a good explicatum has
to satisfy in conceptual spaces theory. Intuitively, it seems natural to require that the
conceptual offspring of a good explication must tell us something more than what was
contained in the original explicandum. Two ways in which this aspect of the novelty of the
explicatum can be made precise are the extension or preservation of the conceptual scope
and the augmentation of discrimination power.

(O1) Simplicity.
A concept is represented in conceptual spaces theory as a set of regions and each one

of these regions has a certain shape. Similarly to the case of fruitfulness, one can take the
simplicity of the regions of a given explicatum as a sign for its overall conceptual simplicity
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(as a kind of cognitive economy notion). A simple idea is to count the minimum number
of points that are needed to draw the polyhedron πi the surface of which is (sufficiently)
close to the surface of a given region rETj

, obtaining a positive natural number σ that we
can call the simplicity coefficient of a region34.

We can calculate the simplicity coefficient of a given concept C = {r1, . . . , rn}, by
calculating the medium coefficient of its regions: σ(C) = σ(r1),...,σ(rn)

n
. Then, assuming

that we have a set of n different explicata {ET, ET1, . . . , ETn} such that everyone of them
equally satisfies the other (more important) desiderata, we can require our explicatum ET
to be the one with the smallest simplicity coefficient.

Norm: Being all the other desiderata equally satisfied, the explicator ought to choose
the simplest explicatum.

(a) σ(ET1) = 3 (b) σ(ET2) = 6 (c) σ(ET3) = 6

Figure 3.19: Amongst these explicata, our explicator ought to choose ET1.

Formalization: ∀x : ETx ∈ {ET, ET1, . . . , ETn} → σ(ET ) ⩽ σ(ETx).

(O2) Scope extension.
Menger (Menger, 1943) stressed that a good explicatum has to be applicable to new

cases, thereby having a wider scope than the original explicandum. We can then make
this idea precise by requiring the set of clear-cut instances of the explicatum to be strictly
bigger than the one of the explicandum, using the same tools that we used for the vagueness-
reduction requirement.

Norm: The scope of the explicandum ought to be extended by the explicatum.

(a) (b)

Figure 3.20: The clear-cut extension of the explicatum (b) is bigger than the one of the
explicandum (a).

34If a given region has already the shape of a polyhedron, we can take directly its shape. If instead, the
given region has curved boundaries, we can easily construct a polyhedron whose surface overlaps with the
surface of the region everywhere but for a small arbitrary extent.
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Formalization: (simple case) ∀i, ∃j : u(rEDi
) ⊂ u(rETj

)
(general case) µ({u(rEDi

)|1 ⩽ i ⩽ k}) < µ({u(rETj
)|1 ⩽ j ⩽ t})

(O3) Scope preservation.
Just like for the vagueness-reduction case, we can also weaken the scope extension

requirement in the following way.
Norm: The scope of the explicandum ought to be preserved by the explicatum.

(a) (b)

Figure 3.21: The clear-cut extension of the explicatum (b) has the same size than the one
of the explicandum (a).

Formalization: (simple case) ∀i, ∃j : u(rEDi
) ⊆ u(rETj

).
(general case) µ({u(rEDi

)|1 ⩽ i ⩽ k}) ⩽ µ({u(rETj
)|1 ⩽ j ⩽ t}).

(O4) Further discrimination power.
Another way in which we can cash-out Menger’s (Menger, 1943) idea of novelty is the

augmentation of discrimination power. Our engineered conceptual tools must chart the
world in a more fine-grained way than their intuitive ancestors. Conceptual spaces offer a
natural way of making this idea precise in terms of the similarity function of a given metric
space. Since similarity is an exponentially decaying function of distance, the augmentation
of discriminatory power implies a weakening of object similarity from the explicandum to
the explicatum. Relying on our mapping ϕ, we can then require the similarity between
two given objects in the conceptual space of the explicandum to be bigger than the one
between their images in the conceptual space of the explicatum.

Norm: The explicatum ought to have a more fine-grained conceptual structure than
the explicandum.

(a) (b)

Figure 3.22: The distances in the space of the explicatum (b) are bigger than the ones in
the space of the explicandum (a).

Formalization: ∀x, y ∈ CSED : sED
ab > sET

ϕ(a)ϕ(b).
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Single-explicatum explications and replies to recent critiques of explication

Now that we have seen multiple examples of different readings of desiderata represented
by means of conceptual spaces theory, it is easy to picture various ways of adding them
together, thereby creating possible explications of ‘explication’ in the single-explicatum
sense. Generally speaking, any consistent way of mixing these (readings of) desiderata
holds a formal explicatum of a particular reading of explication. The aforementioned aim
of my proposal is to explicate ‘explication’ in the meta-theoretical sense, giving a bridge-
theory that allows a more precise judgment of explication adequacy. In what follows, I will
give a couple of examples of how different desiderata made precise in my framework can
be put together to make specific readings of explication precise.

An example of single-explicatum explication that can be made precise within my frame-
work is Hanna’s (Hanna, 1967) explication of ‘explication’. This specific reading of expli-
cation is made precise by putting together the clear-cut extension preservation reading of
the similarity desideratum and the clear extension reading of the exactness desideratum:

(Hanna’s explication of ‘explication’) [S1 + E1]:
∀a, ∀i, ∃j : a ∈ u(rEDi

) → ϕ(a) ∈ u(rETj
) and a /∈ u(rEDi

) → ϕ(a) /∈ u(rETj
);

∀j : u(rETj
) \ u(rETj

) = ∅.

As another example, I will add Menger’s (Menger, 1943) scope preservation desideratum
to some technically interesting readings of the three more important desiderata that Carnap
stated, i.e. the quasi-isometry reading of similarity, the convexity reading of fruitfulness,
and the vagueness-reduction reading of exactness:

(CCVS explication of ‘explication’) [S4 + F1 + E2 + O3]:
There exists a quasi-isometric function fQI from CSED to CSET with
A + B ≤ sup{diam(CSED), diam(CSET )} and C ≤ diam(CSET );
∀x, y ∈ u(rETj

), ∀z : B(x, z, y) → z ∈ u(rETj
);

µ({u(rEDi
) \ u(rEDi

)|1 ⩽ i ⩽ k}) > µ({u(rETj
) \ u(rETj

)|1 ⩽ j ⩽ t});
µ({u(rEDi

)|1 ⩽ i ⩽ k}) ⩽ µ({u(rETj
)|1 ⩽ j ⩽ t}).

This explication of ‘explication’ in the single explicatum sense shows how using concep-
tual spaces theory allows us to understand explication desiderata in a more fine-grained
way. All the readings of the different desiderata make use of the richness of conceptual space
representation of concepts. This CCVS explication is also truly Carnapian in spirit: the
similarity and exactness desiderata pose liberal but precise constraints on the large-scale
conceptual structure of the explicandum and the explicatum, while the fruitfulness and
the scope extension require the explicatum to show specific improvements in its extension.

The CCVS explication exemplifies how more fine-grained readings of explication desider-
ata are able to account for certain (alleged) problems of Carnapian explication as a general
methodology for conceptual engineering. Take, for instance, the alleged inherent para-
doxical tension between similarity and fruitfulness recently stressed by Dutilh Novaes and
Reck, i.e. what they call the paradox of adequate formalization (Dutilh Novaes and Reck,
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2017, pp. 211-213). The similarity requirement in the CCVS explication is spelled out as a
large-scale constraint on the conceptual structures of the explicandum and the explicatum.
Fruitfulness is instead understood as a specific constraint on the conceptual parts of the
explicatum. There is no tension whatsoever between these readings of these two desiderata,
namely because they have different scopes. If, in fact, the quasi-isometry between the two
conceptual spaces requires the explicatum to preserve the large-scale conceptual structure
of the explicandum, the convexity requirement calls for a sharpening of the extension of
the explicatum. It is true that the explicator has at the same time to carefully preserve
the structure of the explicandum and to craft the explicatum to be as fruitful as possible,
but that does not mean that this effort is paradoxical. The key to solve this alleged para-
dox is then to acknowledge that explication is a very fine-grained procedure of conceptual
engineering and that the similarity that explication requires between the explicandum and
the explicatum is not really about single conceptual instances but it focuses instead on
the more general conceptual structure of the concept. Thus, the CCVS explication shows
how the geometrical representation of concepts allows us to capture both the large scale
and the small-scale structure of the explicandum and the explicatum, thereby giving us
the tools to overcome this apparent tension between these two desiderata.

On a more general note, the meta-theoretical explication of ‘explication’ here proposed
can be used to defend explication against the other recent critiques that I presented in
Section 2.2. By meta-theoretically explicating ‘explication’ we are able to make our exter-
nal discussions on the adequacy of a given explicatum more precise and clear. Thanks to
this meta-conceptual engineering we are thus able to have liberal readings of explication
desiderata, such as the quasi-isometry reading of similarity, without giving up rigor on the
pragmatic altar. This amounts to a way out for the explicator from the impasse described
by Reck (Reck, 2012) of having to choose between an implausible strictly rigorous expli-
cation and a not-very-Carnapian pragmatic and liberal explication. Moreover, conceptual
spaces, thanks to their malleability and their very detailed representation of concepts, seem
also a promising tool for modeling any dialectical and multi-conceptual desideratum ver-
sion of explication desiderata, thereby offering a solution to the limitations of the received
view of explication stressed by Brun (Brun, 2020).

3.4.4 Two case studies: temperature and fish

In order to make my framework clearer, I will show how two paradigmatic examples of
successful explication can be represented in my framework and can be shown to satisfy the
four different desiderata of the CCVS explication. For historical pleasure, I will use as case
studies Carnap’s examples in (Carnap, 1950b): the scientific concept of temperature and
the morphological concept of fish.
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Temperature

Let me start with the scientific concept of temperature, seen as an explicatum of our
ordinary concepts of warm and cold35.

As we saw in Section 4.2, the applicability of my explication of ‘explication’ to a
given episode of conceptual change generally involves three steps: representation, choice of
desiderata, and adequacy assessment. However, in the two following case studies I will kept
assume the desiderata to be the ones of the CCVS explication and therefore the step of the
choice of desiderata will not be represented. As such, in these case studies, the applica-
bility of my proposal will involve two steps: first, I will represent the concepts involved in
the explication in the theory of conceptual spaces and, then, I will mathematically assess
that the desiderata of the CCVS explication are satisfied by these representations of the
concepts.

Our first step will be then the representation in the theory of conceptual spaces of our
intuitive concepts of temperature. Let us assume, following Carnap, that our intuitive
way of talking about temperature uses classificatory concepts like warm and cold, together
with the related intuitive comparative concepts ‘warmer than’ and ‘colder than’, intu-
itively understood as ‘object a is warmer/colder than object b iff a is perceptually judged
warmer/colder than b’. In order to build a conceptual space for these concepts, we will
construct perceptive judgments out of a fictional toy-experiment. Assume that a person
is asked to compare the warmth of ten buckets of water (alphabetically labeled from a to
j), by dipping her arms into two buckets at a time and then judging whether the water
contained in one bucket is warmer than the one in the other. Let us assume that, after
many of these trials, we can organize the results in the following diagram:

e
a d

f
i c

b

j

g

h

We can read the diagram upwards as a partial order from the coldest sample of water
e to the warmest h, with two couples of incomparable buckets (d, a) and (c, i) for which
the person’s intuitive judgment was not accurate enough to feel any significant difference

35Using the scientific concept of temperature as a case study for explication does not mean that I intend
to write history nor that I am claiming that explication faithfully represent the actual thoughts and aims of
the scientists in the development of this scientific concepts. I only want to stress how, suitably abstracting
from history, the scientific concept of temperature can be seen as an example of a good explicatum for the
related intuitive concept(s). For an historically informed take, see (Chang, 2004).
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in the temperature of the water and thus to discriminate them. We can easily represent
this diagram as a simple one-dimensional conceptual space M1 = {E1, δ1} where E1 =
{a, b, c, d, e, f, g, h, i, j} is the set of elements and δ1 is a non-standard graph-theory-like
simple metric on the diagram that counts every bottom-up step between two nodes of
the graph36. Hence, for instance, δ1(e, d) = 1 because from node e to node d there is
only one step, while instead δ1(a, j) = 4. Note that only bottom-up steps are taken
into consideration and thus this metric assigns 0 to the two couples of nodes (a, d) and
(c, i), thereby technically mapping them in the same way and signaling that we cannot
perceptually discriminate between them. We can define our concept of ‘warmer than’
in terms of distance from node e: for all x, y ∈ E1 we say that x is warmer than y iff
δ1(e, x) > δ1(e, y). Conversely, we can define x is colder than y iff y is warmer than x.

Assume now that the person in the experiment is asked to classify the ten buckets of
water using four different categorical concepts: cold, tepid, warm, hot. Assume that the
person’s judgments are as follows: e is cold; f is tepid; b and j are warm; g and h are hot.
Two couples of samples are not categorically judged by the person in the experiment, due
to her impossibility to decide to which categorical concept they belong: a and d are both
cold and tepid, c and i are both tepid and warm. Then, in the same conceptual space
we can easily define also these four intuitive categorical concepts. We can use e, f, b, h as
prototypical instances, respectively, of cold, tepid, warm, and hot. Our concepts are then
defined in terms of distance to the related prototype, thus tessellating our conceptual space.
Let us define for all x ∈ E1 the concept cold C(x) iff ∀y ∈ {e, f, b, h} : δ1(e, x) ⩽ δ1(y, x).
Hence, it follows that C = {e, a, d}. In the same way, we define the concepts tepid Te(x),
warm W (x), and hot H(x) relative respectively to the prototype f, b, h. Note that these
definitions respect all the intuitive judgments of the person in the experiment and make
the two couples a, d and c, i borderline cases of (respectively) the couples of concepts cold-
tepid and tepid-warm, just as we wanted. These four categorical concepts, together with
the two comparative concepts previously defined, are then our explicanda.

After we represented our explicanda, we need to represent in the theory of conceptual
spaces our explicata. As our explicata, we can take the comparative concepts derived
from the Celsius scale and the Kelvin scale of temperature. Following Stevens’ theory
of scales of measurement (Stevens, 1946), the Celsius scale is an example of an interval
scale, while the Kelvin scale is a ratio scale. Interval scales are unique up to all linear
transformations, a fact which makes the zero point just a matter of convention, i.e. we can
add to it any constant whatsoever without changing the scale. Ratio scales, instead, are
unique only up to multiplication, which implies that they have an actual zero point as the
absolute zero of Kelvin scale exemplifies. Technically, in theory of measurement, the scales
are defined in terms of groups of transformations of relational structures. Interval scales
are isomorphic to a real structure ⟨R+, ≥⟩ whose automorphisms are the affine group:
x → rx + s r > 0 (Tversky et al., 1971-1989-1990, Volume 3, pp. 115-126). We can

36Note that here (and also in the next subsection) I am using for simplicity a discrete conceptual space
and not a continuous one, like the examples in the previous section. My proposal is equally applicable to
discrete and continuous spaces.
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then straightforwardly represent a subset of this scale in a one-dimensional conceptual
space M2 = {E2, δ2}, where E2 = {o, a, b, c, d, e, f, g, h, i, j, . . . , t} is an extension of E1
isomorphic to a subset of R+ of 101 elements, totally ordered from o to t37. Assigning
natural numbers from 0 to 100 to the elements respecting their total order, so that N(o) = 0
and N(t) = 100, we have the following distance function: δ2(x, y) := |N(x) − N(y)|. We
can then assume that o represents the zero point of our scale. We define the temperature
of a certain object as the distance between o and its corresponding point in the conceptual
space: ∀x : T (x) := δ2(o, x). Related to this conceptual space, we can also define a pair
of comparative concepts warmer◦ and colder◦, defined as binary relations in terms of
higher/lower temperature: ∀x, y ∈ E2 warmer◦(x, y) and colder◦(y, x) iff T (x) > T (y).

Then, going back to our toy-experiment, assume that we measure with a celsius-
thermometer the temperature of the water contained in each bucket and that this measure-
ment holds the following results: T (e) = 10◦, T (d) = 15◦, T (a) = 16◦, T (f) = 25◦, T (c) =
34◦, T (i) = 35◦, T (b) = 50◦, T (j) = 61◦, T (g) = 68◦, T (h) = 80◦. We can then represent
these judgments in the conceptual space of our explicata, in terms of temperature related
to our zero-point o :

o T (e) T (d) T (a) T (f) T (c) T (i) T (b) T (j) T (g) T (h) t

Of course, we can also tessellate this space with categorical concepts, thereby offering
explicata for our four categorical explicanda. We can then define for all x ∈ E2 the concepts
C◦(x) iff T (x) < 20, Te◦(x) iff 20 ⩽ T (x) ⩽ 40, W ◦(x) iff 40 < T (x) ⩽ 65 , and H◦(x) iff
T (x) > 65.

After having represented all the concepts involved in the explication within the theory
of conceptual spaces, we can now assess the adequacy of our explicata, showing how the
different desiderata of the CCVS reading of explication are satisfied38. Remember that we
have four desiderata that our explication has to satisfy, namely quasi-isometry, convexity,
vagueness-reduction, and scope preservation.

In order to fulfill the quasi-isometry requirement we need a function f : (E1, δ1) →
(E2, δ2), for which there exist constants A + B ≤ sup{diam(E1), diam(E2)} and C ≤
diam(E2) such that:

1) ∀x, y ∈ E1 : 1
A

δ1(x, y) − B ⩽ δ2(f(x), f(y)) ⩽ Aδ1(x, y) + B;
2) ∀z ∈ E2, ∃x ∈ E1 : δ2(z, f(x)) ⩽ C.
The diameter of the conceptual space of our explicanda is δ1(e, h) = 7, while the space of

our explicata is δ2(o, t) = 100. We can then choose as our f the function that maps elements
of the first conceptual space to the elements in the second conceptual spaces representing

37Note that here, instead of mapping directly the objects to an interval of reals like is customary in
measure theory, I am using this 101 elements isomorphic to a subset of an interval as another layer of
representation. This is only done for simplicity sake, in order to have a base set that extends the one
of the first conceptual space, and it will pay off in the possibility of having qualitative simpler version of
(some) CCVS desiderata but it is by no means necessary for my proposal.

38Again, note in this case study the application of my proposal has only two steps (instead of the three
that are generally involved), due to the default choice of the desiderata of the CCVS explication.
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the temperature of the related bucket: f(x) = T (x). The first weak-inequality is always
satisfied by choosing, for instance, A = 10 and B = 20: ∀x, y ∈ E1 : 1

10δ1(x, y) − 20 ⩽
δ2(f(x), f(y)) ⩽ 10δ1(x, y) + 20. For satisfying the second weak-inequality, we have to put
C = 20 (considering that the maximal distance between an element of the second space
and an image of an element of the first one is the one between t and h, which is equal to
20).

For the convexity desideratum note that E2 is isomorphic to a subset of reals and that
we have defined T (x) in terms of the order relation between elements of this subset. Thus,
we have ∀x, y, z ∈ E2: if B(x, z, y) then T (x) < T (z) < T (y) or T (y) < T (z) < T (x).
We can then easily see that all the explicata are represented by convex regions in this
conceptual space. For instance, our explicatum of cold, C◦(x) := T (x) < 20, is represented
by the region C◦ = {o, . . . , e, . . . , d, a, . . .}, the elements of which are the first 20 elements
of our base set, ordered in terms of distance and therefore of temperature. We then have
∀x, y ∈ C◦, ∀z ∈ E2 : B(x, z, y) → z ∈ C◦, as requested. The same holds for the other
explicata, as it is shown by picture (b).

(a) (b)

Figure 3.23: Representation of the categorical explicanda (a) and the related categorical
explicata (b).

For the last two requirements, we have to split the discussion between categorical and
comparative explicata. For our two comparative explicata, we have to look at the two
product spaces E1 × E1 and E2 × E2 in which the comparative explicanda and explicata
are defined. For the vagueness-reduction requirement, in the first space we have two pairs of
elements for which our explicanda ‘warmer/colder than’ are not defined: u(rED)\u(rED) =
{(a, d), (c, i)}, because δ1(e, a) = δ1(e, d) and δ1(e, c) = δ1(e, i). Our explicata are instead
sharp, so that we have no equivalent case of vagueness and thus the boundary regions
consists only of the empty set: u(rET ) \ u(rET ) = {∅}. Then, the requirement is trivially
satisfied by noting that the empty set is a subset of the boundary region of the first metric
space.

As for the scope-preservation requirement, we just notice that all positive instances
of our explicanda, u(rED), are all positive instances of our explicata, u(rET ), so that
we have (for the ‘warmer than’ case): u(rED) = {(h, g), (h, j), . . . , (g, j), (g, b), . . .} ⊂
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u(rET ) = {(h, g), (h, j), . . . , (g, j), (g, b), . . .} . For the case of categorical concepts, these
two requirements are similarly satisfied. Take for instance our explicandum cold, C(x):
its clear-cut extension is {e} and its borderline region is {a, d}. The extension and the
borderline region of the related explicatum cold◦ are, respectively, {o, . . . , e, . . . , d, a, . . .}
and {∅}. We can then notice that the extension of our explicandum is preserved by our
explicatum and that the borderline region of our explicatum, i.e. the empty set, is trivially
a subset of the borderline region of our explicandum.

We have, thus, seen how my framework can be applied to a given case of explication.
More specifically, we saw how the CCVS explication of explication holds the scientific con-
cepts of temperature as satisfactory explicata for our intuitive categorical and comparative
notions of temperature. Conceptual spaces, integrating crucial aspects of measure-theory in
their representation of concepts (Zenker, 2014, p. 8), make transparent the conceptual ad-
vantages of the scientific concept of temperature in respect to its intuitive counterpart. The
scientific categorical concepts, in fact, extend the scope of our intuitive way of talking be-
yond any everyday possible experience, while simultaneously allowing us more fine-grained,
quantitative discriminations. A philosophically significant consequence of this improved
power of discrimination is that our scientific notion of temperature-indiscriminability is
transitive, in contrast to the arguable non-transitivity of our phenomenal one39. Further-
more, the scientific concept makes it possible to define on the temperature scale sharp
categorical concepts that make our communication effective and precise.

The same desiderata are equally satisfied by the pair of explicata warmer∗ and colder∗

(and related categorical concepts), defined in relation to the Kelvin scale in the same
way of our six explicata. In addition to them, though, the Kelvin scale allows a further
discrimination power and, being a ratio scale, it has the technical advantage of having
a smaller class of equivalence and thus to be empirically more testable (Gärdenfors and
Zenker, 2013, pp. 1049-1050).

Fish

Let us turn our attention to another example that Carnap gave, namely the scientific
concept of fish seen as an explicatum of our intuitive conception of what a fish is40. As
our explicandum we can take the intuitive concept of fish, understood as “an animal that
lives in the water”Ȧs our explicatum we take instead the scientific concept of fish, which
we will call (following Carnap) piscis, understood as “an aquatic vertebrate with gills and
with limbs in the shape of fins” (Helfman et al., 2009, p. 3).

Just like in the previous case study, the application of my explication of ‘explication’ to
the fish-piscis case will involve two steps (instead of the canonical three, cf. Section 4.2),
due to the aforementioned default choice of CCVS explication desiderata: first, we will

39The non-transitivity of our phenomenal notion of indiscriminability is the center of (Williamson, 1990).
For a more recent defense of this position, see (De Clercq and Horsten, 2004).

40Again, the same historical disclaimer of the temperature example applies here as well. In what follows,
I do not want to write ichthyology or history of biological taxonomy. For a recent complete account of the
biological understanding of fishes, see (Helfman et al., 2009).
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represent all the concepts involved in the explication in the theory of conceptual spaces
and then we will mathematically assess whether these representations satisfy the CCVS
desiderata.

In order to build a conceptual space for these concepts, let us construct a fictional
toy-example. Assume that a person who knows nothing about biology is asked to classify
the animals of a (very) small zoo in order to decide whether a given animal is a fish or
not. Assume that the zoo contains the following nine animals: a tuna, a whale, a shark, a
mudskipper, a fire-salamander, a crocodile, a zebra, a lion, and a hippo. The person is then
instructed to observe the animals for a certain period of time, after which she has to decide
whether a given animal is a fish, according to our intuitively ecological explicandum. Thus,
the person would look at which animals in the zoo live in the water. Assume that, on a
scale from 0 (never in the water) to 10 (always in the water), the results are the following:
0 (zebra, lion), 2 (hippo), 4 (crocodile, fire-salamander), 5 (mudskipper), 9 (whale), 10
(tuna, shark):

Figure 3.24: The conceptual space of the explicandum fish.

We can then easily represent this diagram in a one-dimensional conceptual space M1 =
{E1, δ1} where E1 = {z, l, h, c, f, m, w, t, s} and δ1(x, y) = |R(x) − R(y)|, R(x) being a
positive integer from 0 to 10, i.e. the result of the experiment. Thus, for instance, we have
δ1(z, c) = 4 and δ1(w, m) = 4. We can then suppose to define the concepts of fish and
not-fish using as prototypes t (or s) and z (or l), tessellating therefore the conceptual space
in two parts. We then define for all x ∈ E1 the concept fish F (x) iff δ1(t, x) ⩽ δ1(z, x)
and the concept not-fish NF (x) iff δ1(z, x) ⩽ δ1(t, x). Hence, we have F = {w, t, s, m}
(whale, tuna, shark, mudskipper) , NF = {z, l, h, c, f, m} (zebra, lion, hippo, crocodile,
fire-salamander, mudskipper). The mudskipper (m) is then a borderline case41. We thus
have a conceptual space representation of our explicandum fish.

We turn now to our explicatum piscis. Returning to our toy-experiment, assume now
that the same person is asked to classify the animals in the small zoo according to their
morphology. After having collected morphological data, the person has to classify again the

41The mudskipper presents itself naturally as a borderline case of the intuitive concept of fish due to its
ability of surviving out of the water for short periods of time. Fishes like the mudskipper are popularly
known as ‘walking fishes’. See (Helfman et al., 2009, pp. 60-65).



3.4 Formalizing Carnapian Explication in Conceptual Spaces 113

animals according to our explicatum. Remember that, in order to qualify as a piscis an ani-
mals has to be a “an aquatic vertebrate with gills and with limbs in the shape of fins”Ṫhen,
two major taxonomic changes naturally present themselves in our toy-experiment: the
whale and the mudskipper. The whale, who was a clear-cut case of a fish (living exclu-
sively in the water), is not a piscis but instead it is classified as a mammal. Looking closely
at the internal and external morphology of the whale, the person in our experiment realizes
that it is completely different from the one exemplified by a paradigmatic fish. Whales,
in fact, do not have gills, they have lungs, they reproduce like mammals, and so on. The
mudskipper, who instead was a borderline case of fish (due to its ability of spending short
periods of time outside the water), it qualifies as a clear instance of piscis, due to its in-
ternal morphology. Mudskippers have in fact gills and fins, just like other non-amphibious
fishes.

Assume then, that the person in the experiment is asked to judge whether the animals
in the zoo are pisces or tetrapods, judging by their morphology. The results of this new clas-
sification are the following: Pisces (shark, tuna, mudskipper), Tetrapods (fire-salamander,
crocodile, whale, zebra, hippo, lion). We can add another sub-level of classification dis-
tinguishing pisces between cartilaginous-fishes (shark) and bony-fishes (tuna,mudskipper)
and tetrapods between amphibians (fire-salamander), reptiles (crocodile), and mammals
(whale, zebra, hippo, lion):

Vertebrate

Tetrapods

mammals

w,z,h,l

reptiles

c

amphybians

f

Pisces

bony-fishes

t,m

cartilaginous-fishes

s

We can, then, easily read this tree as a conceptual space M2 = {E2, δ2}, where E2 =
E1 = {z, l, h, c, f, m, w, t, s} and δ2 is a simple metric that counts the number of nodes of
the tree between one element and the other. Thus, for instance, δ2(s, t) = 1, δ2(t, m) = 0,
δ2(t, f) = 3, δ2(m, w) = 3. Using as our prototype of a piscis s (or t or m) and as our
prototype of a tetrapod z (or any other tetrapod, for what it matters) we can define for all
x ∈ E2 our explicatum piscis P (x) iff δ2(s, x) < δ1(z, x) and the concept of tetrapod T (x)
iff δ2(z, x) < δ1(t, x).

We can now, as we did in the temperature example, assess the adequacy of the CCVS
explication of ‘explication’ by checking whether the conceptual space representation of this
example of explication satisfy all its requirements. The first requirement is the existence
of a quasi-isometry between the two metric spaces M1 and M2: fQI : (E1, δ1) → (E2, δ2)
with A + B ≤ sup{diam(CSED), diam(CSET )} and C ≤ diam(CSET ). The diameter of
the first conceptual space is δ1(z, s) = 10 and the one of the second space is δ2(s, l) = 3.
Considering that the two base sets contain the same elements, the simple trivial mapping
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f(x) = x would do the trick. For instance, fixing the constants A = 2, B ⩾ 5 (in order
to account for the drastic change of the classification of whales), C = 0, the following
weak-inequalities always hold:

1) ∀x, y ∈ E1 : 1
2δ1(x, y) − 5 ⩽ δ2(f(x), f(y)) ⩽ 2δ1(x, y) + 5;

2) ∀z ∈ E2, ∃x ∈ E1 : δ2(z, f(x)) ⩽ 0.
The second requirement is instead the convexity of the region representing our explica-

tum piscis: ∀x, y ∈ P : B(x, z, y) → z ∈ P . It is easy to see that the region P = {s, t, m}
is convex, being it a self-contained part of our taxonomic tree. Our third requirement
consists of a reduction of vagueness from the explicandum to the explicatum. In the con-
ceptual space of our explicandum we have only one borderline case: m (mudskipper). In
the second conceptual space, our concept piscis has instead sharper boundaries and the
set of borderline case is empty. Thus, also the vagueness reduction is satisfied. Finally,
our last requirement consists in the explicatum preserving the scope of the explicandum.
Being our base sets finite, comparing the number of elements that clearly fall under the
two concepts will suffice. We can then see how both the clear-cut extension of the expli-
candum fish F = {w, t, s} and the extension of the explicatum piscis P = {s, t, m} have
three elements, satisfying the scope-preservation requirement.

As in the first case study, conceptual spaces, in virtue of the measure-theoretic con-
sideration that they incorporate, allows us to see the conceptual improvements of our
explicatum in comparison to the intuitive explicandum. The concept piscis allows us to
make sharper taxonomic distinctions, offering more objectivity of judgment in comparison
to an intuitively ecological concept like fish. Not only the concept piscis allows us a more
fruitful reclassification of many instances of the concept fish, such as whales, it also permits
more fine-grained discriminations, such as the one between different kinds of pisces. Then,
of course, the concept piscis has many other non-strictly-conceptual advantages, such as
allowing us more generalizations (thanks to its morphological criteria), extending the scope
of the concept to non-observable animals (e.g. fossils, etc.), and so on.

Thus, we have seen how the morphological concept of piscis, despite its re-classification
of clear-cut cases of the intuitive concept of fish, satisfy all the desiderata of the CCVS
explication. Together with the previous example of the scientific concept of temperature,
this example shows how we can apply my meta-theoretical explication of ‘explication’ to
paradigmatic examples of explications from the history of science. In both case studies, we
saw how the applicability of my proposal is made of three steps: the representation, the
choice of desiderata, and the adequacy assessment.

More generally, we saw how my proposal allows a more precise understanding of the
subtle differences between different readings of explication desiderata, thereby contributing
to dissolve a lot of vagueness and ambiguity often contained in philosophical discussions
about explication. Moreover, thanks to the richness of the conceptual spaces representa-
tion of concepts, it is possible to define more fine-grained desiderata that arguably allow
explication to overcome some of its alleged limitations, such as the so-called ‘paradox of
adequate formalization’.

After all these steps, one could perhaps ask how satisfactory is this meta-theoretical
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explication of ‘explication’. We can assess this explication by judging how much it satisfies
Carnap’s three main desiderata for an explication: similarity, fruitfulness, and exactness.
The two case studies contained in this section show how paradigmatic cases of explications
are also perfectly satisfactory explications according to the present proposal. It seems,
then, that this meta-theoretical explication of ‘explication’ is sufficiently similar to Car-
nap’s original ideas. My proposal seems also quite fruitful. In fact, we have seen at the end
of Section 4.3 how conceptual spaces allow us to have more fine-grained readings of explica-
tion desiderata that help us to overcome recent critiques of explication. Moreover, having
developed this explication of ‘explication’ within the framework of conceptual spaces, one
can arguably expect many fruitful interactions between the present proposals and the var-
ious applications of conceptual spaces in science and philosophy. Finally, the exactness of
the present proposal is evident in the way in which different strictly-conceptual readings
of explication desiderata discussed in the literature can be made (more) precise as geo-
metrical/topological constraints over the conceptual spaces of the explicandum and the
explicatum.

3.5 Assessing Carnapian Explication in the Toolbox
Framework

In this final section, I will analyze how Carnapian explication can be classified within the
Toolbox framework, i.e. the meta-framework for assessing models of conceptual change
that I presented in Chapter 2. More specifically, we will see how the features of Car-
napian explication can be assessed along the nine evaluative dimensions of the Toolbox
framework: units of selection, concept ontology, concept structure, kinds and degrees of
conceptual change, degree of normativity, effectiveness of normative judgment, assump-
tions and consequences for conceptual change in science, assumptions and consequence for
conceptual change in philosophy, metaphilosophical assumptions and implications. Let us
survey how Carnapian explication performs in these dimensions, one by one, then.

Units of selection This dimension judges models of conceptual change according to
the level of abstraction at which they identify conceptual entities as meaningful units of
change. In the case of Carnapian explication, the unit of conceptual change is explicitly set
at the level of the single concept or, more accurately, at the level of the diachronic couple
of concepts composed by an explicandum and an explicatum. In contrast to Carnap’s
previous methodologies, such as rational reconstruction and translation to the formal mode
of speech, that involved different units of change such as concepts, theories, and statement,
explication is explicitly a procedure involving the transformation of a single concept, the
explicandum. That said, it seems possible (and actually, according to some scholars, it
would be better cf. Brun 2020) to explicate also larger units, such as pairs or sets of
concepts. Evidence for the possibility of this extensions can be found in my case study on
the concepts of temperature (cf. Sect. 3.4).
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Concept ontology This dimension focuses on the compatibility of a given model of
conceptual change with the different philosophical positions on the ontology of concepts.
In the case of Carnapian explication, consistent with the ideal of pluralism inherent in the
methodology, the procedure is not tied to any particular ontological view about concepts.
That said, it seems clear that the procedure of explication, with its heavy focus on bridging
different linguistic frameworks, goes particularly well with a linguistic view of conceptual
entities, a view that is moreover consistent with some remarks of Carnap about concepts
(e.g. Carnap 1928a, 1947). Carnapian explication can anyway be implemented together
with all the other three main views about concepts, understanding its linguistic focus in a
deflationary way as working not directly on conceptual entities, but on the related linguistic
predicates.

Concept structure This dimension focuses instead on how a given model of conceptual
change assumes the structure of concepts to be constituted. As I stressed in Section 1 of
this chapter, Carnapian explication puts a strong focus on the functions and the roles of
concepts. As such, the two theories of conceptual structures that seem most compatible
with it are functional and inferentialist theories, two theories that identify conceptual
structure with (respectively) a concept function and role. As a matter of fact, it can be
argued that both theories are traceable in Carnap’s writings (Creath, 1994; Peregrin, 2020).
Nevertheless, just like for concept ontology, the inherently pluralist spirit of Carnapian
explication lends itself to an analogous deflationary reading of its focus on the functions
and roles of concepts, that can be seen just as a way of identifying concepts and not
necessarily as involving a statement on conceptual structure. This deflationary reading
allows Carnapian explication to be implemented together with all other major views of
conceptual structure.

Kinds and Degrees of conceptual change This dimension focuses on the kinds and
degrees of conceptual change that a given model of conceptual change identifies. Carnap
does not explicitly identify multiple kinds or degrees of explications. It is clear by his exam-
ples, though, that significant explications are always trans-frameworks mappings where the
explicandum and the explicatum belong to different conceptual or linguistic frameworks.
This makes Carnapian explication a model of conceptual change designed to target radical
episodes of conceptual change of the kind that, in philosophy of science, are often concep-
tualized as taxonomic incommensurable ones. These changes are the philosophically and
scientifically significant one for Carnap and they are thus the ones for which the procedure
of explication can offer a suitable methodology.

Degree of normativity This dimension tracks the extent to which a given model of
conceptual change is more or less normative in judging episodes of conceptual change.
Carnapian explication is indeed a normative model of conceptual change, although its nor-
mative assessment of a conceptual history is never an absolute one. Episodes of conceptual
change in science and in philosophy can in fact be judged, qua examples of explications,
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as more or less satisfactory according to the specific context and goal under focus. This
judgment is never the only possible reconstruction, but it does provide, relative to a shared
analysis of the context and goal of the explication, a judgment of the rationality of the
conceptual change.

Effectiveness of normative judgment This dimension focuses on how effective the
normative judgment of a model of conceptual change is. As I stressed throughout all
this chapter, a distinctive feature of Carnapian explication is its inherent pluralism. This
pluralism is exemplified by the explicit ban of any absolutely correct answer in matters
of explication adequacy. The normative judgments of Carnapian explication with respect
to the rationality of a given episode of conceptual change is then what Carnap calls an
external question, i.e. a pragmatic matter that crucially involves the domain of values and
as such it is subject to instrumental rationality.

Assumptions/consequences for conceptual change in science This dimension fo-
cuses on the assumptions and the consequences of a given model of conceptual change in
relation to the problems that scientific conceptual change poses in philosophy of science.
Carnapian explication is evidently a pragmatic model of conceptual change, understanding
the continuity between radically different concepts as necessarily involving the domain of
values (cf. Carus 2017). If, in fact, Carnap’s earlier methodologies appear to defend a syn-
tactical view of conceptual change in science (cf. the aforementioned program of translation
in the formal mode of speech), the view of scientific change inherent in the methodology
of explication is in fact a fully pragmatic one. From the perspective of explication, scien-
tists engineer our conceptual tools with the goal of having better tools for achieving their
research goals and aims (cf. Kitcher 2008; Justus 2012). Scientific progress and scientific
objectivity are then, according to the ideal of explication, dependent on the value and goals
of the scientific communities. The only absolute value that Carnap repeatedly stresses in
his presentation of explication is the clarity of methods and goals, a traditional part of
modern science ethos. Explication is also compatible with both realist and anti-realist
positions on scientific theories ontological import, depending on how the values and the
goal of science are formulated. In general, explication gives a very viable way of defending
scientific rationality against incommensurability accusations, albeit one that inevitably in-
volves the value domain and therefore it is incompatible with the old-fashioned value-free
ideal of scientific objectivity.

Assumptions/consequences for conceptual change in philosophy This dimension
focuses on the assumptions and the consequences of a given model of conceptual change
in relation to the problems that philosophical conceptual change poses in philosophy. The
picture of philosophical conceptual change that Carnapian explication gives is the one of
an activity absolutely crucial for philosophy tout court. Philosophical activity, in fact,
according to the ideal of explication ought to become an engineering-like activity centered
around the development and the critical assessment of new conceptual and linguistic tools.
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In this respect, the feedback-relation between evolved and constructed languages around
which explication is centered makes the significance and the assessment of a philosophical
proposal completely dependent on its predecessors and its alternatives, in stark contrast
to traditional methodologies of philosophical analysis (cf. Carus 2012b; Richardson 2012).
Explication puts then philosophical conceptual change at the center of philosophical and
metaphilosophical activity.

Metaphilosophical assumptions and implications This dimension focuses on the
metaphilosophical background that a given model of conceptual change has. As we saw in
Section 1 of this Chapter, Carnapian explication fully embodies Carnap’s metaphilosoph-
ical ideals of constructivism, positivism, logicism, structuralism, and pluralism. As such,
Carnapian explication comes equipped with a theory-laden metaphilosophical baggage that
we can identify with the ideal behind the methodology of explication. This ideal is nothing
less than a radical plan for reforming philosophical activity. According to the ideal of ex-
plication, in fact, philosophy ought to become an engineering-like activity centered around
the construction and the critical assessment of conceptual tools. As such, as it was stressed
by many authors, Carnapian explication is then a paradigmatic, perhaps the most paradig-
matic, form of conceptual engineering. Moreover, Carnapian explication presents itself also
as one of the best equipped and well-studied methods of conceptual engineering. As we
saw in Section 2.2 of Chapter 2, in fact, many alleged conceptual engineering lack a clear
positive conception of how their method could be implemented, as well as evidence that
such implementation is possible in the case of central philosophical and scientific concepts.
As we saw in this chapter, instead, the philosophical and metaphilosophical background
of Carnapian explication has been extensively studied for years and there is significant
evidence of its applicability to central philosophical and scientific concepts.



Chapter 4

Models of Conceptual Evolution

The focus of this chapter will be models of conceptual evolution (or, alternatively, evolu-
tionary models of conceptual change), i.e. models of conceptual change that understand
this phenomenon as a kind of evolution akin to the one that biological entities undergo.
More specifically, I will focus on evolutionary models of conceptual change of a Darwinian
kind, i.e. evolutionary models centered around a selection mechanism analogous to natural
selection.

My analysis of models of conceptual evolution will also involve discussing the ideal
of an evolutionary epistemology, i.e. a naturalistic approach to epistemology in which
evolutionary considerations take central role. As we will see, in fact, understanding sci-
entific conceptual change as an evolutionary process has often been a central step of a
more general philosophical program aimed at an overarching evolutionary model of human
knowledge and its many products. I will thus critically present the general program of an
evolutionary epistemology with a specific focus on its implications for evolutionary models
of conceptual change. As a result this discussion, I will argue that models of conceptual
evolution, in order to be more applicable to specific case studies and thus more easily his-
torically testable, need to be narrower and more specifically tailored to a given scientific
disciplined. As a first step in this direction, I will present a novel model of conceptual
selection for mathematical concepts, specifically tailored to the specific kind of evolution
that mathematical concepts and mathematical problems exhibit. Finally, I will analyze
evolutionary models of conceptual change, such as my model of conceptual selection, within
the meta-framework of the Toolbox framework.

In Section 1, I will generally present the program of evolutionary epistemology, focusing
specifically on the part of it that aims modeling the evolution of scientific theories. In
Section 1.1, I will analyze this part by presenting the related work of four leading advocates
of evolutionary epistemology, i.e. Donald Campbell, Karl Popper, Stephen Toulmin, and
David Hull. In Section 1.2, I will present some common critiques to such evolutionary
models of scientific change, together with some possible answers to them and a general
assessment of the discussion on evolutionary epistemology. In Section 2, I will present a
novel selection framework for mathematical concepts, inspired by the recent population-
based Darwinian framework of Godfrey-Smith, centered around the notions of conceptual
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population and mathematical selection. In Section 3, I will show how my framework can
be fruitfully applied to assess the rationality of actual episodes of mathematical conceptual
change with the aid of three different case studies from the history of mathematics. Finally,
in Section 4, I will assess the specific features of Darwinian models of conceptual change
such as the one I presented in this chapter using the nine dimensions of my Toolbox
framework.

4.1 Evolutionary Epistemology
As I mentioned above, we can broadly consider an evolutionary epistemology any epistemo-
logical approach in which evolutionary considerations take central stage. As it was stressed
by several scholars (e.g. Campbell 1974a; Bradie 1986, 1994), evolutionary considerations
have played an important role in many modern epistemological works. In this broad sense,
then, evolutionary epistemology is hardly a recent phenomenon in the history of philos-
ophy. However, the concept of evolutionary epistemology is in contemporary philosophy
associated with a specific sub-kind of evolutionary epistemologies that have a Darwinian
character. After the scientific success of (Neo-)Darwinism, in fact, virtually all evolution-
ary approaches to epistemology seek to apply a kind of natural selection mechanism to the
realm of epistemological phenomena1. This Darwinian kind of evolutionary epistemology
will be the focus of this section.

Evolutionary epistemology, in the narrower Darwinian sense, can then be understood
as the cluster of epistemological approaches centered around an adaptationist mechanism
somewhat analogous to natural selection. In this form, evolutionary epistemology started to
be explicitly conceptualized and recognized as an epistemological movement in the second
half of the last century, mostly in connection to the philosophical efforts of Campbell and
Popper.

A standard distinction in the related literature (Bradie, 1986) divides evolutionary epis-
temology in two interrelated but distinct subprograms: the evolution of cognitive mecha-
nisms program (EEM) and the evolution of theories program (EET). The EEM program
attempts to explain the development of cognitive mechanisms in humans and animals by
extending the scope of evolutionary theory to the related biological substrates of cognition.
The EET program, instead, seeks to analyze the growth of knowledge (and in particular the
growth of science) by using evolutionary models and analogies drawn from evolutionary bi-
ology. If the explanandum of the EEM program are the mechanisms producing knowledge,
the EET program targets instead the products of human knowledge. These two programs
and their alleged evolutionary explanations are thus logically distinct and as such their
value can be assessed independently of one another. If, in fact, many paradigmatic exam-
ples of evolutionary epistemology involve both the EEM and the EET program, coupling an
evolutionary account of our cognitive apparatus with a selection theory for epistemogical

1It should be noted that there are few evolutionary epistemologists that champion a non-adaptationist
(and thus not Darwinian) kind of evolutionary approach to intellectual phenomena, e.g. (Ruse, 1986;
Rescher, 1990).
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phenomena in a hierarchy of selective mechanisms, many critics of evolutionary epistemol-
ogy have specifically targeted one of the two programs (e.g. Thagard 1980; Fracchia and
Lewontin 1999; Renzi and Napolitano 2011).

For the aims of this work, the subprogram of evolutionary epistemology that is most
relevant is the EET program, since it explicitly targets the phenomenon of scientific change.
Moreover, as we will see, many evolutionary accounts of scientific growth take as their
units of selections (sets of) scientific concepts and are therefore classifiable as models of
conceptual change.

In the next subsection, I will briefly present the history of the EET program by focusing
on four leading examples of it. After this presentation of the EET program, I will, in
Section 1.2, present some critiques to the viability of the EET program, critically assessing
the related discussion and its implications for evolutionary models of conceptual change.

4.1.1 Evolutionary models of scientific change
In order to present the EET program, I will focus on four paradigmatic examples of it.
Specifically, I will briefly present the evolutionary models of scientific change developed
(respectively) by Donald Campbell, Karl Popper, Stephen Toulmin, and David Hull. By
analyzing these four examples, we will see how evolutionary epistemology and in particular
a Darwinian-like selection theory for scientific theories can be spelled out in different ways,
while exhibiting a steady core of (meta)philosophical assumptions and ideals. Let us survey
these four takes on the evolution of science one by one, then.

Donald Campbell. If asked to give an example of a philosopher engaged in evolutionary
epistemology, most people would cite Donald Campbell. The whole of Campbell’s psycho-
logical and philosophical work can be in fact seen in the light of evolutionary epistemology
aims and ideals (cf. Wuketits 2001). Moreover, Campbell’s several programmatic papers
on evolutionary epistemology (Campbell, 1960, 1974a,b, 1987, 1988, 1997) were historically
pivotal to the establishment of evolutionary epistemology as a philosophical and scientific
research program. Campbell’s work fixed the terminology (even the term ‘evolutionary
epistemology’ itself) and the agenda of evolutionary epistemology, tracing its history and
its development by means of an enormous bibliographical study of evolutionarily episte-
mological efforts in science and philosophy.

Campbell can be seen as a paradigmatic supporter of both the EEM and the EET
programs in evolutionary epistemology. He saw in fact the two subprograms as two in-
terconnected parts in his systematic efforts towards establishing an evolutionary science
of human knowledge and its scientific products. The center of such an evolutionary sci-
ence is, according to Campbell, the pervasive mechanism of blind variation and selective
survival (cf. Campbell 1960, 1974b). This mechanism, paradigmatically exemplified by
the development of biological entities by means of natural selection, is for Campbell at
work behind all animal and human knowledge processes. Campbell’s appreciation of this
mechanism comes from his work in the psychology of perception and vision, where he
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gave a blind-variation-plus-selective-survival analysis of several elements of human cogni-
tion (Campbell, 1956, 1959, 1966). In its general form, the blind variation and selective
survival mechanism is made of three structural features (Campbell, 1959, p. 163): a mech-
anism producing variation, a selection process according to which certain variations are
preserved and others are lost, and a mechanism for maintaining and propagating the sur-
viving variations. These three features (corresponding to the classical Darwinian principles
of variation, selection, and inheritance; cf. Lewontin 1970) are then instantiated by differ-
ent biological and cognitive processes in a way specific to the knowledge process at issue.
Campbell (Campbell, 1974a, pp. 422-437) gives us a hierarchy of 10 knowledge processes
governed by the mechanism of blind variation and selective survival. He ordered these 10
processes by their level of complexity and development, from the lowest level corresponding
to blind trail-and-error problem solving, common even in the least complex members of
the animal kingdom, up to the highest level corresponding to the social decision making
processes typical of human science.

Science is then for Campbell the most complex and developed form of knowledge.
Nevertheless, the mechanism of blind variation and selective survival is still at the heart
of how science develops (cf. Campbell 1974b, 1988, 1997). At this level, the variation
is not determined by the appearance of biological phenomena, but it is externalized in
the appearance of scientific theories and hypotheses. Campbell (Campbell, 1960, p. 384)
stresses that at the level of science also the other two features of selection and inheritance
are somehow “substituted” by the testing and the propagation of scientific products within
scientific communities. Despite this externalization of the mechanism of variation and
survival, Campbell defends the clear analogy between biological and scientific development,
seeing in the growth and progress of our scientific theories just another example of the
progressive adaptation made possible by blind variation and selective survival. So that,
Kant’s problem of the fact of science and the related wonder of how scientific theories fit
the world are for Campbell the same issues that we face in explaining crystal formation2.
Apparent miracles of fit between our internal and external world are explainable as the
simple but powerful action of unjustified variations and selective retention in the dialectic
relationship between an organism and its environment (Campbell, 1974b, pp. 142-143).

Karl Popper If Campbell explicitly conceptualized his philosophical works as evolu-
tionary epistemology throughout his whole career, Popper’s explicit commitment to an
evolutionary approach to epistemological issues can be found, in its fullest form, only in
his last published works (e.g. Popper 1972a, 1974b, 1984). If, in fact, already Popper’s fal-
sificationist philosophy of science (Popper, 1934, 1963) clearly exhibits Darwinian features
in its conceptualization of the evolution of scientific theories as a trial and error process,
only in later years Popper starts to explicitly conceptualize his philosophical efforts as

2Note that the goal of explaining epistemological puzzles central to Kant’s philosophy with considera-
tions taken from evolutionary theory is not unique to Campbell. For instance, Konrad Lorenz repeatedly
championed the biologization of Kant’s categories as a goal for evolutionary epistemology (Lorenz, 1977,
1982).
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efforts towards an evolutionary epistemology.
In his intellectual autobiography, looking back at his work of decades, Popper (Popper,

1974a) stresses that the steady core of his philosophy is a Darwinian theory of learning
based on the method of trial and error. Such a non-repetitive learning mechanism is Pop-
per’s solution to the problem of induction in epistemology and the problem of demarcation
in philosophy of science (Popper, 1963). Both the justification of knowledge and what
distinguishes the scientific method are for Popper solvable by realizing that the growth of
human knowledge can be explained by a non-inductive theory of learning based on trial
and error mechanisms.

According to Popper’s Darwinian theory of learning (Popper, 1972b,c), the starting
point of every kind of learning can be traced back to the inborn tendencies of organisms
in finding regularities and solving problems3. Popper sees conscious life as a inherently
problem-solving activity that, like science, starts with problems and ends with problems.
Learning is then the modification of these inborn expectations of an organism in adapting
to the environment and the related survival problems. Consistently, Popper criticizes
(what he takes to be) the passive repetitive learning of inductive methods and the related
bucket theories of knowledge for failing to see that hypotheses and actions are prior (both
logically and temporally) to observations (Popper, 1972b,e). Our knowledge does not grow
thanks to a continuous systematization of observations, it grows dialectically through the
modification of our educated guesses in the light of our mistakes. This active, evocative
kind of epistemology is dubbed by Popper the searchlight theory of knowledge (Popper,
1972e).

The passivity of inductive epistemologies is also for Popper at the heart of the mistakes
of induction enthusiasts in philosophy of science (Popper, 1957). What makes a theory
scientific is not (the change in) its degree of inductive confirmation, but the possibility
of refutation by (quasi-)empirical testing. The conscious attitude towards the attempted
falsification of scientific theories is then for Popper (Popper, 1972b, p. 70) what the
scientific method, i.e. the critical method, consists of. The critical method of science is, just
like for Campbell, just a conscious and externalized version of the trial and error method.
The crucial difference between the evolution of scientific theories and analogous biological
and psychological processes is given by the fact that in science selection is exosomatic,
i.e. it is externalized and directed towards the objects and not the subjects of knowledge
(Popper, 1972c,d). Popper stresses that this exosomatic selection is only possible thanks
to the argumentative function of language (Popper, 1972c, pp. 236-240) that allows the
creation of public intellectual products such as scientific theories that can be falsified or
corroborated independently from the survival of their creators.

Popper’s efforts in both epistemology and philosophy of science can then be seen as
efforts in establishing an evolutionary epistemology centered around a Darwinian theory
of learning by adaptation. This active kind of learning by trial and error is for Popper

3Note that, as noted by Popper (Popper, 1974a, pp. 44-53 ,72-78) himself, his theory of learning has
strong similarities with the ideas of the so-called Würzburger Schule of psychology and in particular to
the writings of Bühler and Selz. For a full appreciation of this connection, see (Ter Hark, 2004).
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and highly general regularity behind the growth all kinds of biological, psychological, and
cultural phenomena that can be thus seen as an interconnected hierarchy of structurally
analogous processes (Popper, 1940, 1972d). The same dialectic of hypothetical tendencies
and surprising mistakes is at work throughout all the different levels of this hierarchy,
“from the amoeba to Einstein” (cf. Popper 1972b, p. 70) .

Stephen Toulmin We have thus seen how Popper and Campbell conceptualized the
evolution of scientific theories as driven by a kind of trial and error mechanism where
scientific hypotheses get selected by resisting (quasi)empirical testing better than their
competitors. Despite its intuitive appeal, this particular version of the EET program in
evolutionary epistemology was very soon met with heavy critiques because of its heavily
falsificationalist view of scientific method. In fact, Popper’s falsificationism and its related
image of science as a series of conjectures and refutations governed by the critical method
was criticized by many philosophers for depicting a too idealized and wiggish image of
the history of science4. Not only the history of science and the scientific method seemed
impossible to constrain in a neatly-ordered series of tentative hypotheses and attempted
refutations, but the overall project of finding a single mechanism responsible for the evo-
lution of scientific theories was increasingly perceived as a pseudo-problem. Together with
the so-called historical turn in philosophy of science and the stronger focus on historical
adequacy in philosophy of science, also evolutionary epistemology and specifically the EET
program underwent an analogous transformation.

A paradigmatic example of this novel, more pluralistic and historically-minded, evo-
lutionary approach to scientific change is Toulmin’s “Human Understanding” project. In
the homonymous book, Toulmin (Toulmin, 1972) presented a general evolutionary model
of scientific rationality where the evolution of scientific theories is seen as a process gov-
erned by a plurality of factors and criteria. In comparison with Campbell’s and Popper’s
trial-and-error based evolutionary takes, Toulmin (Toulmin, 1972, pp. 201-260) multiplied
the processes behind the variation, the selection, and the propagation of scientific theories
and concepts.

Concerning scientific variation, Toulmin’s evolutionary model is centered around the
notion of a conceptual population (Toulmin, 1970), i.e. a set of conceptual variants that
have to face similar scientific problems. Conceptual variants are understood by Toulmin as
concepts representing scientific possibilities (Toulmin, 1972, pp. 207-210) , i.e. communal
entities showing promise of yielding a recognizable procedure for attacking some outstand-
ing theoretical problem. Scientific concepts are understood by Toulmin as complex, hybrid
entities. In his specific hybrid theory of conceptual structure, Toulmin describes concepts
as micro-institutions (Toulmin, 1972, p. 166), made of at least three different kinds of
conceptual structures corresponding to the language, the representation techniques (i.e.
the mathematical apparatus), and the application procedures related to a given scientific

4The amount of critiques to Popper’s philosophy of science in the philosophical literature is such that
listing all of them appears a hopeless task. Every attempt to write such a list should include (at least) the
works contained in (Lakatos and Musgrave, 1970).
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concept. Toulmin’s version of the EET program is thus primarily a model of conceptual
change, where concepts are the main actors of the Darwinian selection procedures.

The selective environment of Toulmin’s evolutionary model is far broader than in pre-
vious evolutionary models of scientific change. It involves not just the specific scientific
problems at issue but also the whole social and pragmatic aspects of the scientific discipline
to which the conceptual variants belong. The selection mechanism of Toulmin’s model are
in fact crucially dependent on the shared ideals and criteria of rationality of a given sci-
entific discipline (Toulmin, 1972, pp. 225-227) . The fitness of a given conceptual variant
in relation to a given scientific problems can thus be judged only relative to some shared
criteria of rationality. As we saw in Chapter 2, this pragmatic encroachment in matters of
scientific rationality is typical of pragmatic models of scientific change, a tradition to which
Toulmin’s model can be definitely associated thanks to its focus on the significance of com-
mon values for scientific rationality. The specificity of science evolution is for Toulmin not
traceable on a specific method used by scientists in evaluating theories and concepts, but
can be seen by realizing that scientific disciplines are mostly compact disciplines (Toulmin,
1972, p. 379) , i.e. human activities organized around a specific set of ideals imposing
shared professional and intellectual criteria of adequacy to all their members. Consistently
with the pragmatic and pluralistic tendency of his framework, there is for Toulmin a vari-
ety of selection mechanisms at work behind the evolution of scientific disciplines, ranging
from purely normative and rational ones to professional and sociological mechanisms of
the scientific profession (Toulmin, 1972, pp. 488-491).

We have then briefly seen how Toulmin’s evolutionary model of conceptual change seeks
to combine the EET program and its evolutionary understanding of scientific progress with
the emphasis on the historical and pragmatic aspects of science typical of the philosophy
of science of his time. By substituting Popper’s and Campbell’s rigid trial and error
evolutionary schema with a broader picture of the intellectual environment and selection
at work in science, Toulmin’s evolutionary epistemology can be seen as rooted in the kind
of anti-essentialist and pluralistic methodology typical of Darwin’s population thinking
(Toulmin, 1967; Mayr, 1975). According to such a populational approach, the rationality
of scientific activity and its product can only be understood as the gradual transformation
of conceptual populations regulated by the agreed ideals and criteria of adequacy of a given
scientific discipline.

David Hull Another, more recent, example of a pluralistic approach to the EET program
can be found in David Hull’s model of scientific change (Hull, 1988a). Hull’s evolutionary
epistemology has lots of features in common with Toulmin’s one, such as the centrality
of conceptual change, the populational thinking approach to scientific structures, and the
attention to the social and professional aspect of scientific activity. What is specific to
Hull’s work in the evolutionary epistemology literature, especially in comparison to the
three examples above, is the level of detail of his proposal and the efforts in specifying
and historically testing his ideas about science evolution. A full appraisal of Hull’s fine-
grained model of scientific conceptual change is out of our present focus, so in what follows
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I will focus on three particularly salient features of Hull’s evolutionary model of science:
the general units of selection processes, the plurality of scientific lineages, and the demic
structure of scientific activity.

As we will see in the next subsection, a standard critique against evolutionary models
of science is centered around the disanalogies between the units of scientific selections
and its (alleged) biological analogues. In order to overcome this critique, Hull (Hull,
1988a,b) developed a very general model of selection processes, of which according to
him both biological and intellectual selection are specific instantiations. In this general
model of selection, there are two kinds of entities involved in the selection: replicator and
interactors. Replicators are entities that pass on their structure largely intact in successive
acts of replications, while interactors are defined as entities that interact as a cohesive
whole with their environment in such a way that this interaction causes replication to be
differential. The interwined activities of interactors and replicators is then nothing but the
selection process itself, understood as the process in which the differential extinction and
proliferation of interactors cause the differential perpetuation of replicators. An important
byproduct of this selection process is what Hull calls lineage, i.e. an entity that persists
indefinitely through time either in the same or in an altered state as a result of replication.
Thanks to this general model of selection processes, where the roles of replicator and
interactors are defined solely in terms of their function in the selection process (and without
any reference to specific ontological or structural features that they might exhibit), Hull
can adequately describe the evolution of science as a paradigmatic selection process. In
scientific selection, the replicators are all the elements of the substantive content of science
(e.g. problems, solutions, data reports, goals, meta-beliefs, etc.). These replicators are
passed on through a conceptual kind of replication for means of books, journals, individual
brains, and other similar means. The main interactors of this selection process are of course
the individual scientists, who are explicitly the main agents of Hull’s model of scientific
evolution.

The selection process at work behind science evolution produces for Hull various kinds
of conceptual and social scientific lineages such as scientific theories, research programs,
research traditions, schools of thought, and many others. This plurality of lineages does not
represent a problem for evolutionary approaches, since it is a consequence of the different
ways in which we can conceptualize the elements of a selection process. Similar to Toulmin’s
anti-essentialism, Hull (Hull, 1976, 1978) championed the use of populational thinking in
conceptual matters by repeatedly stressing the centrality of individuality in natural and
intellectual selection. In every selection process, replicators, interactors and even lineages
are individuals, i.e. transient entities that exist in time and come and go out of existence.
Selection processes, qua processes essentially involving individuals, can thus be described
in a plurality of ways dependently on the tokens and units of selection that we focus on
(cf. the type-specimen method of reference Hull 1988b, pp. 149-154).

The final feature of Hull’s model that I want to focus on is his insistence on the demic
structure of science. Scientific activity is for Hull strongly based on demoi such as research
groups and institutional communities of various sizes. This demic structure is crucial in the
selection mechanisms of science that can be divided in two kinds: intra-demic and inter-
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demic. Scientific activity involves for Hull a mixture of competitiveness and cooperation
that forces scientists to trade off credit for evidential support. As rational agents, scientists
can be modeled as if they were trying to maximize their own’s conceptual fitness and the
one of their own demos. Hull (Hull, 1988a, 1996) developed an economical system of
scientific credit and discredit centered around the value of empirical data use that seeks to
give an invisible-hand explanation of the success and progress of science.

We have then briefly seen how Hull’s evolutionary models of scientific change continues
the pragmatic and populational approach to evolutionary epistemology and in particular
to the EET program that Toulmin championed twenty years before. Specifically, we saw
how Hull proposed a general functional characterization of selection processes applicable to
both biological and intellectual kinds of selection and pluralistically open to different char-
acterization of the process itself. Furthermore, Hull expanded in greater detail Toulmin’s
insights on the evolutionary significance of the social and professional aspects of scientific
activity by developing an economical model of scientific credit and discredit based on the
demic structure of scientific communities.

4.1.2 The debate on the evolution of scientific theories
The examples we just saw show four different ways in which the EET program of evolu-
tionary epistemology can be carried out. Despite the differences between the particular
instantiations of the EET program, we have seen that there is a core ideal common to all
such approaches. This core ideal is that the evolution of scientific theories and concepts
can be adequately described by a (series of) selection mechanism(s) significantly akin to
the one(s) through which Darwinian theories explain the evolution of biological entities.
In other words, at the heart of the EET program lies the belief that there is a significant
analogy between the evolution of biological entities and the evolution of our intellectual
products. The significance of this analogy is precisely what critics of the EET program
contest.

Evolutionary epistemology and specifically the EET program have attracted lots of cri-
tiques, since their appearance (e.g. Cohen 1973; Skagestadt 1978; Thagard 1980; Lewontin
1982; Fracchia and Lewontin 1999; Renzi and Napolitano 2011). Philosophers and biolo-
gists have criticized evolutionary approaches to scientific change on many different grounds,
accusing them of misunderstanding the explanatory role and the mechanisms of evolution-
ary theory or of not realizing what an epistemology of science really amounts to. Amongst
the many different critiques that have been raised against the EET program, a central line
of argumentation can be discerned. Most critiques of the EET program argued somehow
for a disanalogy between biological and intellectual evolution that (allegedly) makes the
central analogical ideal of the EET program crumble.

In what follows, I will briefly present some alleged disanalogies between biological and
intellectual evolution that have been stressed as serious flaws in the central analogy on
which the EET program rests. More specifically, I will organize the presentation of these
disanalogies according to the element of the evolutionary process that they target, i.e.
whether the (alleged) disanalogy concerns variations, selection, or inheritance mechanisms.
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• Disanalogies in variation: the most common critique to any analogy between
biological and intellectual evolution concerns the blindness of the variations. If, in
fact, at least in scientific forums, the blindness of biological variations is an almost
universally accepted fact, many philosophers stressed that the same kind of blindness
cannot be attributed to scientific theories and hypotheses (cf. Cohen 1973; Skagestadt
1978; Thagard 1980). Attempts to solve scientific problems, so the critique goes, are
not blind trials, but they are created with the intended aim of solving a given (set
of) problem(s). Such a non-blind variation breaks the central change mechanism
of any wannabe Darwinian-like selection process. As such, concludes the critic, the
analogy between natural selection and the process by virtue of which our creative
products evolve is only a superficial one and cannot have any serious explanatory
role. A similar critique to the analogy between biological and scientific variation
concerns not so much the blindness of the variation, but their independence from
the environment. Some philosophers stressed in fact that the appearance of scientific
theories is inevitably intertwined with the scientific problems that are in need of a
solution (Cohen, 1973; Thagard, 1980). This intimate relationship between scientific
theories and the scientific problems that they are meant to solve allegedly makes the
variation inherently coupled with selective criteria. This coupling of variation with
the selective environment is, for the critics, another disanalogy between the biological
and the intellectual realm that makes them doubt the viability of the EET program.

• Disanalogies in selection: If critiques of the EET program that concern variation
stress the specificity of scientific variation, critiques that target the selection element
of the EET analogy underline the extreme variability behind the alleged selection
process of scientific theories and concepts. The choice of a scientific theory or concept
arguably involves in fact multiple intellectual, pragmatic, and sociological selection
mechanisms and criteria. This complex bundle of interconnected selection processes
seem to some critics too cloudy and multifaceted to be described by a single neat
Darwinian-like selection mechanism (Godfrey-Smith, 2009, pp 147-151). So that the
explanatory role of the EET analogy between biological and intellectual selection is
put into question. These doubts are often intertwined with traditional skepticisms in
the biological literature about the cogency of extending Darwinian ideas to the social
and cultural realms (Lewontin, 1982; Fracchia and Lewontin, 1999). The skepticism
of scientists and philosophers towards cultural selection theories (Cavalli-Sforza and
Feldman, 1981; Boyd and Richerson, 1985) or efforts towards sociobiology (Wilson,
1980) make thus many scholars doubtful about the EET program, the central analogy
of which they see as resting on similar dubious assumptions.

• Disanalogies in inheritance: The critiques of the EET program that target the
inheritance element in the selection process of scientific products concern instead the
viability of such intellectual entities to function as replicators in a selection process
(Godfrey-Smith, 2009, 2012). In fact, cultural replication and related imitation and
learning dynamics have never been fully accepted by the scientific and philosophical
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community as mechanisms able to create a truly Darwinian process. From the ap-
pearance of Dawkins’ (Dawkins, 1976) concept of memes, in fact, cultural replication
has been accused to exhibit only superficial analogies with actual biological replica-
tion. Many critics complained that these superficial analogies do not warrant the
extension of Darwinian ideas to the cultural realm, since cultural replication cannot
play the fundamental role that biological reproduction has in natural selection. As in
the case of critiques concerning selection, then, the EET program inherits a certain
degree of skepticism in its use of cultural replicators from previous attempts towards
a Darwinian-like theory of cultural evolution.

These general critiques to the central analogy of the EET program are indeed serious
enough to cast doubts on the viability and significance on every analogy between biological
and intellectual evolution. Nevertheless, supporters of the EET program have many ways
to reply to these doubts (e.g. Plotkin 1982; Cziko 1995; Gontier, Bendegem, and Aerts
2006; Charbonneau 2014).

Already in the four examples of EET approaches that we saw in the last subsection,
we can see promising lines of defense against these critiques. Popper and Campbell, for
instance, spent a lot of effort in defending a certain degree of blindness in scientific variation
against commonsense intuition (Campbell, 1974a,b; Popper, 1972a, 1974b). As Campbell
(Campbell, 1974b, pp. 152-158) puts it, Darwinian processes do not require complete
randomness in the variation, but only a variation that is unjustified and not too goal-
directed. Popper’s work in philosophy of science can be seen as arguing that the variation
of scientific hypotheses is exactly of this unjustified kind (cf. Popper 1957, pp. 66-71).
Concerning the doubts about the Darwinian character of the selection and the inheritance
mechanisms of science, Toulmin’s and Hull’s work provides suitable replies. A great deal
of Toulmin’s (Toulmin, 1972, Section B) evolutionary model of conceptual change is in fact
dedicated to give an evolutionary account of the multitude of selection mechanisms and
selection criteria at work in the choice of a given scientific theory or concept. Hull’s (Hull,
1988a,b) general model of selection processes, instead, and the fundamental distinction
between replicators and interactors provide a way in which Darwinian models of science
can escape the need of relying on contested models of cultural replication.

The (non)viability of the EET program seems then not ascertainable by virtue of in
principle arguments. Many arguments cast doubts on the analogy between biological and
intellectual evolution, but several replies are at the disposal of any wannabe evolutionary
epistemologist. Moreover, the significance of the analogy at the heart of the EET program
rests also on contemporary understanding of both evolutionary theory and scientific activ-
ity. Our ideas on both biological evolution and scientific change are of course constantly
changing in the normal dialectic of the respective fields. Such as dynamic process naturally
determines the emergence and disappearance of positive and negative trends towards the
whole enterprise of evolutionary epistemology. So that, just a brief look at the philosophi-
cal literature on evolutionary epistemology in recent years shows a variety of positive and
negative takes on the EET program determined by the rise and fall of specific scientific
and philosophical related approaches. Examples of such approaches that have been argued
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to be closely relevant to the viability of the EET program include the extended synthesis
in evolutionary biology (Sarto-Jackson, 2019; Pigliucci and Müller, 2010), cultural evolu-
tion theory (Mesoudi, 2011; Fadda, 2020), cognitive biology (Kovac, 2000), genealogical
approaches to epistemology (Gelfert, 2011; Craig, 1990; Williams, 2002), social epistemol-
ogy (Goldman and Whitcomb, 2011), and evolutionary game theory (Harms, 1997, 2004;
Skyrms, 2010).

Instead of the seemingly neverending dialectic between arguments in favor and against
the EET program, a more promising way of assessing the significance of evolutionary mod-
els of science seem to be the historical and philosophical testing of the specific models
put forward by advocates of evolutionary epistemology. Evolutionary models of scientific
change, just like all the others philosophical models of scientific activity, should be his-
torically tested as methodological hypotheses on the epistemological structure of scientific
change. In order to do that, though, evolutionary epistemologists should build narrower
evolutionary models that target specific selection processes at work in a specific scientific
discipline. These more specifically focus models will be easier to apply to related case
studies from the history of science and thus easier to historically test. In the next section,
I will try to do a first small step towards filling this gap, by presenting a simple formal
framework for modeling the mechanism by virtue of which fruitful mathematical concepts
get selected.

4.2 An Evolutionary Framework for Conceptual Se-
lection in Mathematics

In this section, I will propose a novel evolutionary framework for conceptual change in
mathematics centered around the notion of conceptual populations, the opposition between
Euclidean and Lakatosian populations, and the spatial tools that I will call the Lakatosian
space.

Before presenting my framework, I must stress that very few examples of evolutionary
epistemology or evolutionary models of scientific evolution target mathematics. This lack
could be explained by noticing a more general lack of general models of theoretical and
conceptual change in the philosophy of mathematics. In fact, despite the plethora of
mathematical episodes of conceptual change that have been analyzed in philosophical and
historical literature, few general frameworks for modeling this phenomenon have been
proposed. In contrast to what happened in the philosophy of natural sciences, where
the philosophical debate about conceptual change has centered around contrasting general
pictures (e.g. Toulmin 1972; Stegmüller 1976; Thagard 1992; Kitcher 1995; Friedman
2001; Andersen et al. 2006; Wilson 2006), the discussion in philosophy of mathematics
has mostly proceeded in a piece-meal fashion (cf. Gillies 1992). An exception to this
pattern can be found in Mormann’s (Mormann, 2002) proposal to use evolutionary theory
to improve Lakatos’ (Lakatos, 1976) seminal model of conceptual change in mathematics.
Mormann sketched a general Darwinian selection theory for mathematical concepts in
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which conceptual variants compete in a world of proof-experiments5.
I will construct my framework by building upon Mormann’s work, proposing a more

fine-grained evolutionary framework for conceptual change in mathematics. In order to do
this, I will radically change Mormann’s evolutionary background theory, using Godfrey-
Smith’s recent version of the Darwinian selection theory (Godfrey-Smith, 2009) as a con-
ceptual basis for my framework. Godfrey-Smith’s population-based Darwinian framework
is made of two ingredients: the family of concepts of a Darwinian population and sev-
eral parameters tracking how much a certain population exhibits paradigmatic Darwinian
features such as reliable inheritance mechanisms, abundance of variation, and continuity.
The interaction between different Darwinian population concepts and these parameters
provides a gradual and pluralist approach to evolution by natural selection. By mirroring
much of the structure of Godfrey-Smith’s framework, I will show how my proposal achieves
an account of conceptual change in mathematics with analogous advantages. My frame-
work will offer an evolutionary model of conceptual change compatible with the diversity
of evolutionary dynamics that the history of mathematics exhibits. My framework will
also give a novel perspective on whether conceptual change in mathematics is a rational
process, distinguishing conceptual histories in mathematics between cases of mathematical
selection and cases of evolutionary drift.

As I mentioned above, my framework will be centered around the notion of a conceptual
population, i.e. a set of conceptual variants and a set of mathematical problems together
with a selection mechanism given by an heuristic power ordering of conceptual variants
(relative to a given problem). I will present two ideals of conceptual populations, namely
Lakatosian and Euclidean populations, that will represent (almost) opposite evolutionary
dynamics. I will augment my framework with four parameters: conceptual variation,
reproductive competition, environmental stability, and continuity. These four parameters
that track how much a given conceptual population exhibits certain evolutionary features
constitute the four dimensions of the Lakatosian space. Depending on how much they
exhibit these parameters, conceptual populations can be judged to be more Lakatosian or
more Euclidean (or neither of them), occupying different regions of the Lakatosian space.

I will demonstrate how my framework, thanks to the four dimensions of the Lakatosian
space, is able to provide a rich understanding of the evolutionary dynamic of a given
episode of conceptual change in mathematics. I will show how a mathematical conceptual
history can be represented in my framework as a conceptual population and how its evo-
lutionary dynamic can be judged to be a case of mathematical selection or evolutionary
drift. The Lakatosian space then becomes a conceptual space for classifying episodes of the
history of mathematics in terms of the evolutionary features exhibited by their rationally
reconstructed conceptual population. Moreover, I will sketch that the Lakatosian space,
augmented with a time-dimension, is able to model also diachronic conceptual histories and
related inter-population changes as a series of specific movements along the four dimension

5Other three notable general models of conceptual change in mathematics are Wilder’s (Wilder, 1953)
sketch of an evolutionary account of mathematical concepts and Kitcher’s (Kitcher, 1984) and Ferreirós’
(Ferreirós, 2015) practice-based frameworks.
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of the original Lakatosian space.
In this section I will present my framework in full generality, while in the next section

I will show how my framework can be applied to several case studies from the history
of mathematics. More specifically, In Section 2.1 I will describe the philosophical back-
ground of my framework, i.e. Lakatos’ seminal work on conceptual change and Mormann’s
evolutionary rethinking of it. In Section 2.2, I will present Godfrey-Smith’s population-
based Darwinian framework, stressing the reasons why I chose it as a background theory
for this work. In Section 2.3, I will present my evolutionary framework centered around
the notion of a conceptual population, the opposition between Lakatosian and Euclidean
populations, and the Lakatosian space. In Section 4, I will show how the Lakatosian space
can be augmented with a time-dimension in order to model even inter-population kinds of
changes.

4.2.1 Models of conceptual change in mathematics
As I already mentioned, the study of conceptual change in mathematics has mostly pro-
ceeded in a case-by-case fashion, through analyses of specific conceptual histories and case
studies. In this subsection I will focus instead on surveying frameworks that have tried
to understand the phenomenon of conceptual change in mathematics from a more general
perspective. Specifically, I will focus on two models that directly inspired my framework,
namely Lakatos’ (Lakatos, 1976) concept-stretching and Mormann’s (Mormann, 2002) se-
lection theory for mathematical concepts.

Lakatos’ concept-stretching

Lakatos (Lakatos, 1976) had a more general aim than to give a model of conceptual change
in mathematics. He wanted to develop a dialectical philosophy of mathematics, i.e. a phi-
losophy of mathematics focused on “the process by which mathematical argument improves
mathematical concepts” (Larvor, 1998, p. 11). This aim was quite unusual in philosophy
of mathematics at the time. Early twentieth-century philosophy of mathematics, referred
by Lakatos with the umbrella term “formalist school”, focused in fact on the (meta)logical
properties of formalized mathematical systems and the epistemological and ontological
problems connected to their foundations. Informal mathematics and the conceptual his-
tories of mathematical theories were thus not seen as very fruitful objects of philosophical
study.

Lakatos directly set out to challenge this status quo. He thought that, in order to
understand and rationally reconstruct a given mathematical theory, one cannot neglect the
actual history of its main concepts (Hacking, 1979). This is the dialectical component of
his philosophy of mathematics. This standpoint led him directly to the issue of conceptual
change. In fact, the lack of formal regimentation of informal mathematics makes the
concepts used in a certain mathematical field at a certain time vary. This was very much
stressed by the ‘formalists’, who saw the vagueness and ambiguity of mathematical practice
and its evolved languages as the reason why philosophers ought to rationally reconstruct
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mathematical theories in suitable formal languages (cf. Carnap 1934). Lakatos completely
subverted this view, seeing in the inevitable messiness of informal mathematics one of the
main engines of mathematical progress. Like the formalist school, Lakatos believed that
philosophers should rationally reconstruct this dynamics, but he championed a different
form of rational reconstruction. A dynamic process required dynamic tools, which for
Lakatos were exemplified by heuristics and not by formal logic6.

In what it is usually regarded as the first monograph in philosophy of mathematics
where conceptual change takes central stage, Lakatos (Lakatos, 1976) presents his model
of conceptual change through a rational reconstruction of the notion of polyhedron in
connection with Euler’s conjecture7. In Lakatos’ reconstruction, the problem starts with
the conjecture that Euler’s formula connecting the number of vertices, edges and faces of
regular polyhedra (V − E + F = 2) holds for any polyhedron whatsoever. This conjecture
is supported by Cauchy’s thought experiment. In a series of reconstructed steps, the
conjecture and its alleged proof get challenged by a series of counterexamples of various
kind, after every one of which an attempt to defend or improve the conjecture and its proof
is made.

Abstracting from the specific case at issue, Lakatos presented a three-level analysis of
the dynamics between proofs and refutations. At the first level we find the (many instances
of the) conjecture and the counterexamples to it. Lakatos classified the possible counterex-
amples that any mathematical conjecture may face. The main distinction is between local
and global counterexamples. Local counterexamples refute a particular lemma or step of
the tentative proof, while global counterexamples are directed towards the conjecture as a
whole. Lakatos then distinguishes between “logical”(i.e. global but not local) and heuristic
(local) counterexamples.

Lakatos discusses several methods for dealing with counterexamples, such as lemma-
modification, barring-adjustments methods (various ways of refusing to count the coun-
terexample as a genuine one), and the method of lemma incorporation. These methods
form the second level of Lakatos’ analysis. The method of lemma-incorporation in par-
ticular plays a central role in Lakatos’ view of conceptual change. It consists in finding a
hidden conjecture-lemma (e.g. polyhedra are stretchable onto a plane) refuted by a given
counterexample (e.g. the nested cube) and inscribe this ‘guilty’ lemma into the conjecture
as a condition for its applicability. This method saves the conjecture by restricting its do-
main to a narrower one (e.g. Euler’s conjecture for ‘simple’ polyhedra, i.e. the stretchable
ones), thereby connecting the counterexamples, the proof, and the conjecture and thus
displaying the “fundamental dialectical unity of proof and refutations”(Lakatos, 1976, p.
39).

The third-level of Lakatos’ analysis is made of a set of heuristic rules for applying
the above methods to any given counterexample. This list is quite vague and it is not

6This distrust of Lakatos for logical reconstructions of dynamic processes is difficult to understand,
especially from a contemporary perspective. Dynamic logics and the whole field of belief revision seem
natural tools for logically reconstructing virtually any dynamic process whatsoever. Even at Lakatos’ time,
logicians criticized heavily this unjustified anti-logical stance of Lakatos (e.g. Feferman 1978).

7For in-depth analyses of Lakatos’ seminal book, see (Larvor, 1998; Kadvany, 2001).
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really clear how the different rules interact with each other. These issues notwithstanding,
Lakatos’ heuristics seems to be centered around the meta-method of proofs and refutations,
i.e. a search for heuristic counterexample followed by several applications of the method
of lemma-incorporation. Lakatos warns us against the abuse of this meta-method, though.
Lemma-incorporation saves the conjecture via restricting its intended domain. If this
retreat to a narrower domain is repeated too many times, we may be left with a lack
of content in our theorem. This impoverishment of content can be countered trying to
replace lemmas that are refuted by heuristic counterexamples with unfalsified ones, thereby
increasing the content of the theorem. Another way of countering the decrease of content is
the more general deductive guessing for deeper theorems to which given counterexamples
do not apply anymore.

Lakatos’ rational reconstruction of Euler’s conjecture gives us this dynamic taxonomy
of conjectures, counterexamples, heuristic methods, and heuristic meta-rules. In this dy-
namic, the concept of a polyhedron changes consistently with the heuristic agenda. The
search for heuristic counterexamples drastically expand the concept of polyhedron out of
its intended domain. In this expanded domain, it is not clear how to apply this concept
correctly, warranting the use of barring techniques against counterexamples. Lemma-
incorporation and deductive guessing then redefine what a polyhedron is, inscribing proof-
methods into the definition of the concept in order to shield the conjecture against coun-
terexamples (the former) or to boost its content (the latter). This process creates several
proof-generated concepts of a polyhedron, each one of them theoretically stretched by the
underlining proof of the conjecture. In the dialectics of proofs and refutations, thus, the
concept under focus gets stretched in various directions via the interaction of counterexam-
ples, proofs and heuristic methods. Lakatos refers to these dynamics of conceptual change
as concept-stretching8.

Mormann’s selection theory for mathematical concepts

Thomas Mormann built upon Lakatos’ model of conceptual change, sketching a Neo-
Lakatosian evolutionary theory of mathematical knowledge (Mormann, 2002). According
to him, the fundamental driving force of mathematical evolution is the “axiomatic vari-
ation of concepts” (Mormann, 2002, p. 139). He claims that conceptual variation is not
restricted to informal mathematics, contra (the received view of) Lakatos, and he argues
that modern axiomatized mathematics still exhibit conceptual variations, in the form of
different axiomatic versions of the same concept (e.g. Hamilton’s invention of the quater-
nions)9. Thanks to this ubiquitous conceptual variation, the evolution of mathematical

8Some scholars use other terms to refer to Lakatos’ model of conceptual change such as ‘concept-
trafficking’ (Mormann, 2002), using concept-stretching to refer only to the particular method of stretching
the extension of a concept. I follow Fine (Fine, 1978) in using concept-stretching to refer to the whole
model of conceptual change presented by Lakatos.

9Note that whether Lakatos regarded conceptual variation to be exclusive of informal mathematics
is a vexata quaestio in Lakatosian scholarship. For different takes on this question, see (Corfield, 2002;
Feferman, 1978; Priest and Thomason, 2007). Moreover, note that here Mormann seems to conflate
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knowledge can be understood as a Darwinian evolution of mathematical concepts, based
on the competition between variants of the same concept:

“This competition among conceptual variants may be described within the frame-
work of an evolutionary theory, which conceptualizes the evolution of mathematical
knowledge as a selection process of conceptual variants taking place in a ‘world’ whose
challenges are determined by varying theorematical environments” (Mormann, 2002,
p. 140).

Mormann takes mathematical concepts to be the main characters of his framework.
Specifically, the main unit of selection are conceptual variants, i.e. specific definitions
of a given mathematical concept, such as the many different tentative definitions of a
polyhedron discussed in Lakatos’ fictional classroom. A group/species of conceptual vari-
ants is made of several of these tentative definitions competing for the same (or similar)
proof-problem(s). In Mormann’s framework, proof-experiments constitute survival tasks
for conceptual variants. Successful proof-experiments, i.e. valid proofs, constitute a pos-
itive outcome for the conceptual variant used in the proof. The more successful a given
conceptual variant is, the more it will be used in future proofs, whereas unsuccessful con-
ceptual variants get more and more disregarded by the mathematical community until they
often get completely forgotten.

Mormann sketches a selection theory for mathematical concepts in the form of a sum-
mary or recipe (Godfrey-Smith, 2007), i.e. a set of general principles for evolution by
natural selection analogous to a classical presentation of Darwinism such as Lewontin’s
(Lewontin, 1970). Mormann’s recipe-like selection theory is made of four principles: vari-
ation, competition, variation of fitness, inheritance.

The principle of variation asserts the existence, at any stage of the history of mathemat-
ics, of several conceptual variants of a given mathematical concept. Variants of the same
concept have different properties but they have to face similar proof-problems. Mormann’s
framework takes conceptual variation as the basic engine of mathematical growth, a dy-
namics that encompasses also modern axiomatized mathematics via the aforementioned
notion of ‘axiomatic variation’.

Mormann’s principle of competition tells us that this abundance of conceptual variants
sharing similar proof-environments forces these variants to inevitably compete against each
other for being used in fruitful proofs/theorems. The more a given conceptual variant suc-
cessfully copes with the proof-problems constituting its environment, the more prominent
and higher in ranking becomes in respect to its competitors. Often, very successful vari-
ants become the ‘accepted definition(s)’ of the concept. Unsuccessful variants, instead,
gets lower and lower in the ranking, until they are very rarely used and often forgotten.
Discharge of a conceptual variant is not as final as biological extinction, though, because
variants that have been forgotten can always be reappraised and used again in the future

formalized mathematics with fully axiomatized one. In my own framework the degree of axiomatization of
a given mathematical population and its degree of formalization are carefully distinguished and traced via
different parameters. However, in this section I will follow Mormann’s conflated use of the two aspects.
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as it was famously the case for Leibniz’s notion of infinitesimals thanks to Robinson’s
non-standard analysis (Robinson, 1974).

The principle of variation of fitness stresses the fact that the different properties of con-
ceptual variants make them more or less likely to succeed in facing a given proof-problem.
Analogously to the biological case, variants can be more or less fit to a given theoremat-
ical environment. The degree of fitness of a given variant is understood by Mormann as
the extensional generality of the theorems it makes possible to prove. Mormann acknowl-
edges that this way of understanding the fitness of conceptual variants is quite vague, but
he thinks that this only shows the need of more work on neo-Lakatosian approaches to
conceptual change (Mormann, 2002, p. 148).

The principle of inheritance tells us that new conceptual variants have inevitably to re-
semble their conceptual ancestors in order to cope with at least some proof-problems faced
by the older variants. This implies for Mormann that at least some properties of conceptual
variants gets inherited by their successors, ensuring a (partial) historical problem-solving
continuity in the history of a given mathematical concept. However, Mormann warns
us not to overestimate this continuity, because one of the specific features of the evolu-
tion of mathematical concepts is that the proof-problem world that they inhabit can very
quickly change drastically. Certain conjectures may become completely obsolete or a new
application of a given proof-problem may completely change the domain (and thus the
proof-challenges) of a given mathematical concept.

In sum, Mormann generalized Lakatos’ idea of concept-stretching to his notion of ax-
iomatic variation that is meant to model also the conceptual dynamics of axiomatized
bodies of mathematics. More generally, he sketched a recipe-like selection theory for con-
ceptual variants competing in a world of proof-problems, aiming to describe the dynamics
behind the rise and fall of mathematical concepts within an evolutionary framework.

4.2.2 Godfrey-Smith’s Darwinian framework

We have seen that Mormann uses a recipe-like selection theory as a background for his
model of conceptual change. I will instead use a different kind of evolutionary theory as a
background for my framework, namely Godfrey-Smith’s population-based Neo-Darwinism
(Godfrey-Smith, 2009).

Recipes-like approaches that inspired Mormann’s selection theory have been in fact
heavily criticized in philosophy of biology (Godfrey-Smith, 2007). These approaches try to
give an abstract summary of the evolutionary dynamics in the form of a recipe for a change.
Take, for instance, Lewontin’s mature formulation of evolution by natural selection:

“A sufficient mechanism for evolution by natural selection is contained in three
propositions:

1. There is variation in morphological, physiological, and behavioral traits among
members of a species (the principle of variation).



4.2 An Evolutionary Framework for Conceptual Selection in Mathematics 137

2. The variation is in part heritable, so that individuals resemble their relations
more than they resemble unrelated individuals and, in particular, offspring re-
semble their parents (the principle of heredity).

3. Different variants leave different numbers of offspring either in immediate or
remote generations (the principle of differential fitness).

All three conditions are necessary as well as sufficient conditions for evolution by
natural selection . . . Any trait for which the three principles apply may be expected
to evolve.” (Lewontin, 1985, p. 76)

In this formulation, as well as in other recipes-like ones, variation, heritability and
fitness differences are meant to be necessary and sufficient ingredients for producing evo-
lution by natural selection. The problem with these approaches is that it can be shown
that these ingredients are neither necessary nor sufficient to cover all the different cases
of actual evolution by natural selection. That is, there are cases where all the ingredients
are present but change does not occur and cases where change does occur without all the
ingredients (Brandon, 1978; Godfrey-Smith, 2007). Godfrey-Smith diagnoses this problem
as caused by the attempt of traditional recipes-like approaches to perform two contrasting
tasks at the same time. These recipes are, on the one hand, meant to describe all genuine
cases of evolution by natural selection and, on the other hand, expected to consist of a
simple, causally transparent mechanism for change. Abstract recipes like Lewontin’s are
then the result of an uncomfortable trade-off between these two tasks, trying to squeeze all
the diverse forms in which natural selection produces evolutionary change into one neat,
encompassing mechanism.

As an improvement of this situation, Godfrey-Smith proposes a more-fine grained Dar-
winian framework designed to solve these problems thanks to a gradual and plural approach
to evolution by natural selection. Instead of a one-size-fits-all recipe, he proposes a combi-
nation of a general set-up together with various specific models thereof. More specifically,
Godfrey-Smith’s set-up is constituted by the family of concepts of a Darwinian population.
We can talk about a Darwinian population in three senses, a minimal, a paradigm, and a
marginal one:

• “A Darwinian population in the minimal sense is a collection of causally connected
individual things in which there is variation in character, which leads to differences
in reproductive output (. . . ) and which is inherited to some extent” (Godfrey-Smith,
2009, p. 39);

• A Darwinian population in the paradigm sense is a minimal Darwinian population
that has reliable inheritance mechanisms, unbiased and slight variation, reproductive
competition, reproductive differences highly dependent on intrinsic features of the
individuals, and that exhibits continuity10.

10This is a rough summary of this concept. What Godfrey-Smith actually requires from a paradigm
Darwinian population is more nuanced and gradient. For a full-account of this notion see (Godfrey-Smith,
2009, pp. 41-59)
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• A Darwinian population in the marginal sense is a population which does not fully
satisfy the requirements for a minimal Darwinian population, but only approximates
them.

The minimal concept is supposed to be applicable to very different biological phenom-
ena, requiring only a minimal locality constraint on the members of the population. The
members of a Darwinian population in the minimal sense, i.e. the Darwinian individuals,
must exhibit the three ingredients of recipe-like Darwinism (variation, inheritance, fitness
differences) only to some extent. The other two senses in which one can speak of a Dar-
winian populations are instead designed to stress the extent to which evolution by natural
selection is central to the dynamics of a given population. Populations approximating the
ideal dynamic of evolution by natural selection are the paradigm ones. These are the Dar-
winian populations representing significant Darwinian processes, i.e. processes that exhibit
all the paradigmatic features of a truly Darwinian process. Paradigm Darwinian popula-
tions not only exhibit all the ingredients of recipe-like Darwinism, but they instantiate ‘the
right kind’ of variation, fitness differences, and inheritance. These populations exhibit reli-
able inheritance mechanisms, slight and unbiased variation, reproductive differences highly
dependent on intrinsic individual features and other extra features that contribute to make
the perfect scenario for evolution by natural selection. Finally, the concept of a marginal
Darwinian population allow one to stretch Darwinian concepts onto biological phenomena
whose dynamics are not really Darwinian, but in which one can discern aspects that are
partially Darwinian in character.

Godfrey-Smith adds structure to his population-based set-up of evolutionary theory
with the aid of the Darwinian space, i.e. a space the dimensions of which are parame-
ters tracing how much a population is paradigmatically Darwinian with respect to a given
feature. This spatial structure is meant to split into different dimensions the extent to
which a given evolutionary process has a Darwinian character, allowing a gradual repre-
sentation of all the possible types of Darwinian processes. The Darwinian space has five
dimensions, representing five different parameters: fidelity of inheritance, abundance of
variation, reproductive competition, continuity, dependence of reproductive differences on
intrinsic character (Godfrey-Smith, 2009, p. 63). Fidelity of inheritance tracks how much
the state of a parent is predictive of the state of the offspring. Abundance of variation
measures the amount of variation amongst the individuals of a population at a time. Re-
productive competition indicates the extent to which the reproductive success of a given
individual reduces the success of others members of the population. Continuity is a mea-
sure of the overall extent to which similar members of the populations have similar fitness.
Dependence of reproductive differences on intrinsic character tracks how much differences
in reproductive output are caused by intrinsic features of the members of the population
(and not by extrinsic ones).

Each of these parameters represents an aspect with respect to which a given population
can be more or less paradigmatically Darwinian. Different regions of the Darwinian space,
i.e. different combinations of these parameters, represent different types of biological phe-
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nomena11. Paradigm Darwinian populations occupy then the part of the Darwinian space
where all five parameters take high values, while marginal Darwinian populations are at the
opposite side. Minimal Darwinian populations occupy instead a large portion of the space,
including the part where paradigm Darwinian populations are. Moreover, specific regions
of the space (representing specific combinations of the parameters) are able to explicate
phenomena underlying specific dynamics of populations such as the concept of drift and
error catastrophe (Godfrey-Smith, 2009, pp. 59-64).

These spatial tools enrich the family of concepts of a Darwinian population with a
more fine-grained structure, enabling Godfrey-Smith’s framework to adequately represent
the plurality of evolutionary dynamics. The diversity of ways in which evolution by natural
selection occurs is not squeezed anymore into a one-size-fits-all abstract recipe, but it is
reflected by all the possible combinations of parameters allowed by the Darwinian space.
Thanks to this rich structure, Godfrey-Smith’s framework is able to account for several
issues faced by recipe-like Darwinian accounts, such as the problem of units of selection,
the relationship between reproduction and individuality, or the explication of evolutionary
drift.

4.2.3 Conceptual populations and the Lakatosian space
We have seen how Godfrey-Smith offers a Neo-Darwinian framework that overcomes several
issues faced by recipe-like accounts of evolution by natural selection. In what follows, I am
going to propose a novel evolutionary framework for modeling mathematical conceptual
change. The framework, like Mormann’s, is a selection theory for mathematical concepts,
but instead of having a recipe-like selection theory (like Mormann does), I use a population-
based framework analogous to Godfrey-Smith’s one.

More specifically, I will take the coarse-grained structure of my framework from Godfrey-
Smith’s presentation of Darwinism, distinguishing two different types of populations of
mathematical concepts, namely Lakatosian populations and Euclidean populations. I will
structure the relationship between these two types of populations via the addition of a
spatial framework, i.e. the Lakatosian space, mirroring Godfrey-Smith’s construction of a
Darwinian space. The four dimensions of the Lakatosian space are made of four parame-
ters: conceptual variation, reproductive competition, environmental stability, and continu-
ity. These parameters trace how much a given conceptual population is more Lakatosian or
more Euclidean (or different from both of them) with respect to a given aspect of its evo-
lutionary dynamic. Different regions of the Lakatosian space will then represent different
evolutionary dynamics that conceptual populations in mathematics exhibit.

In comparison to Godfrey-Smith’s framework, I will also offer formal versions of several
components of my framework. Consistently, with my critical appraisal of the EET program
at the end of Section 1.2, I will develop an evolutionary model of scientific change narrower
in scope and more precise than the ones we saw in Section 1.1. In order to do this, I

11This idea of tracking conceptual similarities via spatial frameworks is reminiscent of Gärdenfors’ theory
of conceptual spaces (cf. Ch. 3, Sect. 4.1).
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will precisely define what a (mathematical) conceptual population is, making explicit the
pivotal role of what I will call the heuristic power ordering. The notion of heuristic power
plays the role of biological fitness in my evolutionary framework. The heuristic power
ordering then classifies the fitness of mathematical conceptual variants and guides the
related selection process of a given variant within a given conceptual population. These
formal definitions will allow me to give measure for the parameters corresponding to the
dimensions of the Lakatosian space and, as we will see in the next section, it will make the
model easily applicable to case studies from the history of mathematics.

Conceptual populations

Before presenting my framework, some preliminary definitions and clarifications are needed.
Mathematical concepts are the main actors of my framework. I am not relying on any
specific theory on conceptual ontology or structure, as well as I am not assuming any
epistemological theory about how mathematicians are able to refer to them. I just assume
that terms used in mathematical proofs express some kind of entity, with reference to
which one can prove mathematical statements. I furthermore assume, following Toulmin
(Toulmin, 1972) (see Section 1.1), that mathematical concepts have a somewhat public
dimension in which they can be discussed and criticized.

Moreover, my framework does not include time-dependent aspects of mathematical
conceptual change such as the emergence and the cultural transmission of concepts in
mathematics. Although I hold that any complete evolutionary theory of conceptual change
in mathematics would have to take into account how conceptual variants and proofs emerge
and reproduce via the activity and the interactions of mathematicians, I will consider them
ex post facto as time-independent entities detached from their social dimension. I will thus
represent conceptual change via a sequence of representative sets (cf. Toulmin 1972, p.p.
201-204). This choice allows me to present a simplified framework that steer clear from
the discussed necessity of a truly Darwinian reproduction mechanism in cultural evolution
(cf. Godfrey-Smith 2009, 2012; Charbonneau 2014). Despite these limitations, I will
show in Section 5 the usefulness of my framework for analyzing mathematical conceptual
histories. I will furthermore sketch some directions for extending my framework with a
time-dimension in Section 2.512.

Central to my framework is Toulmin’s (Toulmin, 1970) notion of a conceptual pop-
ulation, understood in my framework as a group of conceptual variants competing for
similar (often the same) mathematical problems. Conceptual variants are understood in
Mormann’s and Toulmin’s sense, i.e. as publicly existing specific versions/definitions of a
mathematical concept. Mathematical problems are understood more generally than Mor-
mann’s proof-problems. They are abstract problems that can be instantiated by many

12Note that, despite my explicit commitment to an evolutionary account of conceptual change, my
formal framework can also be given a deflationary non-evolutionary reading. Enthusiasts of a Fregean
view of mathematical concepts can in fact have a deflationary reading of my framework, re-conceptualizing
conceptual variation and evolution as change in the reference of mathematical terms (cf. Schlimm, 2012).
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token-like specific questions13. Analogously to Toulmin’s (Toulmin, 1972, pp. 173-189)
pluralistic account of scientific problems, mathematical problems in my framework are not
restricted only to searches for proofs but they can be problems of different sorts, such as
classification problems (e.g. the search for ordering principles in nineteenth-century ge-
ometry), definitional problems (e.g. Hamilton’s search for higher-complex numbers with a
suitable geometrical and algebraic reading), and many others. Proof-problems such as Eu-
ler’s conjecture, are only a proper subset of my understanding of mathematical problems14.
Conceptual variants of the same conceptual population thus live in the same mathematical
environment(s), i.e. they have to face similar mathematical problems, competing against
each other for starring in successful solution-attempts, i.e. valid solutions.

This interaction between conceptual variants and mathematical problems produces a
ranking of conceptual variants of a given conceptual population that I call heuristic power.
The heuristic power of a given conceptual variant of a given conceptual population tracks
the disposition of this variant to successfully interact with its environment, i.e. its propen-
sity to figure in valid solutions of a given mathematical problem. The more promising a
variant is, i.e. the higher its heuristic power or ranking in the population, the more likely
this variant will become the accepted definition of the concept. Symmetrically, variants
with low heuristic power are more likely to appear weird and artificial definitions of a given
concept. The heuristic power can be thought as a kind of ordinal fitness ranking amongst
variants of a mathematical concept, intuitively understandable as the propensity of a given
variant of being used in fruitful solutions by mathematicians working to solve the given
mathematical problem15.

More precisely, any conceptual population (CP ) is a triple CP = ⟨C, E, hp⟩, where C =
{c1, c2, . . .} is the set of conceptual variants and E = {e1, e2, . . .} is the set of mathematical
problems (i.e. the environment). Finally, hp is a heuristic power ordering of pairs of variants
and mathematical problems (C × E), representing the propensity of a given conceptual
variant to successfully face a given problem. I allow the environment to change, losing old
mathematical problems and acquiring new ones16. In this way we can define a conceptual
history as a succession of conceptual populations CH = ⟨CP1, . . . , CPn⟩ such that ∀i, j
1 ≤ i, j ≤ n Ci = Cj and hpi = hpj. In other words, a conceptual history is a succession of
conceptual populations having the same set of conceptual variants and the same heuristic
power ordering. The only component that is allowed to change is the set of problems. I
call the set of environments of conceptual populations in a given conceptual history an

13Corfield, in his proposal of Neo-Lakatosian mathematical research programs (Corfield, 2003), also
stresses the difference between abstract problems/questions and token-like proofs as central units of math-
ematical discovery.

14In what follows I will generally talk of mathematical problems (or just simply problems) and related
solution-attempts. I will talk of proof-problems and related proof-attempts only in specific cases where it
is clear that the mathematical problem in question constitutes a proof-problem.

15Even though biological fitness is usually measured on an absolute scale, it has been argued that an
ordinal scale would suffice (Okasha, 2018, pp. 168-170).

16One could also allow the set of conceptual variants to vary at different stages, thereby having a sequence
of changing set of variants. For simplicity, I don’t allow it, assuming instead an ex post facto omniscience
on all the variants appeared in a given conceptual history.
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environmental history, i.e. EH = {E1, . . . , En}. I require the environments of a given
environmental history to exhibit at every stage a minimal degree of continuity, i.e. ∀Ei 1 ⩽
i ⩽ n − 1 (Ei ∩ Ei+1 ̸= ∅)17.

The heuristic power ordering hp is the pivotal component of a conceptual population.
This ordering is in fact the purely normative selection mechanism of my evolutionary
framework. Conceptual variants can be judged to have more or less heuristic power with
respect to a specific mathematical problem, thereby having the propensity of being more
or less fit for that environment. I am not going to define a single hp ordering that all
conceptual population should use, but I will state some constraints that any hp ordering of
any conceptual population must satisfy. In what follows I interpret these constrains on hp
orderings as (an incomplete set of) rationality postulates that a mathematical agent ought
to satisfy when selecting a given conceptual variant in relation to a given mathematical
problem18. Formally, I require hp to be a partial ordering of pairs of conceptual variants and
mathematical problems of a given conceptual population. I will call these pairs of variants
and problems conjecture-pairs. The hp ordering should then be a reflexive and transitive
ordering of conjecture-pairs. Not any partial ordering can be a proper hp ordering, though.
Given two conceptual variants (c1, c2) (e.g. two of the many definitions of a polyhedron
that Lakatos presents such as ‘a surface consisting of a system of polygons’ or ‘simple
polyhedra’) and a mathematical problem e (e.g. Euler’s conjecture) of a given conceptual
population, the hp ordering of conjecture-pairs (representing the result of using a specific
conceptual variant to try to solve a specific mathematical problem, e.g. Euler’s conjecture
for simple polyhedra) of the population has to satisfy the following rationality postulates:

• (COUNT): If the conjecture-pair (c1, e) has strictly fewer counterexamples than the
conjecture-pair (c2, e), then hp(c1, e) > hp(c2, e).

• (DOM): Provided that the conjecture-pairs (c1, e) and (c2, e) are equal in terms of
counterexamples, if the conjecture-pair (c1, e) has a bigger domain (i.e. more possible
instances) than the conjecture-pair (c2, e), then hp(c1, e) > hp(c2, e).

• (REST): Provided that the conjecture-pairs (c1, e) and (c2, e) are equal in terms of
counterexamples and domain-size, if the conjecture-pair (c1, e) copes more success-
fully with the restricted cases of the mathematical problem e than the conjecture-pair
(c2, e), then hp(c1, e) > hp(c2, e).

These three rationality postulates are inspired by Lakatos’ heuristic strategies (see
Section 2.1). They constrain the hp ordering and the related selection of conceptual variants

17Note that the continuity required here is only a local one, so that two non-successive environments of
a given environmental history are allowed to have no proof-problem in common. If one thinks that this is
not enough, one can impose a stronger, global continuity requiring the intersection of all environments of
an environmental history to be non-empty.

18Note that this interpretation of these constraints as rationality postulates is quite natural from the
perspective of my framework, but of course is not the only possible one.
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of a given conceptual population to all orderings consistent with a notion of rationality
inspired by Lakatos’ fictional classroom discussion (Lakatos, 1976).

The COUNT principle tells us that the main rationale of the heuristic power ordering of
conceptual variants with respect to a given mathematical problem is the number of known
counterexamples to the related conjecture. Counterexamples, in line with the propensity
reading of the hp ordering, should be thought as possible counterexamples, i.e. individual
objects that represent possible “refutations” of a given conjecture-pair (i.e. a specific
solution-attempt of a given problem for a given conceptual variant) such as the hollow cube
in relation to the Euler’s conjecture for the naive concept of a polyhedron (Lakatos, 1976, p.
14). In the case of mathematical problems that are not proof-problems, counterexamples
are possible objects for which a given solution-attempt of the problem in question does
not work (e.g. odd unclassifiable objects in a classification problem). The rationale of the
COUNT principle lies behind Lakatos’ method of lemma-incorporation and the related
heuristics of proofs and refutations.

The DOM principle is inspired instead by Lakatos’ appreciation of content-increasing
methods. Provided that the number of counterexamples is equal between two conjecture-
pairs, the pair with a bigger domain and thus a bigger content should be preferred. With
the domain of a conjecture-pair I mean how general a given solution-attempt of a given
mathematical problem is. The size of this domain can be measured by looking at the
possible instances of the related conceptual variant, i.e. the individual objects in the
extension of the specific definition of the concept. The more objects fall under a given
conceptual variant definition, the bigger the domain of the related conjecture-pair.

Finally, the REST principle explicates one of the main strategies of Polya’s mathe-
matical heuristics (Polya, 2004), i.e. the division of mathematical problems into smaller
problems with a restricted domain and the consequent bottom-up solution. Provided that
both the number of counterexamples and the size of the domain are equal between two
conjecture-pairs, the conjecture-pair that is more successful with restricted cases of the
mathematical problem under focus ought to be preferred. A restricted case of a mathe-
matical problem is a version of the problem the domain of which is a proper subset of the
domain of the original problem, i.e. what is sometimes called a “special case” of a problem.
Success with a restricted case of a problem means having no counterexamples within its
restricted domain, i.e. solving a special case of the problem.

These three principles constrain the class of acceptable hp ordering of a given conceptual
population19. Any specific heuristic power ordering of conjecture-pairs in a given concep-
tual population must then be consistent with the partial ordering(s) based on the number
of counterexamples, the domain, and the successes with restricted cases of the problem
that conjecture-pairs exhibit. Relative to a given problem, the conceptual variants of a
given conceptual populations can be (partially) ordered in terms of how likely they are to
figure in successful solution-attempts. The heuristic power ordering provides then a fully

19If we allow the set of conceptual variants to change, additional rationality postulates on these changes
can be imposed. Examples of possible constraints are an anti-ad-hocness postulate of the kind Lakatos
requires in his philosophy of science (Lakatos, 1978) and a menu-independence requirement analogous to
the one championed by Sen in rational choice theory (Sen, 1997).
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normative selection mechanism for conceptual variants (technically, for conjecture-pairs)
of a given conceptual population.

Lakatosian populations and Euclidean populations

I have defined what a conceptual population is and I specified a set of rationality postu-
lates constraining the acceptable class of heuristic power orderings of a given conceptual
populations. Relative to a given environmental history, conceptual populations may ex-
hibit different kinds of evolutionary dynamics, both with respect to the set of conceptual
variants and the set of mathematical problems. Some kinds of dynamics make conceptual
populations approximate Lakatos’ ideal of proofs and refutations, while others are typi-
cal of populations quite different from Lakatos’ examples, populations more closer to the
Euclidean ideal of (absence of) change.

I will define then two different kinds of populations that a given conceptual population,
relative to a given environmental history, can exemplify, namely Lakatosian and Euclidean
populations:

Lakatosian Population: a conceptual population (relative to a given en-
vironmental history) with significant environmental stability, in which there is
high variation and high reproductive competition between the conceptual vari-
ants, which lead to differences in heuristic power continuously distributed.

Euclidean Population: a conceptual population (relative to a given en-
vironmental history) with significant environmental stability, in which there is
low variation and low reproductive competition between the conceptual vari-
ants, which lead to differences in heuristic power discretely distributed.

These two types of conceptual populations are defined around four notions: environ-
mental stability, conceptual variation, reproductive competition, and continuity in the
distribution of heuristic power. These four notions denote four different aspects of the
evolutionary dynamics of conceptual populations. The environmental stability of a con-
ceptual population denotes how stable problems of a given conceptual populations are in a
given environmental history. Conceptual variation denotes instead the amount of variation
amongst conceptual variants of a given population. Reproductive competition denotes the
extent to which conceptual variants of a population are competing for the same problem.
Finally, the continuity in the distribution of heuristic power denotes, in analogy with the
concept of fitness-landscape (Wright, 1932) in evolutionary biology, whether similar concep-
tual variants of a given population have similar heuristic power. If this condition occurs,
I will say that a given conceptual population has a continuous distribution of heuristic
power; otherwise I will call that distribution discrete.

Lakatosian populations are then conceptual populations in which significant environ-
mental stability goes together with high conceptual variation, high reproductive compe-
tition, and a continuous distribution of heuristic power. This combination of these four
aspects makes the evolutionary dynamics of a conceptual population approach the ideal
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behind Lakatos’ concept-stretching. Examples of Lakatosian populations are Lakatos’ own
case studies, i.e. the polyhedron population and the continuity population (Lakatos, 1976,
1978). As it was stressed by many critics (Feferman, 1978; Fine, 1978; Corfield, 2003;
Werndl, 2009), Lakatos’ model of conceptual change seems to implicitly require conditions
specific to a certain type of mathematical conceptual histories, of which Euler’s conjec-
ture is a paradigmatic example. Lakatos’ dance of proof-attempts and counter-examples
requires a plethora of different definitions of the concept under focus, competing against
each other with the aim of solving the same mathematical problem. This means that con-
ceptual populations must have a specific combination of variation in conceptual variants
and mathematical problems in order to approximate Lakatos’ ideal of conceptual change.
From the perspective of my framework, then, Lakatosian populations are conceptual pop-
ulations with a lot of different conceptual variants together with a stable, almost fixed,
environment. When these two conditions are met I will talk of a conceptual population
having, relative to a given environmental history, high conceptual variation and high en-
vironmental stability. Furthermore, Lakatosian populations exhibit also high reproductive
competition amongst the variants, i.e. the variants of a population are not just competing
for similar problems, but for the same one(s). In other words, there have to be many
conceptual variants and few problems. Finally, Lakatosian populations enjoy a continu-
ous distribution of heuristic power, i.e. similar conceptual variants have similar heuristic
power. This continuity, as we will see in the next section, is connected with a lack of
axiomatization of the conceptual histories so represented.

Euclidean populations are instead conceptual populations in which significant environ-
mental stability goes together with low conceptual variation, low reproductive competition,
and a discrete distribution of heuristic power. This combination makes the evolutionary
dynamics of a conceptual population approach the ideal of Euclidean absence of conceptual
change. An example of a Euclidean population could be the concept of natural number,
which seems to be one of the most stable concepts in the history of mathematics. A concept
whose evolution does not seem to involve any form of conjecture and refutations whatso-
ever, but just a series of rigorizations and conceptual analyses of a well-understood concept.
This stability in conceptual evolution requires a conceptual population to have a low con-
ceptual variation with a very stable environment. Thus, just like Lakatosian populations,
Euclidean populations exhibit high environmental stability, but they have a completely
opposite environmental dynamics than the Lakatosian ones with respect to the other three
aspects under consideration. Euclidean populations have in fact a low conceptual variation
and a low reproductive competition. In these population, there are not a lot of variants for
the same concept and the existing variants are often meant to tackle different problems,
thereby not really competing with each other. Finally, Euclidean populations exhibit a
discrete distribution of heuristic power, a typical property of axiomatized mathematics in
which small variation may cause significant differences in heuristic power.

Lakatosian populations and Euclidean populations are then two very different kind of
conceptual populations, respectively describing almost opposite evolutionary dynamics. In
a Lakatosian population lots of conceptual variants with similar heuristic power compete
against each other for the same problem(s). In a Euclidean population, instead, few variants
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with different heuristic power cope with different problems.

Lakatosian space

I will now add more structure to my framework and specifically to the opposition between
Lakatosian and Euclidean populations. I will present four parameters that track the degree
to which a conceptual population (with respect to a given environmental history) exhibits
one of the four aspects through which I discussed Lakatosian and Euclidean populations,
i.e. conceptual variation, reproductive competition, environmental stability, and continuity
in the heuristic power distribution. These four parameters can be understood as four di-
mensions constituting the Lakatosian space. Points in this space are possible combinations
of these four parameters, representing a possible kind of conceptual population relative to
a given environmental history. Conceptual populations exhibiting the same kinds of evolu-
tionary dynamics, i.e. having the same combination of these four parameters, occupy the
same point of the Lakatosian space. This additional spatial structure provides my frame-
work with a fine-grained way of measuring to which degree a given conceptual population
is Lakatosian or Euclidean with respect to one of these four parameters20.

Let us survey the four parameters constituting the dimensions of the Lakatosian space,
one by one.

Conceptual Variation (CV ): This parameter represents the amount of variation
amongst the conceptual variants of a given conceptual population. It can be measured
tracking the number of elements in the set C, i.e. CV = |C|. It classifies conceptual
histories based on how many variants of a concept they exhibit. Conceptual populations
with high CV are representing (parts of) mathematical conceptual histories in which many
possible definitions of a concepts are proposed and discussed. This situation is typical of
stages of generalization of accepted concepts, where several properties of the concept in
the wider context are open to discussion (cf. Waismann, 1936), such as the case of the
quaternions (Hamilton, 1853). Conceptual populations with low CV represent instead
(parts of) mathematical conceptual histories in which a (group of) definition(s) is accepted
and therefore not truly questioned. This situation is typical of periods in the history of
a given mathematical field in which a natural or a very fruitful definition of a concept is
found (Tappenden, 2008a,b) and, using a game-theoretic notion, it becomes evolutionary
stable against mutations (Weibull, 1995). An example of this situation is the abstract
concept of group.

Reproductive Competition (RC): This parameter tracks the extent to which con-
20In what follows, I will give possible measures for the parameters on an absolute scale. This could

create a measurement problem in applying my framework to historical case studies. Depending on how
many conceptual variants and mathematical problems one identifies in reconstructing a given case, the
measures of the Lakatosian space parameters may change. In all the case studies I will present in the
next section it seems sufficiently clear what the proper choices of conceptual variants and mathematical
problems are, so I will freely use absolute measures for my parameters, leaving this measurement problem
as an open issue for further work.
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ceptual variants have to compete for the same mathematical problems, i.e. how much
different definitions of a given concept have to ‘fight against each other to survive’. It can
be measured by the ratio between the number of conceptual variants and the number of
mathematical problems of a given conceptual population: RC = |C|

|∪EH | . The higher the ra-
tio, the more competitive the conceptual population is. The lower the ratio gets, instead,
the less a given conceptual population resembles a ‘struggle for existence’. Populations
with low RC often have an environment made of several mathematical problems for which
‘specialized’ variants evolved in parallel, defusing the struggle amongst the variants. This
situation is typical of (periods of) bodies of mathematics in which the conceptual vari-
ants are very well adapted to specific problems, such as the many pre-calculus ‘analysis’
techniques. Populations with high RC have instead many conceptual variants competing
for the same problem(s). This situation is typical of (periods of) bodies of mathematics
centered around a general problem, such as the Newtonian and Leibnizian calculus.

Environmental Stability (ES): This parameter tracks how much historical problem-
solving continuity a given conceptual history exhibits, i.e. how stable is the environment
faced by a given conceptual population, relative to a given environmental history. As a
measure, we can take the ratio between the intersection of all the stages of an environ-
mental history and their union: ES = |∩EH |

|∪EH | . The higher the ratio, the stabler a given
environmental history is. The lower the ratio gets, the more dynamic and revolutionary
the history of mathematical problems faced by a given conceptual population is. A high
degree of environmental stability is common to many different mathematical conceptual
histories, up to the point that it is the only feature that Lakatosian and Euclidean popu-
lations have in common. Examples of conceptual population exhibiting high ES include
very different conceptual histories such as natural numbers, the polyhedron concept, and
the quaternions. A low degree of environmental stability is instead usually connected with
a highly formalized body of mathematics, due to the de-semantification or topic-neutral
effect of formalization stressed by several philosophers (MacFarlane, 2000; Dutilh Novaes,
2012). In a formalized (part of a) conceptual history, concepts and methods can in fact be
quickly applied to different problems, giving rise to very dynamic environmental histories.
Examples of conceptual populations exhibiting low ES can be found in formal bodies of
mathematics such as vector algebra or the study of partial differential equations.

Continuity (Cont): This parameter tests whether the distribution of heuristic power
amongst conceptual variants of a given population is continuous, i.e. whether similar
variants have a similar heuristic power. A possible “measure” for Cont is to see whether
it holds in a given population that ∀c1, c2 ∈ C, ∀e1 ∈ E(c1 ≈ c2 → hp(c1, e1) ≈ hp(c2, e1)),
where x ≈ y is an intuitive similarity relation between concepts21. While the other three
dimensions of the Lakatosian space are measured on richer scales, continuity is a boolean
parameter, i.e. either a conceptual population exhibits continuity or it does not. In analogy
to the fitness-landscape biological metaphor, if a given conceptual population exhibits

21This is done for simplicity reasons. There are many possible frameworks for cashing-out a notion of
similarity between concepts. For instance, conceptual spaces theory (cf. Ch. 3, Sect. 4.1) could be used.
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continuity, then its heuristic power landscape is smooth. Otherwise, the distribution of
heuristic power amongst the variants of the population is somewhat discrete, small changes
in the definition of a variants can lead to enormous differences in terms of fruitfulness.
This continuity (or the lack thereof) in the distribution of heuristic power is connected
with the degree of axiomatization of the related body of mathematics. Axiomatized bodies
of mathematics constrain in fact the possible choices of conceptual variants to the ones
available by the tinkering of the axioms (Schlimm, 2013). Small variations in a given
axiom may have then enormous repercussions on the heuristic power of the conceptual
variants so defined22. Highly axiomatized bodies of mathematics typically exhibit therefore
a discrete distribution of heuristic power, while conceptual histories that are not (fully)
axiomatized enjoy a continuous one. Examples of the former kind of conceptual populations
are the quaternions or the abstract group concept, whereas the pre-abstract group concepts
exemplify the latter.

The four parameters then can be understood as the four dimensions of the Lakatosian
space. We can then assign to both Lakatosian and Euclidean populations a given region
of the Lakatosian space (Figure 1, Panel a).

The Lakatosian space can also offer a new explication (in Carnap’s sense of the term,
cf. Chapter 3) of concepts related to certain kinds of evolutionary dynamics that concep-
tual populations exhibit. For instance, I stressed how a low ES is connected to heavily
formalized bodies of mathematics, whereas a lack of Cont is a symptom of a high degree
of axiomatization. We can then understand the related faces of the Lakatosian space, the
one corresponding to low ES and the one corresponding to lack of Cont, as extensions of
the notion of (respectively) formalization and axiomatization in mathematics (Figure 1,
Panel b). Note that usually both axiomatization and formalization are defined relative to
some properties of the language in which a given body of mathematics is developed. My
framework explicates instead both notions independently from the language, focusing on
how these two notions shape the evolutionary dynamics of the related conceptual popula-
tions. In this way, understanding formalization as low ES and axiomatization as lack of
Cont provides us with a novel perspective on these two concepts.

Inter-population dynamics: modeling the evolutionary history of mathematical
concepts

We have seen how, thanks to the four dimensions of the Lakatosian space, my framework
is able to distinguish the different evolutionary dynamics of conceptual populations in
mathematics. The normative selection mechanism of my framework, based on a suitable
heuristic power ordering, can then be applied to explain the mathematical selection inside
a given conceptual population. As we will see in the next section, this combination of

22This phenomenon is reminiscent of the famous butterfly effect in chaos theory. This is not a coinci-
dence, since one of the well-known consequences of axiomatization is the hierarchical organization of the
axiomatized subject into an inter-connected system of knowledge. Inter-connected systems of all kinds are
more prone to butterfly effects.
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(a) (b)

Figure 4.1: Two three-dimensional representations of the Lakatosian space, where param-
eters CV and RC are collapsed into one dimension for representational purposes. Panel
(a) shows the parts of the space corresponding to Lakatosian and Euclidean populations,
while panel (b) shows the parts corresponding to heavily formalized and highly axioma-
tized bodies of mathematics.

a simple selection mechanism and a plurality of possible evolutionary dynamics makes
my framework adequate to the plurality of dynamics exhibited by historical episodes of
conceptual change in mathematics.

Until now, we focused on what happens within a given conceptual population, specif-
ically on the normative mechanism behind mathematical selection and on the types of
variation and environment. We can refer to these kinds of changes as intra-population
changes. As Toulmin stresses, however, such intra-population changes are only a proper
part of the changes that an evolutionary model of scientific conceptual change ought to
explain. A full evolutionary model of conceptual change has in fact to take into account
also the inter-population changes, i.e. the transitions from one conceptual population to
another one. In other words, a conceptual population intuitively represents the status of
the related scientific concept at a given time of its history. The history of scientific concepts
can then be thought as a succession of time-slices, each of which correspond to a given
conceptual population. Inter-population changes are thus the transitions. in the history
of a given scientific concept, from one conceptual population to the next one.

In order to track these inter-population changes, the four-dimensional Lakatosian space
that I presented is not enough. In order to model these transitions in the evolution of
mathematical concepts, we have in fact to add another dimension to the Lakatosian space,
a time dimension T . I will call this five-dimensional version of the Lakatosian space, the
augmented Lakatosian space.

The time dimension is different from the others four Lakatosian ones. It does not in
fact track variational features of a given conceptual population, but it tracks instead the
passage of time in the evolution of a given mathematical concept. It should be thought
as a discrete axis, every point t of which corresponds to a given stage in the evolution
of the concept under focus. Every stage corresponds to a given conceptual population,
representing the environmental dynamics exhibited by a given concept at that point of its
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history. I will call this succession of conceptual populations EVX = ⟨CPt1 , . . . , CPtn⟩ of a
given mathematical concept X the evolutionary history of X. Every conceptual population
within the evolutionary history of a concept can be more or less Lakatosian (with respect
to a given environmental history) in its specific kind of variation, occupying thus a different
part of the four-dimensional Lakatosian space. So that a given evolutionary history can
be thought as a trajectory in the four-dimensional Lakatosian space. Movement from one
conceptual population CPtx to the next one CPtx+1 can be represented as movement along
the four dimensions of the original Lakatosian space, each of which can be given an intuitive
reading in terms of what possibly happens at the mathematical theories under focus:

• CV-axis (Conceptual Variation). Movement along this axis could reflect change in
the conceptual variation rate in the history of a given mathematical concept. As
Toulmin (Toulmin, 1972, pp. 210-222) stressed, scientific concepts arguably exhibit
different rates of conceptual variation at different times. As we saw in Section 2.3.3,
the parameter CV of the Lakatosian space tracks the amount of conceptual variation
in a conceptual population. The conceptual variation rate seems to be connected
to the degree to which a ‘natural’ definition of a given mathematical concept is ac-
cepted. Populations with high CV are then representing stages of the evolutionary
history of a concept in which many possible definitions of it are proposed and dis-
cussed, while populations with low CV track stages where a (group of) definition(s)
is accepted. Change in CV could be correlated to changes in the acceptability of
a definition for the concept under focus. Transitions from a conceptual population
with high CV to one with low CV could represent the achieved selection of a (group
of) natural and/or very fruitful definition(s) of a concept, determining a low variation
rate in the subsequent conceptual populations. We can call this type of transition
conceptual stabilization, in analogy with the analogous concept of evolutionary sta-
bility in evolutionary game theory (Weibull, 1995). Opposite transitions, from a
conceptual population with low CV to one exhibiting high CV , could instead reflect
stages of generalization of accepted concepts, where several properties of the con-
cept in the wider context are open to discussion (Waismann, 1936). We can refer to
this second type of transitions as conceptual generalization. An example of concep-
tual stabilization is the step from the pre-abstract group population to the abstract
group population, whereas the transition from complex numbers to the quaternion
population exemplifies conceptual generalization.

• RC-axis (Reproductive Competition). Movement along this axis can be understood
directly as change in the degree of reproductive competition of a given mathematical
concept and indirectly as change in the degree of conceptualization or abstraction of
the related mathematical theory. In fact, the parameter RC of the Lakatosian space
tracks the degree of reproductive competition between variants of a given conceptual
population. As we saw in presentation of my basic framework, populations with low
RC often have an environment made of several mathematical problems for which
‘specialized’ variants evolved in parallel, defusing the struggle amongst the variants.
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Populations with high RC, instead, tend to have many conceptual variants com-
peting for one, general problem. Change in the degree of reproductive competition
could thus represent changes in the degree of abstraction of the related mathematical
environment. More specifically a transition from a conceptual history with low RC
to one with high RC could be due to a re-systematization or a re-conceptualization
of the related body of mathematics where several specific mathematical problems are
subsumed under a single general problem. We can call this type of transition envi-
ronmental generalization. The opposite type of transition, i.e. one from a conceptual
history with high RC to one with low RC, could be due to a deconstruction of the
related body of mathematics in which one single general problem gets substituted by
several more specific ones. We can call this type of transition environmental special-
ization. A paradigmatic example of environmental generalization is the shift from the
very specialized pre-calculus ‘analysis’ techniques to the Newtonian and Leibnizian
calculus (Kitcher, 1984, pp. 230-236).

• ES-axis (Environmental Stability). Movement along this axis could represent change
in the degree of formalization of the related mathematical theory. We saw in fact
that the parameter ES of the Lakatosian space measures the degree of environmen-
tal stability of a given environmental history. I already stressed that a low degree of
environmental stability is usually connected with an highly formalized body of mathe-
matics, due to the so-called de-semantification effect of formalization (cf. MacFarlane
2000; Dutilh Novaes 2012). Change of ES could then be due to change in the degree
of formalization of the related body of mathematics. Specifically, a transition from
a conceptual history with high ES to one with low ES could reflect a formalization
of a previously non formal mathematical theory. We can refer to such a transition as
formalization. As a paradigmatic example of formalization we can take the transi-
tion from the polyhedron population to the definition of polyhedron in vector algebra
discussed also by Lakatos (Lakatos, 1976).

• Cont-axis (Continuity). Movement along this axis can be understood as change
in the degree of axiomatization of the related body of mathematics. The discrete
parameter Cont of the Lakatosian space tracks in fact whether a given conceptual
population exhibits a continuous or a discrete distribution of heuristic power amongst
its variants. I already stressed how a low Cont is typical of highly axiomatized
bodies of mathematics, while a high Cont usually denotes non axiomatized theories.
Change of Cont could then be due to change in the degree of axiomatization of the
related mathematical theory. Specifically, a transition from a conceptual population
exhibiting high Cont to one exhibiting low Cont could reflect an axiomatization of
a given part of mathematics which was not yet axiomatized. We can refer to such a
transition as axiomatization. A paradigmatic example of axiomatization is the step
from the pre-abstract group population (which, as we will see in the next section,
exhibits continuity) to the population reconstructing abstract group theory (which
arguably lacks continuity).
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Transitions from a given conceptual history to its historical successor can also involve
changes in more than one axis Lakatosian parameters and they can be represented in
the augmented Lakatosian space as complex multi-axes movements. In the philosophical
literature, such patterns of conceptual changes have been conceptualized in terms of inter-
practice transitions (Kitcher, 1984; Ferreirós, 2015). Practice-based frameworks are of
course far richer than the present one, including many non-conceptual components of a
mathematical practice that are abstracted away in my Lakatosian space such as language,
reasoning tools, meta-mathematical views, agents, and others. Nevertheless, inter-practice
transitions can be understood as specific kinds of movements in the augmented Lakatosian
space along the T axis.

Take for instance Kitcher’s very fine-grained classification of inter-practice transitions
(Kitcher, 1984, pp. 194-228). He distinguished five kinds of rational inter-practice tran-
sitions: question-generation, question-answering, generalization, rigorization, and system-
atization. Amongst these kinds of transition, the first two could correspond to changes in
the mathematical problems composing the environment of a given environmental history.
The emergence of a new problem in the mathematical environment could mirror Kitcher’s
“question-generation” transition, while the disappearance of a problem may correspond to
“question-answering”. These transitions often imply also changes in the set of conceptual
variants of a given Lakatosian population that can be interpreted as symptoms of trans-
formations in the language and statements of the related practice. Regarding the third
kind of transition described by Kitcher, in the augmented Lakatosian space Kitcher’s gen-
eralization transition correspond to what I called conceptual generalization, i.e. a change
from a conceptual population exhibiting low CV to one with an high CV 23. Kitcher’s rig-
orization transition can be instead represented by a movements along the ES-axis of the
augmented Lakatosian space. In particular, the specific kind of rigorization corresponding
to the formalization of the related body of mathematics can be mirrored by what I have
called formalization, i.e. a change from a conceptual population with high ES to one with
low ES. Finally, what Kitcher calls “systematization” could be mirrored by movements
along the Cont and the RC axes, involving what I have called axiomatization, environ-
mental generalization, or environmental specialization (or a combination of these changes)
of the related conceptual populations.

We can now appreciate how my framework is able to represent all five kinds of Kitcher’s
inter-practice transitions from a purely conceptual point of view. Kitcher’s case study
on the evolution of analysis (Kitcher, 1984, pp. 229-271) can then be reconstructed as a
succession of conceptual populations, from pre-calculus techniques up to fully arithmetized
analysis, each of which exhibits a given tuning of the four Lakatosian parameters and
therefore occupies a given region of the Lakatosian space.

Let me sketch how such a reconstruction might look like. Kitcher recognize 5 dif-
ferent steps in its (mini-)history of calculus: pre-calculus techniques (Kitcher, 1984, pp.

23Note that the hp ordering of a given conceptual population makes possible also to distinguish specific
kinds of generalizations, such as single-concept-generalization (where the generalized problem is the appli-
cation of the selected conceptual variant of the first population into a broader domain) or multi-conceptual
generalizations (where more than one variant gets generalized).
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230-231), Netwonian and Leibnizian calculus (Kitcher, 1984, pp. 231-241), Euler and
18th century analysis (Kitcher, 1984, pp. 241-245), Cauchy and the early 19th century
analysis (Kitcher, 1984, pp. 245-253), and finally Weierstrass’ and Dedekind’s rigorous
analysis of the late 19th century (Kitcher, 1984, pp. 263-268). Each of this step cor-
responds naturally in my framework to a given conceptual population, containing all
the conceptual variants and the mathematical problems at work in that moment of the
history of analysis, together with a suitable heuristic power ordering. Kitcher’s case
study can then be seen as reconstructing the following evolutionary history of analysis:
EVan = ⟨CPprecalc, CPNewt−Leib, CPEuler, CPCauchy, CPW eier−Dedek⟩, where CPprecalc is the
conceptual population reconstructing the pre-calculus techniques, CPNewt−Leib the popula-
tion reconstructing the Newtonian and Leibnizian calculus, CPEuler the population recon-
structing 18th century analysis, CPCauchy the population reconstructing early 19th century
analysis, and CPW eier−Dedek the population reconstructing late 19th century analysis. We
can assume that these five conceptual population are ordered by the time-dimension T
of the augmented Lakatosian space in the following way: CPprecalct1 < CPNewt−Leibt2 <
CPEulert3 < CPCauchyt4 < CPW eier−Dedekt5 . The full reconstruction of Kitcher’s case study
would continue by reconstructing completely the five conceptual populations, in all de-
tails, and classifying their evolutionary dynamics along the four dimensions of the original
Lakatosian space. After this crucial step, Kitcher’s inter-practice transitions ,governing
the step from one moment of its history of analysis to the next one, could be reconstructed
as movements along the axis of the augmented Lakatosian space in the following way:

• Kitcher’s 1st transition: the first transition of Kitcher’s history of analysis is the one
from the pre-calculus techniques to the Newtonian and Leibnizian calculus. Kitcher
(Kitcher, 1984, p. 270) conceptualizes this transition as driven by the systemati-
zation of previous problems. In my framework, then, we can understand this first
transition as an example of what I have called environmental generalization, i.e. a
change from a conceptual population exhibiting low RC, such as the pre-calculus
one, to a conceptual population with high RC like the population reconstructing the
Newtonian and Leibnizian calculus.

• Kitcher’s 2nd transition: the second transition in Kitcher’s case study is the one from
the Newtonian and Leibnizian calculus to the 18th century analysis of Euler’s and his
contemporaries. Kitcher (Kitcher, 1984, p. 241,242,270) describes this transition as
the result of a generalization in the calculus technique, together with the appearance
of several new problems. In my framework this complex transition can be mirrored
by a double movement along the CV and the RC axis, i.e. by the combination of a
conceptual generalization and an environmental specification. The movement from
the Newtonian-Leibnizian calculus population to the conceptual population recon-
structing 18th century analysis is then the movement from a conceptual population
exhibiting high RC and low CV to a conceptual population exhibiting low RC and
high CV .

• Kitcher’s 3rd transition: the third transition described by Kitcher is the one from
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the 18th century analysis to the early 19th century analysis of Cauchy and his con-
temporaries. Kitcher (Kitcher, 1984, p. 247,248,270) depicts this transition as an
example of systematization of a body of mathematics. Specifically, he stresses that
this systematization is what drives Cauchy’s foundational worries about making anal-
ysis more rigorous. In my framework, this transition is then an example of what I
called environmental generalization, i.e. a step from a conceptual population with
several mathematical problems to a conceptual population related to some central
and general problems. The movement from the 18th century analysis conceptual
population to the conceptual population representing early 19th century analysis is
then a movement from a population exhibiting low RC to a population exhibiting
high RC.

• Kitcher’s 4th transition: the fourth and final transition of Kitcher’s case study is
the one from Cauchy’s early 19th century analysis to the late 19th century analysis
of Weierstrass and Dedekind. Kitcher (Kitcher, 1984, pp. 254-262,271) conceptu-
alizes this transition as a typical example of rigorization by formalization. In my
framework, we can also understand this transition as an example of (what I call)
formalization, i.e. a step from a conceptual population related to a non-formalized
body of mathematics to a population representing a formalized mathematical the-
ory. The movement from early 19th century analysis conceptual population to the
conceptual population representing late 19th century analysis is then a movement
from a population exhibiting Cont, i.e. having a continuous distribution of heuristic
power amongst its variants, to a population lacking Cont, i.e. exhibiting a discrete
distribution of heuristic power.

Analogously with Kitcher’s inter-practice transitions, my framework is able to model
much of Ferreirós’ recent proposal of an interplay of practices (at least the part concerning
his ‘theoretical’ framework) and its systematic links between one practice and another one.
An evolutionary history analogous to the one I just sketched for Kitcher’s case study could
arguably rationally reconstruct one of Ferreirós’ case studies such as the evolution of real
numbers (Ferreirós, 2015, pp. 206-246).

Furthermore, the augmented Lakatosian space could be able to describe more coarse-
grained dynamics of mathematical evolution. Major historical transitions in philosophical
views of the mathematical community could for instance be represented as major changes
of population density within the Lakatosian space. Take for instance the so-called ‘struc-
turalist turn’ of late 19th century mathematics. The new attention to systematization
and rigor of mathematical theories could be represented as a major change of population
density along the Cont and the ES axes of my framework. A plethora of evolutionary
histories of concepts from different parts of mathematics would have transitioned around
that time from conceptual histories exhibiting Cont and high ES, to conceptual histories
with a lack of Cont and low ES, mirroring the axiomatization and formalization of the
related mathematical theories. In the same way, one could also think about foundational
enterprises in the history of mathematics as changes in the population-density inside the
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Lakatosian space. A given foundation would then ‘drag’ more and more evolutionary his-
tories to the specific part of Lakatosian space inhabited by the main concepts belonging
to the foundational theory, with a sort of quicksand or black-hole effect.

4.3 Applications of the Framework: Three Cases of
Mathematical Selection

In the last section, I presented my evolutionary framework for conceptual change in math-
ematics. We have seen how my framework is centered around the notion of a conceptual
population, understood as a set of conceptual variants coping with a set of mathematical
problems and partially ordered by a given heuristic power ordering. I defined two differ-
ent kinds of conceptual populations, Lakatosian and Euclidean populations, corresponding
to two opposite ideals of evolutionary dynamics that a given conceptual population may
exhibit. I augmented my framework with a four-dimensional space, i.e. the Lakatosian
space, the dimensions of which correspond to parameters tracking four different aspects
of the evolutionary dynamic of a given conceptual population. Thanks to these spatial
tools, Lakatosian and Euclidean populations can be understood as different regions of the
Lakatosian space and important concepts in philosophy of mathematics such as axiomati-
zation and formalization can be given a novel characterization as certain parts of the space.
Moreover, we saw how the Lakatosian space, when augmented with a time-dimension, is
able to reconstruct the whole evolutionary history of a mathematical concept as a suc-
cession of different conceptual population. I showed also how this extension to my basic
frameork allow us to mirror also fine-grained inter-population kinds of conceptual changes,
such as Kitcher’s inter-practice transitions, as specific types of movement along the axis of
the augmented Lakatosian space.

In this section, I will show how my framework can be applied to historical cases of
conceptual change in mathematics. More specifically, I will show how a mathematical con-
ceptual history can be represented in my framework as a conceptual population and how its
evolutionary dynamic can be judged to be a case of mathematical selection or evolutionary
drift. The Lakatosian space then becomes a conceptual space for classifying episodes of the
history of mathematics in terms of the evolutionary features exhibited by their rationally
reconstructed conceptual population. I will then demonstrate how, thanks to the four di-
mensions of the Lakatosian space, my framework is able to provide a rich understanding
of the evolutionary dynamic of a given episode of conceptual change. In order to achieve
this, I will analyze three case studies: Lakatos’ own example of Euler’s conjecture and the
concept of polyhedron (Lakatos, 1976), Hamilton’s invention of the quaternions (Hamilton,
1843a,b, 1853; Pickering, 1995), and the pre-abstract group concepts (Wussing, 1984).

In Section 3.1, I will present the distinction between mathematical selection and evo-
lutionary drift, in the light of which episodes of conceptual change from the history of
mathematics can be judged to be more or less rational. In Section 3.2, I will present
my first case study, namely the polyhedron population and the related history of Euler’s
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conjecture. In Section 3.3, I will reconstruct in my framework the conceptual history of
the quaternion population. In Section 3.4, I will analyze my third case study, namely the
pre-abstract group population. I will then draw some general conclusions about what my
proposal achieves and sketch some possible directions for future work. Finally, in Section
3.5 I will present two formal applications of my framework. Specifically, in section 3.5.1,
I will present a toy-model of my framework in which I will construct an actual heuristic
power function in order to elucidate how my selection mechanism works. In Section 3.5.2,
I will formalize my three case studies in the language of my framework in order to show
how the four parameters of the Lakatosian space can be measured.

4.3.1 Mathematical selection and evolutionary drift
Applying my framework to a mathematical conceptual history involves, as its first step,
to rationally reconstruct the actual history of the mathematical concept under focus as a
conceptual population. After this step, the rationality of the case of conceptual change
under focus can be assessed by checking whether the preference induced by the heuristic
power ordering of the conceptual population is consistent with the actual choices of the
mathematical community.

The rationality postulates (cf. Section 2.3.1) constraining any heuristic power ordering
are fully normative and therefore my framework has a purely normative selection mecha-
nism. As such, actual history of mathematics does not always have to follow the preference
order given by these postulates. There may be some historical cases in which mathemati-
cians selected concepts with an equal or even lower heuristic power than their competitors.
In these cases, there could have been sociological or psychological factors that caused the
heuristic power selection to be overturned. The heuristic power of a given concept can be
easily overshadowed by a lack of familiarity with the specific mathematics connected to it,
metaphysical prejudices over what a concept should or should not be, several psychological
biases towards who supports a given concept, and many other similar factors. We should
not forget that mathematics is a human activity. Just like in natural history, even in the
history of mathematics cases of evolutionary drift are indeed present.

In evolutionary biology, the concept of evolutionary drift (also known as genetic drift
or random drift, cf. Millstein, 2002; Plutynski, 2007) can be traced back to Darwin’s talk
of non-useful variations in his presentation of natural selection. Evolutionary drift is the
chance element within evolutionary biology, usually negatively defined as the variations
complementary to the ones selected by natural selection. That is, evolutionary drift is the
process behind all the side-products of evolution the survival of which cannot be explained
by fitness differences. Given the vagueness of this negative definition I just presented,
it should not come as a surprise that the exact nature and significance of evolutionary
drift has been a highly debated topic in philosophy of biology. Philosophers have in fact
discussed at length what exactly evolutionary drift is (Plutynski, 2007; Millstein, 2017),
how big a role does it play in respect to natural selection (Kimura, 1983; Mayr, 1983),
which evolutionary factors are most correlated to it (Godfrey-Smith, 2009), and which
kind of interpretation of evolutionary theory explains it best (Sober, 1984; Walsh, Lewens,
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and Ariew, 2002). What is accepted by everyone about evolutionary drift is its constant
presence in evolutionary theory practice and its usefulness as a conceptual complement to
natural selection in evolutionary models (Binmore and Samuelson, 1999; Brandon, 2006).

In my use of evolutionary drift, I will steer as clear as possible from these philosophical
debates, taking this concept to somehow denote the chance element, complementary to the
workings of natural selection, responsible for all cases of non-fitness-related selections in
evolution. Thus, I will talk of evolutionary drift in the context of my framework to denote
all the cases of conceptual change in mathematics the selection process of which signifi-
cantly involved non-heuristic-power-related considerations. In this way, I take evolutionary
drift to constitute the chance factor in the history of mathematics complementary to the
workings of mathematical selection.

More precisely, if a certain case of conceptual change of mathematics is consistent with
the preference(s) induced by the heuristic power ordering of the conceptual population that
reconstructs it, i.e. the actual concept(s) selected is the one(s) having the higher heuristic
power, I will classify it as an example of mathematical selection. More specifically, I
will distinguish two kinds of mathematical selection, global and local one. When this
selection happens with respect to the whole environment, that is when a given concept
gets selected amongst all other variants of a given conceptual population, I will talk of
global mathematical selection or mathematical selection tout court. When, instead, different
mathematical problems in a given environment select different conceptual variants, that
is when there is no general selection of a variant but only specific selections relative to (a
group of) problem(s), I will talk of local mathematical selection. If, instead, a given episode
of conceptual change is inconsistent with the preference(s) induced by the heuristic power
ordering of the related conceptual population, i.e. the actual concept(s) selected is not the
one(s) having the higher heuristic power, both in relation to local and global selection, I
will say that it is a case of evolutionary drift.

My framework gives then a novel perspective on whether mathematical conceptual
change is a rational process. In my proposal, in fact, general normative rationality postu-
lates (i.e. the postulates constraining any hp ordering) on conceptual selection relative to
a given (set of) mathematical problem(s) are able to retrospectively assess the rationality
of mathematical conceptual histories without imposing any specific constrain on their evo-
lutionary dynamics. In this way, the emergence of mathematical concepts and problems is
entirely left open to the abilities and the values of the mathematical community, but once
the pool of concepts and related problems is fixed a normative rational ordering of which
concept ought to have been selected in relation to a specific mathematical problems can
be given. Based on this ordering, conceptual histories can be judged to be examples of
mathematical selection (global and local) or evolutionary drift. This relationship between
rationality and freedom in mathematical conceptual change, i.e. a selection mechanism re-
lated to fixed variants and environment that coexists with the absence of any absolute norm
on the evolution of these variants and environments, is typical of the EET program view of
scientific evolution, especially in its instantiations that are closer to Darwin’s population
thinking (cf. Mayr, 1975; Sober, 1980) such as Toulmin’s one (cf. Section 1.1).

In the next subsections, I will show how thank to these notions the rationality of
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mathematical conceptual histories can be assessed. In the three case studies that I will
present in this work I chose, for simplicity, to treat only cases of conceptual changes that
are examples of mathematical selection (both local and global), leaving the study of cases
of evolutionary drift in mathematics for future work.

4.3.2 Lakatos’ polyhedron example
Lakatos’ own master example of the dynamic of proofs and refutations lends itself very
naturally to being transformed into a conceptual population. In Lakatos’ book (Lakatos,
1976), one can find no less than fifteen different definitions of a polyhedron, all facing
the same proof-problem of Euler’s conjecture. I am going to follow Lakatos’ fictional
classroom-discussion of this example, pointing the reader to Lakatos’ text for historical
references.

As the first conceptual variant (p1) of our polyhedron population we can take the naive
concept of polyhedron which is used in the proof-experiment of Euler’s conjecture (Lakatos,
1976, pp. 6-10).

Seven other definitions of a polyhedron are obtained via the method of monster-barring,
i.e. the ad hoc redefinition of a concept for excluding counterexamples: (p2) “a solid whose
surface consists of polygonal faces” (Lakatos, 1976, p. 15), (p3) “a surface consisting of a
systems of polygons” (Lakatos, 1976, p. 16), (p4) “a system of polygons arranged in such a
way that (1) exactly two polygons meet at every edge and (2) it is possible to get from the
inside of any polygon to the inside of any other polygon by a route which never crosses any
edge at a vertex” (Lakatos, 1976, p. 17), (p5) “a system of edges arranged in such a way
that exactly two edges meet at every vertex” (Lakatos, 1976, p. 19), (p6) definition of p5
plus the further condition that “the edges have no points in common except the vertices”
(Lakatos, 1976, p. 19), (p7) “in the case of a genuine polyhedron, through any arbitrary
point in space there will be at least one plane whose cross-section with the polyhedron
will consist of one single polygon” (Lakatos, 1976, p. 23), (p8) “edges have two vertices”
(Lakatos, 1976, p. 24)24.

Two other variants of a polyhedron are obtained via the method of exception-barring,
i.e. the ad hoc redefinition of a concept with the explicit exclusion of parts of the original
extension: (p9) “polyhedra that have no cavities, tunnels, or ‘multiple structure’” (Lakatos,
1976, p. 29), (p10) “convex polyhedra” (Lakatos, 1976, p. 30). Then, we have two variants
of a polyhedron generated by the method of lemma-incorporation: (p11) “simple polyhedra,
i.e. those which, after having had a face removed, can be stretched onto a plane” (Lakatos,
1976, p. 36), (p12) “simple polyhedron with all its faces simply-connected” (Lakatos, 1976,
p. 38). Finally, content-increasing methods give us other three variants of a polyhedron, i.e.
(p13) “Georgonne-polyhedra” (Lakatos, 1976, p. 63), (p14) “Legendre-polyhedra” (Lakatos,
1976, p. 63), and (p15) “closed normal polyhedra” (Lakatos, 1976, p. 81). In some sense,

24Note that technically the last definition is not, if taken alone, a definition of a polyhedron, but in the
context of Lakatos’ fictional classroom discussion it is used as an additional defining feature for resisting
‘counterexample 5’ (Lakatos, 1976, p. 24) and as such it is a (part of a) new polyhedron variant meant to
cope with Euler’s conjecture.
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Lakatos gives us another definition of a polyhedron, formalized in terms of vector algebra
(Lakatos, 1976, pp. 112-126), but this definition is of a completely different kind than
previous ones and thus should not be considered as a variant of the same conceptual
population. It is a tentative formalization of both the concept of a polyhedron and Euler’s
conjecture in terms of vector algebra and thus pertains to a different conceptual population
than the polyhedron one.

We can now reconstruct this conceptual history in my framework as a conceptual pop-
ulation. All the aforementioned fifteen variants of a polyhedron form the set of conceptual
variants Cp = {p1, p2, . . . , p15} of the polyhedron population. The environmental set is
composed by the singleton of Euler’s conjecture Ep = {ec}. The heuristic power order-
ing amongst the variants corresponds to their order of appearance in Lakatos’ discussion,
because each one of them is introduced as a way of dealing with a given counterexample
affecting the (conjecture-pairs related to the) previous variants or via a content-increasing
method. Since in my framework the number of counterexample (COUNT) and the size
of the intended domain (DOM) are the two main constraints on any hp ordering, we can
assume that hp(p1, ec) < hp(p2, ec) < . . . < hp(p15, ec). The heuristic power ordering of
the polyhedron population agrees then with Lakatos’ narration of the history of the poly-
hedron concept. All steps from one variant to the next one are justified by the purely
normative selection mechanism of my framework In the terminology of Section 3.1, this
case study is then an example of mathematical selection.

The evolutionary dynamic of the polyhedron population is then clearly the one typical
of Lakatosian populations, i.e. high environmental stability, high conceptual variation,
high reproductive competition and a continuous distribution of heuristic power. We have
in fact seen in Lakatos’ reconstruction of this case study a remarkable number of different
definitions of a polyhedron and only one, stable proof-problem (Euler’s conjecture). In my
terminology, then, the polyhedron population exhibits high environmental stability and
high conceptual variation. Moreover, we saw that all the different variants of a polyhedron
compete against each other in the context of proving Euler’s conjecture in a truly Malthu-
sian ‘struggle for life’. The evolutionary dynamic of the polyhedron population exhibits
thus high reproductive competition. Finally, the polyhedron population arguably shows a
continuous distribution of heuristic power amongst its conceptual variants, i.e. similar def-
initions of a polyhedron have similar heuristic power. This can be seen looking at pairs of
very similar definitions of a polyhedron such as (p2, p3) or (p5, p6). These pairs of variants
that differ only for a minor tweak in their definition cope similarly with Euler’s conjecture,
i.e. their related conjecture-pairs face (almost) the same counterexamples and have the
same intended domain.

We can now appreciate how the specific evolutionary dynamic of the polyhedron popula-
tion allows Lakatos to describe its conceptual history as a paradigmatic example of concept-
stretching. In order for a concept to be stretched via Lakatos’ succession of proofs and
refutations, there is a need of a stable mathematical problem and a plethora of tentative def-
initions of a mathematical concept. All these tentative definitions have to compete against
each other for solving the same problem and there cannot be significant discrepancies of
heuristic power amongst similar definitions. In other words, Lakatos’ concept-stretching
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model needs a certain kind of evolutionary dynamic in which conceptual populations have
high environmental stability, high conceptual variation, high reproductive competition, and
a continuous distribution of heuristic power. Lakatos’ concept-stretching is thus perfect
to describe the evolution of the kind of conceptual populations that I called Lakatosian
populations. My framework is then able to answer the many critics (Feferman, 1978; Fine,
1978; Corfield, 2003; Werndl, 2009) that pointed out how the evolution of many cases of
mathematical conceptual change is hardly an example of Lakatos’ concept-stretching. The
right domain of application of Lakatos’ concept-stretching are mathematical conceptual
histories that can be reconstructed as Lakatosian populations. In the next two subsection,
we will see how the quaternion and the pre-abstract group populations, i.e. two examples
that have been claimed to defy Lakatos’ concept-stretching model (Feferman, 1978; Mor-
mann, 2002), exhibit different evolutionary features than Lakatosian populations such as
the polyhedron one.

4.3.3 Hamilton’s invention of the quaternions
As my second case study I will reconstruct the conceptual history behind Hamilton’s
invention of the quaternions. Mormann discusses it as an example of axiomatic variation
that defies Lakatos’ model of concept-stretching (Mormann, 2002). I will show how, when
reconstructed as a conceptual population, the quaternion population exhibits indeed a
different evolutionary dynamics than the one typical of Lakatosian populations. However,
thanks to the rich structure of my framework we will see that what is different in the
quaternion population is not the instability of the proof-problem (as Mormann argues),
but the distribution of heuristic power amongst the conceptual variants. As an historical
basis for my reconstruction I will follow Hamilton’s own memoirs (Hamilton, 1843a,b,
1853), together with Pickering’s detailed analysis of Hamilton’s practice (Pickering, 1995).

Hamilton’s search for quaternions started with the idea of generalizing complex numbers
to triplets. Before going into Hamilton’s repeated tries into developing systems of triplets,
I need to stress some basic facts about algebraic and geometric properties of complex
numbers needed to understand Hamilton’s generalization attempts. Central to Hamilton’s
research is the geometrical understanding of complex numbers, where the real and the ideal
component of a number are not seen as quantities, but as coordinates of the end-point of
a line segment starting from the origin in a two-dimensional plane. In this interpretation,
the x-axis of the plane represents the real component of a given number, while the y-axis
the imaginary one.

This correspondence between algebraic entities and line segments extends also to the
operations between complex numbers, so that algebraic operations can be given a mean-
ingful geometrical reading. Multiplication between complex numbers, an operation that
constituted the core of the mathematical problem that Hamilton’s higher complex numbers
had to face, can be thus defined equivalently algebraically as

(a + ib)(c + id) = (ac − bd) + i(ad + bc)



4.3 Three Cases of Mathematical Selection 161

or geometrically as the conjunction of two rules: “the product of two line segments is
another line segment that (1) has the length given by the product of the lengths of the two
segments to be multiplied, and that (2) makes an angle with the x-axis equal to the sum
of the angles made by the two segments” (Pickering, 1995, p. 123).

Hamilton’s search for higher complex numbers started by generalizing this geometrical
reading of complex numbers to the three-dimensional case. He started thinking about
another imaginary component j, geometrically represented as a line perpendicular to the
two-dimensional complex plane (Hamilton, 1843b, p. 107). He also naturally assumed that
j2 = −1. We can take this first vague idea of a triplet as constituting the first conceptual
variant (q1) of the quaternion population.

Hamilton then focused on the algebraic operations performable on this new conceptual
variant. Addition and subtraction were easily extended to the triplet case. Multiplication,
instead, provided the newborn quaternion population with a stable mathematical problem.
Hamilton started from the restricted case:

(x + iy + jz)2 = x2 − y2 − z2 + 2ixy + 2jxz + 2ijxz

The problem was how to understand the last term of the equation, 2ijxz and the prod-
uct ij there contained. Hamilton’s first natural choices, giving rise to two new conceptual
variants of the quaternion populations, were (q2) ij = 1 and (q3) ij = −1. These two
variants were both equally understandable from a purely algebraic point of view, but they
both failed to have a reasonable geometric interpretation. Both variants were in fact still
understood from the geometrical perspective of a line perpendicular to the complex plane
and thus Hamilton’s geometrical understanding of the multiplication operation was that
“its real part ought to be x2 − y2 − z2 and its two imaginary parts ought to have for coeffi-
cients 2xy and 2xz” (Hamilton, 1843a, p. 103). The term 2ijxz contained in the algebraic
understanding of the multiplication needed to vanish.

A new conceptual variant (q4) arises exhibiting ij = 0, thus making the algebraic
understanding of the multiplication in superficial agreement with Hamilton’s geometrical
intuitions. Only superficially, though, because to make the product of two arbitrary seg-
ments equal to zero violates the geometrical rule that wants the length of the segment
product equal to the lengths of the segments multiplied (Pickering, 1995, p. 132).

Hamilton then let the commutativity assumption common to all the aforementioned
conceptual variants go and assumed the more general (q5) ij = k and ji = −k, leaving
undefined the value of k. This new conceptual variant coped with the multiplication envi-
ronment far more successfully than its predecessors, achieving for the first time complete
agreement between the algebraic and the geometric interpretation of multiplication for the
aforementioned restricted case of the mathematical problem. Hamilton was then led to the
general case of the multiplication of two arbitrary triplets and there the new conceptual
variant was of little use. How one should understand the orientation of the product triplet
for non-coplanar triplets?

Hamilton thus dropped the perpendicularity to the complex plane assumption, together
with the orientation-part of the geometrical understanding of multiplication for complex
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numbers. He first returned to the idea of ij = 0, this time not restricted by these two
assumptions (q6) and started working the general case only in terms of the length-part of
the geometrical understanding of multiplication. Again, the algebraic and the geometri-
cal understanding of the multiplication operation did not agree with each other, forcing
Hamilton to a more radical departure from his original intuitions.

Hence, Hamilton started considering k not only as the undefined product of i and j, like
it was in the variants q5 and q6, but as a whole new imaginary, thus obtaining the first con-
ceptual variant in the quaternion populations with three different imaginary components
(q7). This new conceptual variant was still too unspecified to cope successfully with the
multiplication problem in its general setting, since k2 was still undefined. Three different
choice for specifying this quantity naturally presented themselves to Hamilton, namely (q8)
k2 = 0, (q9) k2 = 1, (q10) k2 = −1. The first variant, i.e. q8, was quickly discharged for
breaking again the geometrical reading of multiplication. Finally, Hamilton saw that q10
was the only choice that coped successfully with the multiplication environment:

And since the order of these imaginaries is not indifferent, we cannot infer that k2 = ijij

is +1, because i2 × j2 = −1 × −1 = +1. It is more likely that k2 = ijij = −iijj = −1. And
in fact this last assumption is necessary, if we would conform the multiplication to the law
of multiplication of moduli. (Hamilton, 1843b, p. 108)

We can now model this conceptual history in terms of a conceptual population. The
set of variants of the quaternion population is made of all the conceptual variants we have
identified, i.e. Cq = {q1, q2, . . . , q10}, and the environment consists of the multiplication
problem (m), Eq = {m}, with the restricted domain of coplanar triplets restm. Like in
the case of the polyhedron population, we can assume that the hp ordering corresponds to
the order in which conceptual variants appear in my recollection of Hamilton’s search for
quaternions. Any quaternion variant is in fact superior to the precedent ones in terms of
counterexamples (COUNT) or success with the restricted domain of the problem (REST).
We can therefore assume that hp(q1, m) < . . . < hp(q10, m). Like in the polyhedron
population, all steps from one variant to the next one are consistent with the heuristic
power ordering and thus justified by the selection mechanism of my framework. This
second case study is therefore another example of mathematical selection.

If we take a look at the evolutionary dynamic of this conceptual population, at first it
may seem similar to the one of Lakatosian populations such as the polyhedron population.
The reconstruction of Hamiliton’s invention of the quaternions provides us with many
different conceptual variants and a single stable mathematical problem (the multiplication
problem). The quaternion population exhibits thus high conceptual variation and high
evolutionary stability. Furthermore, all the quaternion variants compete against each other
in coping with the multiplication problem, making the quaternion population a conceptual
population with high reproductive competition.

With respect to the three parameters of conceptual variation, environmental stability,
and reproductive competition, the quaternion population exhibits the same environmental
dynamic of the polyhedron population. Intuitively, however, the reconstruction of Hamil-
ton’s invention of the quaternions tells us a different story than Lakatos’ fictional classroom.
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Quaternion variants do not exhibit the same kind of variation that polyhedron variants
have. The appearance of quaternion variants is somehow constrained by the possible ways
in which their axioms can be manipulated. The story of Hamilton’s research is a story
of axiomatic tinkering, a story of a painstaking succession of small modifications to the
definition of hyper-complex numbers needed to produce a suitable multiplication operation
for this extended number domain. In this story, we saw that small modifications to the
definition of a quaternion, such as the steps from q3 to q4 and from q9 to q10, produced
huge discrepancies of effectiveness in coping with the multiplication problem. The latter
case is particularly striking, since the last two variants considered by Hamilton differ only
in the polarity of their specification of k2, which is +1 in q9 and −1 in q10. This small
difference is enough to cause a very significant hiatus in terms of heuristic power between
the two variants, making q10 the only quaternion variant to cope with the general multipli-
cation problem in a successful way. In the terminology of my framework, the quaternion
population clearly exhibits a discrete distribution of heuristic power. With respect to this
specific aspect of its evolutionary dynamic, the quaternion population is thus an Euclidean
population.

In this way, the quaternion population shows us a different evolutionary dynamics
than Lakatos’ own example of the polyhedron concepts. The quaternion population is
not a Lakatosian population, due to its lack of continuity in the distribution of heuristic
power. This lack of continuity causes a discreteness in the distribution of heuristic power
amongst the quaternion variants. In Section 2.3.3, I stressed how this discreteness is a
symptom of an highly axiomatized body of mathematics. The present case study offers a
paradigmatic example of this connection, showing how an axiomatized conceptual history
such as Hamilton’s invention of the quaternions presents a discrete distribution of heuristic
power amongst its variants. This discreteness is caused by the underlying mechanism at
work in Hamilton’s research, namely the manipulation of axiomatic systems (Pickering,
1995; Schlimm, 2013) that constrains the possible conceptual variants.

Thanks to the fine-grained structure of my framework, we can then reappraise the rea-
son why Hamilton’s invention of the quaternions is a different case of conceptual change
than Lakatos’ polyhedron example. Mormann (Mormann, 2002), in fact, discusses this
case study as an example of axiomatic variation that defies Lakatos’ concept-stretching.
He states that the reason why the conceptual history of quaternions defies Lakatos’ model
of conceptual change is the fact that also the environment changes together with the
conceptual variants. According to Mormann, the conceptual history of Hamilton’s quater-
nions “does not leave intact the theorems or laws which were originally considered to be
the touchstone of its respectability” (Mormann, 2002, p. 144). Mormann is indeed right in
claiming that cases of axiomatic conceptual change such as the invention of the quaternions
exhibits a different environmental dynamics than Lakatos’ own examples, but his diagnoses
only partially captures what is specific to the variation exhibited by axiomatized bodies
of mathematics. We have in fact seen that the quaternion population exhibits high envi-
ronmental stability in my framework. It is indeed true that Hamilton, in the conceptual
variation from triplets to quaternions, dropped more than one assumption that he had on
how multiplication with higher complex numbers should work, but this does not imply a
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change in the abstract mathematical environment. The problem of having a multiplication
operation meaningful both from an algebraic and a geometric point of view was the only,
stable mathematical problem faced by all the quaternion variants. Mormann’s focus on the
token-like tentative proofs causes him to miss the stability of the more abstract type-like
mathematical problem. Moreover, in his description of axiomatic variation he seems to
conflate the lack of environmental stability typical of formalized bodies of mathematics
and the lack of a continuous distribution of heuristic power typical of highly axiomatized
bodies of mathematics. This conflation makes him not realize that it is the discreteness of
heuristic power distribution amongst the quaternion variants the reason why this concep-
tual history differs from Lakatos’ own examples. In sum, the difference between Lakatosian
populations such as the polyhedron population and conceptual populations like the quater-
nion one is not the changing environment, it is the lack of continuity in the heuristic power
distribution. This reappraisal of this example of conceptual change shows how the four
dimensions of the Lakatosian space allow more fine-grained analyses of the evolutionary
dynamics of mathematical conceptual histories than previous proposals.

4.3.4 Pre-abstract group theory
As my third case study, I will focus on the history of pre-abstract group concepts, using
as historical reference the detailed reconstruction of Wussing (Wussing, 1984). I will show
how this conceptual history exhibits an evolutionary dynamic different from both the
polyhedron and the quaternion population.

Pre-abstract group concepts were developed between 1770 and 1880 in relation to three
connected but independent fields of mathematical inquiry: number-theory, algebra, and
geometry. Specifically, they arose in the context of three-specific mathematical problems:
the classification of number forms in number theory, the general solvability of algebraic
equations in algebra, and the search for ordering principles in geometry.

In reconstructing this conceptual population, I will proceed in an unhistorical way,
treating every mathematical problem and the related conceptual variants independently.
This is just for reconstructing more clearly the conceptual evolution of the population and it
should not be interpreted as assuming the historical independence of problems and related
groups of conceptual variants from one another. I will denote the three mathematical
problems composing the environment of this population with e1, e2, e3 and the thirteen
conceptual variants with g1, . . . , g13.

The first mathematical problem where some group variant implicitly appeared was the
problem of developing a general theory of forms (such as binary quadratic forms) in number
theory (e1). Namely, Wussing shows how Euler’s theory of power residues involved in its
partitioning of reminders “a clear example of group-theoretic thinking” (Wussing, 1984, p.
49). We can use the implicit, vague and heavily underdefined group-theoretic notion at
work in Euler’s paper as our first conceptual variant of the group population (g1). Gauss’
work gives us the next two group variants that emerged from this problem. The first one
is his notion of ‘congruence’ (g2) that he used to structure and extend Euler’s theory of
power residue (Wussing, 1984, pp. 52-54). The second one is the notion of ‘composition
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of forms’ (g3), which constituted the center of Gauss’ general theory of forms (Wussing,
1984, pp. 55-61). The final conceptual variants within the pre-abstract group population
that emerged in the context of number theory was Kronecker’s axiomatization of a finite
abelian group (g4) and his proof of the related basis theorem (Wussing, 1984, pp. 61-67).

The second set of group variants I am going to focus on is the one related to the problem
of solving algebraic equations of higher degree (e2). The first group variant can be traced
to Lagrange’s seminal ‘reflections’ on the solvability of algebraic equations. Lagrange was
the first to undertake a structural study of algebraic equations (Wussing, 1984, pp. 71-79).
The central offspring of his study was the connection between the solvability of algebraic
equations and the concept of permutation. Specifically, Lagrange realized that the degree
of the resolvent of a given equation is the number of different values that the roots of the
original equation take when permuted in all the possible ways. This implicit notion of
permutation constitutes another group variant (g5), the first that emerged in the context
of algebra. The next steps in the theory of permutations give us two other conceptual
variants. Ruffini built on Lagrange’s theory, asserting for the first time the unsolvability
by radicals of equations with degree higher than four. In his work one can find a general
classification of permutations, simple and various kinds of complex ones, where he used
the notion of permutation with implicit group-theoretic character (g6) (Wussing, 1984,
pp. 80-84). Cauchy improved further the theory of permutation with his concept of
‘system of conjugate substitution’ (g7), with which he implicitly defined (a version of) the
permutation-theoretic concept of group in terms of its generator. Finally, Galois was the
first to define explicitly the permutation-theoretic concept of a group (g8), understood as
necessarily closed under multiplication (Wussing, 1984, pp. 111-117). He used this notion
for defining the ‘Galois group of an equation’, which together with the pivotal property of
the normality of a subgroup, allowed him to assign at every equation a permutation group
whose structure reveals all the essential properties of the equation, including whether it is
solvable by radicals.

The last set of pre-abstract group variants is the one coping with the search for ordering
principles in geometry (e3). As our first variant that emerged in this context we can take
Möbius’ notion of ‘affinity’ (g9) used in his intuitive classification of geometric relations
(Wussing, 1984, pp. 35-42). The next conceptual step in ordering geometries is Cayley’s
notion of ‘invariant’ (g10), which he used in his abstract classificatory efforts. These steps
in the search for ordering principles led famously to the Erlangen Program and its group-
theoretic classification of geometries. In regards to new pre-abstract group variants, we owe
to the Erlangen Program a new explicit definition of group (Wussing, 1984, pp. 187-193).
Klein defined a group not in terms of permutations (like Galois did), but he spelled out his
variant of the group concept in terms of transformations (g11). After the Erlangen Program,
Klein and Lie respectively developed two other variants of the group concept, obtained by
extending and sharpening the still quite under-defined notion of transformation group
(Wussing, 1984, pp. 205-223). We owe to Klein the notion of an infinite discrete group of
transformations (g12) and to Lie the notion of a continuous group of transformation (g13).

We can now model this conceptual history as a conceptual population. The set of
variants of the pre-abstract group population consists of all the aforementioned conceptual
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variants, i.e. Cg = {g1, g2, . . . , g13}. The environment consists of three mathematical
problems, i.e. the classification of number forms (e1), the solvability of algebraic equations
(e2), the search for ordering principles in geometry (e3): Eg = {e1, e2, e3}. As we have
seen, the task of solving these three problems gave rise to three different sets of group
variants, each one of them with its own selected definition of group, i.e. finite abelian
groups, permutation groups, transformation groups. All these three notions were selected
as the culmination of a series of implicit and explicit group-theoretic notions, each one with
a more general intended domain or more successfully adapted to a restricted version of the
problem than the precedent one. Guided by the rationality principles of intended domain
size (DOM) and restricted case applications (REST), we can assume the hp ordering of
this conceptual population is composed by the different chains: hp(g1, e1) < hp(g2, e1) <
hp(g3, e1) < hp(g4, e1); hp(g5, e2) < hp(g6, e2) < hp(g7, e2) < hp(g8, e2); and hp(g9, e3) <
hp(g10, e3) < hp(g11, e3) < hp(g12, e3), hp(g13, e3). With regards to mathematical selection,
in this case study we have to carefully distinguish between local and global selection. The
three different heuristic power chains give in fact rise to three different local selection
mechanisms specific to the mathematical problem under focus. With respect to one of the
three mathematical problems composing the environment of the population, conceptual
variants can be ordered in terms of heuristic power. At the general level of the whole
population, however, the pre-abstract group population does not select any conceptual
variant as the one to be preferred. There is, for instance, no reason to generally prefer the
transformational group concept to the permutational one (and vice-versa) for its heuristic
power. No general selection is induced by the heuristic power ordering of this population.
The actual history of pre-abstract group theory is consistent with the combination of locally
selected conceptual variants and the absence of a generally preferred one. For each one of
the three mathematical problems, a conceptual variant got selected and all of them kept
being used successfully in their respective areas for the whole conceptual history. This
third case study is thus an example of local mathematical selection.

We can then assess which kind of evolutionary dynamic the pre-abstract group pop-
ulation exhibits. With respect to conceptual variation and environmental stability, the
evolution of this conceptual population is similar to the one of the other two case studies
we discussed. The reconstruction of the pre-abstract group concept history gives us many
different conceptual variants and three stable mathematical problems. Just like the poly-
hedron and the quaternion population, the pre-abstract group population exhibits high
conceptual variation and high environmental stability. With respect to the distribution
of heuristic power, like the polyhedron population and unlike the quaternion population,
the pre-abstract group population exhibits a continuous distribution of heuristic power.
Similar pre-abstract group variants, such as g6 and g7, have very similar heuristic power.
This continuity is due to the lack of axiomatization of the pre-abstract group concepts and
it was about to change in a few years with the development of the abstract group con-
cept (and the related conceptual population) (Wussing, 1984, pp. 230-254). Is therefore
the pre-abstract group population another example of a Lakatosian population? Just a
quick look at the degree of reproductive competition in this population provides a negative
answer to this question. The pre-abstract group population, in fact, dramatically lacks
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(almost) any reproductive competition whatsoever. A striking symptom of this lack of re-
productive competition is the complete absence of any counterexample in the history of the
pre-abstract group concepts. The evolution of these concepts proceeded as a series of gen-
eralizations and further applications, without any significant dialectic between proofs and
refutations. A further factor that contributed to the lack of reproductive competition is the
plurality of mathematical problems in the environment of this population. This plurality
of problems made possible the coexistence of different pre-abstract group variants, each of
them very successful in coping with its own related problem. The three aforementioned lo-
cally preferred pre-abstract group variants, i.e. finite abelian groups, permutations groups,
transformation groups, evolved collectively, each one of them improving their respective
predecessors within the context of their specific problem.

We can now appreciate the specific kind of evolutionary dynamic that the pre-abstract
group population exhibits. In comparison to the quaternion population, this conceptual
population is more Lakatosian with respect to the distribution of heuristic power, but it
is more Euclidean with respect to reproductive competition. This kind of evolutionary
dynamic is typical of mathematical conceptual histories driven by “internal organization”
(cf. Feferman 1978, p. 174) or “systematization” (Kitcher 1984, pp. 217-225), where the
cooperative and collective aspect of mathematical evolution is more prominent than the
proofs and refutation aspect. My framework is able to adequately represent this kind of
evolutionary dynamics thanks to the separation of the reproductive competition aspect
from the other three parameters.

More generally, the three case studies I presented demonstrate how my framework allows
a very fine-grained classification of the evolutionary dynamics of mathematical conceptual
histories. Examples of conceptual change can be rationally reconstructed as conceptual
populations and judged to be more or less consistent with the heuristic power ordering of
the related population. Conceptual populations can then be classified with respect to the
four parameters of the Lakatosian spaces, tracking specific aspects of their environmental
dynamics. These four parameters break down the opposition between Lakatosian and
Euclidean populations into a plurality of evolutionary features with respect to which a
mathematical conceptual history can be judged to be more Lakatosian or more Euclidean
(or none of the above, in the case of populations lacking evolutionary stability). Different
combinations of these four parameters give rise to different evolutionary dynamics, each
one of them occupying a different part of the Lakatosian space (Figure 2).

Let me recall the main steps of the last two sections. Building upon Mormann’s evolu-
tionary reading of Lakatos and Godfrey-Smith’s population-based Darwinism, I proposed
a general evolutionary framework for conceptual change in mathematics. The framework
is made of three main ingredients: the notion of a conceptual population, the opposition
between Lakatosian and Euclidean populations, and the spatial tools of the Lakatosian
space.

I showed how my framework achieves a general evolutionary account of conceptual
change in mathematics compatible with the diversity of evolutionary dynamics that the
history of mathematics exhibits. I demonstrate how different mathematical conceptual
histories can be reconstructed in my framework as conceptual populations. Thanks to the
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Figure 4.2: A three-dimensional representation of the Lakatosian space showing the parts
of the space corresponding to the kinds of evolutionary dynamics exhibited by the three
case studies.

normative selection mechanism of my framework, the rationality of these episodes of con-
ceptual change can then be assessed by judging whether these conceptual histories are cases
of mathematical selection or evolutionary drift. Moreover, thanks to the rich dimensional
structure of the Lakatosian space, the specific evolutionary dynamic exemplified by these
conceptual histories can be classified with respect to four different aspects: conceptual
variation, environmental stability, reproductive competition, and distribution of heuris-
tic power. Different combination of these parameters are connected to different kinds of
evolutionary dynamics, making a giving conceptual population more similar to Lakatosian
populations or more closer to Euclidean ones (or different from both). Furthermore, certain
parts of the Lakatosian space corresponding to specific combination of the four parameters
give a novel characterization of important concepts in philosophy of mathematics such as
formalization or axiomatization.

As I stressed at the beginning of Section 2, with this framework that I just presented
I tried to approach the EET program in a bottom-up way, focusing on a specific selection
mechanism (i.e. the heuristic power ordering) involving only few conceptual elements
(i.e. conceptual variants and mathematical problems) within a single scientific discipline
(i.e. mathematics). Despite the simplicity and the narrow scope of the framework, we
saw the many insights that it is able to give in assessing different case studies from the
history of mathematics. My proposal is furthermore just the beginning of a research
program and as such it is open to extensions in multiple parts. As we saw in Section
2.3.4, augmenting my basic framework with a time-dimension allows one to model entire
evolutionary histories of mathematical concepts as a succession of conceptual populations
and the related inter-population kinds of changes as specific movements along the axis
of the augmented Lakatosian space. Similarly, other extensions of my framework, via
the addition of further dimensions to the Lakatosian space or of additional elements to
conceptual populations, can be envisaged in order to treat more aspects of the evolution of
mathematical concepts, such as the emergence of mathematical problems, the inheritance
mechanisms of selected conceptual variants, the similarity relations between conceptual
variants, the relationship between different mathematical fields, and many others significant
factors. This bottom-up way of a simple framework and several modular extensions appear
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a promising way of gradually building a precise and historically testable evolutionary model
of scientific conceptual change.

4.3.5 Formal addenda: a toy heuristic power function and the
three case studies formalized

In this last part of this section, I will present two formal addenda to the presentation
of my evolutionary framework for mathematical selection. The first addendum consists
of a toy-example (Section 3.5.1) in which I construct an actual heuristic power function.
This simple exercise in model-building will demonstrate the satisfiability of the rationality
postulates that constrain any heuristic power ordering in my framework. The construction
of a simple heuristic power function will also show how the selection mechanism of my
framework works in practice. In the second addendum I will instead formalize the three
case studies presented in this work. Specifically, I will show how these conceptual histories
can be reconstructed as formal conceptual populations and how the four parameters of the
Lakatosian space can be measured.

A toy example

Let pe be the proof-problem consisting of the conjecture ∀x(B(x) → S(x)) for a finite
domain of twelve individuals {a, . . . , l}. Let restpe1, restpe2 be two restricted cases of the
proof-problem pe for a sub-domain respectively of three {a, b, d} and eight {a, b, c, d, e, f, g, h}
individuals (Figure 2).

Figure 4.3: A representation of the toy-case setting. Points represent the twelve single
instances from a to l, while the three circles represent the domain of the proof-problem pe,
together with its restricted cases restpe1 and restpe2.

The fifteen individuals have the following properties:

• (a) : A(a), S(a), C(a), ¬D(a), L(a), T (a), Z(a);
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• (b) : A(b), S(b), C(b), ¬D(b), L(b), T (b), Z(b);

• (c) : A(c), ¬S(c), C(c), D(c), ¬L(c), ¬T (c), ¬Z(c);

• (d) : ¬A(d), ¬S(d), ¬C(d), D(d), L(d), T (d), ¬Z(d);

• (e) : A(e), ¬S(e), ¬C(e), D(e), L(e), T (e), ¬Z(e);

• (f) : A(f), ¬S(f), C(f), ¬D(f), L(f), T (f), Z(f);

• (g) : ¬A(g), S(g), C(g), ¬D(g), L(g), T (g), Z(g);

• (h) : A(h), ¬S(h), C(h), ¬D(h), L(h), ¬T (h), Z(h);

• (i) : A(i), ¬S(i), C(i), ¬D(i), ¬L(i), T (i), ¬Z(i);

• (j) : A(j), S(j), C(j), D(j), L(j), T (j), Z(j);

• (k) : A(k), S(k), C(k), ¬D(k), L(k), T (k), Z(k);

• (l) : A(l), ¬S(l), C(l), ¬D(l), L(l), T (l), ¬Z(l).

Let c1, . . . , c6 be six different conceptual variants of the concept B defined as follows:

• c1 B(x) := A(x);

• c2 B(x) := A(x) ∧ C(x);

• c3 B(x) := A(x) ∧ C(x) ∧ ¬D(x);

• c4 B(x) := C(x) ∧ L(x);

• c5 B(x) := C(x) ∧ T (x);

• c6 B(x) := Z(x).

This toy-setting may appear a little bit unrealistic at first, but (modulo several sim-
plicity assumptions) it represents a typical Lakatosian dynamics of proofs and refutations
such as the famous polyhedron case study. Consider the following fictional narrative. A
mathematician wants to find a property B(x) such that whenever an individual object
has it, the object possesses also the property S(x). She observes the restricted domain
restpe1, noting that if A(x) holds, then S(x) holds too. She thus chooses A(x) (c1) as a
definition of B(x) and formulates the related conjecture ∀x(A(x) → S(x)). Focusing on
the broader domain restpe2, this first conjecture is soon falsified by the individual e for
which A(e) and ¬S(e) hold. Our mathematician notes that in this case (differently from
the cases in the first restricted domain) ¬C(e) holds. She therefore refines her conjecture
redefining B(x) as A(x) ∧ C(x) (c2), thus shielding her conjecture from counterexample
e. The positive instance f seems to corroborate her refinement, but c presents itself as
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a counterexample (also) for the new conjecture, since A(c) ∧ C(c) ∧ ¬S(c) holds. Our
fictional mathematician refines again her conjecture adding a third condition ¬D(x) to her
definition of B(x) (c3), protecting the new conjecture from c. This series of restrictions
has successfully shielded the conjectures from counterexample but it has also restricted
the domain of the conjecture, as it is exemplified by cases like g that the conjecture does
not cover. In Lakatosian terms, the content of the theorem has decreased. In order to
counter that, our mathematician “inspects her proof searching for a deeper theorem”Ṫhe
result of her inspection is a new definition of B(x) as C(x) ∧ L(x) (c4), the related conjec-
ture of which is as shielded from counterexamples as the precedent one but with a bigger
domain. The case h provides a new counterexample to the new conjecture (and to all the
old ones), though. Our mathematician refines another time her conjecture with a new
conceptual variant, defining B(x) as C(x) ∧ T (x) (c5). The related refined conjecture is
shielded from counterexample h and thus successfully copes with all cases of the restricted
domain restpe2. The bigger domain pe holds another unpleasant surprise, though. The
case i presents a counterexample for the new conjecture, but not for the precedent defi-
nition of B(x). However, the latest conceptual variant is still the best definition at our
mathematician disposal, coping successfully with all cases of restpe2 and with both j and
k in the bigger domain. Another counterexample to all the conjectures, l, is found. Can
our mathematician inspect her proof and find another definition of B(x) capable finally to
cope successfully with the overall domain of the proof-problem pe? After a pain-staking
inspection of the proof, our mathematician finds a new definition of B(x), Z(x) (c6), the
related conjecture of which copes successfully with the general proof-problem pe. At last,
a ‘natural’, ‘intuitive’, ‘self-evident’, ‘fruitful’, ‘simple’ definition of B(x) has been found.

The rationality of the narrative just presented is shown in my framework by finding a
suitable hp ordering that warrants the choices made by our fictional mathematician. For
illustration only, in this toy-example we will induce this ordering from a simple function
(conveniently called also hp). The hp function from conjecture-pairs to natural number is
then defined as follows:

hp(ci, pe) = 10
count(ci, pe) + 1 + dom(ci, pe)

10 + restr(ci, pe)
20

where count(ci, pe) is the function counting the number of counterexamples for a given
conjecture-pair, i.e. the number of individuals in the domain that have the property B(x)
(as defined by ci) but not the property S(x), dom(ci, pe) counts the possible instances
of the conjecture-pair, i.e. the number of individuals in the domain having the property
B(x) (as defined by ci), and rest(ci, pe) is the function counting the number of domains
(restpe1, restpe2, pe) of the proof-problem with which the given conceptual variants copes
successfully (i.e. there are no counterexamples for the related conjecture-pair within the
domain).

These functions applied to the six different conjecture-pairs give the following result:

• count: count(c1, pe) = 5, count(c2, pe) = 4, count(c3, pe) = 2, count(c4, pe) = 2,
count(c5, pe) = 2, count(c6, pe) = 0;
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• dom: dom(c1, pe) = 9, dom(c2, pe) = 8, dom(c3, pe) = 7, dom(c4, pe) = 8, dom(c5, pe) =
8, dom(c6, pe) = 6;

• rest: dom(c1, pe) = 1, dom(c2, pe) = 1, dom(c3, pe) = 1, dom(c4, pe) = 1, dom(c5, pe) =
2, dom(c6, pe) = 3;

• Therefore we have hp(c1, pe) = 10
6+1 + 9

10 + 1
20 , dom(c2, pe) = 10

5+1 + 8
10 + 1

20 , dom(c3, pe) =
10

3+1 + 7
10 + 1

20 , dom(c4, pe) = 10
3+1 + 8

10 + 1
20 , dom(c5, pe) = 10

3+1 + 8
10 + 2

20 , dom(c6, pe) =
10
1 + 6

10 + 3
20 .

It is easy to see that our hp function respects all the three rationality postulates of my
framework (cf. Section 2.3.1). The selection ordering induced by our hp function is then
hp(c1, pe) < hp(c2, pe) < hp(c3, pe) < hp(c4, pe) < hp(c5, pe) < hp(c6, pe) and therefore c6
is the conceptual variant that ought to be preferred.

Formalization of the three case studies

• Polyhedron Population (PP)
PP = ⟨Cp, Ep, hp⟩ where Cp = {p1, p2, . . . , p15}, Ep = {ec} and hp = hp(p1, ec) <
hp(p2, ec) < . . . < hp(p15, ec). The Environmental history consists of the same envi-
ronmental set EHp = {Ep}.
Conceptual Variation: CV (PP ) = |Cp| = 15

Environmental Stability: ES(PP ) = |∩EHp |
|∪EHp | = 1

Reproductive Competition: RC(PP ) = |Cp|
|∪EHp | = 15

Continuity: ∀px, py ∈ CP P (px ≈ py → hp(px, ec) ≈ hp(py, ec)) is satisfied.

• Quaternion Population (QP)
PP = ⟨Cq, Eq, hp⟩ where Cq = {q1, q2, . . . , q10}, Eq = {m} and hp(q1, m) < . . . <
hp(q10, m). The environmental history consists of the same environmental set EHq =
{Eq}.
Conceptual Variation: CV (QP ) = |Cq| = 10

Environmental Stability: RC(QP ) = |Cq |
|∪EHq | = 10

Reproductive Competition: ES(QP ) = |∩EHq |
|∪EHq | = 1

Continuity: ∀qx, qy ∈ CQP (qx ≈ qy → hp(qx, m) ≈ hp(qy, m)) is not satisfied.

• Pre-abstract Group Population (GP)
PP = ⟨Cg, Eg, hp⟩ where Cg = {g1, g2, . . . , g13}, Eg = {e1, e2, e3} and hp(g1, e1) <
hp(g2, e1) < hp(g3, e1) < hp(g4, e1); hp(g5, e2) < hp(g6, e2) < hp(g7, e2) < hp(g8, e2);
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and hp(g9, e3) < hp(g10, e3) < hp(g11, e3) < hp(g12, e3), hp(g13, e3). The Environmen-
tal history consists of the same environmental set EHg = {Eg}.
Conceptual Variation: CV (GP ) = |Cg| = 13

Environmental Stability: ES(GP ) = |∩EHg |
|∪EHg | = 1

Reproductive Competition: RC(GP ) = |Cg |
|∪EHg | = ≈ 4

Continuity: ∀gx, gy ∈ CGP , ∀ei ∈ Eg(gx ≈ gy → hp(gx, ei) ≈ hp(gy, ei)) is satisfied.

4.4 Assessing Evolutionary Models in the Toolbox
Framework

In this final section, I will analyze how evolutionary models of conceptual change in mathe-
matics can be classified within the Toolbox framework, i.e. the meta-framework for assess-
ing models of conceptual change that I presented in Chapter 2. More specifically, we will
see how the Darwinian models of conceptual evolution such as my framework for math-
ematical selection can be assessed along the nine evaluative dimensions of the Toolbox
framework: units of selection, concept ontology, concept structure, kinds and degrees of
conceptual change, degree of normativity, effectiveness of normative judgment, assump-
tions and consequences for conceptual change in science, assumptions and consequence for
conceptual change in philosophy, metaphilosophical assumptions and implications. Let us
survey how Darwinian models of conceptual evolution performs in these dimensions, one
by one, then.

Units of selection This dimension judges models of conceptual change according to
the level of abstraction at which they identify conceptual entities as meaningful units of
change. In the case of Darwinian models of conceptual change, the meaningful unit of
conceptual change is considered to be a conceptual population. The level of abstraction at
which evolutionary models of conceptual change understand conceptual change is thus a
set of conceptual variants, i.e. concepts designed to solve similar scientific problems. The
need of taking into account a whole set of conceptual variants, and not a single concept like
other models of conceptual change, is crucially connected with the Darwinian populational
thinking (Mayr, 1975) and the related concepts of variation, fitness, and adaptation within
the context of a whole population of entities. Despite the main actors of evolution are
always individuals, evolutionary change has to be understood in a collective context.

Concept ontology This dimension focuses on the compatibility of a given model of
conceptual change with the different philosophical positions on the ontology of concepts.
As we saw in Sections 1 and 2, evolutionary models of conceptual change such as my
framework for conceptual selection in mathematics are not tied to any specific ontological
position about concepts. However, as it was heavily stressed by Toulmin’s insistence on the
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concept of scientific possibility (cf. Section 1.1), evolutionary models of conceptual change
necessarily engage only with the public aspect of scientific concepts as understood by the
related scientific community. As such, evolutionary models are particularly compatible
with linguistic and abstract views about concept ontology. Nevertheless, enthusiasts of a
psychological or a worldly view can easily have a deflationary understanding of evolutionary
models use of concepts by seeing them as working to the linguistic or abstract public
correlate of a given concept. For instance, Gärdenfors (Gärdenfors, 2014) seems to have a
similar reading of evolutionary accounts of language and concepts in mind in his account
of how meanings can be shared amongst different individuals.

Concept structure This dimension focuses instead on how a given model of concep-
tual change assumes the structure of concepts to be constituted. Evolutionary models
of conceptual change are quite neutral on matters of conceptual structure, since it does
not usually directly play a role in the evaluation of the fitness of a given concept or in
the related selection mechanisms. What matters for evolutionary models of conceptual
change is how a given concept faces the related scientific problems in comparison to the
performances of its competitors. Depending on the specific scientific problems at issue,
evaluating a concept performance may involve different parts of a concept role or function.
This multiple structures possibly involved in evaluating a concept performance are the rea-
son why Toulmin championed a hybrid view of concepts as micro-institutions (cf. Section
1.1) and they could be put forward as evidence for a strong compatibility of evolutionary
models of conceptual change with a hybrid view of conceptual structures (cf. Chapter 2,
Section 1.2). That said, it should be clear that a deflationary reading of the evaluation of
these multiple structures is of course a natural possibility and as such evolutionary models
seem compatible with most theories of conceptual structure.

Kinds and Degrees of conceptual change This dimension focuses on the kinds and
degrees of conceptual change that a given model of conceptual change identifies. Evolu-
tionary models of conceptual change identify two kinds of changes, intra-population and
inter-population changes. The first kind of change corresponds to changes happening
within a given conceptual population, such as the appearance of new conceptual variants
and new problems (or their disappearance). The second kind of changes underlies the
transitions from one conceptual population to another one, corresponding to more radical
changes in the scientific problems and the related conceptual variants. As it was stressed
by several authors (e.g. Toulmin 1972; Kitcher 1984; Hull 1988a), the difference between
intra-population and inter-population changes is definitely not a sharp one, since it cru-
cially depends on the model building activity of identifying a given conceptual population.
As we saw in applying my conceptual selection framework to actual case studies from the
history of mathematics, there is always a certain degree of arbitrariness in the identification
of both a set of conceptual variants and a set of scientific problems. Thus the difference
between intra-population and inter-population changes should be taken as a lightweight
pragmatic difference strongly dependent on the specific model of conceptual change and
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the specific reconstruction of the case study under focus.

Degree of normativity This dimension tracks the extent to which a given model of
conceptual change is more or less normative in judging episodes of conceptual change. As
we saw in Section 3, evolutionary models of conceptual change such as the one presented
in this chapter are able to somehow assess, in a quasi-normative way, the rationality of a
given historical episode of conceptual change. They can in fact judge a given conceptual
history to be a case of selection or drift, mirroring the standard quasi-normative distinction
between “intentional”and random changes in the evolution of a given biological population.
If a case of scientific selection corresponds to an intentional, rationally driven, choice of the
fittest variant(s) in the conceptual population, cases of drift correspond to episodes where
an equally fit (or sometimes even a less fit) variant gets selected due to some external
influences or circumstances. It should be of course noted that, as Toulmin lucidly stressed
(cf. Section 1.1), purely rational selections and purely external scientific drifts should be
understood as ideal extremes between which most episodes of conceptual change in science
lie.

Effectiveness of normative judgment This dimension focuses on how effective the
normative judgment of a model of conceptual change is. In the case of evolutionary models
of conceptual change, the question is how sharp and trustworthy can we be when judging
a given conceptual history as an episode of scientific selection or scientific drift. Not
surprisingly, the judgment is highly dependent on the specific rational reconstruction of
the historical case under focus. In fact, as we saw in the case studies presented in Section
3, judging a case study to be an example of selection or drift is highly dependent on the
conceptual variants and the scientific problems identified, as well as on the heuristic power
function chosen and on the assessment of the heuristic power of a given variant in relation
to a given problem. All these crucial elements in the evaluation of the rationality of a
given case study are of course dependent on how the case study is rationally reconstructed.
As such, the normative judgment of evolutionary models of conceptual change depends on
the historical and philosophical faithfulness of the underlying rational reconstruction and
should be judged by the usual philosophical and historical pragmatic tools available.

Assumptions/consequences for conceptual change in science This dimension fo-
cuses on the assumptions and the consequences of a given model of conceptual change in
relation to the problems that scientific conceptual change poses in philosophy of science.
Evolutionary models of conceptual change are of course connected with a vision of scientific
progress and rationality consistent with the ideals of evolutionary epistemology and the
EET program. As we saw in Section 1, the central tenet of the EET program is the belief
in a significant analogy between biological and scientific evolution. Scientific progress is
then seen by evolutionary epistemologists as akin to the progressiveness of biological evo-
lution, i.e. as not goal-directed and always strongly dependent on the environment and
the variation at a given time. Evolutionary models of conceptual change are thus consis-
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tent with a belief in scientific progress, albeit of the non-teleological and fallibilist kind
paradigmatically exemplified by Popper’s ideals (cf. Popper 1974a). Similarly, the view
of scientific rationality depicted by evolutionary models of conceptual change is an instru-
mental rationality dependent on the shared values and goals of the scientific community
and on the specific problems that they face. Moreover it is a purely backward-looking kind
of rationality that, just like the workings of natural selection, can only be properly assessed
long after the selection process has taken place.

Assumptions/consequences for conceptual change in philosophy This dimension
focuses on the assumptions and the consequences of a given model of conceptual change in
relation to the problems that philosophical conceptual change poses in philosophy. As in
the previous case of scientific conceptual change, evolutionary models of conceptual change
bring to the problem of conceptual change the idea(l)s of evolutionary epistemology. Philo-
sophical concepts then, just like every other kind of intellectual product, are also subject
to intellectual selection and as such the problem of conceptual change is as real for philo-
sophical concepts as it is for scientific ones. The interesting question that this evolutionary
perspective on philosophical conceptual change brings forwards is the following: what are
the selection mechanisms behind conceptual change in philosophy? Of a special interest is
the subquestion of whether these mechanisms are similar to the ones at play in scientific
selection and if not, what is different between them. To my knowledge, not much effort
has been put by philosophers in applying evolutionary models of conceptual change to
philosophical conceptual histories. This interesting yet largely unexplored research ques-
tion could perhaps shed a new light on the old question whether philosophy progresses in
the same way in which science does.

Metaphilosophical assumptions and implications This dimension focuses on the
metaphilosophical background that a given model of conceptual change has. The metaphilo-
sophical background of evolutionary models of conceptual change is of course the one of
evolutionary epistemology in all its scope and depth. According to evolutionary episte-
mology, philosophical activity and its products should take into serious consideration their
role and status of evolutionary products. What a truly evolutionary epistemology, and
more generally an evolutionary philosophy, amounts to is (as we saw in Section 1) de-
batable, but it seems safe to assume that a truly evolutionary philosophy would involve
a radical reform of many philosophical fields. The ideal of an evolutionary epistemology
is also usually connected with the naturalization of epistemology and related normative
philosophical enterprises such as metaphysics and ethics. The debate on whether such
philosophical disciplines can or should be naturalized is even longer and more controversial
than the discussion on evolutionary epistemology and as such I will not dare to enter into
it.



Chapter 5

Indeterminate Models of Conceptual
Change

The focus of this chapter will be on what I will call indeterminate models of conceptual
change, i.e. frameworks for understanding conceptual change in which semantic indetermi-
nacies are modeled as central features of this phenomenon. This is not to say that all the
other models of conceptual change do not take semantic indeterminacy into consideration.
As we saw in the previous chapters, in fact, conceptual change is a phenomenon remark-
ably prone to various kinds of semantic indeterminacy such as vagueness and ambiguity.
Moreover, models of conceptual change necessarily have to wrestle with the indeterminacy
of their subject-matter, allowing a good dose of open-endedness and pluralism in their pic-
tures of conceptual change. Nevertheless, all the models of conceptual change that we saw
so far treat semantic indeterminacies as contingent factors in the evolution of concepts, not
particularly central to the mechanisms by virtue of which concept change and therefore
not central also to their modeling strategies. Indeterminate models of conceptual change,
instead, conceptualize semantic indeterminacies as one of the central aspects, indeed as
one of the central engines, of conceptual change1.

In this chapter, I will focus specifically on two indeterminate models of conceptual
change, i.e. Waismann’s (Waismann, 1945) open texture model and Mark Wilson’s (Wil-
son, 2006) framework of patches and facades. We will see how both these models under-
stand conceptual change as a phenomenon centered around the openness and the plasticity
of our concepts and theories about the world. Consistently with the central role assigned
to semantic indeterminacies by these models, we will see how the usual concepts and
tools of models of conceptual change are reshaped by these models in order to make room
for the wanderings of scientific and philosophical concepts and theories. Moreover, both

1This characterization of indeterminate models of conceptual change is evidently not extremely precise
nor exhaustive and, as such, it should be taken as a pragmatic one. Using my classification of models
of scientific conceptual change presented in Chapter 2, indeterminate models could be grouped together
with semantics models or with pragmatic models. Nevertheless, I chose to treat indeterminate models of
conceptual change as a standalone kind of model because, as it will be clear later, they share a common
general conception of the phenomenon of conceptual change and its philosophical implications.
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Waismann and Wilson use the case of conceptual change as a basis for proposing a more
general revisionary approach to philosophers’ received view of semantic indeterminacies.
If, in fact, the significance of semantic indeterminacies for philosophical problems is hardly
a revolutionary proposal, both Waismann and Wilson spent a lot of ink in arguing for the
positive role of semantic indeterminacies in the connections between our language and the
world. Thus, Waismann’s and Wilson’s indeterminate models of conceptual change are
not just two paradigmatic examples of a certain way of modeling conceptual change, but
they underlie also a radical, original approach to philosophy of language and philosophy
of science tout court. A paradigmatic example of this reshaping is Wilson’s revisionary
proposal of substituting our usual understandings of scientific concepts and theories with
his notions of patches and facades. In order to understand what such revisionary proposals
precisely consist of, I will rationally reconstruct (much of) Wilson’s theory of conceptual
change within a modified structuralist framework for reconstructing scientific theories.

In Section 1, I will present Waismann’s open texture model, describing the philosophical
background of Waismann’s seminal work, together with some recent attempted reconstruc-
tion of Waismann’s notion of open texture. I will argue that Waismann’s open texture and
his related understanding of conceptual change are best analyzed together with the other
central notion of Waismann’s philosophy of language, namely the notion of language strata.
In Section 2, I will present Mark Wilson’s account of conceptual behavior, describing his
diagnosis of why analytic philosophy has often neglected the central role of semantic inde-
terminacies in conceptual affairs and presenting his revisionary framework of patches and
facades. In Section 3, I will then show how Wilson’s framework can be rationally recon-
structed within a modified version of the structuralist view of scientific theories. More
specifically, I will show how my modified structuralist framework that I will call Wilson-
Structuralism is able to give a precise semantic reconstruction of many of the conceptual
wanderings and indeterminacies described by Wilson as specific set-theoretic relations be-
tween parts of a scientific theory. Finally, in Section 4, I will analyze indeterminate models
of conceptual change such as Waismann’s and Wilson’s ones through the lenses of the
Toolbox framework.

5.1 Waismann’s Open Texture and Language Strata
In this section, I will present Waismann’s model of conceptual change as it can be recon-
structed from Waismann’s philosophical work. In order to do that, I will briefly analyze
Waismann’s philosophy of language from a historical and an abstract point of view, fo-
cusing particularly on the related, central notions of open texture and language strata.
We will see that a correct understanding of these two notions and their relations, together
with a general appreciation of their place in Waismann’s philosophical thought, gives us a
indeterminate model of conceptual change.

The originality of Waismann’s philosophy has been for many years not appreciated
by mainstream analytic philosophy. Waismann has in fact often been considered just a
minor character in Wittgenstein’s philosophical evolution. In recent years, the original-
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ity of Waismann’s philosophical contributions has been instead re-appraised, both from
a contemporary (Makovec and Shapiro, 2019) and a historical (McGuinness, 2011) point
of view. As it has been stressed by several scholars (Waismann, 1965; McGuinness, 2011;
Lavers, 2019), Waismann did not just offer several original contributions in his late years in
Oxford, but even in his Wittgensteinian phase he clarified and developed many Wittgen-
steinian themes and ideas to such an extent that his works cannot be considered mere
interpretations of Wittgenstein’s philosophy. In what follows, I will not offer a full account
of Waismann’s philosophy and its originality, but I will instead concentrate on his mature
contributions devoted to problems in philosophy of language with a particular focus on the
aforementioned notions of open texture and language strata.

5.1.1 Open texture
The notion of open texture is the most famous contribution of Waismann to philosophical
terminology and analytic philosophy. Moreover, thanks to the work of Hart (Hart, 2012),
open texture has transcended the disciplinary boundaries of philosophy and it has become
an important concept in legal theory and practice2. In recent years, open texture has been
the subject of both historical and analytical analyses that seek to clarify its meaning and
its scope, in Waismann’s thought as well as in contemporary philosophy (cf. the papers
collected in Makovec and Shapiro 2019).

Waismann introduced open texture in his paper “Verifiability” (Waismann, 1945), in
the context of his defense of a broadly empiricist attitude towards language and episte-
mology against accuses of reductionism3. The main goal of this paper is to distinguish
healthy forms of empiricism from crude forms of radical reductionism, such as the project
of translating all material statements into sense data ones. According to Waismann, the
former positions consist in emphasizing the confirmation and disconfirmation of scientific
statements as a central task of any reasonable epistemological project and can be suc-
cessfully defended by critiques. Radical reductionist projects, instead, are for Waismann
ill-conceived projects, due to the open-texture of most of our empirical concepts. Roughly
speaking, open texture denotes for Waismann the essential incompleteness and openness
of many of our empirical concepts. In contrast to some completely formalized and precise
concepts, Waismann stresses the fact that is often unclear how to apply empirical concepts
in unexpected situations. This essential plasticity of our empirical concepts is what causes
the impossibility of a complete verification of any statements about the material world.
Consequently, this impossibility determines the failure of any attempt to fully translate
our material objects statements into phenomenalist language. Such a translation would,
according to Waismann, require in fact to know in advance the conditions of verification
a material statement, a requirement made impossible by the open texture of most of our
empirical concepts. In Waismann’s own words:

2For a full account of open texture history and significance in legal theory, see (Bix, 1991, 2019).
3It should be noted that the concept of open texture can be traced back to some remarks made by

Waismann regarding the epistemological status of empirical hypotheses in his (Waismann, 193?).
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“Open texture is a very fundamental characteristics of most, though not of all,
empirical concepts, and it is this texture which prevents us from verifying conclusively
most of our empirical statements. Take any material object statements. The terms
which occur in it are non-exhaustive; that means that we cannot foresee completely
all possible conditions in which they are to be used; there will always remain a
possibility, however faint, that we have not taken into account something or other
that may be relevant to their usage; and that means that we cannot foresee completely
all the possible circumstances in which the statement is true or in which it is false.
There will always remain a margin of uncertainty. Thus the absence of a conclusive
verification is directly due to the open texture of the terms concerned” (Waismann,
1945, p. 43).

Leaving aside Waismann’s use of open texture as an impossibility argument against
any form of reductionism, the assessment of which would require lots of historical context
and would be hardly relevant to our present topic, let us focus on open texture as a purely
semantic phenomenon4.

Waismann warns us that spelling out the usages of most of our empirical concepts is
a never-ending task. For how much established the semantic understanding of a certain
empirical concept can be, we can always encounter new surprising conditions in which we
do not know how to apply a given term. So that, even for what may appear perfectly
stable empirical concepts such as cat, friend, and gold, the possibility of uncertainty given
by their open texture presents itself in the form of gigantic cats, disappearing friends, and
radioactive gold (cf. Waismann 1945, pp. 41-42). In contrast to (what he takes to be) the
essential completeness of definitions in formal mathematics, Waismann takes our empirical
concepts and statements to be bound to be amendable and revisable in light of surprising
experiences. Note that Waismann aptly stresses that there can be open-texture without the
terms involved exhibiting any vagueness at all. Natural kind terms, such as gold, for which
no borderline cases usually arise and that thus no one would arguably consider vague, are
in fact paradigmatic examples of open texture, as Waismann’s example of a possible future
discovery of a radioactive gold-like substance shows. As Waismann puts it, open texture is
not vagueness, but “something like the possibility of vagueness” (Waismann, 1945, p. 42).

For what concerns our present topic, i.e. conceptual change, we can now see how Wais-
mann’s open texture implies the inherent revisability of most of our empirical concepts,
thereby forbidding any conceptual analysis to claim complete success. Most of our em-
pirical concepts, according to Waismann, are not stable and fixed entities, but they are
fundamentally inexhaustive descriptions of the external world. As such, we cannot know
or fix the meaning of many of our empirical terms once and for all, but we are forced to
keep discovering and changing their semantic in the light of experience and usage. Any
wannabe model of concepts and conceptual change, then, has according to Waismann to
take into account the phenomenon of open texture.

4I will just note here that Waismann seems to be building a kind of a straw-man of reductionism,
by claiming that reductionism equates with the impossible task of a complete once-and-for-all perfect
translation of the vocabulary of the to-be-reduced parts of language.
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We saw then that Waismann introduces open texture as the inherent open-endedness
and revisability of many empirical concepts. Despite its intuitive strength, Waismann’s
presentation and the examples that he chose do not give us a completely clear picture
of the semantic import of open texture. What exactly does the possibility of vagueness
mean? Is there something like a test for ascertaining whether a given concept exhibits open
texture? Are there semantic or cognitive limits to the revisability of empirical concepts?
In other words, it is not clear what exactly a full theory of open texture would amount
to. In the aforementioned recent surge of interest in Waismann and open texure, some
contemporary philosophers have tried to clarify the notion of open texture, proposing
renewed definitions and understandings of it.

The most known and more detailed proposal of what open texture consists of is in-
deed Stewart Shapiro’s one (Shapiro, 2006a,a, 2013; Shapiro and Roberts, 2019). Shapiro
retrieved Waismann’s notion as a pivotal part of his contextualist account of vagueness
(Shapiro, 2006a). According to Shapiro (Shapiro, 2006a, p. 10), open texture amounts to
the possibility for competent speaker to decide either way in different contexts whether a
certain term can be applied to a certain object. Defined in this way, open texture assures the
existence of borderline cases in the application of certain terms, understanding these cases
as unsettled by linguistic and pragmatic rules. In contrast to Waismann’s original definition
of open texture, Shapiro’s open texture is then a mainly linguistic phenomenon inherently
intertwined with the existence of vagueness and borderline cases. Shapiro (Shapiro, 2006a,
p. 211) acknowledges this difference between his version of open texture and Waismann’s
one, but he (Shapiro, 2006a, pp. 212-215) argues that other works of Waismann, such as
Waismann’s (Waismann, 1949-1953) series of papers on analyticity, seem consistent with
his open-texture-cum-vagueness unsettledness of borderline cases.

In more recent years, Shapiro used and defined the notion of open texture in slightly
different ways. In a couple of papers (Shapiro, 2006b, 2013) on the intuitive concept of
effective calculability (cf. Chapter 3, Section 3), he in fact used a more standard Wais-
mannian definition of open texture as openness of a given concept. More interestingly, in a
recent co-authored paper with Craige Roberts (Shapiro and Roberts, 2019), Shapiro gave
a new definition of open texture, different from Waismann’s one and even from the one I
just presented, as a specific kind of linguistic and factual indeterminacy. According to this
more recent definition (Shapiro and Roberts, 2019, p. 190), a predicate exhibits open tex-
ture if and only if it is possible for there to be an object such that nothing concerning the
predicate established use nor concerning the non-linguistic facts, determines whether the
predicate applies to the object. This definition, that within Shapiro’s account of vagueness
can be arguably shown to be equivalent to the previous one that he gave, does not stress
anymore the possibility of going either way in the application of a term, but it focuses
instead on the absence of linguistic and factual determination in the open texture cases.

Shapiro and Roberts discuss also how this indetermination dovetails nicely with Wais-
mann’s contextual notion of analyticity. Many example of open texture seem in fact,
according to Shapiro and Craige (Shapiro and Roberts, 2019, p. 196), to display what
linguists consider presupposition failures, i.e. cases in which standard presuppositions of
our language do not apply, making the truth value of the related statement indeterminate.
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These presuppositions are exactly the kind of revisable definitions that Waismann equates
with analytic statements. Thus, open texture can be understood as the essential linguis-
tic and factual underdetermination of most of our concepts that allow us to revise them.
This revision prompted by the appearing of new cases forces us to change our established
usages and presuppositions, thereby making our language evolve. Seen in this light, then,
open texture functions as an engine of conceptual change in both philosophy and science
(Shapiro and Roberts, 2019, pp. 205-206). Our language and our theories about the world
are flexible and plastic in their evolution because most of our empirical terms are not
fully determined in their usages and presuppositions. Semantic indeterminacies such as
vagueness and open texture are thus not a problem to be solved, but they are engines of
linguistic and scientific growth.

It should be noted that in recent years other reconstructions of what Waismann’s open
texture consists of have been proposed in the philosophical literature. Despite none of
these reconstructions is as developed as Shapiro’s one, they offer some interesting different
ways of rationally reconstructing Waismann’s notion. I will briefly mention their main
insights in what follows. Waismann’s open texture has been alternatively reconstructed in
terms of expansion outside the standard domain of application of a term (Tanswell, 2018),
assertory definitions (Vecht, 2020), or as a specific kind of prototype view of concepts
(Zeifert, 2020). Despite the specific differences in framing the semantic implications of
open texture between the different proposals, all these definitions, as well as Shapiro’s
ones, agree on stressing the positive role of open texture for conceptual change in science
and in philosophy. I will not take a specific stance on which one of these definitions is a more
accurate reconstruction of Waismann’s notion. What I will do instead is stress an aspect of
Waismann’s open texture that has not been at the center of any of these reconstructions.
Despite its negligence, we will see that this aspect of Waismann’s open texture is pivotal
to understand his conception of conceptual change and linguistic evolution. This neglected
aspect of Waismann’s open texture is the fact that open texture is just a specific aspect
of the more general phenomenon that Waismann calls the stratification of language. In
order to understand this connection, I need to briefly present the other central notion in
Waismann’s philosophy of language, namely the notion of language strata.

5.1.2 Language strata
If, as we saw, the notion of open texture has been recently at the center of a renewed
scholarly interest in the philosophical literature, Waismann’s notion of language strata
has not received analogous attention. This lack of attention is unfortunate because, as
we will see, behind the term language strata lies a very original theory of linguistic and
philosophical practice. Moreover, I will argue that a proper understanding of the notion
of language strata and its place in Waismann’s philosophy of language allows us to better
understand also the extent and the scope of Waismann’s notion of open texture.

Even though a similar conception of language as a stratified entity can be found in var-
ious remarks in his previous works (cf. Waismann 1936, 1940, 1946a), Waismann explicitly
introduces the notion of language strata in a two-part homonymous paper (Waismann,
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1946b, 1953). In this work, Waismann introduces the idea that language is divided into
layers, i.e. what he calls strata, that have different semantic, pragmatic, and epistemo-
logical properties. Different language strata might, according to Waismann (Waismann,
1946b, pp. 94-99), differ for what concerns their inner logic, their completeness, the texture
of their concepts (i.e. whether their concepts exhibits open texture or not), the standard of
verification that are valid within them, and even the notion of truth to which statements of
a stratum are subject. So, language strata are parts of language that have a somewhat ho-
mogeneous mixture of semantic, pragmatic, and epistemological properties different from
the one at work in other parts of language. Examples of kinds of statements that seem
to belong to different language strata are for Waismann (Waismann, 1946b, p. 93) scien-
tific laws, statements about the external world, phenomenological statements, statements
about dreams, memories, and fictional statements.

The main insight of Waismann’s language strata and their underlying picture of lan-
guage is a localized holism in semantic and epistemological matters intertwined with an
explicit pluralism and anti-reductionism. Against (what Waismann takes to be) the beliefs
of both Wittgenstein and the ordinary language philosophy movement, our language has
very few universal properties that can be discovered (cf. Waismann 1946b, p. 101). There
is no universal logic nor universal verification procedure that all our statements exhibit
(Waismann, 1945, 1946a,b). Different logics and different verification procedures are in-
stead exhibited by different parts of our language. This recognition of the existence of
different language strata forces us, according to Waismann, to abandon any heavy reduc-
tionism or monistic theory about language nature and functions. Instead of searching for
universal properties, then, philosophers should pay more attention to the different parts of
our language and their subtle interconnections (Waismann, 1953, pp. 118-121). By paying
more attention to language strata, argues Waismann, philosophers will realize that many
traditional philosophical problems such as the search for a correct logic or a correct notion
of truth are just pseudo-problems caused by conflating two or more strata:

“Thus language seems to be separated into strata by gaps over which one may
jump but which cannot be bridged by logical processes. This fact accounts for many
of the traditional problems in philosophy. The core of such a problem often lies in the
difficulty of passing from one stratum to another. To give examples: If we start from
sense datum statements and ask how we can arrive at material object statements, we
are faced with the problem of perception; if we start from material object statements
and ask how we can arrive at physical laws, we are studying the problem of induction;
if we pursue the relations in the reverse order, i.e. if we travel from physical laws
to material object statements and from the latter to sense datum statements, we are
embarking on the problem of verification; and so on” (Waismann, 1946b, p. 100).

Gaps between language strata cannot then be resolved or explained away by philosoph-
ical theories, but they have instead to be recognized and accepted in their looseness and in-
determinateness. Our linguistic practices, including science, naturally organize themselves
according to Waismann in localized holistic domains characterized by distinctive semantic
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and epistemological properties. The boundaries of these domains and their connections are
often indeterminate and not easily knowable by us. An adequate philosophical depiction
of language has then to recognize the plurality of language strata and their indeterminacy.

Now that I have briefly described Waismann’s picture of language strata, I can explain
my previous comments on the significance of language strata for a correct understanding
of open texture and Waismann’s picture of conceptual change. A neglected aspect of open
texture is that it is just a specific aspect of the more general semantic and epistemolog-
ical indeterminacy caused by the stratification of language. The porosity of most of our
concepts, as Waismann’s original term (Porosität der Begriffe) for open texture is more
accurately translated, is just one aspect of the indeterminacy that language strata exhibit.
Other kinds of conceptual porosities can in fact be found in Waismann’s texts. Waismann
speaks explicitly also about the porosity of our inferences (poröse schlüsse, Waismann 1945,
p. 50), stressing the looseness and indeterminacy of the interconnections between different
language strata. Thus, as concepts are not fully determined in advance in their usages and
presuppositions, logical connections between parts of our languages are also for Waismann
often not fully specified and fixed in advance. Similarly, from Waismann’s (Waismann
1946b, pp. 94-99, Waismann 1953, pp. 112-117) descriptions of the other semantic and
epistemological components of a language stratum, we can assume that also properties like
truth, verifiability, completeness exhibit some kind of porosity, together with the language
strata themselves.

Language is then for Waismann an inherently plastic and adaptive entity, in which dif-
ferent parts structure themselves through different local rules that are often not fixed and
fully determined, but they change accordingly to practical needs of the related linguistic
practices. As in the specific case of open texture, also other kinds of semantic indetermina-
cies are for Waismann positive engine of conceptual and theoretical change. The looseness
of many of our concepts, our inferences, and many other of our linguistic tools gives us
the possibility of revising and changing our conceptual tools according to practical needs
and certain regulative principles (Waismann, 1945, pp. 63-65). Conceptual change is then
for Waismann an ubiquituous necessary phenomenon by virtue of which language adapts
to the unexpected situations that the world creates to us. Any adequate account of how
this change works must take into central account the porosity and stratification of our
language. Seen in this way, Waismann’s open texture is then a devastating attack to any
form of essentialism about concepts and kinds. Our knowledge of the world and of our
linguistic practices can never be considered final and fixed, but we always have to pay
attention to the subtle ways in which our language organize itself in order to successfully
refer to the world.

5.2 Wilson’s Conceptual Wanderings
After having seen Waismann’s seminal notions of open texture and language strata, to-
gether with his underlying conception of language and conceptual change, the focus of this
subsection will be on another indeterminate theory of conceptual change: Mark Wilson’s
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(Wilson, 2006) framework of patches and facades. As we will see, even though Wilson
does not refer to Waismann in any of his works and there is no direct genetic link be-
tween Waismann’s and Wilson’s philosophical work, Wilson’s account of linguistic and
conceptual change shares many assumptions of Waismann’s view of language. In contrast
to Waismann’s scattered remarks, however, Wilson’s framework offers us a complete and
fine-grained account of conceptual behavior that will allow us to understand better the
characteristics of indeterminate model of conceptual changes.

Wilson expressed his views on concepts in many different places throughout his career.
In my exposition, I will use as my main reference “Wandering Significance” (Wilson, 2006),
building on the tools and the terminology he used there, making connections with other
related works of his when needed.

The main theme of Wilson’s work is that concepts are primarily adaptive localized tools
for evaluating worldly activities. Analytic philosophy, according to Wilson, has mostly
analyzed concepts and other ‘terms of evaluations’ wrongly, not understanding their in-
trinsically practical and contextual nature. This misunderstanding is at the heart of what
Wilson calls ‘the classical picture of concepts’ (Wilson, 2006, pp. 139-146), i.e. a list of
beliefs about concepts that constitutes the received view of conceptual behavior in analytic
philosophy5. Fathers of analytic philosophy like Frege and Russell may have disagreed on
specific epistemological views about how we acquire concepts or how they are structured,
but they shared a core of semantical presuppositions about what concepts are. Amongst
the many presuppositions forming the classical picture of concepts, the most important
one (and dangerous one for Wilson) are the existence of fixed and stable conceptual con-
tents, the possibility of successfully refining unclear concepts via conceptual analysis, and
the fixity of truth-values of our claims involving concepts. In other words, concepts for
the classical picture are stable entities, gluing together our language with the world. Mis-
matches between the outside world and our representations of it arise due to our failure of
correctly grasping the true essence of a given concept.

Opposing this classical picture of concepts is another general set of semantical pre-
suppositions about concepts that Wilson calls “anti-classical thinking” (Wilson, 2006, pp.
236-242). Anti-classicists thinkers such as Quine and (the later) Wittgenstein refused
completely the classical picture of concepts, replacing it with a use-based conception of
concepts as directives for performing actions6. In this view, the meaning of a concept
cannot be grasped in isolation but only holistically in connection with other semantical
and pragmatical expressions of our language.

Wilson sees the dialectic between classical and anti-classical thinking about concepts

5What Wilson calls the ‘classical picture’ of concepts should not be confused with what psychologists
and philosophers of mind usually call the ‘classical theory’, i.e. the definitional view of conceptual structure
that we saw in Chapter 2.

6It should be noted that certain parts of Quine’s philosophy may appear quite entrenched in the classical
picture of concepts, such as his satisfaction with Tarskian semantics (if understood in a disquotational
manner). I will not consider here these matters of Quinean scholarship, but it may be argued that Quine
was not as monolithically anti-classical as Wilson depicts him.
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as one of the main driving forces of the birth and the development of analytic philosophy7.
Despite their opposition, Wilson stresses that both these pictures of conceptual behavior
share some unhealthy philosophical attitudes. Both classical and anti-classical thinkers
suffer of what Wilson calls the “Theory T syndrome” (Wilson, 2006, p. 126), namely
the bias of forcing all kinds of conceptual phenomena to fit into a neat single philosophical
theory. The Theory T syndrome suppresses the individuality of individual concepts and the
complexity of real world phenomena due to its obsession with monistic explanations. Thus,
for instance, anti-classical thinkers like Quine, who correctly criticized the classical myth
of straightforward coordination between our predicates and physical attributes, overshoot
dramatically in banning any direct reference whatsoever from their philosophical views,
suffering from what Wilson calls the “fear of attribute naming” (Wilson, 2006, pp. 262-
273) and being thus condemned to a “hazy holism” (Wilson, 2006, pp. 280-286) for all
kinds of concepts.

Wilson’s remedy for the Theory T syndrome and more generally for analytic philoso-
phy is to make a synthesis of classical and anti-classical thinking, which he calls (following
Hume) “mitigated skepticism” (Wilson, 2006, pp. 599-605) about concepts. Certain con-
cepts behave more like classical predicates, others play instead more practical roles and
can therefore be understood only in a broader pragmatic context. Moreover, even the
same concept can play a more classical role at a certain point of its history and a more
anti-classical one at a later time. A mitigated skeptic ought not only to accept inter-
conceptual pluralism in the way in which different concepts refer to the world, but also
the intra-conceptual semantical “seasonalities” in the use of a given concept at different
times or in different contexts. In order to have an adequate philosophical theory of how
our language refers to the world, then, we have to give up entirely the idea of concepts
as fixed semantical cores of our predicate usages. Wilson argues that even for the case
of very simple predicates such as color ones, beneath their apparent simplicity lies a very
complex web of contextual usages which cannot be grouped in a single semantical entity.
So that the real crime of the Theory T syndrome is to neglect the complex ‘personality’ of
our concepts, treating them all in the same simplistic way.

Wilson’s mitigated skepticism covers both ordinary language and science. A great part
of his work is devoted to show that even in physics our apparently straightforward ways of
describing the world often hide quite convoluted referential architectures. In a painstak-
ingly detailed analysis of several macroscopic predicates of classical mechanics such as
‘force’ or ‘hardness’, Wilson shows how their usages in scientific practice exhibit a com-
plex patchwork of localized usages tailored for the specific contexts in which they operate.
The complexity of how many of our scientific terms refer is not a contingent product of a
human activity, it is often the only way in which we can say something meaningful about
the world. The key to understand the necessity of this semantical complexity is to ac-
knowledge that describing the macroscopic world is a very difficult affair. The number of

7Wilson traces back the roots of the classical/anti-classical picture of concepts, as well as the related
birth of analytic philosophy, to debates about the foundation of classical mechanics in the nineteenth-
century. For a critical survey of Wilson’s historical analysis, see (Friedman, 2010).
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variables that we must take into account even in a simple macroscopic scenario of classical
mechanics such as, say, the trajectory of a cannon ball is so high that describing all of
them accurately requires a computational power that exceeds by far our limited intellec-
tual capacities and measurement abilities. This is why the practice of science requires what
Wilson calls physics avoidance or variable reduction (Wilson, 2017, Ch. 2), i.e. a patch-
work description of heavily simplified local domains connected in a way that efficiently
reduces the complexity of the computations needed to describe a phenomenon.

5.2.1 Patches and facades
Wilson’s view of conceptual behavior, both in ordinary language and in science, requires a
patchwork structure that allows concepts to adapt contextually to localized usages. Wilson
(Wilson, 2006, pp. 377-390) describes this patchwork semantical structure in terms of
patches and facades.

Patches constitute the basic unit of Wilson’ reconstruction of conceptual behavior. A
patch is a localized mini-theory about (a specific part of) the world. A patch is composed
by five different types of elements: vocabulary, domain, local reasoning tools, boundaries,
and translation principles. The vocabulary of a patch is made of different linguistic entities
such as predicates, names, relation symbols, and some limited logical and mathematical
resources. The domain of a patch is a subset of a basic domain of physical facts, to which
elements of vocabulary refer. Predicates, for instance, refer to one (or more) physical
attribute(s) in the domain, while names denote constant elements. Local reasoning tools
contain inferences and constraints on elements of the vocabulary that are valid within the
domain of the patch. The boundaries of a patch constrain the contexts to which the patch
can be applied. Finally, the translation principles are rules regulating how information can
be exported and imported between a given patch and other patches connected to it.

A facade is a set of patches over a given domain of physical facts. Facades play the role
of scientific theories, being collections of interconnected localized parts of our languages
describing different aspects of a given phenomenon. Wilson thinks of facades as atlases of
specific maps (Wilson, 2006, pp. 289-296), the patches, in which every map is useful for a
given purpose, but no map has the foundational, privileged role that philosophers of science
often assign to a certain ‘constitutive’ part of a theory. Every map has its own partially
distorted way of representing the world and there is no neutral epistemic perspective from
which one can judge a given map to be more truthful than another one. The technical
difference between facades and traditional understandings of theories lies in the inherent
multi-valuedness of how elements of a facade are connected. Wilson requires only partial
connections between patches of a given facade, allowing a great deal of indeterminacy in
the way in which localized linguistic usages work together to achieve a global description
of a phenomenon. Different patches are allowed to assign different physical referents to a
common predicate, forming what Wilson calls an uneven facade (Wilson, 2006, p. 324), a
behavior exemplified by the concept of force in classical mechanics (Wilson, 2006, pp. 158-
165, 175-182). Patches can also block the export of certain inferences or reasoning tools at
the boundaries, so that two patches can share a common predicate that refers to the same
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attribute(s) in every patch, but the inferences connected with this predicate may change
from one patch to the other. Wilson calls this inference-blocking behavior a Stokes facade
(Wilson, 2006, p. 324), since a paradigmatic example of it is the Stokes phenomenon
in optics (Wilson, 2006, pp. 319-327). Patches can furthermore have partially or fully
overlapping domains and they are allowed to give radically different descriptions of the same
subset of the physical domain. Thanks to adequate translation principles, constraining the
exchange of information between the patches, these different descriptions do not produce
an inconsistency. This is how contemporary multi-scalar models in engineering science
manage to describe the complex behavior of some materials (Wilson, 2017, Ch. 1). Patches
can also be connected in such a way that a given predicate figures in the vocabulary of
several interconnected patches without any common inter-patch reference, i.e. referring
to different attributes in every patch it figures. This phenomenon is called by Wilson
quasi-attributes or ghost properties (Wilson, 2006, p. 273) and it is strikingly exemplified
by the concept of hardness (Wilson, 2006, pp. 335-355). More generally, facades must be
thought as very dynamical entities, whose structure of interconnected patches changes on
the basis of the practical needs of scientific research, creating new patches that often force
the overall structure of a facade to adjust itself.

Facades come equipped with what Wilson calls a semantical picture (Wilson, 2006,
p. 307), i.e. a description of how the vocabulary of a given patch matches the part of
the world it is designed to cover. Semantical pictures are then, in Wilson’s cartographic
metaphor, like prefaces to atlases, explaining the peculiarities and the distortions that a
given map exhibits. Since the interconnections between patches of a facade are multivalued
and dynamical, semantical pictures need to be periodically revised. In particular, Wilson
describes a very common phenomenon that causes such a revision, i.e. what he calls
the canonical developmental history of a predicate (Wilson, 2006, pp. 534-535). This
phenomenon starts with the extension of a given predicate to a new patch the semantical
underpinning of which are unclear. If this new context of usage of the predicate proves
practically successful, this new patch becomes sufficiently established to cause (in due
time) the development of an adequate semantical picture for it. This semantical picture
for the new patch can force, modulo conceptual inconsistencies, scientists to replace the old
semantical pictures of the predicate under focus with the new one also in its older contexts
of usages, concluding a canonical developmental history. This last step of the history, i.e.
the replacement of old semantical pictures with a new one is dubbed by Wilson semantic
detoxification (Wilson, 2006, pp. 545-552). Canonical histories of predicates exemplify
for Wilson why the classical and the anti-classical picture of concepts are just unhealthy
philosophical hypostatizations of different moments of a predicate life. In extending a
predicate to new usages, people behave anti-classically, following practical successes of
languages and not paying much attention to how this success is semantically justified.
Later, when this extension has proven to be sufficiently successful and stable, semantical
worries enter the picture and successful usages of a predicate need to be classically justified
in their worldly correlations.

The bestiary of conceptual wanderings described by Wilson can then be seen, despite
the aforementioned lack of any explicit genetic connections between the two philosophies,
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as a more fine-grained description of the porosity of our conceptual and inferential tools
that Waismann stressed with his notions of open texture and language strata. In the
structure of uneven facades and the related wanderings of our scientific terms we can see
the open texture of most of our empirical terms, while stokes facades with their loose
inferential connections give us a model of the looseness of inferences between different
language strata. In Wilson’s incessant reminder of how linguistic individualities and the
specific pragmatic contexts affect the semantic of our scientific predicates we can see a
reminiscence of Waismann’s anti-reductionism stance.

Wilson offers then a deflationary understanding of scientific conceptual behavior cen-
tered around the notions of facades and patches. The partial and plural connections be-
tween patches of a given facade make the overall structure dynamically revisable according
to the practical needs of science, leaving space for the inevitable conceptual wanderings
necessary for this very human activity.

5.3 Taming Conceptual Wanderings:
Wilson-Structuralism

We saw in the last section how Mark Wilson (Wilson, 2006, 2017) present a highly original
account of conceptual behavior that challenges many received views about concepts, ref-
erence, and conceptual change in analytic philosophy. Despite the vast praise of Wilson’s
work (Brandom, 2010; Friedman, 2010; Pincock, 2010; Carus, 2012a), few attempts have
been made to give a precise semantic reconstruction of his framework.

In this section, I will show how a modified version of the structuralist view of scientific
theories (Sneed, 1979; Stegmüller, 1976; Balzer et al., 1987; Balzer and Moulines, 1996) is
able to rationally reconstruct Wilson’s framework of patches and facades. At first sight,
the choice of reconstructing Wilson’s ideas within a structuralist framework may appear
quite surprising. Few frameworks in philosophy of science appear as distant as the struc-
turalist one from Wilson’s work. Wilson’s reconstruction of scientific theories is in fact
informal, committed to a realist understanding of scientific terms, and oriented towards
scientific practice. In comparison, structuralism in philosophy of science is characterized
by a more formal approach to the subject matter, it is often combined with a somewhat
anti-realist understanding of theoretical terms, and it lacks an analogous heavy focus on
the practice of science. Despite these differences, I will show that there are some interesting
connections between the reconstruction of scientific theories offered by Wilson and the one
championed by the structuralists. Moreover, we will see that the Structuralist framework,
when adequately modified to eliminate its hierarchical understanding of scientific theories,
is able to offer a precise semantic reconstruction of Wilson’s ideas.

More specifically, I will show how my modified structuralist framework, i.e. what I will
call Wilson-Structuralism, offers a semantic reconstruction of scientific theories capable of
modeling Wilson’s account of conceptual behavior. Specifically, I will argue that Theory-
Elements and Wilson-Theory-Nets explicate respectively Wilson’s patches and facades,
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thanks to the relaxed inter-elements constraints and the weak-specialization relationship
of Wilson-Structuralism. In order to support my claim, I will demonstrate how several wan-
dering phenomena described by Wilson can be adequately understood in a more abstract
way within my framework. I will also further strengthen my case by showing how one of
Wilson’s main case studies of the wandering behavior of scientific terms, i.e. viscous fluids
forces in classical mechanics, can be adequately reconstructed within Wilson-Structuralism.

This work has then a three-fold aim. The first aim is to offer a rational reconstruction
of Wilson’s framework of patches and facades, thanks to which many of the wandering
phenomena described by Wilson can be given a precise semantical understanding within a
formal framework. The second aim is to offer a modified version of the structuralist frame-
work that eliminates its original hierarchical understanding of scientific theories, offering an
alternative way of reconstructing scientific theories that allows the semantic indeterminacy
prescribed by Wilson. The third, more general, aim of this work is to show a surprising
connection between two prima facie very different ways of reconstructing scientific theories,
namely Structuralism and Wilson’s framework of patches and facades.

First, in the next subsection, I will present Structuralism in the philosophy of sci-
ence and its model-theoretic way of reconstructing scientific theories. Then, I will present
Wilson-Structuralism, i.e. my modified structuralist framework that eliminates the hier-
archical aspect of the structuralist reconstruction of scientific theories. I will show how
this modified structuralism is able to explicate Wilson’s patches and facades, adequately
representing several wandering-phenomena described by Wilson. I will also present a ra-
tional reconstruction in my framework of one of Wilson’s main case studies, i.e. the case
of viscous fluids forces.

5.3.1 Structuralism in philosophy of science
The research program of Structuralism, understood as the model-theoretical way of re-
constructing scientific theories that started with the work of Sneed, has been presented in
different forms throughout the years (Sneed, 1979; Stegmüller, 1976; Balzer et al., 1987;
Balzer and Moulines, 1996). In my presentation I will use as my main reference (Balzer et
al., 1987), which is arguably the most mature and complete presentation of the structuralist
program.

As the name suggests and as we briefly saw in Chapter 2 in our discussion of conceptual
change in science, the key idea of the structuralist program is that scientific theories and
their conceptual dynamics are best reconstructed in terms of structures. This structure-
centered view was originally supposed to constitute a non-statement view of scientific
theories, contrasting with (what allegedly was) the logical empiricists’ statement view
orthodoxy8. Scientific theories are best reconstructed not as a bundle of statements, but
instead as a collection of set-theoretic structures.

8It should be noted that recent scholarship has convincingly argued that the opposition between state-
ment and non-statement view of scientific theories has been largely overstated by the proponents of non-
statement views. For recent perspectives bridging this alleged opposition see (Schurz, 2014a,b; Andreas,
2014; Lutz, 2014).
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Specifically, the smallest unit of scientific theories reconstruction in the structuralist
framework is a theory-element, i.e. a ordered pair T = ⟨K, I⟩ where K is a theory-core and
I is the set of intended applications of the theory element9. Theory-elements represent law-
like scientific statements and are the building blocks of the structuralist reconstruction of
scientific theories. A theory-core is a quintuple K = ⟨Mp(T ), M(T ), Mpp(T ), GC(T ), GL(T )⟩
that represents the theoretical framework of a given theory element, including its concep-
tual framework, its models, its possible empirical applications, the connections between
its different applications, and the relations between the theory-element and other theory-
elements of the same scientific theory.

Formally, the first component of a theory core Mp(T ) is the class of potential models of
the theory-element, i.e. the set of structures of the type ⟨D1, . . . , Dk, A1, . . . , Ak, n1, . . . , np,
t1, . . . , tq⟩ that satisfy the non-law-like axioms (i.e. the statements expressible via typifica-
tions and characterizations, Balzer et al., 1987, pp. 14-17) of the theory, where D1, . . . , Dk

are sets of empirical objects, A1, . . . , Ak sets of mathematical objects, n1, . . . , np, t1, . . . , tq

(respectively) non-theoretical and theoretical relations between members of the two kinds
of sets (usually functions from empirical objects to mathematical ones)10. Potential mod-
els are thus the conceptual framework of a given theory-element, representing the kind of
entities for which it is meaningful to ask whether they satisfy the law-like statement repre-
sented by the theory-element. The second component of the theory core M(T ) is the class
of models of the theory element, i.e. the subset of potential models including all and only
the ones satisfying the law-like axioms (i.e. the statements that are neither characteriza-
tions or typifications) of the theory-element. Intuitively, models are the entities for which
the law-like statement represented by the theory-element is true. Then we have the class
of partial potential models of the theory-element Mpp(T ), i.e. the set of structures of type
⟨D1, . . . , Dk, A1, . . . , Ak, n1, . . . , np⟩ for which ⟨D1, . . . , Dk, A1, . . . , Ak, n1, . . . , np, t1, . . . , tq⟩
is a potential model of T . Partial potential models are thus truncated potential models,
in which the only relations remaining are the non-theoretical ones. Intuitively, they rep-
resent the empirical entities to which the law-like statement of the theory-element can be
applied. The global constraint of the theory-element GC(T ) = ⋂{C1(T ), . . . , Cn(T )} is
the combination of all constraints C1, . . . , Cn between different applications of the theory-
element. A constraint C is the set of admissible combinations of potential models of the
theory element, i.e. C ⊆ ℘(Mp) such that C ̸= ∅, ∅ /∈ C, and ∀x ∈ Mp : {x} ∈ C.
Intuitively, constraints represent physical and conceptual requirements between different
applications of the law-like statement represented by the theory-element. Examples of

9Here I use the first of several simplifications of the structural framework that are needed to keep
the presentation of this complex framework contained, namely, I identify theory-elements with what the
structuralist actually call idealized theory-elements (Balzer et al., 1987, pp. 89-92). In what follows I will
consistently use the idealized version of empirical claims, theory-nets, and all the other related notions.

10For simplicity, I do not present here the structuralist way of distinguishing theoretical and non-
theoretical relations/predicates of a theory. The distinction is centered around the notion of a T -admissible
method of determination (Balzer et al., 1987, pp. 47-78) and its exposition would require the introduction
of several auxiliary notions. I chose thus not to inflate the presentation of the structuralist framework,
assuming the possibility of making this distinction.
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constraints are the equality constraint for mass in classical particle mechanics or the ex-
tensivity of energy in simple equilibrium thermodynamics. Finally, the last component of
a theory-element is its global link GL(T ) = ⋂{L1(T ), . . . , Ln(T )}, i.e. the intersection of
all abstract and concrete links L1(T ), . . . , Ln(T ) between (components of potential models
or potential models of) the theory-element T and (components of potential models or po-
tential models of) other theory-elements T1, . . . , Tn relevant for the theory-element. Links
L ⊆ Mp ×M ′

p are admissible combinations of potential models of different theory elements,
i.e. constraints between different theory-elements11. Intuitively, they represent constraints
that certain law-like scientific statements of a given theory impose on their law-like neigh-
bors for maintaining the consistency of the overall theory, such as the kinematical axioms
which determine position and the chronological conditions for the measurement of time in
classical particle mechanics.

If the theory-core is the theoretical framework of a theory-element, then the set of
intended applications I is its empirical part. The set of intended applications represents
in fact the empirical circumstances to which a given theory-element is intended to apply.
Formally, the set I is a subset of the class of partial potential models of the theory-
element, but it is meant to be only pragmatically defined as a list of paradigmatic examples
that a theory has to cover in order to be successful. The success of a given theory-
element can be formally expressed by the related empirical claim of a theory-element,
defined as I ∈ Cn(K) (the set of intended applications is included in the content of the
theory-element), where Cn(K) := r(K)(℘(M(T )) ∩ GC(T ) ∩ ℘(GL(T ))) is the content
of the theory-element. The content of the theory element is the set of sets of partial
potential models, obtained cutting out the theoretical terms of potential models via the
operation r(K) : Mp → Mpp, that can be augmented by theoretical terms such that the
resulting potential models are models M(T ) that satisfy all constraints GC(T ) and all
inter-theoretical links GL(T ), i.e. the members of the set ℘(M(T )) ∩ GC(T ) ∩ ℘(GL(T ).

In order to clarify all these model-theoretic definitions, I will present a simple example
of a theory-element, namely the one reconstructing classical particle mechanics (CPM)
(Balzer et al., 1987, pp. 103-107). This theory-element is the foundational unit of the
structuralist reconstruction of classical mechanics, representing the most general presenta-
tion of Newton’s second-law of motion. For brevity, I will not discuss the intertheoretical
links of CPM , focusing only on the self-contained components of the theory-element. The
paradigmatic intended applications of the classical particle mechanics theory-element are
the solar system, the pendulum, the projectile, and the harmonic oscillator (all members
of the set I(CPM)). A potential model of classical particle mechanics is constructed as
follows: x is a Mp(CPM) iff:

• x = ⟨P, T, S,N,R, c1, c2, s, m, f⟩

11Here I am again simplifying the presentation of the structuralist framework, omitting the definition of
concrete links (i.e. links between single components of partial potential models) and cutting a degree of
complexity in the definition of a global link. For a full presentation of intertheoretical links see (Balzer et
al., 1987, pp. 57-62, 78-79)
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• P is a finite non-empty set, T, S are non-empty set, N,R denote respectively the set
of natural and real numbers.

• c1 : T → R and c2 : S → R3 are bijective and they denote respectively the coordina-
tion function for time and space.

• s : P × T → S denotes the position function, c2 ◦ sp ◦ c̆1 is smooth for all p ∈ P .

• m : P → R+ denotes the mass function and f : P × T × N → R3 denotes the force
function (made of N force components).

This is then the conceptual framework of the theory-element representing Newton’s
second law of motion in its general form, making precise the kind of entities that may
satisfy Newton’s law. A model of classical particle mechanics is then a potential model
that actually satisfies Newton’s second law. More precisely, x is a M(CPM) iff:

• x = ⟨P, T, S,N,R, c1, c2, s, m, f⟩ is a Mp(CPM)

• ∀p ∈ P and a ∈ R : m(p)D2r(p, a) = Σi∈Nf(p, c̆1(a), i) (i.e. Newton’s second law of
motion).

An example of a constraint for CPM is the equality constraint for force. This constraint
requires the i-th component force acting on a given particle at a given time to be the same
independently from the system to which the particle belongs:

C(CPM) = {X|∅ ≠ X ⊆ Mp(CPM) ∧ ∀x, y ∈ X, ∀p, t, i

(p ∈ Px ∩ Py ∧ t ∈ Tx ∩ Ty ∧ i ∈ N → fx(p, t, i) = fy(p, t, i))}

Theory-elements are then organized in larger units of scientific theories reconstruction
called theory-nets. Theory-nets are collections of theory-elements sharing a significant
part of their structure, organized via a relation of specialization. Intuitively theory-nets
are meant to reconstruct large scientific theories, such as classical particle mechanics tout
court. These large scientific theories are thought as hierarchies of more and more special-
ized theory-elements, representing specific sub-fields of applications of the more general
theory-element in which more restrictive conditions hold (e.g. Hooke’s law for elastic
forces). Formally, a theory-net is a poset (i.e. a partially ordered set) N = ⟨T̄ , σ⟩, where
T̄ is a non-empty, finite set of theory-elements and σ : T̄ × T̄ is a specialization relation
such that T ′σT (T ′ is a specialization of T ) iff Mp(T ′) = Mp(T ), Mpp(T ′) = Mpp(T ),
M(T ′) ⊆ M(T ), GC(T ′) ⊆ GC(T ), GL(T ′) ⊆ GL(T ), and I(T ′) ⊆ I(T ). Thus a
theory-net is a collection of theory-elements sharing the same classes of potential and
partially potential models and partially ordered in terms of set-theoretic inclusion of their
classes of models, admissible combinations of potential models (both intra- and inter-
theory element ones), and intended applications. Structuralists stress that further restric-
tions should be imposed on the specialization-ordering of the theory-elements of a given
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theory-net for harmonizing the empirical claims of theory-elements into a substantial global
claim sharing a common empirical ground. Two important restrictions that contribute to
this harmonization of empirical claims are connectedness, i.e. ∀Ti, Tj ∈ T̄ ∃Tk1 , . . . , Tkn

such that (TiσTk1 ∨ Tk1σTi) ∧ . . . ∧ (TjσTkn ∨ TknσTj), and having a singleton-basis, i.e.
B(N) = {T |T ∈ T̄ ∧ ∀T ′ ∈ T̄ (T ̸= T ′ → ¬TσT ′)} contains exactly one element. A con-
nected theory-net having a singleton-basis is called a theory-tree. The most detailed ex-
ample of scientific theory reconstruction in the structuralist program, i.e. classical particle
mechanics, is a theory-tree. Theory-trees can thus be considered the paradigmatic struc-
turalist unit of reconstruction of big scientific theories. It is important to note that the two
harmonizing restrictions that theory-nets must satisfy in order to classify as theory-trees,
i.e. connectedness and singleton-basis, strengthen the hierarchical aspect of the structural-
ist reconstruction of scientific theories. Scientific theories that can be reconstructed as
theory-trees have in fact a single, most general and most fundamental theory-element (i.e.
the singleton-basis) of which every other theory-element is a specialization. Every other
law-like statement of the scientific theory so reconstructed is then understood as merely
specifying more restrictive conditions under which the fundamental law holds.

As in the case of theory-elements, I will present a simple example of a theory-net, namely
a (very small) part of the theory-tree reconstructing the whole of classical mechanics.
The CPM theory-element that we have seen before is the singleton-basis of the classical
particle mechanics theory-tree and thus all the other theory-elements are specializations
of CPM , imposing further constraints on CPM -models, constraints, and links. The very
detailed structuralist reconstruction of the CPM theory-tree (Balzer et al., 1987, pp. 180-
191) singles out four different main lines of specializations of the CPM theory-element,
namely symmetry forces, position-dependent forces, velocity-dependent forces, and time-
dependent forces. In what follows, I will briefly present only two theory-elements belonging
to the velocity-dependent forces part of the theory-tree, for both their simplicity and their
relevance for Wilson’s case studies. A simple example of a specialization of CPM is given
by the theory-element of velocity-dependent classical particle mechanics (V CPM). The
models of V CPM are models of CPM in which at least one component force of a given
particle depends on the particle velocity. Formally, x is a M(V CPM) iff:

• x = ⟨P, T, S,N,R, c1, c2, s, m, f⟩ is a M(CPM);

• ∃p ∈ P, i ∈ N such that for all a ∈ R : f(p, c̆1(a), i) = F (Dr(p, a), a);

• ∃p, a and j ∈ {1, 2, 3} such that DjF (Dr(p, a), a) ̸= 0.

Another specialization of CPM , which is also a specialization of V CPM , is the theory-
element of simple frictional classical particle mechanics (SFCPM). The models of SFCPM
are models of V CPM (and thus of CPM) in which at least one component of frictional
force is determined by a power of the velocity alone. Formally, x is a M(SFCPM) iff:

• x = ⟨P, T, S,N,R, c1, c2, s, m, f⟩ is a M(V CPM);
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• ∃p ∈ P, i ∈ N such that for all a ∈ N : f(p, c̆1(a), i) = b(p, i)(Dr(p, a))l with
b : P × N → R and l ∈ N, l ≥ 1.

These are thus the central notions of the structuralist framework for reconstructing
scientific theories, centered around the concepts of theory-elements and theory-nets. These
two notions denote the specific kinds of structures representing (respectively) localized and
general scientific theories12. As it will be clear in the next section, these two notions, when
adequately modified, correspond quite naturally to Wilson’s notions of patches and facades.

5.3.2 Wilson-Structuralism
After having presented the structuralist framework in its original form, I will show how
by eliminating its hierarchical aspect one obtains a semantic view of scientific theories
capable of reconstructing many of the wandering phenomena described by Wilson. Thus,
I will not use Wilson’s theory as a target phenomenon for a structuralist reconstruction of
the kind through which structuralists analyzed various kinds of scientific theories. What I
will do, instead, is to show how to change two central structuralist notions in order to make
the structuralist framework able to reconstruct scientific theories in a way that allows the
kind of semantic indeterminacy prescribed by Wilson. More specifically, I will show how
the structuralist notions of theory-elements and theory-nets, when the latter is adequately
modified, provide a formal equivalent of Wilson’s notions of patches and facades.

I will first present my modified structuralist framework in its general form and then I
will show how it can rationally reconstruct one of Wilson’s main examples of conceptual
wandering in classical mechanics, i.e. the case of viscous fluids forces.

Wilson-Theory-Nets

We have seen in the last section how the structuralist reconstruction of scientific theories
is centered around two notions, theory-elements and theory-nets. If the former is meant
to reconstruct law-like specific parts of a scientific theory, the latter organizes all these
specific parts into a more coherent whole. The level of generality of these two structuralist
notions exactly corresponds to the one of Wilson’s patches and facades. Moreover, theory-
elements, just like Wilson’s patches, are micro-theories about a specific part of the world (
i.e. the models of the theory-elements), made of a conceptual and linguistic part (i.e. their
potential models) together with their own reasoning tools and connections with neighboring
theories (i.e. their constraints and inter-theoretical links). Theory-nets, then, exactly like
Wilson’s facades, are collections of micro-theories (i.e. theory-elements) over a given macro-
domain that organize the connections between these micro-theories by constraining their
components (via their specialization relation).

12I must stress that in my presentation I focused only on a small (albeit central) part of the structuralist
galaxy of units of scientific theory reconstructions. Important pragmatic and dynamic extensions of theory-
nets and theory-elements are for instance non-idealized theory-nets (Balzer et al., 1987, pp. 357-362),
theory-evolutions (Balzer et al., 1987, pp. 216-221), and theory-holons (Balzer et al., 1987, pp. 387-407).
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Can we then easily reconstruct in the structuralist framework Wilson’s patches as
theory-elements and Wilson’s facades as theory-nets? Unfortunately not. The problem
with this tentative mapping is the aforementioned heavily hierarchical aspect of the struc-
turalist reconstruction of scientific theories. Theory-nets (and a fortiori theory-trees) orga-
nize, in fact, theory-elements into a strongly hierarchical chain of specialization relation(s),
where specific applications (in the intuitive sense of the word) of a theory are supposed to
be always conceptually reducible to more general law-like statements. Applications of a
scientific theory are then in the structuralist reconstruction of a theory just model-theoretic
precisifications of the related fundamental theory-element. Theory-nets are then a perfect
example of the kind of semantic finality based received view of scientific theories that Wil-
son repeatedly attacks in his work. The whole bestiary of semantic wanderings presented
in “Wandering Significance” can be seen as a list of ways in which the uses of scientific
terms defy a structuralist-like hierarchical reconstruction of a scientific theory. Wilson,
in fact, repeatedly shows how applications and non-fundamental law-like statements of a
scientific theory are not reducible to mere precisifications of a more general law, but they
often expand, twist, and extend the uses of the scientific terms and the reasoning tools of
the theory in unexpected ways. Despite the aforementioned similarities between the two
notions, structuralist theory-nets cannot then (in their canonical form) adequately mimic
Wilson’s facades, due to the rigidity in their hierarchical organization of theory-elements.

In order to solve this problem, I will now present a modified structuralist framework, i.e.
Wilson-Structuralism, in which I eliminate this hierarchical aspect of the structuralist re-
construction of scientific theories. I will keep the coarse-grained organization of Structural-
ism, but I will drastically change its representation of how the different law-like statements
of a given scientific theory are organized. More specifically, I will change the definition
of a theory-net and the related specialization relation. I will not require theory-elements
of the same theory-net to be related by subset inclusion of models, constraints, and links,
but only by the non-empty intersection between these components. This change will allow
the modified theory-nets to enjoy the ‘multi-valuedness’ needed to adequately represent
several wanderings phenomena described by Wilson.

Formally, I will leave completely unchanged the structuralist definition of a theory-
element. Just like in classical structuralism, in Wilson-structuralism a theory-element T
is a couple T = ⟨K, I⟩ where K = ⟨Mp, M, M, GC, GL⟩ is a theory core and I denotes the
intended applications of the theory-element. All components of the theory-core are defined
exactly like we saw in Section 3, as well as the intended applications.

Theory-elements in Wilson-Structuralism are meant to explicate Wilson’s patches, i.e.
self-contained micro-theories about a subset of a given domain. The components of a patch
that Wilson describes can be adequately mapped to the ones of a given theory-element. The
vocabulary of a patch is represented in Wilson-structuralism by the potential models of the
related theory-element. Potential models are in fact the conceptual framework of a given
theory-element, representing the linguistic part of the law-like statement. The domain of
a Wilson’s patch is instead mapped to the models of the related theory-element. Models
of a theory-element depict in fact in an anti-realist way the possible scenarios that satisfy
the law-like statement, all the possible ‘denotations’ of the related scientific terms. The
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boundaries of Wilson’s patches are instead mapped to the intended applications of a theory-
element, i.e. to the pragmatically defined subset of the class of partial potential models
that represents the empirical situations to which the theory-element should apply. The
reasoning tools of a Wilson’s patch are mapped to the constraints of the theory-element.
This mapping is justified by noting that Wilson’s patches are equipped with a variety of
reasoning tools that encompasses also the kind of physical and conceptual requirements on
scientific terms that are framed by the structuralists as constraints on the related theory-
element. Moreover, it has been recently shown how more paradigmatic reasoning tools such
as deductive inferences can be represented in the structuralist framework as constraints
on the acceptable combinations of potential models of a theory-element (Andreas, 2013).
Finally, a patch translation-principles, i.e. the rules that norm the import and the export
of information with other neighbor patches, are mapped to the intertheoretical links of
the theory-element, a component that does the same exact job of Wilson’s translation-
principles between different theory-elements.

If theory-elements adequately represent Wilson’s patches, the role of facades is played in
Wilson-structuralism by an adequately modified version of theory-nets. The key difference
between what I will call Wilson-theory-nets and the traditional definition that I presented in
the last section is the specialization relation. We have seen that in traditional structuralism
the specialization relation of theory-nets hierarchically orders theory-elements by requiring
(weak) subset inclusion of their models, constraints, links, and intended applications (and
equality of potential models and partial potential models). Formally, in a traditional
theory-net, a theory-element T ′ is a specialization of another theory-element T , i.e. T ′σT ,
iff

Mp(T ) = Mp(T ′), Mpp(T ) = Mpp(T ′), I(T ′) ⊆ I(T ),

M(T ′) ⊆ M(T ), GC(T ′) ⊆ GC(T ), GL(T ′) ⊆ GL(T ).

In Wilson-structuralism, I replace this specialization-relation with a weaker version that
I will call weak specialization. Like orthodox specialization, weak-specialization requires
equality of potential models and partial potential models, as well as weak subset-inclusion
of intended applications, but it only requires non-empty intersection between the models,
the constraints, and the links of the two theory-elements. This means that a theory-
element is a weak-specialization of another one if they share the same conceptual framework
and empirical ground (aka potential models and partial potential models), its range of
applications is (weakly) included in the one of the other, and they have compatible models,
constraints, and inter-theoretical links.

Formally, a Wilson-Theory-Net (WTN) is a poset NW = ⟨T̄ W , wσ⟩, where T̄ W is a
non-empty, finite set of RW-theory-elements and wσ : T̄ W × T̄ W is a weak specialization
relation such that T ′W wσT W (T ′W is a weak specialization of T W ) iff

Mp(T ) = Mp(T ′), Mpp(T ) = Mpp(T ′), I(T ′) ⊆ I(T ),
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GC(T ′) ∩ GC(T ) ̸= ∅, GL(T ′) ∩ GL(T ) ̸= ∅, M(T ′) ∩ M(T ) ̸= ∅

.
These new definitions allow in a Wilson-theory-net specializations of theory-elements to

have different (although compatible) models, constraints, and inter-theoretical links than
the more general theory-element of which they are a specialization. Thus, the hierarchical
structure of a traditional theory-net is maintained in a Wilson-theory-net only for what
concerns the intended applications, while the theoretical relationships between the cores of
the theory-elements are allowed far more diversity (modulo direct-neighbor compatibility).

This diversity is the key element that allows Wilson-theory-nets to adequately repre-
sent Wilson’s facades. The relaxed constraints imposed on the components of the different
theory-elements of a Wilson-theory-net allow several conceptual wanderings described by
Wilson, properly understood as particular set-theoretic relationships between components
of different theory-elements. In order to be represented in Wilson-structuralism, Wilson’s
wanderings have in fact to be reconstructed as differences in the mathematical structure
that (parts of) the related theory-elements denote. This is because of the differences in the
degree of realism and externalism in the semantics of scientific terms between Wilson’s and
the structuralist framework. As I hinted in the Introduction, in fact, if Wilson freely talks
about an external reality in which scientific terms take their reference by aligning them-
selves with a (set of) attribute(s), the structuralist framework reconstruct scientific terms
as certain kinds of functions or relations, i.e. as certain components of the potential models
of a given theory-element. Specific reconstructions and views about the ontological status
of theoretical terms vary within the structuralist camp, from arguably anti-realist recon-
struction (e.g. Sneed 1979; Andreas 2014) to more neutralist approaches (e.g. Stegmüller
1976; Moulines 1991), but no specific version of the structuralist framework conceptualizes
scientific terms in a strongly realist way like Wilson. According to Structuralists, the de-
notation of a given scientific term is made of all the possible abstract structures referred
to by the occurrences of the related function term in the actual models of the related
theory-elements. Thus, Wilson’s inter-patches changes in the alignment between certain
predicates and the attributes they refer to have to be reconstructed, in a structuralist
framework, in a more abstract way as certain kinds of differences in the structures denoted
by (all the occurrences of) the function-terms in the models of the related theory-elements.
As a guide to this abstract representation of the semantic indeterminacies described by
Wilson, I will use the following metaphysical assumption:

Assumption: Two different attributes cannot be represented by the same
class of mathematical entities (≈ contraposition of Leibniz’s identity of indis-
cernibles). Therefore, if a certain predicate refers to two different attributes
in two different contexts, this predicate cannot be represented by the same
mathematical entity in both contexts.

The idea behind this quasi-Leibnizian assumption is that difference in scientific terms
reference must have a correlate in the mathematical representation of that part of a sci-
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entific theory. For instance, if a given predicate refers to two different attributes in two
different contexts (i.e. Wilson’s uneven facades construction), then its mathematical repre-
sentation has to be different as well in the two contexts. Differences in reference must have
some discernibles consequences in the logical reconstruction of a theory. Formally, in order
to talk about a predicate and its representation in my framework, I use the set-theoretic
projection function Π(T, i1 . . . ix) = set of all entities appearing in places i1 . . . ix in theory
T (cf. Balzer et al. 1987, p. 61, Moulines 1981, pp. 214-215). This function picks out from
each tuple in T the entities occupying the i1 . . . ix places, thus having as a domain the set
of all ordered tuples of T and as a range the set of all entities occupying the places i1 . . . ix

in tuples of T . So, for instance, the function Π(M(CPM), f) refers to the union of all
the force functions f appearing in the models of the CPM theory-element, thus picking
out from each tuple in M(CPM) its force component. This projection function, together
with the metaphysical assumption above, constitute the main tools for representing inter-
patches changes of scientific term meaning in Wilson-structuralism. Then, I will say that
the meaning of a given scientific term is different in two directly connected patches if and
only if the two theory-elements representing these patches, provided that they are directly
connected by a weak-specialization relation, have models with sets of functions represent-
ing the given scientific terms that are incomparable with respect to the subset relation.
Informally, this incomparability constrain assures us that the meaning of the scientific term
under focus is truly different in the two related patches (and not just a specification or a
generalization of each other).

We can now see how Wilson-theory-nets are able to explicate several of the wandering
phenomena described by Wilson. For instance, uneven facades, i.e. facades in which some
patches assign a different referent to a common predicate (such as the case of the force pred-
icate in classical mechanics), are represented in Wilson-structuralism as Wilson-theory-nets
in which (at least) two theory-elements, directly related by weak-specialization, have mod-
els with incomparable (with respect to the subset relation) sets of functions representing a
given scientific term, i.e. ∃T, T ′ ∈ T̄ W such that TwσT ′ and Π(M(T ), t) ⊉ Π(M(T ′), t) and
Π(M(T ), t) ⊈ Π(M(T ′), t). This incomparability condition implies that the union of all
functions t appearing in the models of T is incomparable with respect to the subset relation
to the union of all functions t appearing in the models of T ′. Thus, some functions t in the
models of T have to be different from any function appearing in the models of T ′ and some
functions t in the models of T ′ have to be different from any function appearing in the
models of T . However, since the two theory-element T and T ′ are in a weak-specialization
relation, at least one function t appearing in their models has to be the same, because
of the non-empty intersection of the models required by the weak-specialization relation.
This formal condition mirrors in an abstract way the fact that patches in an uneven facade
drag a given predicate into matching attributes that are, relative to a common application,
incompatible with its original meaning. Note that the incomparability of sets of functions
appearing in the models of two theory-elements implies the incomparability of the models
and thus it is in stark contrast with the structuralist orthodox specialization relation (that
requires weak subset inclusion of the models).

Stokes facades, i.e. facades in which different patches validate different inferences involv-
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ing a common predicate (such as the Stokes phenomenon in optics), are instead represented
in Wilson-structuralism as Wilson-theory-nets in which at least two theory-elements, di-
rectly related by weak-specialization, have the same models but incomparable (with respect
to the subset relation) constraints, i.e. ∃T, T ′ ∈ T̄ W such that TwσT ′, M(T ) = M(T ′) and
GC(T ) ⊉ GC(T ′) and GC(T ) ⊈ GC(T ′). This formal condition represents the fact that
in a Stokes facade patches share the same meaning of their scientific terms (i.e. they refer
to the same attributes) at the cost of limiting the validity of certain reasoning tools at the
patch boundaries.

Wilson-theory-nets are also compatible with the existence of ghost properties, i.e. an
extreme case of uneven facades in which a given term has a different alignment in every
patch and there is no common attribute that the predicate denotes (such as the case of
hardness). We can represent this phenomenon as a Wilson-theory-net where every two
theory-elements have incomparable (with respect to the subset relation) sets of function
representing a given theoretical term and in which the intersection between all the models
of all the theory-element is empty, i.e. ∃t such that ∀T, T ′ ∈ T̄ W (Π(M(T ), t) ⊉ Π(M(T ′), t),
(Π(M(T ), t) ⊈ Π(M(T ′), t)), and ⋂{M(T )|T ∈ T̄ W } = ∅. Moreover, the weak specializa-
tion relation wσ of a Wilson-theory-net is designed to make possible loop-structures of
specializations where no patch is more fundamental than another one ( i.e. what Wilsons
calls the “lousy encyclopedia phenomenon”). These cycles are allowed by weak specializa-
tion because, in contrast to the orthodox specialization relation, it is not anti-symmetric.

More generally, the weakening of the specialization relation and the consequent less
homogeneous core-net (the net of all theoretical core of theory-elements in a given theory-
net) of a Wilson-theory-net allow Wilson-structuralism to represent several of the eerie
internal organizations of scientific theories described by Wilson such as incompatible de-
scriptions of the world, Escherian geometries of patches inter-connection, and horizontal
and vertical multi-valuedness of patches. Wilson-theory-elements can for instance have
the same intended applications but incomparable models, thereby representing Wilson’s
patches offering incompatible descriptions of the same part of the domain. Cycles of weak-
specialization relations may occur together with incomparable (with respect to the subset
relation) constraints, models, and links between connected theory-elements, creating mul-
tiple possible ways in which the fundamentality of a theory-element in a Wilson-theory-net
can be assessed.

Wilson-Structuralism is then able to adequately represent several wandering phenomena
described by Wilson, achieving a logical reconstruction of scientific theories free from the
semantic finality of classical Structuralism. Theory-elements and Wilson-theory-nets ra-
tionally reconstruct Wilson’s patches and facades in a precise formal framework, in which
several wanderings described by Wilson can be understood in an abstract way as spe-
cific set-theoretic relations between components of different theory-elements. Moreover,
Wilson-Structuralism can be seen also as a complementary generalization of (a part of)
the structuralist framework. In fact, Wilson-theory-nets have as specific cases the tradi-
tionally defined theory-nets that we saw in Section 3.1, i.e. Wilson-theory-nets in which all
the weak specialization relations are also traditional specialization relations. If none of the
semantic wanderings described by Wilson occur between any of its theory-elements, in fact,
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a Wilson-theory-net is just a structuralist theory-net, where all the models, constraints,
and links of the specialized theory-elements are subsets of the ones of the theory-element
of which it is a specialization. As an extreme case of this lack of wanderings, we can also
have a structuralist theory-tree as a specific case of a Wilson-theory-net in which there is a
single theory-element of which all other theory-elements are specializations. This specific
case can mirror what Wilson calls a flat structure facade, i.e. a facade that presents no
wandering between its patches and thus can be said to consist “essentially one patch, that
covers its whole domain adequately” (Wilson, 2006, p. 379).

This modified structuralism joins other recent attempts of renewing classical Struc-
turalism by simplifying and improving its behemothic framework. Andreas’ “Carnapian
Structuralism” (Andreas, 2010, 2014) is an example of a kind of structuralism more compat-
ible with other contemporary philosophical views about scientific theories reconstruction.
Carnapian Structuralism restyled the structuralist framework through a reader-friendly sys-
tem of postulates built around the notion of a theoretical expansion of a partial potential
model. Wilson-structuralism takes a more radical departure from classical Structuralism
than Carnapian Structuralism, radically weakening several semantic presupposition of the
orthodox framework, but they both try to bring the structuralist way of reconstructing
scientific theories closer to contemporary philosophy of science.

Taming conceptual wanderings: the case of viscous fluids forces

In order to make clearer how Wilson-Structuralism represents Wilson’s framework of
patches and facades, I will sketch how one can reconstruct as a Wilson-Theory-Net one of
Wilson’s main case studies of wandering referents in science, namely viscous fluids ‘forces’
in classical mechanics.

I have stressed in Section 2 how a considerable part of (Wilson, 2006) is dedicated to
show how the apparently neat theory-structure of classical mechanics hides a complexity
of wandering patches of usage ingeniously connected in a facade-like way. One of Wilson’s
(Wilson, 2006, pp. 157-165, 175-182) favorite examples of this semantic phenomenon is
the concept of force. Through a detailed analysis of several subfields of classical mechan-
ics, Wilson shows that this central concept of Newtonian physics is remarkably prone to
change physical referents from one application to another one. In particular, the efforts of
nineteenth-century physicists in extending Newtonian mechanics to more and more macro-
scopic phenomena pushed the predicate ‘force’ to be attached to attributes radically differ-
ing from any true force. Wilson (Wilson, 2006, pp. 158-159) stresses for instance the case
of viscous “forces” in which the predicate force denotes net losses and gains of momentum
caused by molecules leaving or entering the fluid “particle”İt is only thanks to what Wilson
(Wilson, 2017, p. 368) calls a computational opportunity, then, that the behavior of fluids
can be described with mathematical tools analogous to the ones used in more traditional
parts of classical mechanics (cf. Wilson 2006, pp. 175-176). This computational opportu-
nity, together with the aforementioned pivotal change of reference of the force predicate,
allowed then physicists to claim that the Navier-Stokes equations for viscous fluids are just
a specialization of Newton second law of motion, thereby annexing the underlying behavior
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of viscous fluid to the phenomena adequately described by classical mechanics. Analogous
strategies of theory expansion via ‘property dragging’ are behind the case of frictional and
elastic forces (Wilson, 2006, pp. 175-176), parts of classical mechanics where the predicate
force gets attached respectively to a net effect cause by the strength of the substratum and
to a measure of internal stress.

In Wilson’s terminology, the changes of referents for the predicate force in different
parts of classical mechanics are a paradigmatic case of uneven facade, in which ‘force’
refers to different physical attributes in the viscous fluid, the frictional, and the elastic
patches of classical mechanics. Given the metaphysical assumption in the last subsection,
this change of referent implies different mathematical representations of the force predi-
cate in the logical reconstruction of these parts of classical mechanics. So that structuralist
theory-elements representing these ‘forces’ must have incomparable sets of force functions
(and thus incomparable models). This incomparability is explicitly forbidden in the clas-
sical structuralist reconstruction of classical particle mechanics, where the models of every
theory element have to be a subset of the ones satisfying Newton’s second law of motion
(i.e. the fundamental CPM theory-element). This limitation in the models makes every
force function in the models of any theory-element in CPM just a specialization of the
force function in the foundational theory-element corresponding to Newton’s second law
of motion. So that structuralists are forced to either reconstruct the viscous fluids and the
frictional force theory-elements within CPM , characterizing them as simple additions of
further constraints on a given component of the force function (just like we saw for the
velocity-dependent forces theory-element in Section 3) or to reconstruct these parts of clas-
sical mechanics as belonging to different, albeit related by suitable links, theory-nets. The
latter option is exemplified by Moulines’ (Moulines, 1981, 2013) reconstruction of thermo-
dynamics as (what he calls) a theory-frame. Both options, from Wilson’s perspective, are
not adequate reconstructions, since they either hide the change in meaning of the force
predicate as a simple specification (the former reconstruction within the same theory-net)
or they unnaturally divide the connected usages of force in classical mechanics into several
theory-nets (the latter, multi-theory-nets type of reconstruction). Both kind of reconstruc-
tion are thus examples of the kind of semantic finality in traditional logical reconstructions
of classical mechanics that Wilson (Wilson, 1998, 2014) argues against. The concept of
force used in applying classical mechanics to viscous fluids cannot be a mere specialization
of the one employed in Newton’s second law of motion since the physical attribute denoted
by the predicate is radically different from the one to which force aligns itself in CPM . At
the same time, viscous fluids forces, according to Wilson, should be reconstructed together
with all the other forces in classical mechanics, since they are part of the same facade
obtained by gradual extensions of the force predicate in new domains (i.e. the phenomenon
that Wilson calls “property-dragging nucleation”, cf. Wilson 2006, p. 194).

Wilson-Structuralism allows this difference in the interpretation of the force predicate
to be adequately reconstructed within a single Wilson-theory-net. We have in fact seen that
Wilson-Theory-Nets can be uneven facades, i.e. Wilson-theory-nets in which (at least) two
theory-elements, directly connected by a weak-specialization relation, have models with in-
comparable (with respect to the subset relation) sets of functions for a given term (and thus
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incomparable models). So that, in reconstructing classical particle mechanics in Wilson-
structuralism, the viscous fluid theory-element V iscCPM can belong to the same theory-
net of the CPM theory-element, the former being a weak-specialization of the latter that
assigns a different meaning to the force function. More formally, since the force predicate
denotes different physical attributes in the fundamental CPM patch and in the viscous
fluids patch, we can assume that the CPM theory-element and the V iscCPM theory-
element (respectively representing the two patches in Wilson-structuralism) have incom-
parable sets of force functions in their models: Π(M(CPM), f) ⊈ Π(M(V iscCPM), f)
and Π(M(CPM), f) ⊉ Π(M(V iscCPM), f). Then, the V iscCPM theory-element can
still be a weak-specialization of the CPM theory-element (or of another theory-element
connected to CPM such as the velocity-dependent force theory-element), since in Wilson-
structuralism a theory-element can be a weak-specialization of another one despite having
incomparable models (a condition implied by having incomparable sets of functions in the
models). So, that, assuming that the CPM and the V iscCPM theory-element have at
least one model jointly satisfying them and that viscous fluids forces can be mathemati-
cally reconstructed with the same typification of the force occurring in the CPM poten-
tial models (both conditions seem intuitively justified by the aforementioned existence of
the computational opportunity described by Wilson), we can say that the viscous fluid
theory-element is a weak-specialization of the classical particle mechanics theory-element:
V iscCPM wσ CPM .

This sketch of a case study shows how Wilson-structuralism is able to reconstruct Wil-
son’s framework of patches and facades, making precise in which sense in certain parts of
classical mechanics the force predicate is attached to deviant attributes. The case study fo-
cused on the case of viscous fluids, but analogous theory-elements forming uneven facades
can be built for the aforementioned cases of frictional and elastic forces. Furthermore,
Wilson-Structuralism can adequately reconstruct in the same way other kinds of wan-
dering phenomena described by Wilson. For instance, as already mentioned in the last
subsection, Stokes facades, i.e. facades where different patches validate different inferences
involving a common predicate, can be represented by Wilson-Theory-Nets having at least
two theory-elements that have the same models but incomparable constraints. Thus, one
could reconstruct Wilson’s paradigmatic example of a Stokes facade, namely the Stokes
phenomenon (Wilson, 2006, pp. 319-327), through three different theory-elements, sharing
the same models but having as incomparable constraints the tree dominant behaviors of
the light intensity predicate described by Wilson. Extreme uneven facades that include
ghost properties, i.e. predicates with a different interpretation in every patch and no core
meaning, such as the one describing the behavior of the hardness predicate (Wilson, 2006,
pp. 335-355) can be similarly reconstructed by Wilson-theory-nets in which for a given
predicate such as ‘hard’ every possible pair of theory-elements have incomparable sets of
functions in their models and the overall intersection of the models of all theory-elements
of the Wilson-theory-net is empty.

Let me recap the main steps of the present section. Starting from Wilson’s analysis
of the complex ways in which language refers to the world, I presented his framework of
patches and facades. I then pointed to the surprising connections between two central
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notions of the structuralist reconstruction of scientific theories, i.e. theory-elements and
theory nets, and Wilson’s patches and facades. We have seen however that the heavily
hierarchical aspect of the structuralist framework poses a problem for any tentative struc-
turalist reconstruction of Wilson’s notions. I then presented my modified version of the
structuralist framework, i.e. Wilson-Structuralism. I showed how this modified structural-
ist framework, relaxing the definition of a theory-net and the related specialization relation,
is able to eliminate the hierarchical aspect of original Structuralism. We have then seen
how in Wilson-Structuralism theory-elements and Wilson-theory-nets adequately represent
Wilson’s notions of patches and facades, allowing a precise reconstruction of several wan-
dering phenomena described by Wilson such as the case of viscous fluids forces in classical
mechanics.

Wilson-Structuralism achieves then a precise semantic reconstruction of many concep-
tual wanderings described by Wilson and a structuralist reconstruction of scientific theories
more compatible with the nuances and the dynamics of scientific practice. Wilson-theory-
nets provide in fact a more general alternative to the orthodox notion of theory-net, by
allowing one to reconstruct within the same theory-net radical change of meanings and
other conceptual wanderings that might be present in the target phenomena. Wilson-
theory-nets and Wilson-Structuralism tout court should then be thought as a further tool
in the structuralist toolbox that allows a precise semantic reconstruction of several semantic
indeterminacies that can be found in many scientific theories.

In connection to these achievements, various directions for future work present them-
selves. A natural extension is to expand the scope of Wilson-Structuralism, taking into
account also more pragmatic structuralist notions of scientific theory reconstruction such
as theory-evolution, paradigm-driven theory-nets, and crystallizations (Moulines, 2011,
2013, 2014). From these extensions, I expect Wilson-Structuralism to achieve interesting
complementary alternatives of these structuralist notions, arguably more suitable for allow-
ing a vast range of semantic indeterminacies within their logical reconstruction of scientific
theories. For instance, I expect this expanded Wilson-structuralism to be able to model dy-
namic wanderings such as semantic detoxification (Wilson, 2006, pp. 545-552), asymptotic
connections between patches (Batterman, 2001; Wilson, 2017), and Machian explications
(Wilson, 2012a; Carus, 2012a). Other promising ways of extending this framework would be
to add linguistic and pragmatic contexts in order to model also Wilson’s context-adjusting
models of predicate extension (Wilson, 1982, 2012b) and to merge Wilson-Structuralism
with Carnapian Structuralism (Andreas, 2014, 2020) and with accounts of deductive rea-
soning in structuralist frameworks (Andreas, 2013) in order to model Wilson’s contextual
notion of inference validity and logical inconsistencies (Wilson, 1994, 2000a). It would
also be interesting to merge Wilson-Structuralism with other reconstructions of scientific
theories devised to capture the indeterminacy of theoretical terms such as Carnap’s ϵ-term
methodology (Carnap, 1956; Schiemer and Gratzl, 2016; Leitgeb and Carus, 2020; Leitgeb,
MS).
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5.4 Assessing Indeterminate Models in the Toolbox
Framework

In this final section, I will analyze how indeterminate models of conceptual change can be
classified within the Toolbox framework, i.e. the meta-framework for assessing models of
conceptual change that I presented in Chapter 2. More specifically, we will see how models
such as Wilson’s and Waismann’s one can be assessed along the nine evaluative dimen-
sions of the Toolbox framework: units of selection, concept ontology, concept structure,
kinds and degrees of conceptual change, degree of normativity, effectiveness of normative
judgment, assumptions and consequences for conceptual change in science, assumptions
and consequence for conceptual change in philosophy, metaphilosophical assumptions and
implications. Let us survey how indeterminate models of conceptual change perform in
these dimensions, one by one, then.

Units of selection This dimension judges models of conceptual change according to
the level of abstraction at which they identify conceptual entities as meaningful units of
change. Both Waismann and Wilson share a certain localized holism in conceptual affairs
that makes them recognize small parts of language as the smallest meaningful units of
conceptual change. In order to understand how and why a concept change we have to look
at the broader chunk of linguistic practice in which the concept is used, i.e. to the related
language stratum, for Waismann, and to the related patch, for Wilson. This necessity to
assess conceptual change in a (localized) holistic way is of course determined by the ubiquity
of semantic indeterminacies that indeterminate models of conceptual change recognize. In
order to understand how a concept change we have to ascertain the specific semantic,
pragmatic, and epistemological properties of the local parts of language involved.

Concept ontology This dimension focuses on the compatibility of a given model of
conceptual change with the different philosophical positions on the ontology of concepts.
We saw how indeterminate models of conceptual change stress how change in linguis-
tic practices is ubiquitous and never-ending. Consequently, both Wilson and Waismann
strongly oppose any conception of concepts that see them as stable entities. Concepts are
not something given to us once and for all, but they are adaptive tools that constantly
change consistently with the linguistic practices of which they belong. In such models of
conceptual change, then, there is no place for the fixity of the abstract view of concept
ontology. Indeterminate models of conceptual change seem instead compatible with all the
other three main views on concept ontology, i.e. the psychological, the linguistic, and the
worldly view. Due to their attention to linguistic practices, It seems in fact most natural
to couple indeterminate models of conceptual change with a linguistic view of concept on-
tology. That said, it seems possible to combine these models with the psychological or the
worldly view of concept ontology thorough a somewhat deflationary reading of the empha-
sis on language that indeterminate models have. For instance, I mentioned in Section 2
that Waismann’s open texture model of conceptual change has been recently reconstructed
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within a psychological view of concepts based on prototype theory (Zeifert, 2020). For what
concerns the worldly view of concepts, instead, Wilson (Wilson, 2017, Ch. 9) sometimes
seems to argue for a worldly conception of scientific concepts.

Concept structure This dimension focuses instead on how a given model of conceptual
change assumes the structure of concepts to be constituted. Indeterminate models of
conceptual change do not dwell so much into matters of conceptual structure, so that
they seem consistent with (almost) all of the theories about concept structure that we
saw in Chapter 2. The only aspect of conceptual structure that plays a central role in
these models is the extreme variability and context-dependency of concepts usage. As
we saw in this section, both Waismann and Wilsons stress repeatedly that behind many
seemingly monolithic concepts lies a complex bundle of different entities that perform
different works in the various contexts in which they are employed. Whatever theory of
conceptual structure one prefers, it has to allow a great degree of variability and context-
sensitivity in its description of concepts in order to be adequate to the conception of
conceptual change given by these indeterminate models. Pluralist theories of concepts
seem then particularly apt to the task, with their explicit stress of the variability of inter-
concept and intra-concept structure. Also more traditional theories of concepts such as
prototype and theory theories seem to be able to allow the kind of conceptual variability
stress by both Waismann and Wilson. As I mentioned in Section 1, prototype theories
have been explicitly used to offer a reconstruction of Waismann’s notion of open texture
(Zeifert, 2020). For what concerns theory theories, as we saw briefly in Chapter 2, they
have been developed for taking into account contextual effects of background knowledge on
conceptual structure and are thus very much equipped for being coupled with the localized
holism typical of indeterminate models of conceptual change.

Kinds and Degrees of conceptual change This dimension focuses on the kinds and
degrees of conceptual change that a given model of conceptual change identifies. Indeter-
minate models of conceptual change do not really conceptualize conceptual change as a
phenomenon that lends itself to be divided in degrees or kinds. As we saw in Section 1
and 2, Waismann and Wilson understand conceptual change as the natural result of the
constant plastic adaptation of language to the world. This adaptation is a very indetermi-
nate process, of which we often have only partial knowledge and control. As a consequence
of this inherent indeterminacy, it is difficult for a model of conceptual change to rigidly
classify its subject-matter in kinds or degrees.

Degree of normativity This dimension tracks the extent to which a given model of
conceptual change is more or less normative in judging episodes of conceptual change.
The indeterminacy at the heart of indeterminate models of conceptual change strongly
reduces the space of informed choice in conceptual change. Concepts constantly change
in response to external pressures and they often wander outside our control and under-
standing. Acknowledging this state of affairs, indeterminate models of conceptual change
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inevitably downsize the normativity of their judgments on episodes of conceptual change.
Nevertheless, we saw that a space for theoretical choice arises in certain occasions thanks
to the underdetermination of conceptual usages by linguistic rules and non-linguistic facts,
i.e. what Waismann calls open-texture and Wilson calls conceptual plasticity. In science
and in ordinary language, then, we can sometime direct the linguistic evolution towards
different results (cf. Wilson 2012a). This possibility of directing conceptual change allows
then indeterminate models of conceptual change to judge with a certain degree of norma-
tivity some episodes of conceptual change, appraising the choices of the related linguistic
communities with the benefit of hindsight.

Effectiveness of normative judgment This dimension focuses on how effective the
normative judgment of a model of conceptual change is. Given what I said in the previ-
ous paragraph, it should not come as a surprise that the effectiveness of the normativity
judgments within indeterminate models of conceptual change is a rather weak one. As
we saw, the ubiquitous semantic and epistemological indeterminacies recognized by these
models as constitutive aspects of conceptual change leaves few space for theoretical choice
and even less space for normative judgments on these choices. Even in the few episodes
of conceptual change that lend themselves easily to a normative judgment, indeterminate
models are bound to give very weak judgments due to the inherent indeterminacy and
complexity of the semantics behind our language that they postulate. If we often have
a rather dubious knowledge and control of our conceptual tools, we should not expect a
better knowledge and control of our models of these tools.

Assumptions/consequences for conceptual change in science This dimension fo-
cuses on the assumptions and the consequences of a given model of conceptual change
in relation to the problems that scientific conceptual change poses in philosophy of sci-
ence. Indeterminate models of conceptual change understand scientific conceptual change
as completely analogous to ordinary conceptual change. Every linguistic practice change
consistently with the requirements of the communities involved and the external pressure
of the phenomena to which it refers. The fact that scientific concepts change is thus
understood by indeterminate models of conceptual change as a completely natural and un-
problematic phenomenon, that should not make us skeptic of the epistemic and ontological
status of our best scientific theories (cf. Wilson 2000b). Seen from this perspective, inde-
terminate models of conceptual change are positive news for defenders of scientific progress
and realism. However, accounts of conceptual change such as Waismann’s and Wilson’s
one have also a more negative and revisionary message for philosophers of science. The
traditional view of scientific concepts as stable and fixed entities, as well as the related
heavily simplified philosophical models of their meaning and reference mechanisms, are
deeply mistaken. Scientific concepts describe the world often with the aid of subtle and
complex semantic architectures. Moreover, these architectures are remarkably sensible to
the context and they are very much prone to change when it is required by the inter-
facial accomodations behind them. As such, indeterminate models of conceptual change
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make scientific conceptual change a complex yet absolutely necessary object of study for
philosophers of science that are interested in how science describes the world.

Assumptions/consequences for conceptual change in philosophy This dimension
focuses on the assumptions and the consequences of a given model of conceptual change
in relation to the problems that philosophical conceptual change poses in philosophy. We
saw that indeterminate models of conceptual change understand their subject matter as
an ubiquitous phenomenon at work indiscriminately in (almost) all linguistic practices.
Thus, according to these models, philosophical concepts are subject to conceptual change
as much as any other kinds of concepts. Moreover, the many kinds of semantic and
epistemological indeterminacies around which the conception of conceptual change of these
models is centered are of course present also in the case of philosophical concepts. The anti-
essentialism typical of accounts of conceptual behavior such as Waismann’s and Wilson’s
ones forbids any idea of philosophical concepts as stable and fixed entities, as well as any
dream of a final conceptual analysis of these entities. In philosophy as well in science,
philosophers should pay more attention to the non-trivial ways in which our language
works and changes. Certain philosophical problems are in fact diagnosed by indeterminate
models of conceptual change as stemming out from an inadequate account of how our
philosophical and scientific languages work. Waismann (Waismann, 1946b; Fischer, 2019)
stresses, for instance, that traditional philosophical problems seem to arise from a lack
of appreciation of different language strata and their connections, while Wilson (Wilson,
2008, 2017, MS) repeatedly calls out some contemporary metaphysical problems as based
on mistaken accounts of the semantics behind our best scientific theories.

Metaphilosophical assumptions and implications This dimension focuses on the
metaphilosophical background that a given model of conceptual change has. As the dif-
ferences between Waismann’s and Wilson’s articulation of their proposal exemplify, inde-
terminate models of conceptual change do not seem to share a common metaphilosophical
background. Nevertheless, some general morals of metaphilosophical interest can be drawn
from these models. First, indeterminate models of conceptual change show how philoso-
phers should pay a great deal of attention to the linguistic practices in which a given
discussion or theory is framed. Both in ordinary language and in science, language can of-
ten deceive us, hiding a surprisingly complex semantic architecture behind some apparently
easy linguistic forms. Both Wilson and Waismann give us several examples of philosophical
pseudo-problems that arise from not paying enough attention to linguistic practices. This
call for attention to the linguistic practice has some connections with both the ordinary
language and the pragmatist movements in analytic philosophy. A second metaphilosoph-
ical moral that can be drawn from models of conceptual change such as Waismann’s and
Wilson’s is that our linguistic and conceptual tools are the byproduct of both worldly and
human factors. As such, conceptual change is a phenomenon only partly under our control
and foresight. Indeterminate models of conceptual change present, then, a conception of
conceptual change that strikes a middle ground between the discovery-driven traditional
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approach of conceptual analysis and the invention-like active ideal of conceptual engineer-
ing (cf. Chapter 2, Section 2.2). As Wilson (Wilson, 2006, p. 287) puts it, the refinement
of our conceptual tools is a matter of interfacial accommodations, always prone to wander
outside our control in order to take into account the unexpected situations that the world
creates. Intentionally driven conceptual engineering then, in philosophy like in any other
human activity, should be thought as a rare, specific case of the more general phenomenon
of conceptual change (cf. Wilson 2012a; Decock 2021).
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Chapter 6

Cognitive Models of Conceptual
Change

The focus of this chapter will be on cognitive models of conceptual change, i.e. models that
frame conceptual change as a specific kind of change in the cognitive structure underlying
related theories. Specifically, I will concentrate on cognitive models of scientific concep-
tual change. As we briefly saw in Chapter 2, in the last fifty years tools from cognitive
science have been extensively used to provide a novel understanding of scientific theories
and their dynamics. As a consequence of these cognitive models of science, also the dy-
namics of scientific concepts have been modeled as specific kinds of change in the cognitive
representation of scientific theories and concepts.

In this chapter, I will present three different cognitive models of conceptual change,
differing in the cognitive architecture at the center of their model of scientific change. We
will see Thagard’s (Thagard, 1992) model of conceptual revolutions in science based on
the notion of a conceptual system, frame-based (Andersen et al., 2006; Schurz and Votsis,
2014; Kornmesser and Schurz, 2018) models of scientific change, and finally Gärdenfors’
and Zenker’s (Gärdenfors and Zenker, 2011, 2013) model of scientific change based on
conceptual spaces. As this list shows, cognitive models of conceptual change have relied
on different cognitive structures in order to represent the dynamics of scientific concepts.
Despite the difference between their specific way of representing the cognitive structure of
scientific knowledge, we will see that all these cognitive frameworks share the belief that
cognitive models of science are superior to logic-based models in modeling their subject-
matter. The details or arguments of this superiority statement may vary depending on
which specific cognitive architecture is employed, but the core of this superiority thesis
is that the way in which knowledge is represented by cognitive models such as frames or
conceptual spaces is procedurally different from logical reconstruction of it and it gives a
better description of how human knowledge actually change1.

A paradigmatic claim of the superiority of cognitive representations of scientific knowl-

1Instances of such superiority statements can be found in (Thagard, 1984, 1988; Giere, 1988; Thagard,
1992; Gärdenfors, 2000; Andersen et al., 2006; Zenker, 2014).
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edge in comparison to logic-based ones is Thagard’s (Thagard, 1984, 1992) argument for
the autonomy of conceptual change with respect to belief changes. Thagard’s autonomy
argument, or Thagard’s challenge (Park, 2010) as it is sometimes called in the literature,
is particularly interesting because it can be seen as a challenge to logicians (and in partic-
ular to belief revision theorists) to come up with a logical model of conceptual change as
faithful as the cognitive ones. In this chapter, I will present a novel model of conceptual
revision that is able to mirror much of Thagard’s model of conceptual change within a
logical belief-revision-like system2. This conceptual revision system is a belief-revision-like
system that works at the conceptual level of abstraction and that is therefore able to mimic
cognitive model of conceptual change at their native level of abstraction.

In Section 1, I will present three different types of cognitive model of conceptual change,
discussing their perks and limitations. Specifically, in Section 1.1 I will present Thagard’s
model of conceptual revolutions, in Section 1.2 I will talk about frame-based model of
conceptual change and in Section 1.3 I will focus on a model of scientific change based on
the theory of conceptual spaces. In Section 2, I will instead present a novel framework
of conceptual revision, i.e. a belief-revision-like logical system that works on conceptual
structures. I will present this novel framework in full generality, defining suitable expansion,
revision, and contraction operations for it and showing how it satisfies several AGM-like
rationality postulates for conceptual revision. In Section 3, I will show how this framework
for conceptual revision is able to model almost all the kinds of conceptual change by
Thagard in his model of conceptual revolutions. I will also show how a paradigmatic
example of scientific revolution, i.e. the chemical revolution, can be reconstructed as a
series of conceptual revisions and contractions in my framework. Finally, in Section 4, I
will assess cognitive models of conceptual change such as Thagard’s one using the nine
dimension of my Toolbox framework.

6.1 Cognitive Models of Conceptual Change
Philosophers and cognitive scientists have used a variety of tools from cognitive science
for modeling the dynamics of scientific theories and concepts. Consequently, one can
find cognitive models of conceptual change using very different tools for representing the
changes in conceptual knowledge that occur in science. As a showcase of some different
cognitive tools that have been used as a basis for modeling scientific theories and concepts,
I will present in this section three different types of cognitive model of conceptual change
centered around three different cognitive representation of conceptual knowledge.

I will first present Thagard’s model of conceptual revolutions, a cognitive model of
conceptual change centered around the notion of a conceptual system. The second type of
cognitive model of conceptual change that I am going to present in this section is made of
frame-based models. As the name suggests, these models represents scientific theories and

2Let me stress again that the model of conceptual revision presented here was developed in full collab-
oration with Sena Bozdag and, as such, the material presented in Section 2 and 3 of these chapter has to
be considered an entirely collaborative product.
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their conceptual dynamics by the means of frames. Finally, we will see Gärdenfors’ and
Zenker’s cognitive model of scientific change based on the theory of conceptual space (cf.
Chapter 3, Section 4.2).

Before presenting and comparing these three kinds of cognitive model of conceptual
change, thereby describing their differences, I must stress their similarities. In fact, as
it will be clearer at the end of this section, conceptual systems, frames, and conceptual
spaces give a roughly similar picture of human knowledge acquisition and change. All
three types of knowledge representation, just like virtually all the other accepted models in
contemporary cognitive science, share a very concept-based account of human knowledge
where the acquisition and the revision of knowledge is largely the product of the interaction
of many different default reasoning mechanisms that constantly contribute at different
levels of voluntariness and abstraction to what we call knowledge. In the light of this large-
scale common picture of human knowledge, it seems intuitively justifiable to envisage the
possibility of hybrid cognitive models of conceptual change that represent the dynamics
of human knowledge with the aid of several specific cognitive architectures. Indeed in the
literature on cognitive models of conceptual change one can find such hybrid models, as
it is exemplified by Giere’s (Giere, 1988) influential cluster-of-schemata model of scientific
change.

6.1.1 Thagard’s model of conceptual revolutions
As I mentioned before, Thagard (Thagard, 1992) developed a fine-grained cognitivist model
of scientific theory change centered around transformations in conceptual systems. Concep-
tual systems are complex structures roughly similar to frames (Minsky, 1975; Gamerschlag
et. al., 2013), but (usually) not recursive. They are made of concepts and objects nodes
connected via different kinds of links such as kind-links, instance-links, rule-links, and
part-links. Changes in science then correspond to different modifications of these links.
Specifically, scientific revolutions involve major transformations in part-links and in kind-
links inside a conceptual system.

More specifically, there are two kinds of nodes and four kinds of links that can figure in
a conceptual system. Nodes can be concept nodes or object nodes, mirroring respectively
concepts and objects. Concept nodes can be connected with other concept nodes via three
kinds of links (kind-links, part-links, rule-links) and with other object nodes via another
kind of links, i.e. instance-links3:

• Kind-links (from concepts to concepts): intuitive reading ‘is a kind of’, example ‘the
canary is a kind of bird’.

3Note that Thagard in presenting his framework mentions also a fifth kind of link, property-links
(Thagard, 1992, p. 31). This kind of links is supposed to mirror the information of a given object
possessing a given property, but it does not seem to play any role into Thagard’s model of conceptual
change. It is in fact not mentioned in his abstract presentation of the model (Thagard, 1992, pp. 34-39)
nor in any of the case studies (Thagard, 1992, pp. 131-224). I chose therefore to omit this kind of link
from this presentation.
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• Part-links (from concepts to concepts): intuitive reading ‘a whole has a given part’,
examples ‘the beak is a part of birds’, ‘fins are part of fishes’.

• Rule-links (from concepts to concepts): intuitive reading as expressing generic rela-
tions between concepts, example ‘canaries are yellow’.

• Instance-links (from objects to concepts): intuitive reading ‘is an instance of’, exam-
ple ‘Tweety is a canary’.

The most important kinds of links are the ones between conceptual nodes. Kind-links
and part-links specify what the constituents of (a part of) the world are according to
a given conceptual system. Concepts within conceptual systems are organized in kind-
hierarchies and part-hierarchies, i.e. sets of kind-links and part-links that are constrained
in a tree-like form in order to give a consistent picture of (a part of) the world. Rule-links
instead represent factual information and default reasoning mechanisms codified within
the conceptual system. They are not organized in a hierarchy, but they can be divided
between weak-rules and strong-rules depending on the strength of the information they
represent.

Conceptual changes on a given conceptual system are then ordered by Thagard (Tha-
gard, 1992, p. 35) in terms of how radical they are, from the least to the most radical:

1. Instance-addition: adding an instance relation saying that a given individual is an
instance of a given concept, e.g. ‘that blob in the distance is a whale’.

2. Rule-addition: adding a rule relation, e.g. ‘whales can be found in the Arctic ocean’
or ‘whales eat sardines’4.

3. Part-addition: adding a new part-relation, e.g. ‘whales have spleens’.

4. Kind-addition: adding a new kind-relation, e.g. ‘a dolphin is a kind of whale’.

5. Concept-addition: adding new concept, e.g. ‘sound-wave’ or ‘narwhal’.

6. Kind-collapse: collapsing part of a kind-hierarchy, abandoning a previous distinction,
e.g. when Darwin collapsed species and varieties within a species distinction.

7. Hierarchy-reorganization: shifting concepts or parts of the kind and part-hierarchies
to another part of the hierarchies, i.e. branch-jumping such as Darwin’s shift of
humans to the animal-mammal part of the kind-hierarchy. It may also involve trans-
formation of part-relations onto kind-relations and vice versa.

4Note that Thagard actually divides the rule-addition kind of conceptual change in two distinctive
sub-types: weak-rule and strong-rule addition. Since Thagard’s distinction between weak and strong rules
is entirely pragmatical (Thagard, 1992, p. 35), being it based on the problem-solving power of a rule, I
collapsed for simplicity these two types of changes in one type.
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8. Tree-switching: changing the organizational principle of the kind-hierarchy, e.g. Dar-
win’s switch from a morphological kind-hierarchy to an evolutionary one.

Thagard defended his concept-based model and the autonomy of conceptual change
arguing that these revolutionary changes cannot be modeled by belief-revision theories.
This supposed impossibility of modeling radical conceptual change within a belief-revision
framework has been dubbed Thagard’s challenge (Park, 2010). Specifically, Thagard’s
challenge claims that strong kinds of conceptual change are irreducible to belief-revision
types of changes, because the former involves holistic recombinations of links and nodes
in a given conceptual system that cannot be modeled by any piece-meal belief-revision
operation. This irreducibility shows for Thagard how concept-based representations of
knowledge, despite being expressively equivalent to first-order logic, are procedurally dif-
ferent from it (Thagard, 1984, 1988).

More specifically, Thagard’s challenge consists of the claim that belief revision sys-
tems can model just the first two degrees of conceptual change in Thagard’s hierarchy,
i.e. instance-addition and rule-addition, but not the other six (Thagard, 1992, p. 36).
Both instance-addition and rule-addition represent in fact piecemeal additions that do not
involve any recombination in the part- and kind-hierarchies of a given conceptual system.
These two kind of changes can then be adequately mirrored as changes at the belief-level,
revising for instance the extension of a predicate and its prototypical instances (Strößner,
2020a, 2021). The other six, more radical kinds of conceptual changes are more holistic
types of changes, since they involve the adjustment of the part- and kind-hierarchies (as
well as rule and instance-relations) of the whole conceptual system. These changes rep-
resent in fact how scientists in revolutionary times add new concept, delete old concepts,
drastically reorganize kind and part-hierarchies, and sometimes they even change the orga-
nizational principle of the hierarchical tree. Due to their holistic character, these changes
cannot be easily mirrored as changes at the belief level like the first two. These revolu-
tionary changes, then, are for Thagard (Thagard, 1992, p. 28) evidence that conceptual
change is irreducible to belief-revision.

Thanks to the expressive power of conceptual systems, then, Thagard presented a very
fine-grained cognitive analysis of conceptual change in science. Episodes of conceptual
change can be analyzed in terms of which kinds of changes take place in the conceptual
systems involved. Depending on how much the related conceptual system is modified in
the process, historical episodes of conceptual change in science can be classified in terms of
how radical they were and which kind of rational continuity between successive scientific
theories they maintained. Thagard (Thagard, 1992, pp. 39-47, 131-223) showcased the
power of his model of conceptual change by giving a detailed cognitive analysis of several
alleged conceptual revolutions in the history of science in terms of specific modifications of
conceptual systems. Thagard’s case studies included the chemical revolution, the geological
revolution, the Copernican revolution, and the Darwinian revolution.
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6.1.2 Frame-based models of scientific conceptual change

The second type of cognitive models of conceptual change that I am going to present
consists of frame-based models. Frames (Minsky, 1975; Barsalou, 1992; Gamerschlag et.
al., 2013) are a very successful way of representing knowledge that has been employed for
more than forty years in artificial intelligence and cognitive science. There are various
kinds of frames, differing in structure and complexity, but all frames share a core set of
representational tenets.

The two main kinds of components of a frame are attributes and values. Attributes
represent certain salient properties that instances of a given concept tend to possess, while
values add more information about the default way in which these properties are exem-
plified. For instance, the salient property of being a male is represented by the frame for
the concept of a bachelor by the combination of the attribute ‘sex’ and its value ‘male’.
This attribute-value structure typically represents default knowledge that contributes to
the prototype of a certain concept. Frames, in fact, can be thought as a specific, elaborate,
representation of the prototype theory of concepts (cf. Ch. 2, Section 1.2). Just like other
prototypical representations of concepts such as feature lists or schemata, frames represent
a certain concept in terms of the most typical properties that its instance tend to possess.
Specifically, these typical properties are represented by frames as specific attribute-value
combinations. Central to frames is also the recursiveness of this core attribute-value struc-
ture. This recursiveness allows frames to nest this prototypical description of concepts in
order to store, economically, impressive amounts of default knowledge as nets of frames.

As I mentioned before, there are different kinds of frames that differ in their specific
elaboration of the basic attribute-value structure common to all frames. A common elabo-
ration of the attribute-value structure is, for instance, the addition of constraints between
different attributes of the same (or even of different) frame(s) that limits the possible
combinations of values of some attributes. Such constraints are particularly effective for
representing simple inductive inferences and causal dependencies between different con-
cepts. More generally, it is safe to say that frames, in comparison to other cognitive ways
of representing conceptual knowledge, are particularly apt to represent several forms of ev-
eryday reasoning (e.g. default, defeasible, non-monotonic, etc.), thanks to the plasticity of
their basic attribute-value structure (especially when augmented with suitable constraints)
and its aforementioned recursive structure.

Given their success in representing conceptual and inferential knowledge, it is not sur-
prising that several philosophers and cognitive scientists have chosen frames as the back-
ground of their model of conceptual change. A paradigmatic example of frame-based
models of conceptual change is Andersen’s, Barker’s, and Chen’s (Andersen et al., 2006)
neo-Kuhnian model of scientific revolution. This neo-Kuhnian model is based on Barsa-
lou’s dynamic frames (Barsalou, 1992; Barsalou and Hale, 1993), i.e. specific frames that
allow attributes to have several values at once and different kinds of structural constraints
on both attributes and values. Scientific theories are then represented as (what they call)
conceptual structures, i.e. specific hierarchies of nested dynamic frames that have to satisfy
certain consistency requirements.
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The authors (Andersen et al., 2006, pp. 67-69) listed three hierarchical principles that
stable conceptual structures have to respect: the No-Overlap Principle, the Exhaustion
Principle, and the Inclusion Principle. The first principle prescribes the exclusivity of
contrasting concepts, forbidding any object to be categorized as an instance of two or more
contrasting concept (e.g. an animal cannot be both a dog and a cat). The second principle
prescribes the completeness of subordinate concepts with respect to superordinate ones,
saying that an instance of a given superordinate concept must be an instance also of one of
its subordinate ones (e.g. an animal has to be either a mammal, or a reptile, etc. It cannot
be something completely foreign to any of the subordinate animal concepts). Finally, the
third hierarchical principle prescribes that all instance of a subordinate concept have to
be also instances of the related superordinate concept (e.g. all cats are mammals). These
three hierarchical principles together force a conceptual structure to have a general internal
consistency, making thus a hierarchy of dynamic frames apt to represent the cognitive
structure of a given scientific theory.

Andersen, Barker, and Chen use then these hierarchies of dynamic frames to give a
cognitive explication (in Carnap’s sense of the term, see Ch. 3) of Kuhn’s theory of sci-
entific revolution. As any good neo-Kuhnian theory, the three authors (Andersen et al.,
2006, pp. 66-86) start with distinguishing normal science with revolutionary science. Nor-
mal science consists of changes in a scientific theory that do not significantly change the
related conceptual structure such as changing specific value constraints or introducing new
subordinate concepts. These small changes are simple ways of resolving small violations of
the hierarchical principles of a conceptual structure such as the observation of an uncate-
gorizable object (e.g. a new species of a bird). Revolutionary science, instead, involves far
more radical changes that do not leave the conceptual structure intact. If, in fact, changes
in normal science might involve the addition of new attributes and/or values in one of
more frames, revolutionary changes often involve the holistic re-thinking of the similarity
and dissimilarity relations between object that are in the background of a given hierarchy
of dynamic frames. This modification of the basic ways in which instances are categorized
is Anderson’s, Barke’s, and Chen’s explication of Kuhn’s famous gestalt-switch picture of
a scientific revolution. The three authors (Andersen et al., 2006, pp. 87-117) also give a
fine-grained analysis of scientific revolutions, distinguishing different degrees of taxonomic
incommensurability in terms of radical mismatches on the basic categorization structure
between pre-revolution and post-revolution theories. In radical scientific revolutions, then,
sever lack of inter-theoretical communication is produced by mutually inconsistent sets of
attribute nodes that categorize a certain phenomenon on the basis of radically different
similarity and dissimilarity relations. The three authors (Andersen et al., 2006, pp. 130-
162) give various examples of scientific revolutions as competing hierarchies of dynamic
frames, showing how the degree of communication between rival theories can be ascer-
tained via checking how much the conceptual structure of a given theory violates the rival
conceptual structure and its application of the hierarchical principles.

Similarly to Andersen’s, Barker’s, and Chen’s neo-Kuhnian model, other frame-based
models of scientific conceptual change use nets of nested frames to represent the cognitive
structure of scientific theories, understanding different types of scientific changes as differ-
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ent modifications in the related frame structures. Other types of frames, different from
Barsalou’s dynamic frames, have been used by different frame-based models of scientific
conceptual change such as Kornmesser’s and Schurz’s theory-frame model (Kornmesser
and Schurz, 2018).

Notwithstanding the specific type of frame structure implemented, all frame-based mod-
els of science make pivotal use of the plasticity of the recursive attribute-value structure
and the related applicable constraints in order to model scientific conceptual change as
a variety of modifications of different strength that gradually transform the hierarchical
frame-structure related to a given scientific theory. This fine-grained analysis of scien-
tific dynamics is, according to the supporters of frame-based models, only possible thanks
to the expressive power of frames that allow us to ascertain rational continuity in the
deep cognitive structure behind scientific theories even when the more superficial linguistic
counterparts present radical differences.

6.1.3 Scientific change as dimensional change
The third type of cognitive model of conceptual change that we are going to see in this
section is made of models based on the theory of conceptual spaces. We already encountered
the theory of conceptual spaces in Chapter 3, where I used it to give a formal explication
of Carnap’s notion of explication5. As a matter of fact, the model of Carnapian explication
that I presented in Chapter 3 can be indeed considered a cognitive model of conceptual
change based on conceptual spaces. However, in this section I will not focus on my own
model of scientific change based on conceptual spaces, but I will instead present a different
model developed by Gärdenfors and Zenker (Gärdenfors and Zenker, 2011, 2013; Zenker
and Gärdenfors, 2014, 2015a; Masterton, Zenker, and Gärdenfors, 2017) in a series of
papers.

If I used conceptual spaces to give an explication of Carnapian explication (cf. Ch. 3,
Sect. 4), Gärdenfors and Zenker used the expressive power of conceptual spaces theory
to give a somewhat neo-structuralist model of scientific conceptual change. Just like the
structuralist program in philosophy of science that we saw in Chapter 5 (cf. Ch. 5, Sect.
3.1), in fact, Gärdenfors’ and Zenker’s framework understands a scientific theory primarily
as a bundle of structures. The key difference with classical Structuralism is that, according
to Gärdenfors and Zenker (Zenker and Gärdenfors, 2014), the structure of a scientific theory
is best reconstructed with the tools of the theory of conceptual spaces (and not in a model-
theoretic way, like it is prescribed by orthodox Structuralism). More specifically, a given
scientific theory can be reconstructed via what the authors call a conceptual framework,
i.e. a (bundle of) conceptual space(s) representing the theoretical framework of the theory
as a collection of appropriate (sets of) dimensions. So that, instead of a set of (sets of)
model-theoretic structure like in orthodox Structuralism, the structure of a given scientific

5I invite the interested reader to see again Chapter 3, Section 4.1 for a presentation of the theory of
conceptual spaces, together with relevant bibliography. For a fully formalized presentation of the theory,
see instead (Raubal, 2004; Lewis and Lawry, 2016; Bechberger and Kühnbeger, 2017).
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theory is given by a set of (sets of) cognitive dimensions suitably grouped in respective
domains and adequately interconnected by certain constraints.

Gärdenfors and Zenker (Gärdenfors and Zenker, 2011, 2013) used their reconstruction
of scientific theories as conceptual frameworks to give a cognitive model of scientific con-
ceptual change based on five different types of changes in the conceptual framework of
the theory. These five changes are ordered with respect to their radicality, from the least
radical to the most radical:

• Addition/Deletion of special laws: the least radical conceptual change consists of
the addition (or the deletion) of a special law (e.g. Hooke’s law for elastic forces
in Newtonian Mechanics). In a conceptual framework, the addition or deletion of a
special law modifies in fact only the intra- and inter-dimensional constraints, but it
does not change the dimensional structure of the scientific theory.

• Change of scale or metric: the second type of change in Gärdenfors’ and Zenker’s
model is a change in the scale or the metric of a given (sets of) dimension(s) (e.g.
the change from the Celsius to the Kelvin scale). This change implies a modification
of the information given by the modified dimension(s) and thus constitutes a more
radical change than the addition/deletion of special laws.

• Change in the importance of dimensions: the third type of change consists of a change
in the salience or the importance of cognitive dimensions in the conceptual framework
of a given scientific theory. In scientific dynamics, changes in the importance of
dimensions can strongly modify the ontological import of a given scientific theory
(e.g. the weakening of the importance of the color dimension in the eighteenth
century chemistry).

• Change in the separability of dimensions: The fourth type of change is the change of
a cognitive domain in the conceptual framework of a given scientific theory. That is,
it consists of a change in the separability of two or more cognitive dimensions (e.g.
the step from Newtonian space and time to Einsteinian space-time). A change in the
separability of dimensions (and thus of domain) implies a substantive rethinking of
the measurement methods and of the epistemological and ontological status of (some
parts of) the theoretical framework of a given scientific theory.

• Addition and deletion of dimensions: The most radical form of conceptual change
in Gärdenfors’ and Zenker’s taxonomy consists of the the addition or deletion of
cognitive dimensions. When, in fact, some dimensions are added or deleted from the
conceptual framework of a scientific theory, its cognitive structure is radically altered
up to the point of creating a breakdown of rational continuity between successive
theories (e.g. the definitive deletion of the ether dimension carried out by twentieth-
century physics).

This five-step taxonomy of conceptual changes allows Gärdenfors and Zenker (Gärden-
fors and Zenker, 2011, 2013; Masterton, Zenker, and Gärdenfors, 2017) to give a cognitive
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analysis of the changes involved in the passage from Newtonian Mechanics to Special Rel-
ativity. More generally, their cognitive model of conceptual change allows to break-down
major scientific conceptual changes into a step-by-step modification of the related concep-
tual frameworks and their cognitive dimensions.

We have then seen three different types of cognitive model of conceptual change, respec-
tively centered around three different cognitive architectures: conceptual systems, frames,
and conceptual spaces. Despite the differences in the basic set-up and in the specific way in
which conceptual knowledge is represented and modified, all these three types of cognitive
model offer a fine-grained analysis of conceptual change in science as a specific taxonomy
of modifications of the cognitive structure related to a scientific theory. Specific episodes of
conceptual change or specific semantic phenomena can be more or less suited to be recon-
structed in a specific kind of cognitive model (cf. Strößner 2020b), but in general it is safe
to stress again that all these three types of cognitive model (as well as virtually every other
type of cognitive model that can be found in the literature) give a very similar picture of
the phenomenon of conceptual change and its epistemological and semantic implications.

6.2 A Model of Conceptual Revision
We saw in Section 1.1 Thagard’s fine-grained cognitive model of conceptual change, his
argument for the autonomy of conceptual change and his related challenge to belief-revision
theorists. Despite the enormous expansion of the belief-revision literature in the last thirty
years (Hansson, 1999) and recent work connecting it with philosophy of science (Olsson
and Enqvist, 2010), Thagard’s challenge has not received so much attention. I will show
in this section a way of taking up Thagard’s challenge by developing a belief-revision-
like framework capable of modeling the radical types of conceptual change described by
Thagard. Specifically, I will present a conceptual revision framework in which one can
revise and contract conceptual structures, i.e. set-theoretic representations of Thagard’s
conceptual systems. The change operators will be reminiscent of the ones used in base-
generated belief change theories (Rott, 2001; Hansson, 1999), but working on conceptual
structures instead of belief bases.

The choice of units of revision, i.e. conceptual structures, makes this conceptual re-
vision system differ from other applications of belief-revision to the problem of scientific
change. Traditionally, belief-revision theories deal with piece-meal changes in a belief set
similar to the kind of changes happening in normal science (cf. Gärdenfors and Rott 1995).
In applying these theories to the problem of scientific change, logicians have focused on
mirroring changes in scientific theories as changes in (usually structured) belief sets (Mar-
tin and Osherson, 1998; Cresto, 2008; Hansson, 2010; Andreas, 2011; Strößner, 2020a,
2021). This belief-centered take on scientific change is exactly the reason why Thagard
claims that belief revision theories are not adequate for representing conceptual change
(Thagard, 1988, 1990). We instead chose to model conceptual change at its native level of
abstraction, without any reference to the belief level6. This will be achieved by lifting the

6Again, let me stress that the content of this section and the next one is a product of a full collaboration
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methodology of belief revision theories to the conceptual level. As a result, the aim of the
change operations of my conceptual revision system will then be the preservation of the
consistency of conceptual structures. This consistency is understood as the satisfaction
of some structural constraints on the components of a conceptual structure that ensure
the overall consistency of the knowledge represented by it. The knowledge represented via
conceptual structures is similar to the content represented by description logics (Wolter
and Zakharyaschev, 1999), since they also represent knowledge about concept hierarchies7.

In this section, I will present this novel belief-revision-like model of conceptual revision.
More specifically, I will first define a revision and a contraction operation that work on
conceptual structures. Then, I will show how the conceptual revision model satisfies several
rationality postulates analogous to the AGM ones for belief revision theories (Alchourrón,
Gärdenfors, and Makinson, 1985).

6.2.1 Conceptual structures and conceptual hierarchies
The conceptual revision model will be equipped with a change mechanism similar to the
one of base-generated belief revision framework, but the units of change are structure
mirroring Thagard’s conceptual systems rather than belief bases. In this way, Thagard’s
changes can be mirrored at their native level of abstraction, namely the conceptual level.

The conceptual revision framework takes as its units of changes set-theoretic entities
which are called conceptual structures. We define two different domains, one for concepts
and one for individual objects, as the primary elements of a conceptual structure. Our
conceptual structures enrich these two basic domains with different relations between ele-
ments of these domains. Mirroring Thagard’s system, we define three two-place relations
between elements of the concept domain (kind-relation, part-relation, rule-relation) and
one two-place relation between elements of the object domain and elements of the concept
domain (instance-relation).

Formally, a conceptual structure is defined as follows: CS = ⟨C, O, K, P, R, I⟩ is a
conceptual structure iff,

• C and O are (possibly empty) finite domains of (respectively) atomic concepts and
individual objects.

• K = {⟨x, y⟩, . . .} and P = {⟨x, y⟩, . . .} are two-place irreflexive relations between
elements of the concept domain, such that x, y ∈ C and ⟨x, y⟩ is an ordered pair.
They represent respectively Thagard’s kind and part links between concept nodes.
If ⟨x, y⟩ ∈ K, we write x ⊏K y (same for x ⊏P y, if ⟨x, y⟩ ∈ P ).

• R = {⟨x, y⟩, . . .}, with x, y ∈ C and ⟨x, y⟩ is an ordered pair, is a two-place anti-
symmetric relation between elements of the concept domain. It represents Thagard’s
rule links between concept nodes.

between me and Sena Bozdag. As such, I will use the first person plural subject in these two sections.
7AGM-style and base-generated revision theories in description logics are also proposed in (Ribeiro and

Wassermann, 2007) and in (Ribeiro and Wassermann, 2009)
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• I = {⟨a, x⟩, . . .} with a ∈ O and x ∈ C and ⟨a, x⟩ is an ordered pair, is a two-place
anti-symmetric relation between elements of the object domain and elements of the
concept domain. It represents Thagard’s instance links between object and concept
nodes.

We can then single-out specific kind-relations and part-relations through a tree-like
structural requirement. Relations satisfying this requirement are then called respectively
kind-hierarchies and part-hierarchies. This requirement is our way of rationally recon-
structing Thagard’s implicit structural requirements on conceptual systems. Similarly, we
introduce criteria to single out certain rule and instance relations as consistent rule and
instance relations. With these further criteria we mirror common constraints on how knowl-
edge is represented in a consistent way by frames (cf. Andersen et al. 2006; Gamerschlag
et. al. 2013). Then, a conceptual structure is a conceptual hierarchy iff its kind relation is
a kind-hierarchy, its part relation is a part-hierarchy, its rule relation is a consistent rule
relation, its instance relation is a consistent instance relation, and all the concepts and
objects occurring in its relations are members respectively of the concept domain or the
object domain.

More formally, CH = ⟨C, O, Kh, Ph, Rcons, Icons⟩ is a conceptual hierarchy iff:

• C and O are (possibly empty) finite domains of respectively concepts and objects,
which include all the concepts and objects that appear in the relations.

• Kh is a kind-hierarchy, i.e. a transitive kind-relation K = {⟨x, y⟩, . . .} that, if non-
empty, has a top element and from any other element of the ordering there exists a
unique path to this top element.

• Ph is a part-hierarchy, i.e. a transitive part-relation P = {⟨x, y⟩, . . .} that, if non-
empty, has a top element and from any other element of the ordering there exists a
unique path to this top element.

• Rcons is a consistent rule-relation, i.e. a rule-relation R = {⟨x, y⟩, . . .} such that
∀x, y, z ∈ C if ⟨x, y⟩ ∈ Rcons and z ⊏K x, then ⟨z, y⟩ ∈ Rcons.

• Icons is a consistent instance-relation, i.e. an instance-relation I = {⟨a, x⟩, . . .} such
that ∀x, y ∈ C and ∀a ∈ O if ⟨a, x⟩ ∈ Icons and x ⊏K y, then ⟨a, y⟩ ∈ Icons.

We define the top element in a kind-relation (part-relation) as follows: given a concep-
tual structure H and the concept domain CH and the kind-relation KH (part-relation PH)
of H, a concept a ∈ CH is a top element in KH (PH) iff for all concepts t ̸= a in CH which
occur in a pair in KH (PH), ⟨t, a⟩ ∈ KH (∈ PH). By a unique path to the top element from
any other element we mean that, given a is a top element in a kind-relation (or in a part-
relation), for all t ̸= a which occur in the kind-relation (part-relation), if ⟨t, y⟩ and ⟨t, z⟩
are pairs in the kind-relation (part-relation) such that y ̸= z, then either ⟨z, y⟩ or ⟨y, z⟩ is
also a pair in the same relation. In other words, kind-hierarchies and part-hierarchies do
not allow upward branchings (Figure 6.1).
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Figure 6.1: A consistent conceptual structure made of four concepts and four kind-links
between them.

6.2.2 Revision on conceptual structures
In this section we will describe how a conceptual structure should be revised in our frame-
work. Revising a conceptual structure means adding new elements (of a conceptual struc-
ture) to an existing conceptual structure, while preserving (or restoring) the consistency of
the revised (new) conceptual structure. The information we want to add (or delete) can be
a concept, a kind-relation, a part-relation, a rule-relation, or an instance-relation. Consis-
tency is characterized by the idea of conceptual hierarchies, i.e. by structural restrictions
on the different kinds of relations connecting concepts and objects within a conceptual
structure. Therefore, the goal of our conceptual revision framework is to define change
operations which preserve these structural limitations.

We start with identifying the form of the eligible arguments for a revision. Suppose we
want to revise an existing conceptual structure with an instance (i.e. an instance-addition
in Thagard’s framework). Suppose we want to add that Bob is an orca (I⟨Bob, orca⟩).
If the existing structure does not already contain the concept of an orca and the object
Bob, simply adding the instance link would not make sense. Hence, while formalising the
arguments for conceptual revisions, we explicitly state every element included in them.
That is, we express the above instance link as a (partial) conceptual structure (let us call
it C) which consists of the following: CC = {orca}, OC = {Bob}, IC = {⟨Bob, orca⟩}. If we
add to this structure an empty part-relation, an empty kind-relation and an empty rule-
relation we obtain a full conceptual structure. Therefore our conceptual revision framework
allows full or partial conceptual structures as arguments.

Next, we have to choose what kind of revision operation we want in our framework.
The consistency of the revised (conceptual) structure could for instance be preserved while
making the additions, or it could instead be restored after the addition process (Hansson,
2010). The former approach it is typical of the AGM belief-revision paradigm (Alchourrón,
Gärdenfors, and Makinson, 1985), while the latter is common amongst base-generated
revision theories (Hansson, 1999; Rott, 2001). In what follows we opt for the second
approach. Given a conceptual structure and an argument of revision, we will first add
them on top of each other, obtaining a possibly inconsistent new conceptual structure,



224 6. Cognitive Models of Conceptual Change

then we will retrieve the consistent parts of this structure to build the revised (consistent)
conceptual structure.

In base-generated belief revision, one adds the new information to the existing body of
beliefs via a set-theoretical union operation.8 The potential inconsistency in the expanded
belief set is caused by too much information. To eliminate this inconsistency, the (less
entrenched) beliefs responsible for it are deleted from the new belief set.

In our framework, the inconsistency of a conceptual structure may be caused by too
much information or by too little information. In fact, the pivotal requirement of transi-
tivity for the relations of a conceptual hierarchy could be lost during revision. In order
to restore the consistency of a conceptual structure, we need to eliminate the inconsistent
parts and to repair the transitivity of its relations. We will deal with the transitivity is-
sue in the first step of our revision, i.e. the addition of new information to a conceptual
structure (which constitutes the operation of conceptual expansion). In the second step
of our revision, we will instead deal with the problem of inconsistent parts, proposing a
mechanism that retrieves consistent parts of the expanded conceptual structure9.

Conceptual expansion We will define conceptual expansion as the process of adding
new information to a conceptual structure, without necessarily preserving the consistency
of the expanded structure. More specifically, conceptual expansion will be performed via
the fusion models.

A tuple CS⊕ = ⟨CS, ⊕⟩ is fusion model on conceptual structures iff CS is a set of
conceptual structures that is closed under the total conceptual fusion function ⊕ from
CS × CS to CS, uniquely determined by the following:

• CA⊕B = CA ∪ CB

• OA⊕B = OA ∪ OB

• KA⊕B = TC(KA ∪ KB)

• PA⊕B = TC(PA ∪ PB)

• RA⊕B = TC|KA⊕B(RA ∪ RB)
8We significantly simplify the mechanism of base generated revisions. In fact the new information is

added on top of a structure called a belief base which is the foundation of an agent’s beliefs. Moreover, the
addition of the new information is set-theoretical only if we are dealing with flat belief bases which are
not ordered by a preference or entrenchment relation. Full theories of belief revision usually include such
orderings to account for the rationality of changing beliefs. Adding beliefs in the AGM paradigm also goes
further than the union operation as it involves taking the deductive closure of the new belief set.

9While we could keep the expansion process simple and deal with the (possibly lost) transitive closure
in the process of retrieving information, we believe it is more natural to restore the transitivity required
for consistency as part of the expansion operation. One reason is that restoring transitive closure will be
done by adding new links, and keeping all additions as part of the expansion and limiting the process of
retrieval of information to elimination of some (less entrenched) parts of the expanded structure which
contribute to the inconsistency allows simpler definitions for the two processes. Another reason is that
this allows us to characterise a conceptual expansion operation which results in structures which resemble
conceptual hierarchies to an extent that they are somehow useful in practice.
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• IA⊕B = TC|KA⊕B(IA ∪ IB)

TC stands for the transitive closure operation on our sets of pairs. For instance, the
transitive closure of a kind-relation K is the smallest transitive set of pairs that contains
K such that if ⟨a, b⟩ and ⟨b, c⟩ is in TC(K) then ⟨a, c⟩ ∈ TC{K}. Transitive closure on
rule-relations and instance-relation are via transitivity modulo the kind-relation. Thus, an
instance-relation I is transitively closed modulo the relevant kind-relation K (TC|K) iff
given ⟨b, c⟩ ∈ K and ⟨a, b⟩ ∈ I, then also ⟨a, c⟩ is in I.

The above model specifies how to add a full conceptual structure on top of another
one. It can be generalized for fusing partial conceptual structures in the following way:

A tuple ⟨C, O, K, P, R, I,
⊕⟩ is a generalized fusion model on (possibly partial) con-

ceptual structures iff C is a finite concept domain, O is a finite object domain, K is a
kind-relation, P is a part-relation, R is a rule-relation, I is an instance-relation, and ⊕ =
{⊕C , ⊕O, ⊕K , ⊕P , ⊕R, ⊕I} is the family of total fusion functions from ⟨C, O, K, P, R, I⟩ ×
⟨C, O, K, P, R, I⟩ to ⟨C, O, K, P, R, I⟩ determined uniquely by the following:

• ⊕C is a function from C × C to C such that CA ⊕C CB = CA ∪ CB

• ⊕O is a function from O × O to O such that OA ⊕O OB = OA ∪ OB

• ⊕K is a function from K × K to K such that KA ⊕K KB = TC{KA ∪ KB}

• ⊕P is a function from P × P to P such that PA ⊕P PB = TC{PA ∪ PB}

• ⊕R is a function from R × R to R such that RA ⊕R RB = TC|K(RA ∪ RB)

• ⊕I is a function from I × I to I such that IA ⊕I IB = TC|K(IA ∪ IB)

We show with an example how conceptual expansion via conceptual fusion models
works. Let H be the conceptual hierarchy depicted in Figure 6.1 such that

CH = {[mammal], [human], [whale], [orka]}

OH = PH = RH = IH = ∅.

KH = {⟨human, mammal⟩, ⟨whale, mammal⟩, ⟨orka, whale⟩, ⟨orka, mammal⟩}.

Let A be a (partial) conceptual structure consisting of: CA = {[fish], [orka]}, OA =
{(Bob)}, KA = {⟨orka, fish⟩}, IA = {⟨Bob, orka⟩}. Then, by the (generalized) fusion
model, we can obtain the conceptual structure H

⊕
A determined by the following ele-

ments:

CH
⊕

A = {[mammal], [human], [whale], [orka], [fish]},

OH
⊕

A = {(Bob)},

KH
⊕

A = {⟨human, mammal⟩, ⟨whale, mammal⟩, ⟨orka, whale⟩,

⟨orka, mammal⟩, ⟨orka, fish⟩},
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IH
⊕

A = {⟨Bob, orka⟩, ⟨Bob, fish⟩⟨Bob, whale⟩, ⟨Bob, mammal⟩},

PH
⊕

A = RH
⊕

A = ∅.

The instance pairs ⟨Bob, mammal⟩, ⟨Bob, whale⟩ and ⟨Bob, fish⟩ in IH
⊕

A are addi-
tions to the simple union of IH and IA via the transitive closure operation.

[fish]

[orka] (Bob)

K

I

[orka]

[human] [whale]

[mammal]

[fish]

(Bob)

K

I

IK

K K

K

I

I

Figure 6.2: The partial conceptual structure A (on the left) and the conceptual structure
H

⊕
A (on the right).

Conceptual revision Conceptual expansion may not always produce a conceptual hi-
erarchy. Since our aim is to obtain conceptual hierarchies as the result of revisions, we
propose a consistency check mechanism for restoring the consistency of conceptual struc-
tures. This mechanism is a modified version of the consolidation operation described in
relation to the base generated revisions (Rott, 2001, p. 40).

In what follows, we use the notions of a substructure and a maximal hierarchy within a
conceptual structure. A conceptual structure H is a substructure of a conceptual structure
H ′ (H ⊆ H ′) iff all the components of H are subsets of the respective components of H ′.
H is a maximal hierarchy within H ′ iff H is a substructure of H ′ and any expansion of H
within H ′ is not a conceptual hierarchy.

While revising a conceptual structure, we first expand it with the argument of the revi-
sion. Since it might be the case that the expansion operation fails to produce a conceptual
hierarchy, we resort to a selection mechanism which marks off the best maximal hierarchies
within the expanded conceptual structure. The maximality principle is assumed in order to
preserve as much information as possible while revising. In order to meet some rationality
criteria, such selection mechanisms usually rely on an ordering of the alternatives based
on the preferences of the selecting agents. In the context of scientific theory change the
preferences of the agents may be shaped by principles such as conservativity, simplicity,
generality, etc. It can be argued that conservativity (i.e., the principle of minimal change)
should not be a preference criteria for revolutionary change, since scientific revolutions
involve radical shifts in the conceptual structure of scientific theories. The identification
of these preference criteria, together with their measurement and their weight in choosing
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the best scientific theories is out of the scope of this paper. Hence, we will assume an
arbitrary preference ordering for each set of conceptual structures prior to revisions, and
we will determine how this preference ordering reacts to revisions. Since we are dealing
with revolutionary change in particular, an important assumption we will hold is giving
priority to new data, that is, the argument of a revision. This preference ordering is a novel
addition to Thagard’s framework, which does not include any way of comparing conceptual
structures during the revision process10. We introduce this preference ordering in order to
have an adequate conceptual revision mechanism.

A preference ordering may rate multiple conceptual hierarchies as the best ones. In the
belief revision literature, these cases are commonly solved by taking the intersection of the
selected alternatives, following the partial meet contraction and revision operations intro-
duced within the AGM paradigm. However, as we will show with an example, intersecting
multiple conceptual hierarchies may generate inconsistent conceptual structures. As a so-
lution to this problem, we propose a repetitive revision operation, where the intersection
mechanism is repeated until a conceptual hierarchy is obtained.

A conceptual revision model is a tuple CS⊕≤ = ⟨CS, ⊕, ≤⟩, such that

• ⟨CS, ⊕⟩ is a fusion model on conceptual structures, and

• ≤ is a connected preorder on a set of conceptual structures.

As determined for the fusion models and conceptual expansions, our revision models can
be generalized using the generalized fusion operator ⊕ in place of the fusion operator ⊕.
However, we require the object of the revision to be a fully formed conceptual structure,
while the argument of the revision can be a partial one. Consequently, the result of a
conceptual revision via our described expansion operations (particularly via the generalized
version) is always a conceptual structure.

A generalized conceptual revision model is a tuple ⟨C, O, K, P, R, I,
⊕

, ≤⟩, such that

• ⟨C, O, K, P, R, I,
⊕⟩ is a generalized fusion model on conceptual structures, and

• ≤ is a connected preorder on a set of conceptual structures.

The preorder between conceptual structures is a preference ordering. If X, Y are con-
ceptual structures in a set, and X ≤CS⊕≤ Y , we say the conceptual structure X is at least
as preferred as the conceptual structure Y given the model CS⊕≤. The best conceptual
structures in a set are the ones that are minimal under ≤, i.e., X is minimal under ≤ in a
set S of conceptual structures iff for all Y in S, it holds that X ≤CS⊕≤ Y .

We propose that after the revision, the preference ordering on a set of conceptual struc-
tures changes as follows: let CS be a non-empty set of conceptual structures, a (possibly
partial) conceptual structure H as the argument of revision, and let ≤ be the pre-revision
preference ordering on CS and ≤′ be the revised preference ordering, then,

10We should note that Thagard has an evaluation mechanism between different conceptual systems based
on the notion of explanatory coherence (Thagard, 2000). However, his mechanism is used only to compare
fully finished conceptual structures after the changes have taken place. We leave the study of the relations
between Thagard’s evaluation mechanism and our preference ordering for future work.
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• for all A, B ∈ CS, if H ⊆ A and H ̸⊆ B then A ≤′ B and B ̸≤′ A, and if H ⊆ B and
H ̸⊆ A then B ≤′ A and A ̸≤′ B,

• otherwise, A ≤′ B iff A ≤ B.

Since our revision operation involves changing the preference order in a revision model,
it is essentially a model-changing operation. Therefore, even if the expansion of the initial
conceptual structure with the argument of the revision is a conceptual hierarchy, the revi-
sion operation does not reduce to expansion, since changes on the preference ordering are
significant for iterating any change operation on the new conceptual structures.

To see how the revision operation is applied to conceptual structures, consider the
conceptual hierarchy H and the partial conceptual structure A in the above example.
Suppose we want to revise H with A instead of simply expanding the former with the
latter. The first step of the conceptual revision process consists of the aforementioned
expansion H

⊕
A (depicted in Figure 2). Since H

⊕
A is not a conceptual hierarchy,

we continue the revision operation by identifying and intersecting the best conceptual
hierarchies within H

⊕
A (determined by ≤ on CS). As the new data in this revision is

the partial conceptual structure A, after the revision, the conceptual hierarchies of which
A is a substructure are strictly more preferred over the ones which exclude some part of A.
Then, an easy way to identify the best maximal hierarchies within H

⊕
A is to start with

A as the base structure and expand it within H
⊕

A until reaching a maximal conceptual
hierarchy. However, it might be the case that there are no maximal hierarchies within the
expanded structure that include the new data. Then, one identifies all maximal hierarchies
within the expanded structure; their preference ordering is based on the ‘otherwise’ clause
in our definition above.

The following is the unique conceptual hierarchy M (Figure 6.3) within H
⊕

A which
fits the description: CM = {[fish], [orka]}, OM = {(Bob)}, KM = {⟨orka, fish⟩}, IM =
{⟨Bob, orka⟩, ⟨Bob, fish⟩}, PM = RM = ∅. The revision of H with A finalises here.

[orka]

[fish]

(Bob)

K

I

I

Figure 6.3: The conceptual hierarchy M .

Our next example shows how the revision operation is applied repetitively. Suppose we
want to revise a conceptual structure X such that CX = {a, b, A, B}, KX = {⟨a, A⟩, ⟨b, A⟩,
⟨a, B⟩, ⟨b, B⟩, ⟨B, A⟩, ⟨A, B⟩, } and OX = PX = RX = IX = ∅ with the empty conceptual
structure {∅}. There are two maximal hierarchies within the expanded conceptual structure
X ⊕{∅} whose kind relations are the following, KX1 = {⟨a, A⟩, ⟨b, A⟩, ⟨a, B⟩, ⟨b, B⟩, ⟨B, A⟩}
and KX2 = {⟨a, A⟩, ⟨b, A⟩, ⟨a, B⟩, ⟨b, B⟩, ⟨A, B⟩}. Suppose they are preferred equally.



6.2 A Model of Conceptual Revision 229

Then, their intersection includes a kind-relation which does not have top element, i.e.
KX1∩X2 = {⟨a, A⟩, ⟨b, A⟩, ⟨a, B⟩, ⟨b, B⟩}, that cannot be the kind-relation of a conceptual
hierarchy. We therefore repeat the revision operation, first determining the best maxi-
mal hierarchies within the conceptual structure X1 ∩ X2. These are the hierarchies with
the kind-relations KY = {⟨a, A⟩, ⟨b, A⟩} and KZ = {⟨a, B⟩, ⟨b, B⟩}. If they are preferred
equally, then the revised conceptual hierarchy has in its concept domain only the concepts
a and b, together with an empty kind-relation11.

We can then define our conceptual revision operation as follows12:
Given a generalized conceptual revision model ⟨C, O, K, P, R, I,

⊕
, ≤⟩, and given H is

a conceptual structure and A is a (partial) conceptual structure, H revised with A (let us
denote it with H ∗ A) is determined by the following cases:

1. ∩(B : B is a maximal hierarchy within H
⊕

A and for all maximal hierarchies C ⊆
H

⊕
A it holds that B is at least as preferred as C based on the revised preference

ordering ≤′) if ∩B constitutes a conceptual hierarchy,

2. ∩(C : C is a maximal hierarchy within ∩B and for all maximal hierarchies D ⊆ ∩B
it holds that C ≤′ D) if ∩B does not constitute a conceptual hierarchy and ∩C
constitutes a conceptual hierarchy,

3. repeat case 2 substituting ∩B with ∩C until reaching a conceptual hierarchy as the
result of the intersection if otherwise.

6.2.3 Contraction on conceptual structures
Contracting a conceptual structure means eliminating a part of it. While our contraction
operation is defined based on conceptual revision, it differs from revision significantly in
terms of how the argument of a contraction should be formulated or expressed. Suppose
we want to contract an instance-pair ⟨x, y⟩ from a conceptual structure. In regards to
the arguments of revision, we required that each element that constructs a relation or a
link is explicitly stated as part of the argument. An analogous way of formulating the
argument of contraction would be the following C = {y}, O = {x}, I = {⟨x, y⟩}. However,
it is not (always) necessary to eliminate the concept and the object in order to eliminate
the instance-link. Hence, a well-formed argument for our contraction operation does not
have the limitation we proposed for revisions. Thus, an argument of contraction can be
any element of a conceptual structure. As we did for revision, we require the object

11Both examples of conceptual revision reveal a significant amount of information loss as a result. This
is connected to the revolutionary aspect of the scientific changes we want to represent. As it was famously
stressed by Kuhn (Kuhn, 1970), scientific revolutions involve often the loss of information in the transition
from one scientific theory to its successor, a phenomenon commonly known in philosophy of science as
Kuhnian loss.

12We state the generalized conceptual revision models in the definition. Given that both H and A are
fully formed conceptual structures, the same definition can be applied via the conceptual revision models
with the fusion operator ⊕ in place of

⊕
.
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of the contraction to be a fully formed conceptual structure, while the argument of the
contraction can be a partial one. Therefore, the result of a conceptual contraction is always
a conceptual structure.

In order to formalize conceptual contraction, we introduce in our revision models a
set-theoretical elimination operation ⊖:

Given that A and B are conceptual structures, A ⊖ B = A/B, such that

• CA⊖B = CA/CB

• OA⊖B = OA/OB

• KA⊖B = KA/KB

• PA⊖B = PA/PB

• RA⊖B = RA/RB

• IA⊖B = IA/IB

That is, we simply eliminate B from A. It is easy to generalise the ⊖ operation as we
did for the fusion operation:

A generalized elimination operation is a family of elimination functions ⊖ = {⊖C , ⊖O,
⊖K , ⊖P , ⊖R, ⊖I} from ⟨C, O, K, P, R, I⟩×⟨C, O, K, P, R, I⟩ to ⟨C, O, K, P, R, I⟩, such that:

• ⊖C is a function from C × C to C such that CA ⊖C CB = CA/CB

• ⊖O is a function from O × O to O such that OA ⊖O OB = OA/OB

• ⊖K is a function from K × K to K such that KA ⊖K KB = KA/KB

• ⊖P is a function from P × P to P such that PA ⊖P PB = PA/PB

• ⊖R is a function from R × R to R such that RA ⊖R RB = RA/RB

• ⊖I is a function from I × I to I such that IA ⊖I IB = IA/IB

Note that the elimination operation does not include taking the transitive closures of
the resulting relations.

A conceptual revision and contraction model is a tuple CS⊕⊖≤ = ⟨CS, ⊕, ⊖, ≤⟩, such
that

• ⟨CS, ⊕⟩ is a fusion model on conceptual structures,

• ⊖ is the set-theoretical elimination operation on conceptual structures, and

• ≤ is a connected preorder on a set of conceptual structures.
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The revision and contraction models can be generalized using the generalized fusion
operator ⊕ in place of the fusion operator ⊕ and the generalized contraction operator ⊖
in place of the ⊖ operator.

A generalized conceptual revision and contraction model is a tuple CS
⊕

⊖≤ = ⟨CS,
⊕

, ⊖,
≤⟩, such that

• ⟨CS,
⊕⟩ is a generalized fusion model on conceptual structures,

• ⊖ is the generalized elimination operation, and

• ≤ is a connected preorder on a set of conceptual structures.

As in the case of revision, in our framework the outcome of a contraction operation
on a conceptual structure ought to be a conceptual hierarchy. It should also be the case
that contraction operations do not expand the contracted structures with novel relations,
concepts or objects13. As we will see, even if nothing is added to a conceptual structure
through contraction, the hierarchical structure may be lost. For instance, contracting a
structure with respect to a kind-link may affect the transitivity of the kind-relation hence
breaking the hierarchical structure. We restore the consistency of contracted conceptual
structures as we did for revised structures.

Since our contraction operation is an elimination operation, the preference ordering is
not affected while contracting conceptual structures. The ordering plays the same role it
did in restoring consistency, however it does not change in the process. As an example of
a contraction, consider the conceptual hierarchy H ′, such that

CH′ = {[mammal], [whale], [orka], [narhwale]},

OH′ = IH′ = PH′ = RH′ = ∅

KH′ = {⟨whale, mammal⟩, ⟨orka, mammal⟩, ⟨orka, whale⟩, ⟨narwhale, whale⟩,

⟨narwhale, mammal⟩}.

Consider also the partial conceptual structure A′, such that CA′ = {[orka], [narwhale]}
and KA′ = {⟨narhwale, whale⟩, ⟨orka, whale⟩, ⟨orka, mammal⟩, ⟨narwhale, mammal⟩}.
Suppose we want to contract H ′ with respect to A′. We start with the simple elimination
of A′ from H ′, obtaining H ′⊖A′, such that

CH′⊖A′ = {[mammal], [whale]}

KH′⊖A′ = {⟨whale, mammal⟩}

OH′⊖A′ = RH′⊖A′ = PH′⊖A′ = IH′⊖A′ = ∅.

13This is another reason in favour of keeping the operation of adding relations or links to recover
transitivity as part of the conceptual expansion. This way, we can use the exact process defined for
revisions in order to retain consistency after conceptual contraction without making any additions to the
conceptual structure.
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The output of this particular contraction H ′ − A′ (Figure 6.4) is equal to H ′⊖A′,
since the latter is a conceptual hierarchy, and the conceptual contraction process does not
involve the change of preference ordering. If it were the case that H ′⊖A′ is not a conceptual
hierarchy, the consistency of the resulting conceptual structure would be recovered via the
same process we described for conceptual revisions, based on the initial preference ordering
of H ′⊖A′.

[orka]

[whale]

[mammal]

[narwhale]

K

K

K

KK

[whale]

[mammal]

K

Figure 6.4: The conceptual hierarchy H ′ (on the left) and the conceptual hierarchy H ′ −A′

(on the right).

In the following definition we state the generalized conceptual expansion and generalized
conceptual elimination operators in the definition. Given both H and A are fully formed
conceptual structures, the same definition can be applied via the fusion operator ⊕ and
the elimination operator ⊖.

Given a generalized conceptual revision and contraction model CS
⊕

⊖≤, and given H
is a conceptual structure and A is a (partial) conceptual structure, H contracted with A
(let us denote it with H − A) is determined by the following cases:

1. ∩(B : B is a maximal hierarchy within H⊖A and for all maximal hierarchies C ⊆
H⊖A it holds that B is at least as preferred as C based on the preference ordering
≤) if ∩B constitutes a conceptual hierarchy,

2. ∩(C : C is a maximal hierarchy within ∩B and for all maximal hierarchies D ⊆ ∩B
it holds that C ≤ D) if ∩B does not constitute a conceptual hierarchy and ∩C
constitutes a conceptual hierarchy,

3. repeat case 2 substituting ∩B with ∩C until reaching a conceptual hierarchy as the
result of the intersection if otherwise.

6.2.4 Rationality postulates for conceptual change
In this section we will show how our conceptual revision models satisfy several rationality
postulates analogous to the AGM ones for belief revision (Alchourrón, Gärdenfors, and
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Makinson 1985). Since our system works at the conceptual level of abstraction, we cannot
in fact straightforwardly apply the AGM postulates to it. Thus, for each AGM revision
postulate we will try to develop an analogous postulate at the conceptual level. We will
also discuss rationality postulates for conceptual contraction, trying to comprehend the
counterparts of the conceptual revision ones.

First, we show that a conceptual counterpart of the AGM closure and consistency pos-
tulates for revision is satisfied in our framework14. We will cal this first conceptual revision
postulate the hierarchy postulate. This postulate amounts to the claim that a conceptual
revision operation always results in a conceptual hierarchy. Recall in fact that for a concep-
tual structure to be a conceptual hierarchy, the information represented by the relations of
the structure should not be contradictory. A conceptual hierarchy is furthermore closed,
in the sense that none of the links needed for the transitive closures of the relations is
missing. Hence, in our framework the consistency of a conceptual structure is intertwined
with its completeness. Our framework satisfies this postulate thanks to the conjunction of
the following properties: all conceptual structures have at least one maximal conceptual
hierarchy as their substructure (due to their finiteness), the preference ordering always
yields some minimal (most preferred) conceptual hierarchy (due to its connectedness), and
a conceptual hierarchy can always be reached in finitely many iterations of our revision
operation.

Next, we show that our framework satisfies a success postulate, i.e. the claim that if
the argument of a conceptual revision is a conceptual hierarchy, the argument becomes a
substructure of the revised conceptual structure. This postulate corresponds to a weakened
version of the AGM success postulate for revisions15. For the satisfaction of this postulate,
it suffices that the argument of the revision is among the minimal conceptual structures in
the (revised) preference ordering. This is achieved since our revision mechanism involves
exactly this reordering of the preferences when revising a conceptual structure.

The third rationality postulate we consider is the vacuity postulate, i.e. the requirement
that if the expansion of a conceptual structure is a conceptual hierarchy, this expansion
is equal to the output of the revision process without the reordering of the preference
relation. This requirement corresponds to the vacuity postulate in the AGM theory and it
is satisfied by our framework because such an expanded conceptual hierarchy becomes the
unique maximal conceptual hierarchy within itself.

Lastly, we consider the inclusion postulate, i.e. the requirement that the outcome of
a conceptual revision is a substructure of the result of expanding the original conceptual
structure with the argument of the revision. This postulate corresponds to the AGM

14Our consistency claim is stronger than what is required by the AGM consistency postulate, which
includes the requirement that the new belief is not a contradiction.

15The AGM success postulate requires inclusion of the new belief without an antecedent that says it is
a consistent belief. On the other hand, the success postulate required for base-generated beliefs by Rott
(Rott, 2001) and Hansson Hansson (1999) has that antecedent. We consider the weaker version of this
postulate due to the strong consistency claim we established. Otherwise we have a contradiction saying
the result of a conceptual structure is always consistent and if we revise a conceptual structure with a
contradiction, the contradiction is part of the revised structure.
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inclusion postulate for revisions. This requirement makes sure that a conceptual structure
is not expanded further than what is needed to consistently include the argument of the
revision. This postulate is satisfied in our framework since all the steps of our revision
operation involve only substructures of the expanded conceptual structure16.

After we mapped and analyzed some rationality postulates for conceptual revision
framework, let us briefly discuss the corresponding contraction postulates. The first concep-
tual contraction postulate requires the result of a conceptual contraction to be a conceptual
hierarchy. Since conceptual contraction involves the same consistency-recovery mechanism
of conceptual revision, this principle is satisfied for reasons analogous to the revision case.
The success postulate for conceptual contraction requires the argument of the contraction
(a conceptual structure or a part of one) to not be a substructure of the contracted con-
ceptual structure. A weaker version of this principle, which limits the argument of the
contraction to non-empty conceptual structures or their parts, is satisfied in our frame-
work. This is because, once the argument of the contraction is deleted from the initial
conceptual structure, nothing is added to the resulting structure while rebuilding consis-
tency. The vacuity postulate for conceptual contraction states that, if the argument of the
contraction does not occur in the initial conceptual structure, then no changes are made to
this structure. In our framework, this requirement is not satisfied, since it is possible that
the initial conceptual structure changes in the process of consistency-recovery. A weaker
version of this requirement, assuming that the initial conceptual structure is a conceptual
hierarchy, is however satisfied since the initial conceptual hierarchy is the unique maximal
conceptual hierarchy within itself. Lastly, we consider the requirement that the result of
the contraction operation is such that, if it is expanded with the argument of the con-
traction, the initial conceptual structure is recovered (this requirement corresponds to the
AGM recovery postulate, which is loosely the counterpart of the inclusion postulate for
revision). This requirement is not satisfied in our framework, since our contraction opera-
tion may involve deleting more than the argument of the contraction (due to consistency
requirements).

6.3 Conceptual Revision in Revolutionary Times
In the last section, I presented a novel conceptual revision model, showing how its revision
and contraction operations satisfy several rationality postulates for conceptual change. In
this section, I will show how we can mirror the dynamics of Thagard’s conceptual systems
in this conceptual revision system. In Section 3.1, I will demonstrate how almost every kind
of change described by Thagard can be adequately represented in the conceptual revision

16It should be noted that there are three other basic AGM rationality postulates we did not discuss
here. One is the extensionality postulate which states that revision of a belief set with classically logically
equivalent arguments lead to logically equivalent revised belief sets. Since we did not comment on identity
principles concerning the conceptual structures, we cannot map this requirement to our framework for now.
The other two postulates are about revisions with conjunctions. We do not consider these as relevant for
our current conceptual revision framework, since we did not discuss relations between structures which
would correspond to logical connectives.
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framework via a suitable (combination of) change operation(s) on conceptual structures.
In Section 3.2, I will instead show how the conceptual revision framework can be applied to
rationally reconstruct one of Thagard’s main case studies of scientific revolution, namely,
the chemical revolution.

6.3.1 Mirroring Thagard’s kinds of changes in our conceptual
revision model

As we saw in Section 1.1, Thagard described a fine-grained hierarchy of nine degrees
of changes applicable to conceptual systems, ordered by their increasing strength (i.e.
from the weakest to the strongest): instance-addition, rule-addition, part-addition, kind-
addition, concept-addition, kind-collapse, hierarchy-reorganization, and tree-switching.

In what follows, we will discuss each of these degrees of change one by one, from
the weakest to the most radical one. With the exception of tree-switching, whose case
will be completely different from all the others, the structure of our discussion will take
the following form. We will first present how a given kind of change operates on one of
Thagard’s conceptual systems. Then, we will explain informally how this kind of change
can be represented in our framework. After that, we will give a formal definition of the
degree of change under focus, showing how it can be seen as a special case of (a series of
applications of) our revision and/or our contraction operations. Finally, we will present a
toy-example of this kind of change in our framework in order to make clearer our proposed
formalization.

Instance-addition. The addition of an instance-link is the least radical kind of change
described by Thagard. It consists in the addition of a single instance link between one
object node and one conceptual node of a given conceptual system, representing the infor-
mation that a given individual is an instance of a given concept.

In our framework, we can mirror instance-addition via our conceptual revision oper-
ation, revising a given conceptual structure with a (partial) conceptual structure that
includes a non-empty instance-relation. In particular, we can define three different forms
of instance-addition as three different constraints on the argument of revision. The most
general form, what we will call general instance-addition, consists of requiring the argu-
ment of the revision to include a non-empty instance relation. A more specific form of
instance-addition, i.e. pure instance-addition, requires the argument of the revision to
have instance-relation as its only non-empty relation (concept and object domains can be
non-empty as well). Finally, we have an atomic instance-addition when the argument of
the revision of a pure instance-addition has a single instance-pair as its instance-relation.
This last form corresponds to (our interpretation of) Thagard’s understanding of instance-
addition.

More formally, a conceptual revision operation H ∗ A represents a general instance-
addition iff IA ̸= ∅. A conceptual revision operation H ∗ A represents a pure instance-
addition iff IA ̸= ∅ and KA = PA = RA = ∅. A conceptual revision operation H ∗ A
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represents an atomic instance-addition iff |IA| = 1 and KA = PA = RA = ∅. For an
example of a general instance-addition, see the conceptual revision example presented in
Section 3.1.

Rule-addition. The second kind of change described by Thagard consists in adding a
rule-link between two concepts nodes of a given conceptual system. This change represents
adding the information that a generic holds between two concepts.

In our framework, rule-addition is represented similarly as we treated instance-addition,
i.e. by requiring the argument of our revision operation to include a non-empty rule-
relation. As in the previous case, three different forms of rule-addition can be defined,
differing in terms of generality: general rule-addition, pure rule-addition, and atomic rule-
addition.

More formally, a conceptual revision operation H ∗ A represents a general rule-addition
iff RA ̸= ∅. A conceptual revision operation H ∗ A represents a pure rule-addition iff
RA ̸= ∅ and KA = PA = IA = ∅. A conceptual revision operation H ∗ A represents an
atomic rule-addition iff |RA| = 1 and KA = PA = IA = ∅.

As a simple example of rule-addition, let H be composed by:

CH = {[mammal], [whale], [orka]}

OH = IH = PH = RH = ∅

KH = {⟨whale, mammal⟩, ⟨orka, mammal⟩, ⟨orka, whale⟩}.

and let A be composed by CA = {[mammal], [air]}, OA = ∅, RA = {⟨mammal, air⟩}
(intuitive interpretation: mammals breath air)17. The output of this revision operation
expands the rule-relation of H with RA and the pairs ⟨whale, air⟩, ⟨orka, air⟩. We then
have H

⊕
A = M where:

CM = {[mammal], [whale], [orka], [air]},

OM = PM = IM = ∅

KM = {⟨whale, mammal⟩, ⟨orka, whale⟩, ⟨orka, mammal⟩}

RM = {⟨mammal, air⟩, ⟨whale, air⟩, ⟨orka, air⟩}.

Since M is a conceptual hierarchy, we have H ∗ A = M .

17Note that it would be possible in our framework to differentiate rules in terms of their intended inter-
pretation, so that for instance the rule breath is represented differently from other rules (e.g. swim) that
may be added to a given conceptual structures. We decided to follow Thagard in leaving the interpretation
of the rules outside our framework, considering all rules as uninterpreted rule-pairs.
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Part-addition. The third kind of change described by Thagard is called part-addition
or decomposition. It consists in adding a part-link between two concept nodes of a given
conceptual system, representing the information that a relation of part-hood holds between
the concepts denoted by these nodes.

In our framework, part-addition is represented similarly as we treated instance-addition
and rule-addition, i.e. by requiring the argument of our revision operation to include a
non-empty part-relation. As in the previous cases, three different forms of part-addition
can be defined, differing in terms of generality: general part-addition, pure part-addition,
and atomic part-addition.

More formally, a conceptual revision operation H ∗A represents a general part-addition
iff PA ̸= ∅. A conceptual revision operation H ∗ A represents a pure part-addition iff
PA ̸= ∅ and KA = RA = IA = ∅. A conceptual revision operation H ∗ A represents an
atomic part-addition iff |PA| = 1 and KA = RA = IA = ∅.

As a simple example of part-addition, take H to be such that:

CH = {[mammal], [whale], [orka]}

OH = PH = RH = IH = ∅

KH = {⟨whale, mammal⟩, ⟨orka, mammal⟩, ⟨orka, whale⟩}

Let A be composed by CA = {[mammal], [lungs]}, OA = ∅, PA = {⟨mammal, lungs⟩
(intuitive interpretation: mammals have lungs), and KA = RA = IA = ∅. The out-
put of this revision operation expands the part-relation of H with PA and the pairs
⟨whale, lungs⟩, ⟨orka, lungs⟩.We then have H

⊕
A = M where:

CM = {[mammal], [whale], [orka], [lungs]},

OM = RM = IM = ∅

KH = {⟨whale, mammal⟩, ⟨orka, mammal⟩, ⟨orka, whale⟩}

PM = {⟨mammal, lungs⟩, ⟨whale, lungs⟩, ⟨orka, lungs⟩}.

Since M is a conceptual hierarchy, we have H ∗ A = M (Figure 5).

Kind-addition. The fourth kind of change described by Thagard consists in adding
a kind-link between two concept nodes of a given conceptual system, representing the
information that a relation of kind-hood holds between the concepts denoted by these
nodes. Furthermore, Thagard, following Carey’s terminology for conceptual change in child
psychology (Carey, 1985), distinguishes two special cases of (series of) kind-addition(s):
coalescence and differentiation. The former type of kind-addition happens when we add a
superordinate conceptual node linked via a series of kind-links with some concept nodes
that had no superordinate kinds before. The latter denotes instead the addition of some
subordinate conceptual nodes connected via a series of kind-links with an conceptual node
that before had no subordinate kinds.
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Figure 6.5: The output of the rule-addition example (on the left) and the output of the
part-addition example (on the right).

In our framework, kind-addition is represented by requiring the argument of our re-
vision operation to include a non-empty kind-relation. As in the previous case, three
different forms of kind-addition can be defined, differing in terms of generality: general
kind-addition, pure kind-addition, and atomic kind-addition. Coalescence and differentia-
tion can then be represented as specific cases of general or pure kind-addition.

Formally, a conceptual revision operation H ∗ A represents a general kind-addition iff
KA ̸= ∅. A conceptual revision operation H ∗ A represents a pure kind-addition iff KA ̸= ∅
and PA = RA = IA = ∅. A conceptual revision operation H ∗ A represents an atomic kind-
addition iff |KA| = 1 and PA = RA = IA = ∅. Furthermore, a general or pure kind-addition
H ∗ A is a coalescence iff there exists a x ∈ CA such that ⟨y, x⟩ ∈ KA and there is no w
such that ⟨y, w⟩ ∈ KH . A general or pure kind-addition H ∗ A is instead a differentiation
iff there is a x ∈ CA such that ⟨x, y⟩ ∈ KAi

and there is no w such that ⟨w, y⟩ ∈ KH . For
an example of a general kind-addition, see the conceptual revision example presented in
Section 2.2.

Concept-addition. The fifth kind of change described by Thagard consists in adding
a new concept node to a given conceptual system. This type of change represents the
addition of a new concept to a given scientific theory18.

In our framework, concept-addition is represented by requiring the argument of our
revision operation to include a new concept. Several further restrictions can be imposed.
For instance, we present here two more specific forms of concept-addition: unique concept-
addition and connected concept-addition. We have a unique concept-addition when there
is only one new concept in the argument of the revision (it may also include non-empty
relations). We have a connected-concept addition when each new concept in the argument

18Thagard also stresses how concept-addition sometimes involves combining two simple concepts into
a complex one (Thagard, 1992, pp. 35-36). This combination aspect of concept-addition is outside the
scope of the present version of our framework, since we assumed for simplicity that the concept universe
is constant.
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figures in at least one relation.
Formally, a conceptual revision operation H ∗ A is a concept-addition iff there is an

x ∈ CA such that x /∈ CH . A concept-addition H ∗ A is then a unique concept-addition iff
there is only one x ∈ CA such that x /∈ CH . A concept-addition H ∗ A is then a connected
concept-addition iff for all x ∈ CA such that x /∈ CH there exists a y ∈ CA ∪ OA such that
⟨x, y⟩ or ⟨y, x⟩ is in KA ∪PA ∪RA ∪IA . For an example of a unique and connected concept-
addition see the conceptual revision example in Section 2.2, the rule-addition example, or
the part-addition example above.

Kind-collapse. The sixth change described by Thagard is kind-collapse, i.e. the removal
of a (series of) kind-link(s) from a given conceptual system. More specifically, Thagard
says that kind-collapse is the inverse change of differentiation, so that kind-collapse denotes
removing all subordinate kinds of a given conceptual node.

In our framework, kind-collapse is a specific case of our contraction operation, namely,
the contraction of a given conceptual structure with respect to a set of kind-pairs all of
which have the same element as their second element and such that in the contracted
structure this element has no subordinate kinds.

Formally, a conceptual contraction operation H − A is a kind-collapse iff ∃x ∈ CH

such that KA = {⟨j1, x⟩, . . . , ⟨jn, x⟩} and ¬∃y ∈ CH ∪ CA such that ⟨y, x⟩ ∈ KH−A. This
definition of a kind-collapse makes it the inverse process of a differentiation, just like in
Thagard’s system. For an example of a kind-collapse, see the contraction example in
Section 2.3.

Hierarchy-reorganization. The seventh kind of change in Thagard’s theory is the gen-
eral process of hierarchy-reorganization or branch-jumping, i.e. moving a set of concept
and object nodes from one part of a conceptual system to another one, thus changing
(some of) their relations. This change is typical of many scientific revolutions, such as the
Copernican revolution in which the earth branch-jumped from being a unique entity to a
kind of planet.

In our framework branch-jumping is a specific series of our contraction and revision op-
erations that does not involve changes to the concept-domains of the conceptual structures
involved. The output of such combination is the transportation of certain parts of a given
conceptual structure to a different part of it, involving some change in its relations.

Formally, we say that the sequence of contraction and revision operations (H −A1)∗A2
represents a hierarchy-reorganization iff CH = C(H−A1)∗A2 , OH = O(H−A1)∗A2 and either
KH ̸= K(H−A1)∗A2 or PH ̸= P(H−A1)∗A2 or RH ̸= R(H−A1)∗A2 or IH ̸= I(H−A1)∗A2 . Note that
we leave completely open how the relations between the objects and concepts involved in
the hierarchy-reorganization are transformed. Specific kinds of hierarchy-reorganization,
such as part-kind transformation, can then be defined by imposing further constraints on
the relations in the contraction and in the revision operation.

As an example of a hierarchy-reorganization, take H to be such that:

CH = {[animal], [fish], [mammal], [whale], [orka]},
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OH = IH = PH = RH = ∅

KH = {⟨whale, fish⟩, ⟨orka, fish⟩, ⟨orka, whale⟩, ⟨orka, animal⟩, ⟨whale, animal⟩,

⟨mammal, animal⟩, ⟨fish, animal⟩}.

Let A1 be {⟨whale, fish⟩, ⟨orka, whale⟩, ⟨orka, fish⟩} and A2 be composed by KA2 =
{⟨whale, mammal⟩, ⟨orka, whale⟩} , CA2 = {[whale], [orka], [mammal]}, OA2 = {∅} , and
PA2 = RA2 = IA2 = ∅.

The output of the hierarchy-reorganization H − A1 ∗ A2 is then equal to the structure
H ′ (Figure 6) where:

CH′ = {[mammal], [whale], [orka], [fish], [animal]},

O′
H = R′

H = P ′
H = I ′

H = ∅

K ′
H = {⟨whale, mammal⟩, ⟨orka, mammal⟩, ⟨orka, whale⟩, ⟨orka, animal⟩, ⟨whale, animal⟩,

⟨mammal, animal⟩, ⟨fish, animal⟩}.
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Figure 6.6: The input (on the left) and the output (on the right) of the hierarchy-
reorganization example.

Tree-switching The last change described by Thagard is tree-switching, i.e. the change
of the organizing principle of the whole hierarchy. This change implies thus re-interpreting
any kind-relation and part-relation. An example of this kind of change is the Darwinian
revolution, a revolution that involved the re-interpretation of kind-relations of biological
entities as historical kinship and not as they were before as morphological similarities. This
is the most radical change that can happen in science for Thagard, up to the point that
it is sufficient but not necessary for having a conceptual revolution. Only certain scientific
revolutions that are particularly radical exemplify tree-switching.

Since tree-switching is not really about changing the structure of a conceptual system,
focusing on the external interpretation of the conceptual system, it would be at least unclear
how to frame this kind of change in our framework. Using an epistemological metaphor,
modeling tree-switching in our framework would be like implementing a gestalt-operation
in traditional belief revision that changes the meaning of the logical consequence between
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beliefs. We therefore do not treat this kind of change in the present work, focusing only
on the first eight changes that affect the internal-structure of conceptual system, confident
that we do not lose too much in generality, since as Thagard himself acknowledges many
scientific revolutions do not even exemplify tree-switching.

6.3.2 A case study: the chemical revolution
We saw how our conceptual revision model is able to mirror eight out of nine kinds of
conceptual change described by Thagard. In order to further elucidate how our revision
model works, we will show how it can be applied to reconstruct one of Thagard’s main case
studies of radical conceptual change, i.e. the chemical revolution, as a series of applications
of our change operations on conceptual structures.

The chemical revolution and the underlying battle between phlogiston and oxygen
theory is one of the most famous examples of scientific revolution in the history of science.
Its exact unfolding and its significance for our ideas about scientific rationality and progress
have been heavily debated in philosophy, history, and sociology of science19. In what
follows, we will steer as clear as possible of controversies about this important episode of
scientific history. We will follow Thagard’s (Thagard, 1990, 1992) reconstruction without
committing ourselves to any specific historical or philosophical narrative.

Thagard describes the conceptual development of Laviosier’s oxygen theory as a suc-
cession of four different conceptual systems, representing different historical stages of
Laviosier’s research: the early experiments of 1772, the developing views of 1774, the
developed views of 1777, and the mature oxygen theory of 1789.

In the first half of the eighteenth century, the leading chemical theory of gases was
centered around the concept of phlogiston. Phlogiston, according to Stahl who coined the
name, was the inflammable principle, the basic substance responsible for the processes of
combustion and ‘calcination’ (i.e. rusting, the production of calx). When a substance
burns, it releases its phlogiston content into the air, transforming the ambient air into
phlogisticated air. This saturation of the air with phlogiston was used by Priestley to
explain the puzzling fact that the combustion of bodies, when it takes place in a closed
vessel, often stops before the body is fully burnt. When the air is saturated by phlogiston,
the burning (aka the release of phlogiston from the body) naturally stops. Phlogiston
theory could thus explain many puzzling phenomena of the behavior of gases through a
single principle.

The story of Laviosier’s oxygen theory begins in 1772, when the young Laviosier started
to focus on how exactly air combines with substances during combustion and calcination.
Laviosier learned from Guyton de Morveau that metal gain weight during calcination,
which in the phlogiston paradigm of the time meant that metal gain weight while losing
phlogiston. Laviosier then noticed that effervescence occurs when metals are placed in

19A very partial primer on these literatures about the chemical revolution consists of (Toulmin, 1957;
Musgrave, 1976; Thagard, 1990; Chang, 2012; Kusch, 2015; Conant, 1950; Golinski, 1992; Siegfried, 2002;
Kim, 2003).
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acids. He took this phenomenon to be evidence for the idea that calxes contain air of some
kind. This fact could explain why metals gain weight during calcination: they gain weight
because in the process of producing calx, air gets fixated into it. Here is how Thagard
depicts the conceptual system related to these findings (Figure 6.7).

[air] [calx]

[substance]

[metal]

[gain weight]
K

K
K

R (contain) R(becomes)

R(calcination)

Figure 6.7: Laviosier’s 1772 conceptual system. Thick lines represent kind-links, while
dashed lines represent rule-links.

In this simple conceptual system, we have five conceptual nodes: substance, air, calxes,
metals, gain weight. Air, calxes, and metals are three kinds of substances. This kind
hierarchy is represented by the three kind links in the picture. We then have three rule
links, representing the following information: metal gain weight during calcination, metals
become calxes, calxes contain air (Laviosier’s aforementioned hypothesis). This conceptual
system can be thought as the simple conceptual correlate of the hypotheses that Laviosier
made after his experiments in 1772.

We can represent in our conceptual revision framework this conceptual system with the
following conceptual structure L1:

CL1 = {[substance], [air], [calx], [metal], [gainweight]},

KL1 = {⟨air, substance⟩, ⟨calx, substance⟩, ⟨metal, substance⟩},

RL1 = {⟨calxes, air⟩, ⟨metals, calxes⟩, ⟨metals, gainweight⟩},

OL1 = IL1 = PL1 = ∅.

It is easy to see that this conceptual structure is a consistent one, since its kind-relation
is a kind-hierarchy and its set of rules is a consistent set of rules.

The second stage of Laviosier’s conceptual development, in Thagard’s reconstruction,
consists of his developing views in 1774. Following his hypotheses of 1772, Lavoisier con-
ducted experiments on the combustion of phosphorous and sulfur, discovering that the
products of their combustion weigh more than the originals. Thus, during combustion,
just like in calcination, the weight of substances increases. Just like for calxes, Lavoisier
thought that the fixation of air in the substances was responsible for this increase. More
specifically, in 1774 Lavoisier proposed a rough classification of airs, specifying three kinds
of air: fixed, nitrous, and common air. Common air was then the type of air that Lavoisier
considered responsible for the increase of weight in the calcination of metals and in the
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combustion of phosphorous and sulfur. Here is how these new conceptual developments
can be represented as a conceptual system in Thagard’s framework (Figure 6.8).

[air] [phosphorus] [sulfur] [calx]

[substance]

[metal]

[gainweight]

[fixed air][nitrous air][common air]

K

K

K
K

K

R (contain)
R(becomes)

R(calcination)

K K
K R (ab) R (ab)

R (bu)

R (bu)

Figure 6.8: Laviosier’s 1774 conceptual system. Thick lines represent kind-links, while
dashed lines represent rule-links. In the rule-links, R(ab) stands for ‘absorb’, while R(bu)
stands for ‘burn’.

In respect to the 1772 conceptual system, we have here five new conceptual nodes.
Two of them represent phosphorous and sulfur, the new materials with which Lavoisier
experimented. The other three new conceptual nodes represent the three kinds of air
that Lavoisier distinguished: fixed air, nitrous air, and common air. We have also three
new kind-links, representing the fact that all these newly defined airs are kinds of air.
In regards to rule links, we have four new rule-links, corresponding to the absorption of
air by phosphorus and sulfur and their gain of weight while burning. Finally, one rule
(calxes contain air) of the 1772 conceptual system has been contracted, replaced by the
more specific rule (calxes contain common air). In Thagard’s classification of degrees of
conceptual change, from 1772 to 1774 Lavoisier’s conceptual system has been through
concept addition, kind-addition, rule-deletion, and rule-addition.

We can represent in our conceptual revision framework this conceptual system with the
following conceptual structure L2:

CL2 = {[substance], [air], [calx], [metal], [gainweight], [phosphorus], [sulfur],

[fixedair], [nitrousair], [commonair]},

KL2 = {⟨air, substance⟩, ⟨calx, substance⟩, ⟨metal, substance⟩, ⟨fixedair, air⟩, ⟨nitrousair, air⟩,

⟨commonair, air⟩, ⟨commonair, substance⟩, ⟨nitrousair, substance⟩, ⟨fixedair, substance⟩},

RL2 = {⟨calxes, commonair⟩, ⟨metals, calxes⟩, ⟨metals, gainweight⟩, ⟨phosphorus, commonair⟩,

⟨sulfur, commonair⟩, ⟨phosphorus, gainweight⟩, ⟨sulfur, gainweight⟩},

OL2 = IL2 = PL2 = ∅.
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It is easy to see that this conceptual structure is a consistent one, since its kind-relation
is a kind-hierarchy and its set of rules is a consistent set of rules.

We can then show how in our conceptual revision model we can mimic the transforma-
tion from the conceptual structure L1, i.e. the one related to Lavoisier’s early experiments
of 1772, to the conceptual structure L2, i.e. the one related to Lavoisier’s developing views
of 1774. As we mentioned earlier, this transformation involves rule-deletion, rule-addition,
concept-addition, and kind-addition. As such, it can be represented via the combination
of our contraction operation and our revision operation. More specifically, we contract
from L1 the rule-relation ⟨calx, air⟩ and then we revise the contracted structure with the
conceptual structure Linfo1:

CLinfo1 = {[air], [calx], [gainweight], [phosphorus], [sulfur], [fixedair],

[nitrousair], [commonair]},

KLinfo1 = {⟨fixedair, air⟩, ⟨nitrousair, air⟩, ⟨commonair, air⟩},

RLinfo1 = {⟨calxes, commonair⟩, ⟨phosphorus, commonair⟩, ⟨sulfur, commonair⟩,

⟨phosphorus, gainweight⟩, ⟨sulfur, gainweight⟩},

OLinfo1 = ILinfo1 = PLinfo1 = ∅

This last conceptual structure consists of all and only the new information acquired
by Lavoisier between the 1772 and the 1774. Formally, we get the following revision:
(L1 − R(calx, air)) ∗ Linfo1. We can see that the result of this operation is indeed equal to
L2, thanks to the pivotal addition of the kind-pairs ⟨commonair, substance⟩, ⟨nitrousair,
substance⟩, ⟨fixedair, substance⟩ to ensure the transitivity of the kind-relation. This ad-
dition makes this relation a kind-hierarchy and the whole revised structure a consistent
conceptual structure equal to L2.

The third stage of Lavoisier’s conceptual development according to Thagard are his
developed views of 1777. Laviosier focused his efforts on refining his classification of airs,
dividing common air into two components: pure air and mophette (nitrogen). He then
hypothesized that pure air was the part of common air responsible for the augmentation of
weight in the combustion of combustibles (i.e. substances like sulfur and phosphorus) and
in the calcination of metals. Here is Lavoisier’s conceptual system in 1777 (Figure 6.9).

In comparison to the 1774 conceptual system, considering the node representing mophette
just a relabeling of the conceptual node representing nitrous air, we have one new concep-
tual node: pure air. We have the addition of two part-links (mophette is a part of common
air, pure air is a part of common air), together with the addition of a new kind-link (pure
air is a kind of air, not depicted in the picture), representing Lavoisier’s hypothesis that
common air is composed by two kinds of air: mophette and pure air. The rule-links
connecting sulfur, phosphorus, and calx to common air got substituted with analogous
rule-links connecting these substances with pure air, representing Lavoisier’s idea that the
agent responsible for combustion and calcination is this newly discovered part of common
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Figure 6.9: Laviosier’s 1777 conceptual system. Rule-links related to the conceptual node
gainweight and kind-links related to the conceptual nodes mophette and pureair are ab-
sent from the picture for representational clarity, but they stay the same as in the 1772
conceptual system. Thick lines represent kind-links (K) and part-links (P ), while dashed
lines represent rule-links.

air. From 1774 to 1777, we witness then a series of changes including concept-addition,
kind-addition, rule-deletion, part-addition, and rule-addition.

We can represent the 1777 conceptual system with the following conceptual structure
L3:

CL3 = {[substance], [air], [calx], [metal], [gainweight], [phosphorus],

[sulfur], [fixedair], [mophette], [commonair], [pureair]},

KL3 = {⟨air, substance⟩, ⟨calx, substance⟩, ⟨metal, substance⟩, ⟨fixedair, air⟩,

⟨commonair, air⟩, ⟨nitrousair, air⟩, ⟨pureair, air⟩, ⟨commonair, substance⟩,

⟨nitrousair, substance⟩, ⟨pureair, substance⟩, ⟨fixedair, substance⟩},

RL3 = {⟨calxes, pureair⟩, ⟨metals, calxes⟩, ⟨metals, gainweight⟩, ⟨phosphorus, pureair⟩,

⟨sulfur, pureair⟩, ⟨phosphorus, gainweight⟩, ⟨sulfur, gainweight⟩}

P3 = {⟨mophette, commonair⟩, ⟨pureair, commonair⟩},

OL3 = IL3 = ∅.

It is easy to see that this conceptual structure is a consistent one, since its kind-relation
and part-relation are both hierarchies and its set of rules is a consistent set of rules. We
can then show how in our conceptual revision model we can model the transformation
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Lavoisier’s 1774 conceptual structure L2 to Lavoisier’s 1777 conceptual structure L3. Like
the step before, also this transformation can be represented via a contraction, followed
by a revision. More specifically, we contract from L2 the set of rule-relations Rcontr2 =
{⟨calx, commonair⟩, ⟨phosphorus, commonair⟩, ⟨sulfur, commonair⟩} and then we revise
the contracted structure with the conceptual structure Linfo2:

CLinfo2 = {[air], [calx], [phosphorus], [sulfur], [mophette], [commonair], [pureair]},

OLinfo2 = ILinfo2 = ∅,

KLinfo2 = {⟨pureair, air⟩},

RLinfo2 = {⟨calx, pureair⟩, ⟨phosphorus, pureair⟩, ⟨sulfur, pureair⟩}

PLinfo2 = {⟨pureair, commonair⟩, ⟨mophette, commonair⟩}.

This last conceptual structure represents the new information acquired by Lavoisier
between the 1774 and the 1777. Formally, we get the following revision: (L1 − Rcontr2) ∗
Linfo2. We can see that the result of this operation is indeed equal to L3, thanks to the
pivotal addition of the kind-relation K(pureair, substance) to ensure the transitivity of the
kind-relation. This addition makes this relation a kind-hierarchy and the whole revised
structure a consistent conceptual structure equal to L3.

The finale stage of Lavoisier’s conceptual development corresponds to his mature oxygen
theory of 1789. At this point Lavoisier had completely rejected any possibility of making
his theory compatible with the findings of phlogiston theorists and he has identified oxy-
gen as the principle behind the role previously assigned to pure air in combustion and
calcination. Oxygen for Lavoisier is a basic element along with light, caloric (the element
then believed to be responsible for heat phenomena), hydrogen, and nitrogen. Oxygen
gas is obtained when oxygen combines with the caloric element. Oxygen is the principle
behind the combustion of non-metallic elements such as sulfur, phosphorus, and charcoal.
Oxygen is also responsible for the oxidation of metals, understood now as the production
of oxides. Lavoisier also drastically expanded the explanatory power of his oxygen theory
in several directions. A crucial one was his new theory of water, understood by Lavoisier as
a compound of oxygen and hydrogen, in contrast to the phlogiston theory that understood
water as an element. Lavoisier in 1789 thus offered a fully worked-out, unifying chemical
framework centered around the elements of oxygen and caloric. Here is how a very small
part of Lavoisier’s 1789 conceptual system can be rendered as a conceptual system (Figure
6.10).

In comparison to the 1777 conceptual system, considering oxygen a relabeling of pure
air, we have six new conceptual nodes. Two nodes represent two new kinds of substances:
elements of bodies and non-metallic ones. other three represent three kinds of elements:
light, caloric. We then have one representing the new concept of oxides. The kind of
airs distinguished in the 1777 conceptual system with their respective conceptual nodes,
kind-links and part-links got collapsed. Instead, we have the addition of new kind-links
and new part-links. We have also the addition of a rule-link (non-metallic substances
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[elements of bodies] [non − metallic]

[phosphorus] [sulfur]

[metal]

[substance]

[gainweight]

[light] [caloric][oxygen]

[air] [oxides]

K
K K

K K

R (combine)

K
K

R (absorb)

P
P

R (produce)

Figure 6.10: A small part of Laviosier’s 1789 conceptual system. Some kind-links and
rule-links are not depicted for representational clarity, but they stay the same as in the
1777 conceptual system. Thick lines represent kind-links (K) and part-links (P ), while
dashed lines represent rule-links.

absorb oxygen). Finally, a concept got deleted (calx), together with the related rule-
links, substituted by the rule-links related to oxygen and oxides. This final step involves
the deletion of concepts, kind-links, part-links, and rule-links, a hierarchy-reorganization
(involving rule-relation), together with the addition of concepts, kind-links, part-links, and
rule-links.

Lavoisier’s 1789 conceptual system (or more actually a small part of it) can then be
represented by the following consistent conceptual structure L4:

CL4 = {[substance], [air], [oxides], [metal], [gainweight], [phosphorus], [sulfur],

[elementsofbodies], [non − metallic], [light], [oxygen], [caloric]},

KL4 = {⟨air, substance⟩, ⟨elementsofbodies, substance⟩, ⟨oxides, substance⟩,

⟨metal, substance⟩, ⟨non − metallic, substance⟩

⟨light, elementsofbodies⟩, ⟨caloric, elementsofbodies⟩, ⟨oxygen, elementsofbodies⟩,

⟨light, substance⟩, ⟨caloric, substance⟩, ⟨oxygen, substance⟩, ⟨sulfur, substance⟩,

⟨sulfur, non − metallic⟩, ⟨phosphorus, substance⟩, ⟨phosphorus, non − metallic⟩},

RL4 = {⟨metal, oxygen⟩, ⟨metal, oxides⟩, ⟨metal, gainweight⟩, ⟨phosphorus, oxygen⟩,

⟨sulfur, oxygen⟩, ⟨phosphorus, gainweight⟩, ⟨sulfur, gainweight⟩,

⟨non − metallic, oxygen⟩},

P4 = {⟨oxygen, air⟩, ⟨caloric, air⟩},
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OL4 = IL4 = ∅.

We can then show how in our conceptual revision model we can model the transforma-
tion from Lavoisier’s 1777 conceptual structure L3 to Lavoisier’s 1789 conceptual structure
L4. Like the other two steps, also this transformation can be represented via a contrac-
tion, followed by a revision. More specifically, we contract from L3 the partial conceptual
structure Lcontr3:

KLcontr3 = {⟨fixedair, air⟩, ⟨commonair, air⟩, ⟨mophette, air⟩, ⟨pureair, air⟩}

PLcontr3 = {⟨mophette, commonair⟩, ⟨pureair, commonair⟩}

RLcontr3 = {⟨calx, pureair⟩, ⟨metal, calx⟩}.

Then, we revise the contracted structure with the conceptual structure representing
(the small relevant part of) the new information acquired by Lavoisier between the 1777
and the 1789, i.e. the partial conceptual structure Linfo3:

CLinfo3 = {[oxygen], [light], [phosphorus], [sulfur], [caloric], [air],

[non − metallic], [elementsofbodies], [oxides]},

KLinfo3 = {⟨elementsofbodies, substance⟩, ⟨non − metallic, substance⟩,

⟨phosphorus, non − metallic⟩, ⟨sulfur, non − metallic⟩, ⟨light, elementsofbodies⟩,

⟨caloric, elementsofbodies⟩, ⟨oxygen, elementsofbodies⟩},

RLinfo3 = {⟨non − metallic, oxygen⟩, ⟨metal, oxygen⟩, ⟨metal, oxides⟩}

PLinfo3 = {⟨oxygen, air⟩, ⟨caloric, air⟩}.

Formally, we get the following revision: (L3 − Rcontr3) ∗ Linfo3. We can easily see that
the result of this operation is indeed equal to L4.

More generally, thanks to this case study, we are able to appreciate how our conceptual
revision model is able to mirror several radical degrees of conceptual change in Thagard’s
system with a single combination of our contraction and our revision operations.

Let us recap the main steps of the present work. Starting from Thagard’s model of
scientific conceptual change, we saw his taxonomy of nine degrees of conceptual change
and his claim that belief revision theories can only account for the first two of them.
We then presented our system of conceptual revision, i.e. a belief-revision-like system for
conceptual structures. We showed how our conceptual revision and contraction operations
satisfy several rationality postulates analogous to the AGM ones. We then demonstrated
how our system, working at the conceptual level of abstraction, is able to mirror eight
out of nine kinds of conceptual changes described by Thagard. We also showed how one
of Thagard’s main examples of conceptual revolution, the chemical revolution, can be
rationally reconstructed in our framework as a series of applications of our conceptual
revision and contraction operations.
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More generally, our framework shows how belief revision theories can be mapped to the
conceptual level in order to obtain a logical interpretation of radical conceptual change.
The present work is only a first step towards a better understanding of the relationships
between belief change and conceptual change. Several directions of future work naturally
present themselves. Interesting ways of extending our framework include working with
expanding domains to model conceptual combination, adding the possibility of revising
conceptual structure with complex information (such as negative one, for instance) to
further model logical relationships between elements of a conceptual structure, having a
way of comparing differing conceptual structures in order to model Thagard’s explanatory
coherence notion, and also augmenting our conceptual structures in order to mimic more
elaborate approaches to theory-change (e.g. Kuhn 1970; Balzer et al. 1987; Andersen et
al. 2006; Masterton, Zenker, and Gärdenfors 2017; Kornmesser and Schurz 2018). These
extensions would allow to model even Thagard’s most radical type of conceptual change, i.e.
tree-switching. It would also be interesting to merge conceptual structure with (structured)
belief sets, in order to have a revision system capable of revising beliefs and concepts at the
same time. Such a conceptual-plus-belief-revision system would be able to model (some of)
the interesting connections between conceptual change and belief change, thereby offering
a more fine-grained logical reconstruction of scientific change.

6.4 Assessing Cognitive Models in the Toolbox Frame-
work

In this final section, I will analyze how cognitive models of conceptual change can be
classified within the Toolbox framework, i.e. the meta-framework for assessing models of
conceptual change that I presented in Chapter 2. More specifically, we will see how models
of conceptual change based on cognitive architectures such as conceptual systems, frames,
and conceptual spaces can be assessed along the nine evaluative dimensions of the Toolbox
framework: units of selection, concept ontology, concept structure, kinds and degrees of
conceptual change, degree of normativity, effectiveness of normative judgment, assump-
tions and consequences for conceptual change in science, assumptions and consequence for
conceptual change in philosophy, metaphilosophical assumptions and implications. Let us
survey how cognitive models of conceptual change perform in these dimensions, one by
one.

Units of selection This dimension judges models of conceptual change according to the
level of abstraction at which they identify conceptual entities as meaningful units of change.
The three types of cognitive model of conceptual change we treated in this Chapter come
equipped with different units of conceptual change, depending on the specific cognitive
architecture upon which their model is based. Thus, as we saw, frame-based models might
have as a meaningful unit of conceptual change a hierarchy of frames, while models based
on conceptual spaces can take a whole set of (sets of) cognitive dimensions as the starting
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point of their analysis. Despite the differences between these models, we can say that a
common tenet of cognitive models of conceptual change is to have as meaningful units of
conceptual change large sets of concepts organized in suitable hierarchies and intercon-
nected with adequate relations and constraints. Cognitive models of conceptual change
conceptualize thus their subject-matter as a large scale phenomenon, strongly focusing on
inter-conceptual relations and dependencies.

Concept ontology This dimension focuses on the compatibility of a given model of
conceptual change with the different philosophical positions on the ontology of concepts.
Cognitive models of conceptual change are particularly apt to be coupled with a psycholog-
ical view of concept ontology, due to their basic assumption of conceptualizing conceptual
change as a specific kind of modification of some cognitive structure. As I stressed in
Chapter 2, in fact, conceptual systems, frames, and conceptual spaces have all been used
as models of conceptual knowledge acquisition and dynamic in cognitive psychology and
they all can thus be given a very reasonable psychological interpretation. Moreover, con-
temporary cognitive science has an overwhelming preference for understanding concepts
primarily as psychological entities and therefore it seems only natural to couple the heavy
use of tools from cognitive science with a psychological view of concepts. Nevertheless,
cognitive models of conceptual change can still be reasonably coupled with an abstract
view of concept ontology, understanding the cognitive structures postulated by these mod-
els as abstract theoretical structures (cf. Gärdenfors’ (Gärdenfors, 2000) scientific reading
of the conceptual spaces framework). The linguistic and the worldly view of concepts
seem instead prima facie incompatible with cognitive models of conceptual change. Cogni-
tive architecture like frames and conceptual spaces are, in fact, often explicitly contrasted
with linguistic accounts of scientific concepts and theories by their supporters, who see
in their non-linguistic structure one of the reasons of the usefulness and expressiveness of
these models. Similarly, cognitive structures are often coupled with internalist cognitive
semantics, pushing supporters of models of conceptual change built on these structures
to have often an anti-externalist background of (meta-)semantic assumptions that clashes
with worldly views of concept ontology.

Concept structure This dimension focuses instead on how a given model of conceptual
change assumes the structure of concepts to be constituted. The vast majority of cogni-
tive models of conceptual change is explicitly coupled with a prototype view of concepts.
As we saw in Section 1, successful cognitive architectures such as frames and conceptual
spaces appeared historically as enrichment of a feature list representation of prototypes (cf.
Barsalou and Hale 1993; Thagard 1984; Gärdenfors 2000). Moreover, the heavy focus on
default knowledge and conceptual similarities is particularly apt to be coupled with a pro-
totypical view of concepts. That said, enthusiasts of others cognitively-focused theories of
concepts such as the exemplar view or the theory-theory can arguably find a way of inter-
preting cognitive models of conceptual change as building on a conceptual structure more
exemplar-based or more theory-based. Moreover, as I stressed in Section 1, some cognitive
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models of conceptual change (e.g. Giere 1988) have assumed a plurality of cognitive archi-
tecture in their toolkit, leaving open the possibility of coupling these kind of models with
a hybrid or a pluralist view of conceptual structure. Supporters of less cognitively-oriented
theories of conceptual structure that would like to employ cognitive models of conceptual
spaces would have instead to resort to a more deflationary reading of these models.

Kinds and Degrees of conceptual change This dimension focuses on the kinds and
degrees of conceptual change that a given model of conceptual change identifies. Cog-
nitive models of conceptual change are particularly useful for creating very fine-grained
taxonomies of kinds of conceptual change. As we saw in Section 1, in fact, all the cogni-
tive models that I presented give rise to interesting taxonomies of changes, understanding
scientific conceptual change as a series of possible modifications of specific parts of the re-
lated cognitive architectures. Whether based on conceptual systems, frames, or conceptual
spaces, cognitive models of conceptual change allow an extremely subtle analysis of con-
ceptual changes, tracing large-scale episodes of scientific change as gradual, step-by-step
specific transformations of several components of a (group of) cognitive structure(s). De-
pending on the particular model, the taxonomy of kinds of conceptual changes recognized
by cognitive models of conceptual change can vary in the number of changes isolated or in
how radical certain modifications of the structure are considered to be.

Degree of normativity This dimension tracks the extent to which a given model of
conceptual change is more or less normative in judging episodes of conceptual change.
Cognitive models of conceptual change tend to be more descriptive than normative in
their judgments of historical episodes. Discussions of what scientists should or should
not have done are often eschewed by these models in favor of less value-laden discussion
on the level of diachronic inter-communication between different scientific theories. That
said, some philosophers have coupled their cognitive models of conceptual change with a
more normative mechanism for judging historical episodes of conceptual change and their
alleged rationality. An example of such normative mechanism is Thagard’s (Thagard, 1992)
computational model of inter-theoretical consistency that allows him to give a general
measure of the empirical and theoretical coherence of competing scientific theories.

Effectiveness of normative judgment This dimension focuses on how effective the
normative judgment of a model of conceptual change is. Given the aforementioned lack
of normative judgments in most cognitive models of conceptual change, not a lot can
be said for what regards the possible effectiveness of such judgments. Looking at the
few cognitive models that are coupled with a normative mechanism, such as Thagard’s
(Thagard, 1992) model of conceptual revolutions, we can find that judgments of rationality
or irrationality are given quite firmly. In these models, in fact, the normative judgment
of (ir)rationality of a given historical episode of conceptual change is considered part of
the cognitive reconstruction of a scientific history and as such a scientific endeavor itself.
The normativity of these normative cognitive models of conceptual change is thus in the
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eyes of their supporters a scientific one, part of what is considered to be a naturalized
epistemology of science (cf. Thagard 1988; Giere 1988).

Assumptions/consequences for conceptual change in science This dimension fo-
cuses on the assumptions and the consequences of a given model of conceptual change in
relation to the problems that scientific conceptual change poses in philosophy of science.
Cognitive models of conceptual change depict a picture of scientific conceptual change that
is highly compatible with scientific progress, scientific objectivity, and scientific realism.
In fact, many cognitive models of science such as Thagard’s (Thagard, 1992, pp. 103-130)
one or Anderson’s, Barker’s, and Chen’s (Andersen et al., 2006, pp. 164-179) one have
as one of their main motivations the defense of a certain kind of realism and objectivity
against strongly relativist and pessimist positions. Thanks to their fine-grained taxonomy
of conceptual changes, cognitive models of conceptual change allow to recapture suitable
notions of inter-theoretical continuity between successive scientific theories. This renewed
continuity arguably diminishes the strength of pessimistic arguments for relativism and
subjectivity of scientific knowledge based on the existence of scientific revolutions. Simi-
larly, naturalized normative mechanisms for judging the rationality of episodes of scientific
changes like Thagard’s one give a new powerful tool of reconstruction to the supporters
of scientific progress and scientific objectivity. Cognitive models of conceptual change are
also usually coupled with somewhat realist position on the ontological import of scien-
tific theories, allowing their supporters to claim new evidence in favor of positions such as
constructive realism (Giere, 1988) or structural realism (Schurz and Votsis, 2014).

Assumptions/consequences for conceptual change in philosophy This dimension
focuses on the assumptions and the consequences of a given model of conceptual change
in relation to the problems that philosophical conceptual change poses. Cognitive mod-
els of scientific conceptual change analyze their subject-matter as completely analogous
to modifications of our conceptual knowledge in non-scientific contexts. In both science
and in our everyday life activities, the cognitive architectures that allow us to acquire and
revise our conceptual knowledge are gradually yet constantly modified by our many the-
oretical and practical activities. As such, the big picture of conceptual knowledge given
by cognitive models of conceptual change strongly implies the omnipresence of conceptual
change in virtually all our concept-based activities. Thus, philosophical concepts, just like
all the other types of concepts, should (according to these models) change together with
the dynamics of philosophical practice. How do philosophical conceptual change modifies
the related cognitive architectures and how different or similar this phenomenon is to its
scientific counterpart has not been yet explored so much. Cognitive models of philosoph-
ical conceptual change constitute indeed a promising field of future research and, judging
by the success of contemporary cognitive science and related application to scientific phe-
nomena, have arguably the power of clarifying (and perhaps solving) some debates about
conceptual change in philosophy.
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Metaphilosophical assumptions and implications This dimension focuses on the
metaphilosophical background that a given model of conceptual change has. The gen-
eral implications that cognitive models of conceptual change may have for philosophers
are all contained in the large-scale picture of human knowledge that contemporary cogni-
tive science gives us. One of these implication is, pace Fodor (Fodor, 1998) and Machery
(Machery, 2009), the everlasting centrality of conceptual knowledge for any scientifically-
minded account of epistemological activities. Concepts are still the main actors of virtually
all the cognitive models of human knowledge and they still provide the most meaningful
units of analysis of central psychological phenomena such as categorization, abstraction,
and several forms of inferential behavior. Philosophers should then focus more on con-
cepts and conceptual knowledge when they deal with related epistemological issues. Other
two general implications of cognitive models of conceptual change are the omnipresence of
default reasoning mechanisms and the peripheral role of language in many cognitive pro-
cesses. Contemporary cognitive science has in fact in the last forty years strongly stressed
the role of default reasoning and unconscious inferences in a lot of seemingly conscious
mental activities as the seemingly infinite literature on psychological biases and heuristics
shows. As the growing movement of experimental philosophy argues, the recognition of the
results of this kind of literature might force us to rethink traditional methods of philosoph-
ical analysis such as conceptual analysis or intuition-driven thought-experiments. At the
same time, the recognition of the possibility of non-linguistic analyses of epistemological
phenomena could spark some radical changes in certain deeply linguistic methodologies of
analytic philosophy such as linguistic analyses of both the intuitive and the experimental
kind.
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Chapter 7

Conclusions

After having analyzed the four different types of model of conceptual change individually,
it is now time to take a step back and look at these types of model collectively. In what
follows, I will present a combined analysis of the various models of conceptual change
that appeared in this work. By assessing them, comparing them, and judging them, a
general conception of the phenomenon of conceptual change in science and in philosophy
will appear.

In order to organize the collective analysis, I will rely on the structure of this work by
comparing the four types of model of conceptual change that were analyzed (respectively)
in the Chapters 3, 4, 5, and 6: pragmatic models of conceptual change, Darwinian models
of conceptual change, indeterminate models of conceptual change, and cognitive models
of conceptual change. Specifically, the procedure of Carnapian explication that we saw in
Chapter 3 will provide a paradigmatic example of a pragmatic model of conceptual change,
while the Darwinian model of conceptual evolution based on the notion of a conceptual
population that I presented in Chapter 4 will be our specimen of evolutionary models
of conceptual change. As instances of indeterminate models of conceptual change I will
take Waismann’s and Wilson’s frameworks that I presented in Chapter 5, while the cogni-
tive models of conceptual change built around (respectively) conceptual systems, frames,
and conceptual spaces seen in Chapter 6 will be treated as tokens of cognitive models of
conceptual change.

The comparison between these four different types of model of conceptual change will
be carried out using the Toolbox framework, i.e. the meta-framework for analyzing mod-
els of conceptual change that I presented in Chapter 2. The Toolbox framework analyzes
models of conceptual change along nine evaluative dimensions that check the performances
of a given (type of) model of conceptual change with respect to the units of selection, the
ontology of concepts, the structure of concepts, the kinds of conceptual change, the nor-
mativity, the effectiveness of the normative judgments, the assumptions and consequences
for conceptual change in science, the assumptions and consequences for conceptual change
in philosophy, and the metaphilosophical background that a model of conceptual change
exhibits.

At the end of Chapter 3, 4, 5, and 6, I already used the Toolbox framework to analyze
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the specific type of model of conceptual change that was the focus of the chapter. We
can see in the following chart how the four different types of model of conceptual change
performed across the nine evaluative dimensions of the Toolbox framework:

Explication Evolutionary Indeterminate Cognitive
Units single concept population holism cognitive structure

Ontology pluralistic public/anti-psych. linguistic psychology
Structure pluralistic plural/hybrid plural prototype

Kinds of CC trans-framework intra-pop./inter-pop. no kinds hierarchies
Normativity Instrumental selection + drift weak weak measures
Effectiveness pragmatics historical weak naturalized
CC in Science value-laden EET program linguistic progress

CC in Philosophy central evol. epist. CC everywhere CC everywhere
Metaphilosophy expl. ideal natural. epist. language-based cognition-based

There is a lot of to unpack in the chart above. In order to do that, I will analyze
every row separately, expanding for every dimension the evaluation of a given model of
conceptual change beyond the one-word summary of the above chart. In this way, we will
see that beneath the surface differences in strength and weaknesses that a glimpse at the
chart above shows, our analysis of these four types of model of conceptual change supports
a general conception of the phenomenon of conceptual change.

The first row of the chart corresponds to the dimension of the Toolbox framework
concerning the units of selection that a given type of model of conceptual change picks
out. Here is the expanded row of the chart:

Explication Evolutionary Indeterminate Cognitive
Units single concept, fo-

cus on diachronic
couple ED-ET, pos-
sible extension to
group of concepts

conceptual popula-
tion

localized holism, fo-
cus on small lin-
guistic practices

large-scale cogni-
tive architecture

At first, this evaluative dimension does not present a common trend, since each type of
model of conceptual change frames its subject matter through a different unit of selection.
As we saw in Chapter 3, Carnapian explication focuses on a single concept or, more accu-
rately, on the diachronic couple of concepts composed by the explicandum (ED) and the
explicatum (ET). That said, we saw that Carnapian explication can be successfully used to
analyze collective explications of small groups of concepts, such as the case of our phenom-
enal concepts of temperature (cf. Ch. 3, Sect. 4.3). The unit of selection for Darwinian
models of conceptual change is instead a conceptual population, i.e. a medium-sized group
of conceptual variants (cf. Ch. 4, Sect. 2). Both Waismann’s and Wilson’s indetermi-
nate models of conceptual change pick out bigger units of selection such as small linguistic
practices. Finally, cognitive models of conceptual change frame their subject-matter as a
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phenomenon understandable by means of large-scale cognitive architectures such as (sets
of) conceptual systems, frames, and conceptual spaces.

Looking at these four different units of selection a little bit closer, two common trends
appear: the centrality of concepts and a localized holism. First, all four types of model have
units of selection centered around concepts. Even large-scale structures such as (collections
of) frames and conceptual spaces are primarily made of concepts. Secondly, all four types
of model recognize that a meaningful analysis of conceptual change must take into account
some degree of localized holism in its unit of analysis. This localized holism is very evident
in indeterminate and cognitive models plead for the significance of context-sensitivity and
background knowledge in the analysis of a given episode of conceptual change. In evo-
lutionary and pragmatic models, instead, this localized holism is less explicit, but it can
be discerned in the populational thinking of Darwinian models and in the aforementioned
possibility of explicating entire groups of interrelated concepts.

The second row of the big chart corresponds instead to the dimension of the Toolbox
framework dedicated to the compatibility of a given model of conceptual change with the
different views on concept ontology. With respect to the big chart, I expanded this second
row, splitting the concept ontology dimension in four sub-dimensions corresponding to
the four main view on concept ontology (cf. Ch. 2, Sect. 1.1): the psychological, the
abstract, the linguistic, and the worldly view. In order to make the table more intuitive,
the compatibility of types of model with views on concept ontology is represented with five
different symbols, corresponding to five different levels of agreement: strongly incompatible
(−−), incompatible (−), compatible (=), very compatible (+), perfectly compatible (++).
Here is this expanded second row:

Explication Evolutionary Indeterminate Cognitive
Psychological = − + ++

Abstract + + − −
Linguistic + + ++ −
Worldly − + = −−

Looking at the four rows, we can see how compatible the four main views on concept
ontology are with the four types of model of conceptual change analyzed in this work. The
psychological view is of course extremely compatible with cognitive models and very com-
patible with indeterminate ones; it is also compatible with Carnapian explication, while
instead being incompatible with evolutionary models (due to the strong preference for
public/inter-subjective views of concepts of these kind of models). The abstract view is
instead very compatible with both Carnapian explication and Darwinian models, but it is
poorly equipped for the kind of flexibility required by indeterminate and cognitive models.
The linguistic view is perfectly compatible with the indeterminate view and very compati-
ble with both Carnapian explication and Darwinian models, while being incompatible with
cognitive models. Finally, the worldly view appears very compatible with Darwinian mod-
els and compatible with indeterminate models, while being incompatible with Carnapian
explication and strongly incompatible with cognitive models.
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Judging simply the degree of compatibility, the linguistic view of concept ontology
seems to come up as the most favored view by these four models of conceptual change.
Using a simple voting rule where a ‘+’ gives a +1 score and a ‘−’ a −1 score (while a
‘=’ adds 0 to the score), the linguistic view comes up with a summed preference of +3
(+1 of explication, +1 of evolutionary, +2 of indeterminate and −1 of cognitive models
preferences). The linguistic view is thus more preferred than all the other three alternatives,
since the psychological view scores a sum of +2, the abstract view gets 0, and the worldly
view a −1.

Thus, the linguistic and the psychological views of concepts appear mostly compatible
with different types of model of conceptual change. From these preferences, one can see
that most models of conceptual change favor a view of concepts that allows a high degree
of plasticity and flexibility, which is the main common feature of the linguistic and psy-
chological views that both the worldly and the abstract views lack. Both the linguistic
and the psychological view strike also a middle ground between strongly-subjective and
strongly-objective views of concepts, allowing different kinds of inter-subjectivity in their
different instantiations.

The third row of the big chart corresponds to conceptual structure, i.e. the dimension
of the Toolbox framework dedicated to the compatibility of a given model of conceptual
change with different accounts of how concepts are internally structured. Just like I did for
the row corresponding to concept ontology, I will expand this row by splitting it into several
different sub-rows. In the present case, I split it into eight different rows, corresponding
to the eight main theories of conceptual structure that we saw in Chapter 2 (cf. Ch. 2,
Sect. 1.2): definitional theories, functional theories, prototype theories, exemplar theories,
atomic theories, ability theories, and mixed theories. Just like in the preceding chart, also
in this chart I will represent the degree of compatibility of a given model with a given
theory by the use of ‘+’, ‘−’, and ‘=’ symbols:

Explication Evolutionary Indeterminate Cognitive
Definitional − = − −−
Functional + = + −−
Prototype = = + ++
Exemplar = = = +
Atomic − = − −−
Theory = = + +
Ability + = + +
Mixed = + + +

Looking at the eight rows we can see how much each (type of) theory of conceptual
structure is compatible with a given type of model of conceptual change. We can see, for
instance, that definitional theories are compatible only with evolutionary models, while
functional theories are instead very compatible with both Carnapian explication and in-
determinate models. Prototype theories are prima facie compatible with all four different
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theories, while exemplar and atomic theories do not fair as well. Theory theories are com-
patible with all models but the evolutionary ones, while ability and mixed theories seem
compatible with all four types of model of conceptual change.

The simple voting rule that we used for judging the most compatible view on the
ontology of concepts gives us, when applied to the case of theories of conceptual structure,
the following results. The most preferred theories of conceptual structure are prototype
theories, ability theories, and mixed theories, all with a summed score of +3. Theory
theories, exemplar theories, and functional theories follow with a score of (respectively)
+2, +1, and 0. Lastly, definitional theories and atomic theories both have a strongly
negative score of (respectively) -3 and -4.

Thus, prototype, ability, and mixed theories appear the views of conceptual structure
mostly compatible with different types of model of conceptual change. More generally, we
can see that the various models of conceptual change are often compatible with several
different theories of conceptual structures, showing therefore that they do not rely so much
on specific characteristics of conceptual structure. Another general trend that can be
discerned is a common preference for theories of conceptual structure that equip concepts
with a rich internal structure. This is shown by noting that all such inflationist theories
of conceptual structure (e.g. prototype theories, theory theories, ability theories, mixed
theories) are very compatible with different models of conceptual change. Theories that
give a very lightweight picture of conceptual structure, such as definitional and atomic
theories, are instead incompatible with most of the models seen so far.

The fourth row of the big chart corresponds instead to the dimension of the Toolbox
framework dedicated to the kinds and degrees of conceptual change that different models
recognize. Here is the expanded version of this row:

Explication Evolutionary Indeterminate Cognitive
Kinds of CC focus on trans-

framework changes,
external questions

intra-population
vs inter-population
changes (pragmatic
distinction)

no kinds or degree
of changes, plastic
and fluid picture of
CC

fine-grained hierar-
chies of kinds of
CC, gradual modifi-
cations of cognitive
structure

As the four columns show, this dimension presents a high variability of answers be-
tween the different types of model. Different models of conceptual change organize in fact
their subject-matter in very different ways, making the kinds and degree of conceptual
change recognized vary a lot between one model and the other. We saw in Chapter 3
that Carnapian explication focuses explicitly on one specific kind of conceptual change, i.e.
trans-framework changes where one (group of) concept(s) belonging to a given linguistic
framework gets (partially) substituted by another (group of) concept(s) belonging to an-
other linguistic framework. Explication does not divide conceptual change into multiple
kinds and degrees, focusing explicitly on the type of conceptual change that is philosophi-
cally more interesting, according to Carnap’s framework-based metaphilosophy. Darwinian
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models of conceptual change distinguish instead between changes happening within a sin-
gle conceptual population and inter-population changes. Moreover, we saw in Chapter
5 that indeterminate models of conceptual change do not divide changes into degrees or
kinds, claiming instead that the inherent plasticity of the phenomenon makes the changes
almost continuous in structure. Finally, cognitive models give very fine-grained hierarchies
of changes where several different degrees of conceptual changes are classified in terms of
how radically they modify the related cognitive structures.

The number and the nature of the degrees or kinds of conceptual change recognized are
then heavily dependent on the specific type of model of conceptual change that one favors.
No general trend about kinds and degrees of conceptual change can thus be discerned from
our analysis, since the division in kinds or degrees (or the lack of it) appears entangled with
the choice of a specific type of model. The only moral that can be drawn from these results
is that all four types of model treat the distinction between kinds of conceptual change
as a pragmatic choice somehow artificially imposed by the model and not as a distinction
essential to the phenomenon of conceptual change itself.

The fifth row of the big chart corresponds to the dimension of the Toolbox framework
dedicated to the degree of normativity that a given model of conceptual change supports:

Explication Evolutionary Indeterminate Cognitive
Normativity Normativity, but

value-laden kind of
rationality (instru-
mental)

evolutionary
kind of quasi-
normativity and
rationality, se-
lection vs. drift
approach

weak normativity,
CC as chaotic phe-
nomenon, heavy
drift

lack of focus on
normativity, possi-
ble inter-subjective
measures

As we saw in the preceding chapters, all the four types of model of conceptual change
support some degree of normativity in their analysis of historical episodes of change, al-
beit of a different kind. Carnapian explication is inherently connected with a heavily
value-laden kind of normativity, typical of the realm of external questions in Carnap’s
metaphilosophy. The normativity of Darwinian models of conceptual change is instead
analogous to the quasi-normativity at work in natural selection. As we saw in Chapter
4, the important distinction between cases of selection and cases of drift allows us to give
restricted and localized quasi-normative evaluations of episodes of conceptual change. A
small space for normativity is also left by indeterminate models although, as Wilson repeat-
edly stressed in his work, the space for normative judgments is quite small in the chaotic
dynamics by which concepts change. Few cognitive models of conceptual change dwell into
normative judgments, although the few ones that do that (e.g. Thagard’s one) present
inter-subjective measures of trans-theoretical coherence that make normative judgments
quite inter-subjective.

The general moral for normativity in conceptual change, according to the analysis of
these four types of model, is that conceptual change is a weakly normative phenomenon,
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dependent on a lot of context-dependency and value-ladenness, as well as subject to a great
dose of drift and sub-optimality.

The sixth row of the big chart depicts the dimension of the Toolbox framework dedicated
to the effectiveness of the normative judgments supported by a given model of conceptual
change:

Explication Evolutionary Indeterminate Cognitive
Effectiveness
of Normative
Judgment

Pragmatic matter
(instrumental ra-
tionality)

Quasi-Normativity
heavily dependent
on historical recon-
struction, internal
history reconstruc-
tion as a test for
normative claims

very weak judg-
ment, lack of
knowledge and
transparency

naturalized norma-
tivity, science of sci-
ence

In this row, consistently with the related previous row dedicated to the normative judg-
ments allowed by a given model, we can see a general trend towards value-laden normative
judgments. The weak kind of normativity that (to a different degree) all four types of model
support can only justify the kind of rationality dependent on previous agreement on shared
goals and values. This instrumental kind of rationality is the kind of effectiveness that nor-
mative judgments of these models of conceptual change explicitly or implicitly favor. We
saw in Chapter 3 how Carnapian explication is explicitly designed for being the vessel of
instrumental rationality judgments, since Carnap’s metaphilosophy allows value-free judg-
ments only within a single linguistic framework. Darwinian models allow quasi-normative
judgments only heavily dependent on very specific historical reconstructions, given the sen-
sibility of selection and drift judgment to the specific variants and environment involved.
The effectiveness of normative judgments allowed by indeterminate models is even weaker,
since no such judgment can be so strongly made due to lack of knowledge and transparency
in conceptual affairs that these models assume. Finally, even cognitive models that present
inter-subjective normative judgments built on trans-theoreotic coherence measures, such
as Thagard’s one, rely explicitly on a set of shared values and goals for designing such mea-
sures, making the kind of rationality beneath these judgments approach the instrumental
kind.

The seventh row of the big chart is the one corresponding to the dimension of the
Toolbox framework dedicated to the assumptions and consequences for conceptual change
in science that a given model has:

Explication Evolutionary Indeterminate Cognitive
CC in Science value-laden de-

fense of scientific
progress and objec-
tivity

EET program pic-
ture of scientific
evolution (falliblist
progress, no di-
rection, pragmatic
rationality)

CC in science anal-
ogous to ordinary
linguistic evolution,
progress exists but
not easy to spot

very positive
view of scientific
progress, objectiv-
ity, and realism
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We can see in this expanded version of the seventh row a substantial agreement be-
tween the different types of model in defending a certain degree of optimism about scientific
progress and objectivity. Specifically, Carnapian explication allows, modulo previous agree-
ments on certain scientific values and goals, a convincing defense of scientific progress and
inter-subjective scientific agreement. Relative to certain sets of shared values then, the
picture of science that can drawn from the ideal of explication is indeed progressive and
objective. Similarly, the view of scientific progress given by Darwinian models of con-
ceptual change is one of fallibilist inter-subjective progress relative to a given changing
environment, analogous to the Darwinian picture of non-goal-directed biological evolution.
Indeterminate models of conceptual change also conceptualize scientific progress as a sort
of evolution, albeit analogous to the linguistic one, in which inter-subjective progress can be
accomplished via the interfacial accommodations of design and drift described by Wilson.
Cognitive models of conceptual change give a very strong defense of scientific progress and
objectivity, although even in these models we can trace a kind of dependence of normativity
on the values shared in a given scientific discipline.

Collectively, then, these four types of model of conceptual change downsize the danger
that radical scientific change poses to scientific progress and objectivity, defending value-
laden conceptions of these two fundamental ideals. For what concerns the debates over
scientific realism, instead, we saw in the preceding chapters that the four types of model
are quite neutral on the ontological import that our best scientific theories have on our
picture of reality, allowing both realist and anti-realist readings of the entities that they
presuppose.

The eight row of the big chart concerns instead the dimension of the Toolbox framework
dedicated to the assumptions and consequences that a given model of conceptual change
has with respect to the phenomenon of conceptual change in philosophy:

Explication Evolutionary Indeterminate Cognitive
CC in Phi-
losophy

CC central to phi-
losophy, philosophi-
cal activity as expli-
cation

evolutionary episte-
mology picture of
philosophical activ-
ity

Ubiquity of CC and
linguistic practices
evolution, strong
anti-essentialism

Ubiquity of CC and
cognitive evolution
in all human prac-
tices

Here, all the models that we have seen so far agree on the existence and the significance
of philosophical conceptual change. We saw, in fact, how Carnapian explication and the
related ideal of explication conceptualize the whole philosophical activity as an engineering-
like task centered around the repeated explication of philosophical concepts. Darwinian
models also stress the fact that, as well as in science, philosophical concepts indeed change,
producing the kind of evolution of philosophical theories that evolutionary epistemology
analyzes. Moreover, both indeterminate and cognitive models of conceptual change stress
the ubiquity of conceptual change in every intellectual human activity, due to the inherent
flexibility of (respectively) linguistic and cognitive evolution.

Thus, despite the traditional uneasiness of analytic philosophy in recognizing and con-
ceptualizing philosophical conceptual change, the analysis of several models of concep-
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tual change here presented shows the need of putting this phenomenon at the center of
metaphilosophical reflections. Despite the differences in the specific extent and the specific
causes of this phenomenon between different models of conceptual change, all these models
agree on its significance for philosophical activity. As such, it is surprising that philosoph-
ical conceptual change has so far received very small attention from philosophers. The
different models of conceptual change analyzed in this work constitute a vast array of tools
for attacking the problem of philosophical conceptual change, but there is a strong lack of
significant case studies. This lack of a shared repertoire of historical episodes of philosoph-
ical conceptual change constitutes the main obstacle to achieve an adequate depiction and
understanding of this phenomenon.

Finally, the ninth row of the big chart corresponds to the dimension of the Toolbox
framework dedicated to the metaphilosophical background of a given type of model of
conceptual change:

Explication Evolutionary Indeterminate Cognitive
Meta-
philosophy

Philosophical activ-
ity as a kind of engi-
neering, explication
ideal

naturalized epis-
temology as ideal
for philosophical
activity, centrality
of evolutionary
considerations

Centrality of lin-
guistic drift (mid-
dle ground between
analysis and engi-
neering), centrality
of linguistic consid-
erations

Contemporary
cognitive science
picture of human
cognition (concep-
tual knowledge, de-
fault/unconscious
reasoning, central-
ity of non-linguistic
phenomena)

We can see that, for what concerns the metaphilosophical background, each type of
model of conceptual change has a very distinctive conception of philosophical activity that
contrasts the ones behind the other models. I talked at length in Chapter 3 about the very
specific metaphilosophical standpoint of Carnap’s late philosophy of which the procedure
of explication is the center. Philosophical activity is understood by the late Carnap as a
pluralist engineering-like activity centered around the never ending adjustment of concepts
and theories to the intellectual goals shared by philosophical communities. The metaphilo-
sophical conception of evolutionary models of conceptual change is instead characterized
by the ideal of truly naturalized philosophy that takes evolutionary considerations as the
starting epistemological point of any philosophical reflection. Indeterminate models of con-
ceptual change put instead at the center of their metaphilosophical conception linguistic
considerations and a heavy focus on the in-depth linguistic practice at work behind our
concepts and our theories, seeing as a primarily philosophical activity the diagnostics of lin-
guistic vices. Finally, cognitive models of conceptual change depict a vision of philosophical
activity centered around the large-scale image of human cognition that contemporary cog-
nitive science gives us, i.e. a kind of naturalized philosophy centered around the dynamics
of our cognitive architectures.

Despite the obvious differences between these four contrasting pictures of philosoph-
ical activity, we can see two main general morals that our analysis supports: a distrust
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of traditional armchair philosophical analysis and a strong focus on extended case stud-
ies and related historical reconstructions. Traditional intuition-driven kinds of conceptual
analyses are in fact not given a prominent place nor a strong justification in any of the
four metaphilosophical pictures that we saw above. All these models build instead a con-
vincing case for a move towards a more naturalized form of philosophical activity, where
philosophical issues are seen in the light of their many components, such as related linguis-
tic practice, underlying cognitive mechanism, related design imperatives, and intertwined
evolutionary considerations. On the bright side, each type of model of conceptual change
makes a strong use of case studies and related historical reconstruction of actual episodes of
conceptual change. This emphasis on the successful reconstruction of various case studies
as evidence for the goodness of a given theoretical framework can be seen as a more general
plead for the development and use of more historically minded methodologies in analytic
philosophy.

We have then seen a detailed comparison of the four types of model of conceptual change
along the nine dimensions of the Toolbox framework. For each dimension, I stressed the
differences between the models, as well as the commonalities in their approaches. The
general conception of conceptual change that we got from the foregoing analysis is the
following:

Conceptual change is a multi-faceted phenomenon, centered around the dy-
namics of groups of concepts. Concepts seem best reconstructed as plastic and
inter-subjective entities equipped with a non-trivial internal structure and sub-
ject to a certain degree of localized holism. This conceptual dynamic can be
judged from a weakly normative perspective, bound to be dependent on shared
values and goals. Conceptual change is then best understood as a ubiquitous
phenomenon underlying all of our intellectual activities, from science to ordi-
nary language. As such it does not pose particular problems to viable notions of
scientific progress, objectivity, and realism. At the same time, the phenomenon
of conceptual change must be taken into consideration by all our concept-driven
intellectual activities, including philosophical and metaphilosophical reflections.
An adequate understanding of the dynamics of philosophical concepts is in fact
a prerequisite for analytic philosophy to develop a realistic and non-idealized
picture of itself and its activities.

In connection to this conception of conceptual change, some consequences of general
philosophical interest can be drawn. I will briefly mention five large-scale consequence that
the present analysis arguably justifies:

• The centrality of concepts: concepts appear absolutely necessary blocks of any realis-
tic depiction of human higher cognitive abilities and intellectual practices. In science,
in ordinary language, and in philosophy, concepts play a major epistemological and
semantical role. As such, concepts cannot be replaced by other kinds of entities nor
they can be eliminated away.
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• The ubiquity of values: apart from concepts, the other entities that have been a
constant presence throughout all the present analysis are values. Theoretical and
non-theoretical values are absolutely crucial for any normative judgment on how
scientific concepts and theories change, as well as for any viable notion of scientific
progress and objectivity.

• The inadequacy of the traditional self-image of analytic philosophy: the ubiquity of
values and conceptual change in all our intellectual activities should make everyone
suspicious about the traditional self-image that analytic philosophy had. The power
and the finality of conceptual analysis, the value-free ideal of philosophical and scien-
tific rationality, and the lack of historical (self-)reflections are relics of a more naive
metaphilosophical age.

• The necessity of plural methodologies: the analysis of different models of conceptual
change presented in this work showed the power of approaching a complex phe-
nomenon (i.e. conceptual change) with a vast array of formal tools and philosophical
methodologies. Such a methodological pluralism could be arguably equally useful
in approaching other philosophical problems that have a similar multi-faceted and
interdisciplinary character.

• The significance of historical reconstructions: a stable element in all the aforemen-
tioned methodologies that have been used in this work and in virtually all serious
contribution to the debate over conceptual change in science and in philosophy has
been the method of using historical reconstruction as case studies. This methodology,
first and foremost championed by philosophers and historians of science, lends itself
to be of paramount use in all parts of philosophy.

Finally, I will point to two general directions for future work that naturally present
themselves in the light of this Conclusions chapter. First, it is of absolute importance for
analytic philosophy to develop serious models of philosophical conceptual change in order
to have a good grasp of the dynamics of philosophical concepts and their implications for
philosophical activity tout court. Secondly, it would be great to have fine-grained formal
models of values dynamics, in both science and philosophy, in order to fruitfully combine
them with models of conceptual and theory change. I hope that in the future I could help
filling both these gaps.
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