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Abstract The appearance of negative terms in quasiprobability representations of
quantum theory is known to be inevitable, and, due to its equivalence with the onset
of contextuality, of central interest in quantum computation and information. Until
recently, however, nothing has been known about howmuch negativity is necessary in
a quasiprobability representation. Zhu (Phys Rev Lett 117 (12):120404, 2016) proved
that the upper and lower bounds with respect to one type of negativity measure are
saturated by quasiprobability representations which are in one-to-one correspondence
with the elusive symmetric informationally complete quantum measurements (SICs).
We define a family of negativity measures which includes Zhu’s as a special case and
consider another member of the family which we call “sum negativity.” We prove a
sufficient condition for localmaxima in sumnegativity and find exact globalmaxima in
dimensions 3 and 4. Notably, we find that Zhu’s result on the SICs does not generally
extend to sum negativity, although the analogous result does hold in dimension 4.
Finally, the Hoggar lines in dimension 8 make an appearance in a conjecture on sum
negativity.

Keywords Quasiprobability representations · Symmetric informationally complete
measurements · Frame decompositions · Negativity measures

1 Introduction

The mathematical machinery of quantum theory has persisted without substantial
modification for nearly a century, but we are still waiting for a compelling set of
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physical principles upon which to hang the theory’s predictions. It is the hope of
some quantum foundations researchers that looking at standard quantum theory re-
represented in an appropriate fashion will help suggest these principles [2].

Probabilities are central objects in canonical quantum theory; at the end of a quan-
tum mechanical calculation, we are left with a probability distribution or a simple
consequence of one. It is tempting, therefore, to behave as though quantum theory
gives us a probability distribution—the probabilities for a set of outcomes. Careful
consideration reveals, however, that given a quantum state, quantum theory allows us
to calculate a probability distribution. But where does the quantum state come from
in the first place? The apparatus of quantum theory is unable to say. In practice, an
experimenter eventually settles on a quantum state for her preparation procedure after
a suite of tests and calibrations, and, ultimately, statistical methods go into the state
determination itself. That is, we have probabilities at the beginning and probabilities
at the end with the formal apparatus of quantum theory gluing it all together. It is pos-
sible that what goes on in between these ends stands alone, but such a circumstance is
far from guaranteed. The proper understanding of quantum theory may depend upon
conceiving of probability theory in the proper way.

In fact, revisiting and deciding on the proper understanding of probability theory
is the starting point of QBism [3–5]. QBists take a strict personalist Bayesian [6–
8] stance on probability theory. A probability is a valuation an agent places on his
or her degree of belief in a possible outcome, nothing more and nothing less. As a
consequence, probabilities are not empirically determinable quantities because they
do not independently exist outside of an agent’s mind.

As an example, consider repeated flips of a coin. A frequentist conception of prob-
ability asserts that the probability of heads for the coin is the long-run ratio of number
of heads to number of flips. The Bayesian first points out that to regard the coin flipped
at different times as an “equivalent” or “exchangeable” process amounts to a belief
the experimenter has about the situation—perhaps nothing is wrong with this belief,
but she should be cognizant of its influence on the conclusions of the experiment. Sec-
ondly, the Bayesian asks just how many times the experimenter plans to actually flip
the coin before she decides that the relative frequency is the probability of heads for
that coin. If she flips it a finite number of times, by her own admission, any frequency
is technically possible (although she believes some are unlikely). The usual answer
to such a question is that she plans to flip it until the deviations in the ratio with fur-
ther experimentation are small enough so as to be negligible. In other words, in order
to define the likelihood of an outcome, she asserts that the ratio obtained by a finite
series of experiments is likely to be close to the “true probability”. The circularity of
such an argument should be evident and worrying to anyone espousing the frequentist
paradigm. Properly understood, then, probabilities are single-case; no probability is
meaningfully right or wrong by any external criterion. The knee-jerk reaction to this
statement is to exasperatedly throw up one’s hands and exclaim that Bayesianism is
just the claim that probability theory is useless! Nothing could be further from the
truth: although a probability is not subject to objective external validation or invali-
dation, it commands the same sway over our lives that it would if it were; if an agent
wishes to avoid sure loss—to avoid being demonstrably stupid—she must take steps
to ensure that she never assigns probabilities which mutually contradict each other.
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When a theory tells us what we “should” do or “strive for”, it is a normative theory.
In other words, the personalist Bayesian view is that probability theory is a normative
theory. In this community, compatible probabilities are called coherent. Remarkably,
nearly all of the standard rules of probability theory are consequences of coherence
[7].

One consequence that we will reference soon is the law of total probability (LTP):

q( j) =
∑

i

p(i)r( j |i). (1)

The LTP describes a scenario where two actions are taken, one after another. p(i)
represents the probability we ascribe to getting outcome i from the first action, r( j |i)
is the probability we ascribe to getting outcome j from the second action conditioned
on outcome i for the first action, and q( j) is the probability we ascribe to outcome j for
the second action, not conditioned on anything other than the operational procedurewe
have laid out. The commitment to coherence alone (and independent from any possible
nature of reality) requires that our probabilities assigned at any given moment should
hold together in accordance with (1).

As we explain below, it is possible to represent any quantum state as a single
probability distribution over the possible outcomes of an appropriately chosen mea-
surement. If we take this fact seriously, a quantum state is conceptually nothing more
than a probability distribution. In QBism, all of the personalist Bayesian properties of
probability theory carry over to quantum states; that is, quantum states, like probabil-
ities, are valuations of belief for future experiences. However, application of the rules
of quantum theory reveal that not all of the probability distributions in the probability
simplex correspond to a valid quantum state. Just as in probability theory where an
agent strives to be consistent with herself in her probability assignments, an agent
should not ascribe a probability distribution she knows to be in conflict with the quan-
tum mechanical formalism. In this way we arrive at an understanding that quantum
theory is an empirically-motivated normative addition to probability theory.

If the functional form of the additions to probability calculus are cumbersome, then
there may be no reason to adopt it for everyday use—furthermore, it may not shed
any light on the “nature of reality.” What would constitute a nice looking addition to
probability theory? One possibility would be if the normative rules of quantum theory
could be made to mirror those of probability theory in a suggestive way. It turns out
that just this sort of situation can be made to occur.

An informationally complete quantummeasurement (IC-POVM) for aHilbert space
Hd is a set of at least d2 positive semi-definite operators Ei which span L(Hd),

the vector space of linear operators on Hd , and satisfy
∑

i Ei = I. When such a
measurement consists of exactly d2 elements, density matrices ρ and the Born rule
probabilities p(i) = Tr(ρEi ) are in bijective correspondence because the Ei form a
basis for L(Hd). Such minimal IC-POVMs are known to exist in all dimensions [9].
Which one we choose for a representation, however, stands a chance of revealing or
obscuring the properties which probability distributions equivalent to quantum states
must have. Very often in mathematics and physics, a hard problem becomes easy
when we choose the right basis. For example, the Eddington–Finkelstein coordinates
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revealed that the event horizon of a non-rotating black hole is not a physical singularity.
Is there a best or particularly nice IC-POVM which will reveal hidden properties of
quantum theory?

It is not possible for an IC-POVM to be an orthonormal basis [10–12], so perhaps
our first hope is ruled out. If the elements of an IC-POVM cannot be orthogonal, can
they at least be equiangular? It turns out that they can [13]. That is, we can find a set of
Ei which satisfy Tr(Ei E j ) = c for i �= j. Can such a POVM consist of only rank-one
matrices? Remarkably for such a simply-stated question, it is not generally known. A
set of d2 rank-one matrices �i such that

Tr
(
�i� j

) = dδi j + 1

d + 1
, (2)

defines an IC-POVM Ei = 1
d�i called a Symmetric IC-POVM (SIC) [14–16]. High-

precision numerical SICs have been found in all dimensions 2–151 [17,18] and in a few
sporadic higher dimensions. In many cases, exact SICs have been constructed among
these dimensions as well [19]. All indications are that SICs exist in all dimensions,
but the proof continues to evade us.

If a SIC exists in dimension d, it is possible to rewrite the Born rule in a uniquely
simple form analogous to the LTP, an equation called the urgleichung [4,5], German
for “primal equation” in [5]:

q( j) =
∑

i

[
(d + 1)p(i) − 1

d

]
r( j |i), (3)

where q( j) is the probability for obtaining outcome j of a general quantum measure-
ment, p(i) is the probability an agent ascribes to obtaining outcome i in the imagined
scenario where a SIC measurement is performed on the system instead, and r( j |i)
is the probability for obtaining the equivalent outcome j conditional on obtaining
outcome i that the agent ascribes in the imagined scenario (see [3] for a detailed expo-
sition). It is essential to recognize the operational difference between the urgleichung
and the LTP: the urgleichung describes a scenario where the first measurement is not
actuallymade—just imagined. If we actually planned to implement the first measure-
ment, our probabilities must hold together according to the familiar LTP. We take Eq.
(3) very seriously. In fact, it motivated the most recent development in QBism—a
reconstruction of quantum theory featuring a generalization of the urgleichung as the
key assumption [20]. See [21,22] for critical review and discussion of the urgleichung
in QBism as well as comparison to other contexts.

Probability theory itself has no tether to physical reality—rather it is a tool that
anyone, anywhere, can use tomanage their expectations for further experiences. Those
expectations will certainly be influenced by deeply-held convictions that the agent has
about the nature of reality around them, but the way those probabilities must hang
together if the agent is to be coherent is unaffected. Quantum mechanics, on the other
hand, although evidently a normative theory like probability theory, is tethered to
physical reality. A reformulation of quantum theory which brings to the forefront this
normative structure allows us to examine the threads of this tether without confusing
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the subjective and the objective. This way, we may hopefully more readily determine
the aspects of reality which forced quantum theory to be the way that it is. The LTP is a
direct consequence of coherence in one’s probability assignments. Is the urgleichung,
which presents as an almost trivial modification of the LTP, on the right track for
expressing the conditions for a kind of quantum coherence that an agent should strive
for by virtue of being in our universe? We would like to accumulate as much evidence
as possible that it is. Often one can gather more evidence for a sentiment simply by
looking where it’s least expected. In this case, Huangjun Zhu recently demonstrated
additional evidence for this line of reasoning by instead departing from probability
theory [1].

If we formally relax the positivity condition for minimal IC-POVMs (keeping the
fact that they sum to the identity), we are dealing with the larger space of Hermitian
operator bases. Denoting such an operator Fi , if we also keep the form of the Born
rule for a quantum state ρ, we obtain a set of real numbers p(i) = Tr(ρFi ), some
of which may be negative, such that

∑
i p(i) = 1. This set of numbers is referred

to as a quasiprobability vector (we will always denote quasiprobability vectors with
fraktur script) and a quasiprobability vector obtained in this way from a quantum state
is called a quasiprobability representation of the state.

Quantum opticians have benefited from the ease of plotting quasiprobability dis-
tributions over phase space [23], so there is some utility in their use, but what is
a quasiprobability? If a probability is a valuation of belief, what meaning can we
attach to a quasiprobability? There does not appear to be a simple meaning—some
attempts at attaching operational substance to quasiprobabilities have been made, for
example, see [24–28], but if these solutions get us no closer to understanding why
quantum theory is the normative probability calculus an agent of our universe should
use to productively navigate, then they amount to duct tape over a structural weakness.
However unsatisfying a quasiprobability may be on principled grounds, it turns out
that permitting them for the time being gets us something desirable in return: the Born
rule obtains an even closer functional analogy to the LTP.

Consider a Hermitian operator basis {Fi } such that
∑

i Fi = I and a dual basis1

{Q j } constrained to satisfy Tr(Q j ) = 1. From a state ρ and an arbitrary POVM {G j }
we form the quasiprobabilities p(i) = Tr(ρFi ) and the conditional quasiprobabilities
r( j |i) = Tr(QiG j ). Using the identity

∑

j

Tr
(
BFj

)
Tr
(
Q jC

) = Tr(BC), (4)

we can rewrite the Born rule as

q( j) = Tr
(
ρG j

) =
∑

i

p(i)r( j |i). (5)

Like the urgleichung, (5) looks very much like the LTP. In fact, (5) is functionally
identical to theLTP.The difference is that this equation iswritten in terms of quasiprob-

1 A dual basis is one for which the bases considered together are biorthogonal, TrFi Q j = δi j .

123



1014 Found Phys (2017) 47:1009–1030

abilities instead of probabilities. Negativity must pop up somewhere, for it is known
that negativity must2 appear in quasiprobability representations of quantum theory
[11,29].

Another advantage when we are not burdened with positivity is that we may choose
the Fi to form an orthogonal basis for operator space. If a basis is orthogonal, it is
proportional to its dual basis and called self-dual. In this case, the sum constraint on the
basis automatically fixes Tr(Q j ) = 1 and the constant of proportionality Fj = 1

d Q j .

Here we depart from Zhu’s terminology and refer to a quasiprobability representa-
tion obtained from this sort of self-dual basis as a Q-rep. Q-reps account for most of
the quasiprobability representations considered in the literature [30–33]. Importantly,
however, Q-reps do not account for all finite dimensional quasiprobability representa-
tions; any nonorthogonal basis provides an example outside of this set.We can identify
a Q-rep with the dual basis, {Qi }, which defines it. We will reserve q for quasiproba-
bility representations of states with respect to a Q-rep {Q j } (when there is no index,
we are referring to the full vector).

Mathematically speaking, a probability is a type of quasiprobability; that is, the
kind without any negative entries. If we believe that the urgleichung differing from
the LTP captures some aspect of the essential difference between quantum and classi-
cal, then some of this essential difference is also contained in the difference between
the LTP and (5), that is, in the appearance of negativity in quasiprobability represen-
tations of quantum theory. Indeed, Spekkens showed that the presence of negative
elements in quasiprobability representations of quantum theory and the impossibility
of noncontextual hidden variablemodels are equivalent notions of nonclassicality [10].
Therefore, insofar as we think contextuality is an important ingredient in the quantum–
classical distinction, we should be interested in negativity as well. Investigating the
negativity in Q-reps also seems to be a promising approach to identifying exactly what
advantages quantum computation affords us over classical computation, for example,
Veitch et al. showed that negativity is a resource for quantum computation [34] and
Howard et al. recently showed that contextuality enables universal quantum computa-
tion via ‘magic state’ distillation [35]. Additionally, and, as we will see, of particular
note for this paper, Pashayan et al. have shown that a value related to the sum of the
negative entries in a quasiprobability representation may be thought of as a measure
that bounds the efficiency of a classical estimation of probabilities [36]. In light of
these facts, Zhu’s recent result is especially exciting. In his paper, Zhu developed a
natural measure of negativity for Q-reps and established strict upper and lower bounds
for this measure in one-to-one correspondence with SICs in each dimension. SICs are
related to the bounds of this measure of negativity and the appearance of negativity
in quasiprobability representations of quantum theory seems to contain some hints
toward what “quantum” really means. Are there more hints to be found? Motivated to
answer this question, we investigate how robust Zhu’s result is to modifications in the
negativity measure.

2 That is, it is impossible to represent quantum theory in awaywhich eliminates the appearance of negativity
in both p and r in (5) for all quantum states and POVMs. It is possible, in general, to eliminate the negativity
appearing in one or the other.
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In Sect. 2 we motivate and define a general negativity measure for quasiprobability
representations which includes Zhu’s measure and the measure of principle interest
in this paper, called sum negativity, as special cases and state Zhu’s theorem that the
bounds on his measure of negativity are achieved by Q-reps in one-to-one correspon-
dence with SICs. In Sect. 3 we address the sum negativity for the SICQ-reps in the first
few dimensions. In Sect. 4 we argue that Weyl–Heisenberg (WH) covariant Q-reps
are a natural subset to consider while looking for counterexamples to Zhu’s theorem
and establish the explicit conditions for aWH covariant Q-rep in dimension 3. Section
5 contains the main results: we explicitly demonstrate that Zhu’s theorem does not
generally extend to sum negativity in either bound, we prove a general sufficiency
theorem for a Q-rep being a local maximum for sum negativity, use this theorem to
prove the exact upper bound for sum negativity among Q-reps in dimension 3, and
state a conjecture regarding the lower bound among WH Q-reps. In Sect. 6 we again
apply our theorem to prove that, although not generally the case, one of the SIC Q-
reps achieves the exact upper bound for sum negativity in dimension 4.We also briefly
discuss the sum negativity for one of the Hoggar SIC Q-reps in dimension 8. In Sect.
7 we discuss further questions and directions.

2 Negativity and Sum Negativity

Setting aside Q-rep vectors for a moment, we start by proposing a family of nega-
tivity measures for general quasiprobability vectors. Qualitatively speaking, we want
a measure of the “amount” of negativity that appears in a vector with entries which
sum to 1. A few candidates immediately stand out as especially natural measures:
perhaps a measure proportional to the sum of the negative elements or to the most
negative element appearing in the quasiprobability vector—indeed, as we will see,
the latter choice is taken by Zhu [1]. We want a family of measures of negativity to
meaningfully capture the deviation or “distance” from quasiprobabilities which have
no negative elements. So we are faced with the task of measuring something we might
understand as a distance for elements in a finite dimensional vector space (constrained
by the normalization condition, of course). From this vantage point, the L p-norms
offer a very compelling family of generalized distance measures which we might
utilize. Recall the definition of the L p-norm of a vector x,

||x||p :=
(

n∑

i=1

|x(i)|p
)1/p

, (6)

and the limiting expression for p → ∞,

||x||∞ = max {|x1| , |x2| , . . . , |xn|}. (7)

We might hope that the L p-norm of a quasiprobability vector will itself be a useful
quantity which is immediately related to the negativity present in the vector. If p = 1,
for example, we can see that if there are any negative elements in the quasiprobability
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vector p then ||p||1 > 1, so perhaps we could associate the amount by which the L p-
norm is larger than 1with the negativity of p.However, ||p||p ≤ ||p||q when p > q and,
in fact, ||p||p need not be greater than 1 even when negativity is present. So what we
really want is to measure the deviation of only the negative part of the quasiprobability
vector from the zero vector, disregarding all positive entries entirely.With this inmind,
define the negative part of a quasiprobability vector p to be the vector

p(−)( j) := |p( j)| − p( j)

2
, (8)

which replaces the positive elements of p with zero and the negative elements with
their absolute value. This definition makes it easy to isolate properties of the negative
elements of a quasiprobability vector. Now that we have done away with the positive
entries in our quasiprobability vector, we define the N p negativity of a quasiprobability
vector p to be the L p-norm of the negative part of a quasiprobability vector:

N p(p) :=
∣∣∣
∣∣∣p(−)

∣∣∣
∣∣∣
p
. (9)

We will refer to the special cases N 1 and N∞, which we see are equivalent to the two
natural candidates proposed above, as the sum negativity3 and the ceiling negativity
respectively.

Zhu defines the negativity of a quantum state ρ with respect to a Q-rep {Q j } to
be d times the magnitude of most negative element appearing in the quasiprobability
representation q( j) = Tr(ρFj ). In our framework, this corresponds to d times N∞(q).
He then defines the negativity of a Q-rep itself to be the maximum of this value over all
of quantum state space. In our framework, this corresponds to d times maxρ N∞(q).
Thus, in the general case, we define the N p negativity4 of a quantum state ρ with
respect to a Q-rep {Q j } to be

N p (ρ,
{
Q j
}) := N p(q), (10)

and the N p negativity of a Q-rep {Q j } to be

N p ({Q j
}) := max

ρ
N p (ρ,

{
Q j
})

. (11)

Since L p-norms are convex and nondecreasing for p ≥ 1 on the positive reals [38]
and the negative part map (8) is a convex function, the composition (10) is also convex
[39]. This means the maximum occurs on the boundary of the domain so we may take
the maximum in (11) to be over pure states in these cases.

3 Veitch et al. use the term sum negativity specifically for the sum of the negative elements of the discrete
Wigner function for a quantum state [37] whereas we will be considering the equivalent notion with respect
to any Q-rep.
4 We have chosen to omit multiplication by d in our negativity definitions so that the negativity can
more immediately be associated with the negative values in a quasiprobability vector. As the dual basis
is calculationally easier to work with, a downside of our convention is that factors of 1/d crop up more
frequently.
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As it will be useful later, note that the L2 norm of a Q-rep vector corresponding
to a pure state always equals

√
1/d. To see this, let B = C = ρ and Tr(ρ2) = 1 in

(4). This is another reason why the L p norms are not a good choice for a family of
negativity measures.

Zhu notes that the ceiling negativity of a Q-rep {Q j } takes the simple form

N∞ ({Q j
}) = 1

d

∣∣∣∣min
j

λmin
(
Q j
)∣∣∣∣ , (12)

where λmin(Q j ) is the minimal eigenvalue of Q j .

If a SIC, denoted {� j }, exists in dimension d, we may construct two Q-reps {Q+
j }

and {Q−
j } called the SIC Q-reps:

Q±
j = ∓(

√
d + 1)� j + 1

d
(1 ± √

d + 1)I, (13)

which have ceiling negativities

N+ ≡ N∞ ({Q+
j

})
= (d − 1)

√
d + 1 − 1

d2
, N− ≡ N∞ ({Q−

j

})
=

√
d + 1 − 1

d2
.

(14)
We introduce these Q-reps because of the following theorem.

Theorem 1 (Zhu) Every Q-rep {Q j } in dimension d satisfies N− ≤ N∞({Q j }) ≤
N+. The lower bound is saturated if and only if {Q j } has the form {Q−

j } where � j

is a SIC. If {Q j } is group covariant, then the upper bound is saturated if and only if
{Q j } has the form {Q+

j }.
Zhu’s theorem identifies SICs as centrally important to the study ofQ-reps andmore

broadly for quantum theory because the Q-reps which achieve both bounds on ceiling
negativity in any dimension are related to SICs by a simple affine transformation. Is
the ceiling negativity unique in this way? If so, it would be interesting to understand
why. If not, where does it fail?

We will address this question for the sum negativity. Like ceiling negativity, there
is a more manageable expression for the sum negativity of a Q-rep. The following
argument is due to Appleby and Zhu.

Lemma 1 An equivalent form of the sum negativity of a Q-rep {Q j } is

N 1 ({Q j
}) = − 1

d
min

{
λ{1}, λ{2}, . . . , λ{2d2−1}

}
, (15)

where λ{i} is the minimal eigenvalue of the i th partial summatrix of the {Q j }matrices.
Proof For a quasiprobability representation q of a state ρ with respect to Q-rep {Q j },
if S := {i |Tr(ρQi ) < 0}, then

N 1(q) =
∣∣∣∣∣
1

d

∑

i∈S
Tr (ρQi )

∣∣∣∣∣ =
∣∣∣∣∣
1

d
Tr

(
ρ
∑

i∈S
Qi

)∣∣∣∣∣ . (16)
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As in (12), the minimal value of the expression Tr(ρF) over quantum state space is
the minimal eigenvalue of F and the state ρ which minimizes the expression is the
corresponding eigenvector. Thus, for a fixed subset G of the {Q j } matrices, the state
which minimizes Tr(ρ

∑
i∈G Qi ) is the minimal eigenvector of the matrix

∑
i∈G Qi .

Via the definition above, for each ρ there is a subset S; in particular, there is a subset
S ′ for a state whose quasiprobability representation has the sum negativity value
N 1({Q j }) and, furthermore, the magnitude of the minimal eigenvalue of the matrix∑

i∈S ′ Qi is equal to d times N 1({Q j }). Thus determining the sum negativity is
equivalent to looking for the minimal eigenvalue over all partial sum matrices of
{Q j }. There are 2d2 − 1 entries to minimize over because we ignore the partial sum
corresponding to the empty subset. �
Does Theorem 1 extend to sum negativity? In Sect. 5, we will demonstrate that it
generally does not with explicit counterexamples in the first nontrivial dimension,
d = 3.

3 Sum Negativities of {Q+
j } and {Q−

j }

Sum negativity is notably harder to work with than ceiling negativity, both analytically
and numerically. As such, using the method described in Lemma 1, analytic results for
the sum negativity of {Q+

j } and {Q−
j } have only so far been obtained for dimensions

2–4. Numerically exact results have also been obtained for d = 5.
For d = 2, sum negativity and ceiling negativity are equivalent measures because

a d = 2 Q-rep vector cannot contain more than one negative element. This property
can be proven easily with Eq. (4) and the fact quasiprobabilities are normalized. In
addition, the ceiling negativities for {Q+} and {Q−} are equivalent. Thus,

N 1
({

Q±
j

})
= N∞ ({Q±

j

})
=

√
3 − 1

4
. (17)

In fact, all N p negativities for the SIC Q-reps are equal in dimension 2. This is a
reflection of the fact that all Q-reps are equivalent to the Wootters discrete Wigner
function in this dimension [1].

There is a continuous one-parameter family of SICs in dimension 3 [40]. For any
of them, we may construct the SIC Q-reps. In Zhu’s paper we easily see that ceiling
negativity is insensitive to the SIC chosen—all thatmatters is that the defining property
of a SIC is satisfied. This turns out to also be true for sum negativity.5 What’s more,

5 We won’t explore it further here, but the situation is more interesting. Although the sum negativity is
insensitive to the value of the parameter t which defines the inequivalent SIC Q-reps, the quantum states
whose quasiprobability representations achieve these sum negativity values do depend on the parameter. It
turns out that the sum negativity for {Q−

j } constructed from the Hesse SIC (t = 0 in [40]) is achieved by a
complete set of mutually unbiased bases [41], that is, 12 [=d(d + 1)] vectors which form four orthogonal
bases such that any vector from one basis has an equal overlap with any vector from another basis. For all
the other SICs in dimension 3, the states which achieve the sum negativity of {Q−} form a single basis
instead. The complete set of mutually unbiased bases also turns out to be the set of states which minimize
the Shannon entropy in the Hesse SIC representation [42,43].
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the sum negativities of {Q+
j } and {Q−

j } are equal:

N 1
({

Q±
j

})
= 1

3
. (18)

Recall that Theorem1establishes that the upper and lower bounds for ceiling negativity
over all Q-reps are achieved by the SIC Q-reps. We see now that in dimension 3, the
sum negativities of {Q+

j } and {Q−
j } are equal. This tells us that if any d = 3 Q-rep

has a sum negativity other than 1/3, the analog of Theorem 1 does not hold for sum
negativity in dimension 3.

For d = 4,

N 1
({

Q+
j

})
= 1

2
, (19)

and

N 1
({

Q−
j

})
= − 1

16

⎛

⎝5+ √
5 −2

√
2(1+√

5) − 2

√

23 − 2
√
5 +2

√
−22 +10

√
5

⎞

⎠

≈ 0.420967. (20)

Value (19) is surprisingly nice. We will comment briefly on this in Sect. 6. Value (20)
is shocking. However, in light of recent results relating the SIC problem to algebraic
number theory ([44], see the contributions of Appleby et al [45] and Bengtsson [46]
to this volume for a review), it is worth mentioning a few possibly relevant facts about
this number and how it arose.

The sum negativity for the d = 4 SIC Q-rep is (1/4 times) the minimal eigen-
value of certain 7-element partial sums of the SIC Q-rep matrices. The characteristic
polynomial which has this eigenvalue as a root is:

x4 − 7x3 + 21

2
x2 +

(
129

8
− 35

√
5

8
+
√
2
(
31 + 17

√
5
))

x

−1293

32
+ 293

√
5

32
−
√
5
(
22 + 29

√
5
)

(21)

The coefficients in Eq. (21) are members of the field Q(
√
5 +

√
362 + 313

√
5). The

factor multiplying −1/16 in (20) is an algebraic integer, but not an algebraic unit.
Finally, the minimal polynomial for (20) is degree 8.

For d = 5, N 1({Q+}) ≈ 0.584277 and N 1({Q−}) ≈ 0.501957. These answers
are numerically correct, but do not lend themselves readily to conversion to exact
values.

4 Weyl–Heisenberg Q-reps in d = 3

We say that a set of vectors is group covariant if it is the orbit of some group action
on an initial vector, which we call the fiducial. All known SICs are group covariant
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and all but one of those are covariant with respect to the WH group. In dimension d,

let ωd = e2π i/d be a dth root of unity, and define the shift and phase operators

X | j〉 = | j + 1〉 , Z | j〉 = ω
j
d | j〉 , (22)

where the shift is modulo d. Products of powers of X and Z and powers of ωd define
the WH group. The order of the WH group in dimension d is d3, but for the purposes
of constructing a measurement operator or Q-rep, we can neglect the phase factors. In
other words, for some fiducial matrix Q0, the other matrices in the orbit would take
the form

Qi j = Xi Z j Q0

(
Xi Z j

)†
. (23)

The only known exception toWH covariance for SICs is the Hoggar SIC in dimension
8, but even this outlier is group covariant with respect to the tensor product of three
d = 2 WH groups. What about Q-reps? By their construction, the non-Hoggar SIC
Q-reps areWH covariant and these Q-reps achieve the bounds for ceiling negativity in
all dimensions (provided a SIC exists in that dimension). Thus, if we were to consider
any subset of the full space of Q-reps for computational study, the set ofWH covariant
Q-reps (WH Q-reps) is likely the best starting point. In any case, due to the ubiquity
of the WH group in quantum information theory, the bounds of sum negativity within
WH Q-reps may be of independent interest.

A Q-rep is associated with an orthogonal basis of operators {Q j } with norm 3, that
is,

Tr
(
Qi Q j

) = 3δi j . (24)

Therefore, the general conditions for a WH Q-rep may be obtained by requiring that
the elements of the WH orbit of a general unit-trace Hermitian matrix

⎡

⎣
z y x
y∗ w v

x∗ v∗ 1 − z − w

⎤

⎦ , (25)

satisfy Eq. (24). Imposing this condition results in a number of equations which can
be algebraically simplified to the following three:

z2 + zw + w2 = z + w,

|y|2 + |x |2 + |v|2 = 1,

xy + y∗v + v∗x∗ = 0. (26)

In terms of real variables, an arbitrary unit-trace Hermitian matrix

⎡

⎣
a b + ic d + ie

b − ic f g + ih
d − ie g − ih 1 − a − f

⎤

⎦ , (27)
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is a WH Q-rep fiducial if

a2 + a f + f 2 = a + f,

b2 + c2 + d2 + e2 + g2 + h2 = 1,

dg + bd + bg + ch = ec + eh,

cd + be + bh = cg + dh + eg. (28)

From (26) or (28) we can see that d = 3 WH Q-rep fiducials define a four dimen-
sional subspace of the eight dimensional space of 3×3 unit-trace Hermitian matrices.
The main diagonal elements are independent of the off-diagonal elements and satisfy
the equation of an ellipse [the first equation in (26) or (28)]. The magnitude of the
off-diagonal elements in (25) lie on the unit 2-sphere, but their exact values only lie
at points where the expression xy + y∗v + v∗x∗ vanishes.

The following two matrices are explicit examples of d = 3 Non-SIC WH Q-rep
fiducials:

Qmin =
⎡

⎣
0 − 1

3 + i
3

2
3 − i

3− 1
3 − i

3 1 − 1
3 + i

3
2
3 + i

3 − 1
3 − i

3 0

⎤

⎦ , (29)

Qmax =

⎡

⎢⎢⎢⎣

0
(
− 1

3 +
√
7

12

)
+ i

4

(
2
3 +

√
7

12

)
− i

4(
− 1

3 +
√
7

12

)
− i

4 1
(
− 1

3 +
√
7

12

)
+ i

4(
2
3 +

√
7

12

)
+ i

4

(
− 1

3 +
√
7

12

)
− i

4 0

⎤

⎥⎥⎥⎦ . (30)

In the following section we will see why they are presented with the designations
“max” and “min”.

5 Sum Negativity Bounds in d = 3

The WH Q-reps generated by (29) and (30) will be denoted {Qmin
j } and {Qmax

j },
respectively. Their sum negativities are

N 1({Qmin
j }) = 1

3

(
2 cos

π

9
− 1
)

≈ 0.293128, (31)

and

N 1
({

Qmax
j

})
= 2

9

(√
7 − 1

)
≈ 0.365723. (32)

Recall from Sect. 3 that the sum negativities of both SIC Q-reps is 1/3, so {Qmin
j } and

{Qmax
j } are explicit counterexamples to Zhu’s theorem for sum negativity. It turns out

that (32) is a strict upper bound on the sum negativity, not only of WH Q-reps, but of
all Q-reps in dimension 3. We start with two lemmas.

Lemma 2 For quasiprobability vectors with d2 elements lying in the sphere of radius√
1/d, the stationary points for sum negativity are:
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(1) Those vectors whose entries consist only of two distinct values.
(2) Those vectors whose entries consist only of three distinct values including zero.

Proof Quasiprobability vectors in the sphere of radius
√
1/d satisfy the following

constraints:
d2∑

j=1

p( j) = 1 and
d2∑

j=1

p( j)2 = 1

d
. (33)

The definition of the sum negativity of a quasiprobability vector (34) gives us

N 1(p) =
∣∣∣
∣∣∣p(−)

∣∣∣
∣∣∣
1

=
d2∑

j=1

|p( j)| − p( j)

2
= 1

2

d2∑

j=1

|p( j)| − 1

2
. (34)

From this it is clear that the stationary points of the sum negativity are exactly the
stationary points of the sum of the absolute values. Absolute values are often difficult
to deal with in optimization problems, but it turns out that the function |x | may be
approximated efficiently by

√
x2 + c where c is taken to zero after any differentiation

[47]. Thus, we want to extremize the function

d2∑

j=1

√
p( j)2 + c, (35)

subject to constraints (33) in the small c limit. To do this we construct a Lagrangian

L(p, λ, μ) =
d2∑

j=1

(√
p( j)2 + c

)
− λ

⎛

⎝
d2∑

j=1

p( j) − 1

⎞

⎠− μ

⎛

⎝
d2∑

j=1

p( j)2 − 1

d

⎞

⎠ ,

(36)
where λ and μ are Lagrange multipliers. Varying this Lagrangian, we see that the
stationary points must satisfy

p( j)√
p( j)2 + c

− λ − 2μp( j) = 0, (37)

for all j. This expression has four solutions, two of which become zero in the c = 0
limit:

p( j) = ±1 − λ

2μ
or p( j) = 0. (38)

Consider the case where p( j) �= 0 for all j. Now, in order for the constraints (33) to
hold, some number n of the entries are −1−λ

2μ and the other d2 − n are 1−λ
2μ . That is,

n

(−1 − λ

2μ

)
+
(
d2 − n

)(1 − λ

2μ

)
= 1 and

n

(−1 − λ

2μ

)2
+
(
d2 − n

)(1 − λ

2μ

)2
= 1

d
. (39)
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It is easy to verify that 0 < n < d2. In this case the quasiprobability vector p consists
of two distinct values. If p( j) = 0 for m of the indices then d2 − n − m of the
entries are 1−λ

2μ and the appropriately modified form of (39) holds in which case the
quasiprobability vector p consists of three distinct values including zero. �
A stationary point can be a local maximum, a local minimum, or a saddle point.
Sufficient conditions for maxima and minima in Lagrangian systems with equality
constraints are known. We will need the following tool (which can be found in Chap.
2 of [48]):

Theorem 2 (Sufficient Conditions for Constrained Maxima) Consider a constrained
maximization problem for a twice-differentiable function of n variables y(x) with m
twice-differentiable equality constraints fi (x) = 0, i = 1, . . . ,m. The Lagrangian is

L(x, λ) = y(x) −
m∑

i=1

λi fi (x), (40)

where λi are Lagrange multipliers. If there exist vectors x∗ and λ∗ such that
∂iL(x∗, λ∗) = 0, i = 1, . . . , n and fi (x∗) = 0, i = 1, . . . ,m and if

(−1)s

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂11L · · · ∂1sL ∂1 f1 · · · ∂1 fm
...

...
...

...

∂1sL · · · ∂ssL ∂s f1 · · · ∂s fm
∂1 f1 · · · ∂s f1 0 · · · 0

...
...

...
...

∂1 fm · · · ∂s fm 0 · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

> 0, (41)

for s = m+1, . . . , n (∂i jL indicates a secondpartial derivative ofL(x, λ)with respect
to xi and x j evaluated at x∗ and λ∗ and ∂i f j indicates the first partial derivative of
constraint function f j (x) with respect to xi evaluated at x∗), then y(x) has a strict
local maximum at x∗.

A consequence of this is the following:

Lemma 3 The stationary points for sum negativity of quasiprobability vectors with
d2 elements lying in the sphere of radius

√
1/d are all local maxima or global minima.

Proof From Lemma 2 we know that the stationary points for sum negativity of
quasiprobabilities lying on the sphere of radius

√
1/d are those consisting of exactly

two distinct elements or those consisting of three if one of them is zero. If there are
two distinct elements, they can either both be nonnegative or of opposite signs. If
they are both nonnegative, the sum negativity is zero which is the global minimum
sum negativity value. If there are three distinct elements and they are all nonnegative,
then it is also a global minimum for sum negativity. We will now show that when the
nonzero elements of a stationary point are of opposite signs, it is a local maximum.
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Consider first the stationary points with two distinct elements. In terms of the
Lagrange multipliers from the proof of Lemma 2, the stationary quasiprobability vec-
tors are comprised of opposite signed values when μ �= 0 and −1 < λ < 1. Without
loss of generality we choose −1−λ

2μ to be the negative value so that we may enumerate
the number of negative entries with index n as in (39). This amounts to the further
restriction μ > 0. Note that by substituting −1−λ

2μ = a and 1−λ
2μ = b in (39), we can

solve for the positive and negative entries in the quasiprobability vector in terms of
the dimension d and number of negative entries 1 ≤ n < d(d − 1):

a = 1

d2
+ 1

d2

√
n(d − 1)

d2 − n
−
√

d − 1

n(d2 − n)
< 0, (42)

b = 1

d2
+ 1

d2

√
n(d − 1)

d2 − n
> 0. (43)

Sum negativity is invariant to the ordering of the entries in a quasiprobability vector
so we need only prove that one ordering is a local maximum for each n. Without loss
of generality, we fix p(1) = a and demand that p(2) and p(3) are not both also equal to
a. Consider again the Lagrangian (40). Taking the relevant derivatives and c to zero,
we may construct the bordered Hessian matrix from (41) for our problem. Therefore,
if p is a stationary point and if

(−1)s

∣∣∣∣∣∣∣∣∣∣∣

−2μ · · · 0 1 2p(1)
...

. . .
...

...
...

0 · · · −2μ 1 2p(s)
1 · · · 1 0 0

2p(1) · · · 2p(s) 0 0

∣∣∣∣∣∣∣∣∣∣∣

> 0, (44)

for s = 3, . . . , d2, then p is a local maximum in sum negativity.
Recall the following identity for matrix blocks A, B, C, and D which holds when

A is invertible:

∣∣∣∣
A B
C D

∣∣∣∣ = |A|
∣∣∣D − CA−1B

∣∣∣ . (45)

Using (45), the determinant of the bounded Hessian matrix in (44) is

(−1)s(2μ)s−1

⎛

⎝4s
s∑

i=1

p(i)2 − 4
s∑

i, j=1

p(i)p( j)

⎞

⎠ . (46)

With the additional (−1)s term in Eq. (44), we see that the inequality is satisfied if

s
s∑

i=1

p(i)2 −
s∑

i, j=1

p(i)p( j) > 0, (47)
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for all s.Let l denote the number of negative elements in the truncated quasiprobability
vectors appearing in (44). Note that 1 ≤ l < s by our earlier assumption about the
first three elements. Then

s
s∑

i=1

p(i)2 −
s∑

i, j=1

p(i)p( j)

= s
(
la2 + (s − l)b2

)
− (la + (s − l)b)2 = (a − b)2(s − l)l > 0. (48)

Thus the stationary points consisting of two distinct values, one negative and one
positive, are local maxima.

The values of a and b in the case with three distinct values are more complicated,
but may still be obtained. Otherwise the proof in this case carries through in the same
way as above with a slight modification in the last step. Let m denote the number
of elements equal to zero in the truncated quasiprobability vectors appearing in (44).
Note that l + m ≤ s. Then it can be verified that

s
s∑

i=1

p(i)2 −
s∑

i, j=1

p(i)p( j)=s
(
la2+(s − l − m)b2

)
− (la+(s − l − m)b)2>0,

(49)

which completes the proof. �
Wemay now return to the question of extremality among Q-reps.We say that a pure

state ρ achieves the sum negativity if it is an eigenvector with eigenvalue magnitude
equal to d times N 1({Q j }) of one of the partial sum matrices of the Q-rep {Q j }.
Theorem 3 If the quasiprobability representation of a state which achieves the sum
negativity of a Q-rep {Q j } consists of two distinct elements or three including zero,
then N 1({Q j }) is a local maximum among all Q-reps.

Proof Recall that the quasiprobability representation of a pure state with respect to
a Q-rep lies in the sphere of radius

√
1/d. Also recall that the convexity of the sum

negativity function implies that any state which achieves the sum negativity for a Q-
rep {Q j } is a pure state. Therefore, if, as we vary {Q j } over the space of Q-reps, the
quasiprobability representation of a pure state which achieves the sum negativity of
{Q j } consists of two distinct values or three distinct values including zero for some
Q-rep {Q′

j }, then by Lemmas 2 and 3, there is a local maximum or global minimum
of the sum negativity function at {Q′

j }. As we know the appearance of negativity is
inevitable, the global minimum possibility is avoided. �
Theorem 4 The exact upper bound for sum negativity among Q-reps in dimension 3
is 2

9 (
√
7 − 1).

Proof When d = 3, explicit calculation reveals that the sum negativity of a quasiprob-
ability vector lying in the sphere of radius

√
1/d constructed with n values equal to

a < 0, m values equal to 0, and 9− n −m values equal to b > 0 is maximized when
n = 2 and m = 0. Those values are, from (42) and (43),
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a = 1

9
(1 − √

7) and b = 1

63
(7 + 2

√
7). (50)

Lemmas 2 and 3 and the fact that our domain has no boundary [lying on the sphere
of radius

√
1/d and quasiprobability normalization together define a (d2 −2)-sphere]

imply that the sum negativity of this quasiprobability vector is the global maximum
value over this domain. The quasiprobability representations of the states which
achieve (32) with respect to the Q-rep {Qmax

j } consist of these values, and so, by

Theorem 3, 2
9 (

√
7 − 1) is the maximum value for sum negativity over all Q-reps in

dimension 3. �
It is important to note that while Theorem 4 shows that (32) is the strict upper bound

for sum negativity among all Q-reps, it does not imply that {Qmax
j } is the unique Q-rep

which achieves this bound. Numerical searching suggests that, for the fiducial main
diagonal {0, 1, 0}, the WH orbit of (30) is the unique Q-rep which achieves the sum
negativity (32), but that there is at least one other fiducialmain diagonalwhich achieves
this bound, namely the main diagonal corresponding to the major axis vertices of the

ellipse defined by the first equation in (26):
{
1
3 ,

1
3 + 1√

3
, 1

3 − 1√
3

}
. Unfortunately,

for this fiducial, we were unable to convert the numerical result to exact values.
What can be said about the lower bound for sum negativity in dimension 3? So far,

less is known, but we present the following numerically motivated conjecture:

Conjecture 1 The exact lower bound for sum negativity among WHQ-reps in dimen-
sion 3 is 2

3

(
cos π

9 − 1
2

)
.

This statement resisted our attempts to prove it in a fashion similar to Theorem
4 because for every Q-rep there exist states with zero negative elements in their
quasiprobability representation (for example, the maximally mixed state). The Q-
rep vector corresponding to the minimal eigenstate over all partial sums of {Qmin

j }
consists of three distinct values which each appear three times:

1

9

(
1 − 2 cos

π

9

)
,

1

9

(
1 + 2 cos

2π

9

)
, and

1

9

(
1 + 2 cos

π

9
− 2 cos

2π

9

)
.

(51)
The values in (51) may not have significance as deep as those in the upper bound
quasiprobability vector, however, as numerical searching has revealed that (31) is
achieved by a WH Q-rep for every valid main diagonal. The off-diagonal elements in
other cases were too difficult to convert to exact values. The fact that there seems to be
a WH Q-rep which achieves (31) for any main diagonal satisfying the first equation
in (26) suggests the lower bound among Q-reps may not be saturated by WH Q-
reps. Additionally, the extremal properties of general quasiprobability vectors lying
on the sphere of radius

√
1/d do not come to our aid when we try to find the lower

bound because there is no obvious reason to hope that the process of maximizing
over quantum state space (in the definition of a Q-rep sum negativity) followed by
minimizing over all Q-reps (to find the lower bound for sum negativity) should result
in one of the local maxima for general quasiprobability vectors on the sphere of radius√
1/d (recall, of course, that it cannot result in the global minimum of zero negativity
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on this sphere becausewe know that the appearance of negativity is inevitable). Before,
we were maximizing over both; in some sense we got lucky that the global maximum
sum negativity for a quasiprobability vector on this sphere was achieved by a Q-rep
vector.

6 Further Observations About SIC Q-reps

In Sect. 3, we noted the appearance of a rational value for the sum negativity of {Q+
j }

in dimension 4. The quasiprobability vectors which achieve the sum negativity of
{Q+

j } are of a special and familiar form; they consist of only the values −1/8 and
1/8. We know from Theorem 3, therefore, that this Q-rep is a local maximum for sum
negativity among Q-reps in dimension 4. In fact, following the exact same procedure
as in Theorem 4, we see that N 1({Q+

j }) = 1/2 is the exact upper bound over all
Q-reps!

In footnote 5, we mentioned that the states which achieve the sum negativity of
{Q−

j } for the Hesse SIC in dimension 3 form a complete set of mutually unbiased

bases. The states which achieve the sum negativity for {Q−
j } in dimension 4 also form

a structure of possible interest. They consist of a set of 16 vectors which have two
nontrivial squared overlaps. In the terminology of reference [14], these states form a
quantum design of degree 2.

Although dimension 5 was the last in which we were able to explicitly calculate
the sum negativity for the SIC Q-reps by exhaustive combinatorial searching, we
suspect that we have found the correct sum negativity for {Q−

j } constructed with the
Hoggar SIC in dimension 8. Rather than calculating the eigenvalues of every partial
sum matrix (since this is infeasible for 264, 8 × 8 matrices), we used a numerical
local maximization procedure and around 106 random pure state seeds. The overall
maximum value we found, 7/8, occurred frequently in our data and is significantly
larger than all of the smaller local maxima. Of course, we could still be falling short
of the global maximum value if it occurs at very hard to access positions. The states
whose quasiprobability representations achieve the sum negativity of 7/8 consist of
28 copies of value −1/32 and 36 copies of value 5/96. Therefore, by Theorem 3, if
these states achieve the actual sum negativity, then {Q−

j } constructed with the Hoggar
SIC is a local maxima among all Q-reps in dimension 8. Surprisingly, these quantum
states also minimize the Shannon entropy of their Hoggar SIC representations and
thus compose the “twin” Hoggar SIC [43,49]. This result and the one for {Q−

j } in
dimension 4 in the previous paragraph parallel the one mentioned in footnote 5.

7 Discussion

In QBism, quantum states are probability distributions over a set of possible outcomes
for an appropriately chosenmeasurement.With the understanding that quantum theory
is an addition to coherence which rational agents should use to help inform their
expectations for future experiences in terms of their past ones, QBists hope that the
structure of quantum theory, and in particular its boundaries, can be made to suggest
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nature’s motives. A century of quantum foundational debate should by now have
convinced us that these motives will not conform to our prejudices about reality.
Although the weirdness of quantum theory has convinced some that we can no longer
pretend physics is more than an exercise in instrumentalism, QBists are optimistic
that there are ubiquitous and recognizably physical statements about nature yet to be
made.

Prior toZhu’s paper,wehad focusedon characterizing the bounds of quantum theory
only fromwithin probability theory.His results reveal this approachwasnearsighted. In
the initial stages of this project, we had hoped to find further evidence for the centrality
of SICs in quantum theory by showing that Zhu’s theorem extends to another natural
measure of negativity for quasiprobability representations. Indeed, it is interesting
to find that the SICs do not generally play the same role in this alternate context.
Why do they not? Do they still always play some role which is not immediately
apparent? Maybe there are other families of Q-reps constructed from SICs or another
structure which naturally play the same role for sum negativity. {Q+

j } in dimension 4
did achieve the upper bound for sum negativity. Does this happen again? Although we
cannot calculate it exactly, we have some numerical evidence that the sum negativities
for the Hoggar SIC Q-reps differ from the non-Hoggar SIC Q-reps in dimension
8. This suggests that there might be an essential relation between sum negativity
and group covariance. Furthermore, the appearance of the complete set of mutually
unbiased bases in dimension 3 (mentioned in footnote 5) and the “twin” Hoggar SIC
in dimension 8 suggest a deep connection between sum negativity and minimizing
Shannon entropy which warrants further exploration.

Due to the connection to contextuality, the bounds on sum negativity and N p neg-
ativity in general are likely to be of interest to the quantum computation community.
A natural further direction for this research is the consideration of negativities other
than ceiling and sum negativity. Perhaps the next to consider is the only non-convex
integral negativity, N 0, which tells us the maximum number of negative elements
which can appear in a Q-rep vector. On the other hand, N 2 negativity makes use of
the most familiar distance function, and, as such, may warrant special attention. In
Sect. 4 we established the general conditions for a d = 3 WH Q-rep. This result and
any analogous results in higher dimensions6 may be of independent interest. Like-
wise, in order to pursue the exact lower bound for sum negativity in dimension 3,
we need strategies to construct non-WH Q-reps. Towards this, the general structure
and symmetries inherent in Q-reps warrants exploration. It may further be interesting
to consider what can be said about quasiprobability representations obtained from
non-orthogonal bases or even redundant operator frames in the negativity context.
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6 And in dimension 8, it may be interesting to look at general WH ⊗ WH ⊗ WH covariant Q-reps.
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