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Abstract: The goal of mapping psychological functions to brain structures has a venerable history. 

With the advent of neuroimaging techniques, this elusive goal regained vigor and became the main 

purpose of cognitive neuroscience. Unfortunately, as the field continues to develop, the ideal of 

finding one-to-one mappings from psychological functions to brain areas looks increasingly 

unrealistic. In the past few years, however, many cognitive neuroscientists have advocated for 

mining large sets of neuroimaging data in order to find the elusive one-to-one mapping. One recent 

strategy, proposed by Genon and colleagues (2018), constitutes one of the most concrete proposals 

for discovering the mappings from brain regions to cognitive functions by using big-data 

repositories of neuroimaging results. In this paper we offer several challenges for their proposal 

and argue that big-data approaches to finding one-to-one mappings between brain regions and 

cognitive functions suffer from significant difficulties of their own. 
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The mirage of big-data phrenology 

1. Introduction 

The idea of mapping psychological functions to brain structures has a venerable history, 

dating back to Galen’s ventricular doctrine (Green, 2003) and continuing to Gall’s phrenology 

(Gall and Spurzheim, 1810). Although those theories are now in disrepute, the advent of 

neuroimaging techniques, such as positron emission tomography (PET), functional magnetic 

resonance imaging (fMRI), electro-encephalography (EEG), and magnetoencephalography 

(MEG), gives the prospect of finding one-to-one correlations between psychological functions and 

brain structures new vigor, and the project is the main goal of the young field of cognitive 

neuroscience (Posner and DiGirolamo, 2000).1 Yet many doubt that cognitive neuroscience can 

give us such a psychological atlas, whereby the building blocks of mind get assigned to specific 

neural structures (Uttal, 2001; 2011). As cognitive neuroscience develops, the ideal of finding one-

to-one mappings from psychological processes to brain areas (Figure 1A) looks more and more 

unrealistic, as the evidence increasingly suggests that mind-to-brain mappings are likely not one-

to-one, nor even one-to-many (Barack, 2019; Viola, 2017; McCaffrey, 2023). Instead, it seems as 

though many diverse psychological functions are associated with the same brain regions, albeit 

perhaps with different degrees of probability, while at the same time many brain regions are 

engaged by the same psychological processes in different degrees (Price & Friston, 2005; 

Anderson, 2014; Figure 1B). Thus the goal of mapping psychological functions to brain structures 

appears to many people very unlikely, if not impossible (Fodor, 1999; Coltheart, 2006; Uttal, 2001; 

2011; 2012). 

Recently, Genon and colleagues (2018) argued that these difficulties stem from 

neuroscientists following a top-down approach: they start from accepted psychological categories 

(e.g., object recognition, memory retrieval, sensorimotor integration) and then move down to the 

brain areas with which those categories are supposed to correlate. This approach, Genon et al. 

argue, is flawed and unlikely to yield the kinds of mappings cognitive neuroscience seeks. To solve 

the problem, the authors suggest a bottom-up approach, whereby researchers begin with the ‘a 

priori defined construct of the brain region’ and work their way up to the ‘unknowns’, which are 

the psychological categories associated with that region. Their bottom-up approach begins by 

 
1 In this paper, just as in the paper we target (Genon et al., 2018), the terms ‘brain area’, ‘brain function’ and ‘brain 
structure’ are used interchangeably.   
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identifying a region of interest and then discovers the many cognitive functions, processes, and 

tasks—‘behavioral functions’, in their terminology—associated with it. Although this strategy 

won’t uncover one-to-one mappings, it should, they suggest, reveal the region’s ‘operation 

function’, or the computationally-described function that ‘grounds’ all associated behavioral 

functions, but which ‘remains latent and is not directly observed’ (Figure 1C).  

Critically, given the limitations of traditional piecemeal experimental methods (e.g., lesion 

deficits, single fMRI studies), Genon et al. favor using a big-data approach to identify a region’s 

operation function. By aggregating over thousands of studies—via, for instance, BrainMap (Fox 

& Lancaster, 2002), NeuroVault (Gorgolewski et al., 2015), or Neurosynth (Yarkoni et al., 

2011)—and by employing large-scale population samples (i.e., HCP, UK, Biobank), Genon and 

colleagues claim we could identify every behavioral function associated with a particular region. 

Characterizing the operation function would then involve finding a common computational role 

across all behavioral functions for each specific brain region.  
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We argue here that, despite its promise, their proposed big-data bottom-up approach faces 

serious challenges. Section 2 begins by reconstructing Genon et al.’s arguments against the top-

down approach. Section 3 reconstructs their proposed bottom-up approach. In section 4 we offer 

three challenges to their view and argue that their proposal doesn’t fare better than the top-down 

approach they criticize. Section 5 gives an assessment whereby neither an exclusively top-down 

nor a bottom-up approach is favored, but also a diligent piecemeal approach which requires, in 

fact, the clarification of basic conceptual confusions. 

We must note, though, that Genon et al.’s proposal is not the only one that suggests a big-

data bottom-up approach to overcome the difficulties with the top-down approach. In the past two 

decades other proposals have advocated for big-data bottom-up approaches to reforming cognitive 

ontologies, starting with Price and Friston's (2005) advice for ‘good’ ontologies, followed shortly 

by machine learning-based efforts like the Cognitive Atlas Project in cognitive neuroscience 

(Poldrack et al., 2009; 2010), the Consortium for Neuropsychiatric Phenomics in neuropsychiatry 

(Bilder et al., 2009), as well as more recent ones based on neural network analyses (e.g., Yeo et 

al., 2015; for reviews see Anderson, 2015, and Poldrack and Yarkoni, 2016). The hope is that, as 

we learn more about the brain, we will have a way to clarify traditional concerns about cognitive 

ontologies—which, until recently, were debated entirely a priori or, at best, with mere behavioral 

data (Anderson, 2015; Haueis, 2014). We focus on Genon et al. here because their view constitutes 

one of the most recent and careful articulations of how the bottom-up approach, boosted by big-

data, might look in practice; yet we realize our arguments likely apply to other proposals as well.     

2. The top-down approach  

To reconstruct Genon et al.’s argument against the top-down approach, we must familiarize 

ourselves with some of their terminology. First is the notion of ‘behavioral-function’, which they 

employ as an umbrella term for all sorts of cognitive processes and operations identified by the 

many sciences studying the mind and behavior, like ‘episodic memory’, ‘motor preparation’, 

‘visual attention’, ‘perspective taking’, and ‘emotion regulation’ (Genon et al., 2018: 351).2 By 

contrast, they use the term ‘operation-function’ to refer to ‘a computational operation performed 

by a given region, which contributes to the observed behavioral output’ (Genon et al., 2018: 352). 

Accordingly, every brain region is associated with many behavioral functions via a single latent 

 
2 An anonymous reviewer pointed out that the term “behavioral-function”, as employed by Genon and colleagues, 
conflates both behavioral and cognitive constructs. We agree but will retain their terminology in this article. 
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operation function—a core computational operation that unifies or ‘grounds’ the many behavioral-

functions but which, unlike them,  

[…] is not directly observed. In other words, our current knowledge of the functional 

specialization of a given brain region can be conceptualized as a polyhedron with its many 

sides (i.e., many behavioral functions), the sum of which can only be appreciated by 

investigation from many different perspectives, but whose core center remains intangible 

(ibid). 

As an illustration, the authors invite us to consider the hippocampus. This structure has 

been associated with many behavioral functions, including episodic and relational memory, 

recollection, encoding, retention, consolidation, novelty detection, pattern separation, and binding. 

Outside of memory, though, the hippocampus has been associated with behavioral functions as 

varied as spatial navigation, scene construction, prospection, episodic counterfactual thinking, and 

allocentric representation (Morris, 2007; Knierim, 2015). All these behavioral-functions constitute 

the hippocampus’s functional polyhedron; to ground all these seemingly disparate behavioral-

functions, there arguably exists a single operation-function which, unfortunately, is not directly 

observable. Now, according to Genon et al., researchers usually go about creating functional 

polyhedra by employing a top-down approach to mapping behavioral-functions onto brain regions. 

But they argue that all known varieties of this approach are problematic. Here we reconstruct their 

criticisms and add some additional points. 

The first variety of top-down approach is the lesion-deficit approach, whereby researchers 

characterize the function of a brain region based on the nature of the deficit the patient presents as 

a result of a brain lesion. Famous neuropsychological cases, such as that of patient Tan or H.M., 

epitomize this approach. Tan’s lesion was taken as evidence that the function of the so-called 

‘Broca’s area’—the bit of neural tissue between the pars opercularis and the pars triangularis in 

the human prefrontal cortex (but see below)—was language production. Likewise, H.M.’s lesion 

became a critical piece of evidence that a central function of the hippocampus was to encode new 

episodic memories (cf. De Brigard, 2019). Dozens of other cases have been and continue to be 

used to make claims about functions of lesioned areas.  

Unfortunately, as Genon et al. remark, the lesion-deficit approach is problematic. For 

instance, lesion studies are only quasi-experimental, so causal inferences are generally 

unwarranted, not only because pre-lesion factors cannot typically be ruled out, but also because 



 
Forthcoming in The British Journal for the Philosophy of Science. 

 7 

the lesions themselves almost never respect neuroanatomical boundaries (Mah et al., 2014). There 

are other well-known limitations of the lesion-deficit approach that Genon et al. don’t mention but 

that are worth including here, such as the fact that it is hard to generalize dissociations across 

patients with similar neuropsychological profiles (Caramazza, 1986) and even within a single 

patient, unless one adopts several questionable assumptions (Shallice, 1988). Moreover, 

neuropsychological profiles are often incomplete and inaccurate, mainly because they are only as 

good as the tests characterizing them, and such tests often have shortcomings. Consider H.M., who 

allegedly had intact working-memory even though this conclusion was drawn from a single digit-

span test, which isn’t an accurate measure of the entire construct of working memory (De Brigard, 

2019; Boone and De Brigard, 2023).     

The second way to create functional polyhedra is the stimulation approach, which tries to 

more experimentally impair a brain region in order to better control the causal path inducing a 

deficit in a behavioral function. Stimulation approaches could be either invasive, like deep brain 

stimulation and epidural motor cortex stimulation, or non-invasive, such as transcranial magnetic 

stimulation (TMS), transcranial electric stimulation (tES), and transcranial direct current 

stimulation (tDCS), each of which involves stimulation from outside the individual’s cranium. 

Unfortunately, these methods have shortcomings too. Invasive stimulation is practically 

difficult; DBS requires a complex surgical operation and thus typically involves non-neurotypical 

individuals, which not only raises concerns about pre-lesion conditions, but also makes it difficult 

to find suitable control groups. Epidural MCS involves less disruptive surgery but, as its name 

indicates, the method is topographically limited to a handful of cortical structures. Non-invasive 

brain stimulation techniques don’t fare much better. TMS stimulates to a depth of around 3cm, 

unsuitable for many sub-cortical regions. There are also concerns about concurrent sensory and 

motor side effects due to non-focal changes in magnetic fields. Finally, there are still questions 

about the how non-invasive transcranial stimulation affects brain regions at the micro-level, which 

complicates the chances clarifying how the stimulated brain region performs its putative function.3 

 
3 Genon et al. claim that the most serious concern with the stimulation approach is that, unlike the lesion-deficit 
approach, brain stimulation lacks ecological validity. But it isn’t clear in what sense the lesion-deficit approach is 
more ecologically valid. One thing they may mean is that while lesions are naturally created, experimental brain 
stimulation isn’t. But this would be a strange thing to say, not only because many brain lesions are manufactured—
not only surgically, as in the case of H.M., but also accidentally, as in the case of traumatic brain injuries or accidental 
anoxic events—but also because lesions are almost never localized or limited by precise neuroanatomical boundaries. 
Or perhaps what they mean to say is that while we can see neuropsychological patients in a variety of mundane 
situations, brain stimulation is usually confined to awkward settings like surgical rooms or experimental labs. But 
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The third top-down strategy is the activation approach, which makes use of recent 

neuroimaging techniques to identify neural activity associated with a particular task. These 

methods offer several advantages. For instance, fMRI, which relies on magnetic fields to track 

changes in deoxygenated hemoglobin, which in turn track metabolic increases in neuronal activity, 

enables researchers to record observations with a spatial resolution of a few millimeters (Huettel 

et al, 2014). Similarly, PET—or Fluorodeoxyglucose Positron Emission Tomography or FDG-

PET—was first introduced to track glucose, another critical metabolic resource, thanks to injected 

isotopes that upon decay release positrons, which in turn collide with electrons emitting gamma 

rays for the scanner to detect (Raichle, 1983)—although nowadays neuroimagers use other 

radioactive tracers for tracking other chemicals, primarily oxygen. By contrast, EEG and MEG do 

not offer comparable spatial resolution, but their temporal resolution is better than fMRI’s or 

PET’s, as they enable millisecond-sensitive recording through the scalp. Indeed, in recent years, 

researchers have been able to simultaneously record fMRI and EEG with some success (Huster, 

2012). Given how minimally invasive these techniques are, and how much easier it is to control 

the independent variables in experimental designs, it is not surprising that activation approaches 

are so popular. 

Unfortunately, like other top-down methods, they also have many limitations. Genon et al. 

mention a few, such as the problem of pure insertion, which affects many contrast-based studies 

where a particular cognitive process is allegedly ‘isolated’ by subtracting the other processes in 

common between two conditions (Friston et al., 1996). They also note that many neuroimaging 

experiments have a hard time isolating task-specific effects, which would challenge the studies’ 

internal validity. To be fair, these problems are well-known among neuroimagers—in fact, the 

problem of pure insertion arose even before neuroimaging (Sternberg, 1969)—and many analytic 

methods, including multivariate and machine-learning analyses, have been put forth to overcome 

some limitations. Nevertheless, and in agreement with Genon and colleagues, it is no secret that 

neuroimaging techniques, despite such novel analytic methods, are still plagued with technical and 

conceptual difficulties (Gessell et al, 2021; Boone and De Brigard, 2023). 

 
again, a precise characterization of the behavioral effects of the lesion—whether permanent, as in the lesion approach, 
or transient, as in the brain stimulation approach—is task-dependent, and there is no more reason to believe that the 
tasks employed during TMS are less ecologically valid than those employed with neuropsychological populations. In 
fact, they are often the same! Thus, while we agree that there are difficulties with the stimulation approach, we disagree 
with Genon et al. about the main reasons.   
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Finally, there is the structure-behavior correlation approach, whereby biological 

characteristics of the brain—morphological, physiological, or volumetric—are correlated with 

behavioral measures across subjects or groups. Current technological developments have also 

made it possible to associate these brain features with other biological markers, such as genes and 

hormones, in many human populations. Moreover, recent developments in computational and 

analytic techniques have improved the predictability of these biological indicators on various 

behavioral measures (Kanai and Rees, 2011). Nevertheless, as Genon et al. discuss, structure-

behavior correlations are not immune to concerns about degeneracy—i.e., the fact that structurally 

different neural systems can yield indistinguishable behavioral performance (Price and Friston, 

2002; De Brigard, 2017). Additionally, many neurological features are influenced by unknown 

factors that likely have little to do with the predicted variable, but since they cannot be regressed 

out, they could artificially inflate certain correlations (Westfall and Yarkoni, 2016). 

Taken together, the challenges reviewed in this section suggest that extant varieties of top-

down approaches to mapping behavioral-functions to brain regions suffer from serious limitations. 

While a combination of techniques and our reliance on convergent evidence can help assuage some 

concerns, it is unlikely that every shortcoming can be eliminated. More importantly, the picture 

that the top-down approach offers today is very different from the one-to-one mapping it promised 

years ago (Figure 1A). Indeed, the neural picture we have gathered so far is one in which many 

psychological notions are associated, with varying degrees of probability, with many brain 

structures (Figure 1B). 

What should we make of this? For Genon and colleagues, the root issue is a common 

assumption: that the starting point should be the ‘a priori defined construct of a mental operation’, 

to then try to infer the brain region associated with it. For ‘this modus operandi’, they contend, 

‘has only a very limited capacity to answer the initial question: “What does any part of the brain 

do”?’ (Genon et al., 2018: 356). They suggest instead a bottom-up approach. 

3. The bottom-up approach 

Overcoming the difficulties of the top-down approach, according to Genon and colleagues, 

requires a complete change in perspective:  

 

Assessing the relative functional specialization of brain regions critically requires a change 

in viewpoint, where the a priori defined construct is the brain region, and the unknowns are 
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the behavioral-functions associated with it. This implies screening a vast range of potential 

behavioral associations for a given brain region, and examining which of these are associated 

with the region of interest in an unbiased, statistically testable manner that accommodates 

the aforementioned complementarity of different approaches with respect to behavioral 

aspects (Genon et al., 2018: 356). 

 

The screening and statistical examinations of so many potential behavior-brain associations would 

be difficult. Yet we can optimize the process, according to them, by using newly available ‘big-

data’ analytic tools. Genon et al.’s proposed bottom-up approach combines a different starting 

point—the a priori defined notion of a brain region—with the analytic advantages of big-data to 

generate one-to-one mappings between brain regions and the operation functions underlying the 

behavioral functions for the regions’ functional polyhedra. 

 The proposed bottom-up approach involves four steps. (1) First, identify a priori region of 

interest. Genon et al. offer two examples: the anterior insula and the hippocampus. (2) Next, use 

computational tools, like BrainMap and Neurosynth, to aggregate across all available studies 

where the activation maxima is reported as falling within the region of interest. (3) Afterwards, 

use statistical analyses with the entire dataset, while trying to account for both the region’s base 

rate of activation as well as each behavioral condition associated with it.4 In so doing, the thought 

goes, one should be able to identify particular behavioral operations consistently (i.e., above some 

statistical threshold) associated with the region of interest. This step, which Genon et al. call 

‘functional behavioral profiling’, is supposed to be tantamount to generating a data-driven 

functional polyhedron: its many ‘sides’, or the behavioral functions associated with it, are 

identified not by the limited amount of knowledge researchers possess but by the indefatigable 

thoroughness of a fancy big-data algorithm. (4) Finally, identify a generic functional role “that 

could account for all the more specific mental processes that have previously been discussed for 

this region” (Genon et al., 2018: 357). This underlying functional role would correspond to the 

latent operation function associated with that brain region. 

 
4 One immediate problem is that researchers take enormous amounts of liberties in reporting coordinates and activation 
maps. Often the reporting is selective, and the coordinates of many results that survive thresholding go unreported. As 
such, these base rates are likely very biased. We won’t return to this concern later in the article, but it is worth noting 
that reporting and base-rate biases are a major problem for any proposal seeking to employ big-data in neuroimaging 
to generate behavior-structure mappings.   
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 Let us examine how this bottom-up approach might work with one of their examples: the 

anterior insula. Suppose you are interested in employing a bottom-up approach to identify the 

operation function of the anterior insula. How would you go about doing so? Now that you have 

(1) selected a region of interest, you then (2) employ the most cutting-edge computational tool 

available to collate all extant published studies where the activation maxima falls within the 

anterior insula. Next, you (3) query the tool for activation maps centered in the anterior insula, 

thereby outputting a list of several hundred studies with associated activation maps. Now you run 

some statistical analyses to eliminate studies where the association between the anterior insula 

activation and a behavioral function in that particular experiment does not survive some 

conservative threshold, minimizing the chances that the associations are capturing noise rather 

than signal. And though we do not currently have a tool that collates data from all available 

cognitive neuroscience studies, we do have a large-scale platform, Neurosynth, that can help us 

cull a good portion (14,371 as of 05/20/23) of all published fMRI studies. Indeed, if you query 

Neurosynth with an anatomical label of the anterior insula for all studies with reported activation 

in that area, you get around 700 hits. 

Now assume that the tool not only outputs the studies, but also gives you a curated list of the 

cognitive processes each study was set to identify. Just looking at the first few entries of a 

Neurosynth query, for instance, you get a range of behavioral functions, including ‘sustained 

attention’, ‘inhibition’, ‘executive function’, ‘regret’, ‘food motivation’, and ‘unreciprocated 

cooperation’, to name just a few. The thought is that (4) after all these (big!) brain data are 

analyzed, all the associated behavioral function terms curated, and the associations between them 

appropriately thresholded, we will then be able to  

[…] identify a generic functional role, such as task engagement maintenance, that could 

account for all the more specific mental processes that have been previously discussed 

for the [anterior insula]. As illustrated in this example, the patterns of associations across 

a wide range of tasks can foster new hypotheses, approximating as much as possible the 

core role of the region (and thus its operation function), beyond the behavioral ontology 

of the original studies or the database (Genon et al., 2018: 357; our emphasis).  

Just to emphasize: Genon et al. are aware that we currently do not possess automated tools to 

aggregate over all extant cognitive neuroscientific studies, and that the best current datasets are 

limited to fMRI and PET studies. However, they do believe that, in time, their bottom-up approach 
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will deliver accurate and systematic functional behavioral profiles for each brain region. From 

there researchers would be able to determine the operation function grounding all the behavioral 

functions comprising each individual brain region’s polyhedron. As a result, the daunting many-

to-many picture (Figure 1B) threatening the viability of a cognitive ontology mapped cleanly to 

brain structures would be rendered tractable (Figure 1C) by the bottom-up approach.  

4. Difficulties with the bottom-up approach 

 While not unprecedented, Genon et al.’s proposal is one of the most serious, careful, and 

concrete attempts at showing how big-data approaches could reform structure-function mappings 

and cognitive ontologies. In this section, however, we raise three problems for their proposal, and 

argue that the problems threaten the viability not only of their project, but of any project using big 

brain data to map structures to functions or create cognitive ontologies. Specifically, we argue that 

big-data approaches face the problem of defining brain regions, the problem of model dependence, 

and the problem of the task-process barrier. 

4.1. What’s a brain region? 

A fundamental assumption of Genon et al.’s proposal is that there are basic brain regions 

that can be defined a priori; the identification of one such region is, after all, the first step of the 

bottom-up approach. Unfortunately, the authors fail to define what a brain region is, how it can be 

identified a priori, and how to distinguish those brain regions that can be identified a priori—and 

for which it makes sense to work out a functional analysis according to the bottom-up approach—

from those that cannot. They do offer two examples, however: the anterior insula (AI) and the 

hippocampus. According to the authors, these two structures, traditionally delimited 

neuroanatomically, appear to be clear instances of what they call ‘a priori basic brain regions’ for 

which it makes sense to identify a single operation function. But why should they be so?   

To evaluate the claim that a structure like AI constitutes an a priori basic brain region in 

the sense assumed by the bottom-up approach, let us delve a bit into its neuroanatomy and 

neurophysiology. Macroscopically, the insula is a portion of the neocortex folded inside the lateral 

sulcus, covering between two and four percent of the total cortical surface, and enclosed dorsally 

by the frontoparietal operculum and ventrally by the temporal operculum (Figure 2A). The 

nomenclature ‘anterior’ versus ‘posterior’ insula comes from Brodmann’s initial characterization 

in 1909 (Figure 2B). The two gyri dorsal to the sulcus circularis comprised the posterior insula, 

which was then characterized as granular, given its proportionally larger number of Meynert cells 
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in layer 4. By contrast, the agranular AI comprised the three gyri rostral to the sulcus circularis.5 

Despite the fact that we keep employing this nomenclature today, only two years after Brodmann’s 

initial cyto-arthitectonic parcellation, Vogt (1911) offered a different myelo-architectonic division 

between dorsal granular and ventral agranular sectors, roughly alongside the insula’s sulci. 

Brockhaus’s (1940) subsequent cyto- and myelo-architectonic parcellation identified an 

allocortical sector with two agranular regions, a mesocortical sector with eight dysgranular 

regions, and an isocortical region with sixteen granular regions. That’s 26 cyto-/myelo-

architectonically distinct regions within the insula—at least eight of which fall squarely into what 

Brodmann labeled AI (Figure 2C). More recently, and employing more advanced staining and 

tracing methods, researchers have identified several cyto-architectonically distinct sub-regions in 

the macaque insula, with at least 3 of them in the dysgranular and 7 in the agranular regions 

corresponding to the AI (Evrard et al, 2012; Evrard et al, 2014). Although that level of precision 

in the cytoarchitectural organization of the human anterior insula is still lacking, our most current 

evidence suggests that it is probably as parcellated, if not more, than that of the macaque 

(Bauernfeind et al., 2013). Also, the AI is one of the very few cortical structures with atypical von 

Economo and fork neurons, whose selective degeneration has been recently associated with 

behavioral variants of frontotemporal dementia (Kim et al., 2011). These neurons happen to be 

closely grouped in layer 5b of the anterior agranular insula, corresponding to approximately three 

and one percent of the total number of layer 5 neurons, respectively (Evrard, 2018; see also Evrard, 

2019; Krockenberger et al, bioRxiv).    

Now consider figure 2D, depicting the results of a cluster analysis of neuroimaging data 

identifying three sub-regions of the right insula (Deen et al., 2011), and focus on the region 

enclosed by the rectangle, which very closely matches the ventral agranular portion of the AI, as 

identified by Brodmann (the same sector for which Brockhause, 1940, found about 8 cyto-

architectonically distinct regions, and for which Evrard et al, 2012, found at least 10 in the 

macaque). Volumetrically, this portion of the AI is approximately 2 cm3 (Zhang et al., 2014). 

Depending on your MRI scanner’s resolution, you may be able to fit between 100 and 200 isotropic 

voxels within the enclosed region (Figure 2D). Now, according to our best estimations, a typical 

3mm functional isotropic voxel contains about 630,000 neurons (Herculano-Housel, 2009)—

 
5 There is typically a fourth accessory gyrus that varies in size and localization across individuals, which is already an 
important wrinkle for the bottom-up approach, though we will sidestep the issue here. 
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although this number could be lower for agranular zones. Thus, even if we have a very high-

resolution scanner, capable of giving us 1mm functional isotropic voxels, and even if we assume 

that the proportion of neurons in the agranular portion of the anterior insula is half of that of its 

granular counterpart, there are still going to be over 100,000 neurons per voxel, and well over 100 

voxels inside the enclosed region in Figure 2D. And this does not even take into account glial cells, 

which are likely four times as many. That’s a lot of brain cells. 

 

 
This excursus into the intricate physiology of the insula seeks to motivate several pressing 

questions. First, what reason do we have to believe that the piece of cortical tissue known as AI, 

which we demarcate by gross neuroanatomy, is a good candidate for the sort of basic a priori brain 

region the bottom-up approach takes as a starting point? Moreover, given the aforementioned 

cytoarchitectonic boundaries within the AI (Evrard 2014; 2018), the fact that many of these sub-
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regions seem to project to different cortical targets (Krockenberger et al, bioRxiv), and the curious 

and yet not-well-understood fact that some of the most atypical neurons in the human brain happen 

to co-exist in a small portion of the AI, what reason do we have to believe that we can gloss over 

this complexity and accept that the AI is an ideal candidate for a basic a priori brain region—to 

which there corresponds a single operation-function? More dramatically—and this is a point we 

will discuss at length in the next section—what are the chances that the intricate biology housed 

inside the anterior insula manages to coalesce into a single computational operation that may be 

best described, according to Genon et al., as ‘task engagement maintenance’? Albeit seemingly 

rhetorical, these questions should highlight a fundamental concern with the bottom-up approach: 

that it is not clear why the AI is a good candidate for a basic brain region, or what makes the 

selection of the AI as a starting point so obviously a priori. And what goes for the AI goes for any 

other allegedly basic a priori brain region, as we discuss later. 

Before we get to the issue of what Genon et al. may mean by ‘a priori’, it is worth discussing 

three additional complications with determining what a brain region is. The first one stems from 

what has been called the ‘brain atlas concordance problem’ (Bohland et al., 2009; Ward, 2022). If 

you have ever worked with imaging data, you might have noticed that if a certain coordinate falls 

under a particular brain region when one parcellation protocol is used, it often falls under a 

different one when an alternative atlas is employed. There are several reasons why this occurs, not 

only having to do with the aforementioned difficulty of how to precisely delineate cyto-

architectonic boundaries, but also with the fact that functional parcellation is probabilistic, and 

different available atlases employ different strategies to assign activation coordinates to particular 

brain regions. For instance, as Bohland and colleagues (2009) showed, one can have a relatively 

vast activation cluster that would get labeled as ‘Superior Temporal Gyrus’ by the International 

Consortium for Brain Mapping (ICBM) anatomical template, but as ‘Medial Temporal Gyrus’ by 

the Automated Anatomical Labeling (AAL) atlas. And while both the ICBM and the AAL atlases 

are widely used, they are not the only ones available, and other authors have reported similar 

concordance problems with alternative tools. Therefore, contrary to Genon et al.’s assumption that 

aggregating over hundreds of neuroimaging studies will give us an ‘unbiased’ way to determine 

associations between brain regions and behavioral functions, the fact is that whether a particular 
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activation is reported as falling in one specific brain region is already biased by the parcellation 

protocol.6  

It isn’t unusual to try to solve concordance problems by visual inspection. Experts may 

look at where the peak activation is located and then, on the basis of their neuroanatomical 

knowledge, judge whether it falls in one or another region, thus overriding the automated labeling 

of their parcellation protocol. But this brings out a second problem: experts disagree. Recently, 

Tremblay & Dick (2016) asked 159 expert neuroanatomists from the Neurobiology of Language 

Society to give precise locations of two of the most important brain regions for research in the 

cognitive neuroscience of language: Broca’s and Wernicke’s areas. Surprisingly, their results 

revealed substantial disagreements about the extension and about which portions of cortical tissue 

should be included within each functionally defined area. Only 50% of respondents, for instance, 

stated that Broca’s area includes the pars triangularis and the pars opercularis in the frontal cortex, 

with the other 50% selecting some other variation. Critically, though, within this second half of 

respondents, there were some drastic differences: 5% located Broca’s area as being limited to the 

pars triangularis, 8% only included the dorsal portion of the pars triangularis, and 3% did not 

include the pars triangularis at all, confining it to the pars opercularis only. That means that if the 

peak maxima of a language task, say, falls in the rostral portion of the pars triangularis, more than 

10% of expert neuroanatomists working in the neurobiology of language (assuming the sample is 

representative) are going to drastically disagree with their colleagues as to whether such activation 

falls in Broca’s area. The verdict of experts may override concordance problems produced by 

different parcellation protocols, but their verdicts, too, could be biased.  

Finally, a third difficulty is that the few examples of basic brain regions offered by Genon 

and colleagues are all topographically unified. However, it is reasonable to wonder, following 

recent proposals by Fox and Friston (2012) and Anderson, Kinnison, and Pessoa (2013), whether 

we should assume, a priori, that the basic unit of brain structure must be topographically unified, 

as opposed to disaggregated bits of neural tissue working together. Just like Genon et al., these 

authors agree that the one-to-one mapping (Figure 1A) many cognitive neuroscientists expected 

 
6 The concordance problem occurs with pre-processed data, but the story could be even further complicated by the 
fact that different co-registration strategies in fMRI can yield differences in coordinate localization in 3-D space 
(Kashyap et al., 2018), which in turn would yield differences in neuroanatomical labeling. Once again, this highlights 
the fact that all of these ‘researcher degrees of freedom’ inject a substantial amount of bias to what the bottom-up 
approach takes as the starting point of choosing a basic, a priori brain region.      
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to bring about is unlikely, and that the reality looks more like a many-to-many mapping (Figure 

1B). And just like Genon et al., they also advocate for the use of big-data and meta-analytic 

approaches to build a data-driven ontology. However, unlike Genon et al.’s bottom-up approach, 

these alternative proposals jettison the idea of starting with a neuroanatomically individuated brain 

region and instead suggest using integrative techniques—e.g., functional connectivity, 

tractography, dynamic causal modeling, network analysis—to let the neural data determine what 

are the basic brain structures we should associate with cognitive functions. Contra Genon et al.’s 

bottom-up approach, these integrative proposals argue that the basic brain structures are likely not 

topographically unified but, rather, some sort of spatially and/or temporally distributed brain 

network. If these integrative approaches are correct and it turns out that topographically unified 

brain regions are not the basic structures of analysis, then the bottom-up approach will lead to 

situations where we would attribute the wrong operation function to a brain region, either because 

it contributes to more than one operation function (Figure 1D) or because it is part of a larger, basic 

brain region which contributes to a single operation function (Figure 1F). Either way, the ideal 

one-to-one mapping from brain area to operation function, once again, breaks down. 

Perhaps some of these concerns hang on what exactly Genon et al. (2018) mean by ‘a 

priori’. Although they never clarify the expression, they likely use it the way cognitive 

neuroscientists do when describing certain statistical analyses, that is, as synonymous with 

‘hypothesis’ or ‘theory-free’. But as we argued in this section, there is no such a thing as a 

hypothesis or theory-free way to determine what a brain region is. Even when it comes to cyto- or 

myelo-architectonic parcellation, the mapping will always be—as comparative neuroanatomist 

Henry Evrard puts it—‘biased by the subjective judgment of the observer and complicated by the 

inter-individual variability’ (Evrard, 2014). A neuroscientist’s theoretical commitments penetrate 

their observations at many levels, including the fundamental one of choosing ideal candidates for 

determining which brain structures should be associated with operation-functions and which 

should not. Why did Genon et al. pick AI and hippocampus as good candidates for basic brain 

regions? Precisely because of their theoretical commitments with certain ways of 

neuroanatomically parcellating the brain, the resolution of current neuroimaging instruments, and 

years of top-down research in which those regions are taken to be good candidates for basic units 

of brain function. There is nothing ‘a priori’ about the selection of these regions as starting points 
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for a bottom-up approach, and there is nothing unbiased in the way their approach promises to 

deliver data-driven functional polyhedra.7 

4.2.  The model-dependency of operation-functions 

In the previous section we challenged Genon and colleagues’ assumption that there is a 

straightforward way to identify, a priori, the basic brain areas demanded by their proposed bottom-

up approach—that is, our discussion concerned the level B1,…, Bn in Figure 1. In this section we 

challenge the next level, namely that of identifying the computation that best characterizes the 

operation function of an alleged basic brain region—i.e., the level C1,…,Cn in Figure 1. 

Specifically, we argue that Genon and colleagues’ proposed strategy to computationally 

characterize the operation function of a brain region rests on three assumptions that are likely 

false.8  

To that end, consider the second brain region they discuss: the hippocampus.  Incidentally, 

it is curious that they picked this medial-temporal structure, which has been studied for over 400 

years, because there is still disagreement as to what the label ‘hippocampus’ denotes. Some 

researchers think the term covers six regions: dentate gyrus (DG), cornu amonis (CA, which itself 

comprises three sub-regions CA1, CA2 and CA3), subiculum, presubiculum, parasubiculum, and 

entorhinal cortex (EC). But others disagree and think that the term should only cover allocortical 

structures—i.e., evolutionarily older regions of the cortex that comprise fewer than six cortical 

layers—which would exclude the last three. And still others think that the hippocampus proper 

should only include CA1, CA2 and CA3, due to the nature of their enclosed axonal projections 

and granularity (Amaral and Lavenex, 2007). So, depending on the researchers’ preferred 

terminology, we are talking about a structure that can vary from ~2 to ~5.2 cm, in humans, along 

 
7 An anonymous reviewer suggested a possible amendment to Genon’s et al (2018) proposal to the effect that one 
could use alternative methods for selecting basic brain areas, and suggested, as an example, the cortical area 
parcellation approach taken by Gordon and colleagues (2016). Although this proposal is intriguing, there are two 
reasons why it may still not solve the issues discussed in this section. First, these kinds of approaches for cortical 
parcellation are full of theory-laden decisions. In Gordon et al (2016) choices as to which levels of signal-to-noise 
ratio in the BOLD signal were appropriate, for instance, or which was the minimum size for a parcel (in their case, 15 
cortical vertices), were deliberate and guided by the theoretical decisions of the research team. At least currently, we 
don’t think there is a fully theory-free way of conducting brain parcellations with imaging data. Second, even if there 
was, many of the issues having to do with resolution mentioned earlier in this section would still apply, since these 
parcellations are still voxel and BOLD-signal dependent. The “real” basic units of the brain may be smaller than the 
resolution afforded by fMRI.   
8 Of note, the view according to which a single brain area is associated with a single computational function is dubbed 
“computational absolutism” by Burnston (2016). His criticisms of such a view are spot on, and entirely consistent 
with our considerations here. For an opposing view see Shine et al. 2016.  
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its transversal axis (McHugh et al., 2007)—which, from the point of view of the bottom-up 

approach, should already give us pause. But let’s set this issue aside and assume that 

‘hippocampus’ refers to the formation including the six regions just listed. 

How would we then go about determining the operation-function of the hippocampus? 

According to the bottom-up approach, and as detailed in Section 3, the next step would be to 

employ a comprehensive algorithm to search through big-data repositories and cull all the results 

associated with hippocampal activation in order to generate its behavioral profiling. Again, as with 

the insula, if one tries to do so with Neurosynth today (05/20/23), the algorithm outputs 1059 

studies, which are certainly only a fraction of all imaging papers reporting activations in the 

hippocampus. Yet, this subset allows us to imagine what the behavioral profiling of the 

hippocampus would look like, were it to be generated by a much more comprehensive program: a 

long list of articles reporting hippocampal activation across a variety of tasks and behaviors. Just 

going over the first ten hits, corresponding to the studies with the highest loadings, we already get 

a list of quite diverse behavioral functions: ‘semantic memory’, ‘topographic memory’, ‘sequential 

reasoning’, ‘conditioning’, ‘extinction’, ‘episodic memory’, ‘encoding’, and ‘old/new judgments’. 

Genon and colleagues admit that big-data repositories and their culling algorithms are still in their 

infancy, yet they think that, as they develop and include more and more studies, the emerging 

patterns of association will allow us to ‘generate hypotheses that will approximate as much as 

possible the core role’ of the hippocampus, from which in turn we will be able to ‘infer its operation 

[i.e., computational] function’ (Genon et al., 2018: 357; our emphasis). 

Unfortunately, the authors never explain what they mean by ‘approximate’ or what exactly 

is the nature of the inferential process allowing us to identify the operation function of a selected 

brain region. A charitable reading indicates that this ‘approximation’ occurs because as the amount 

of data included in the generation of the behavioral profiling of the hippocampus increases, the 

number of hypotheses that could possibly characterize the computation of its core operation 

function should decrease. However, the evidence suggests exactly the opposite: that as the number 

of studies showing hippocampal involvement increases, so does the number of computational 

models proposed to explain the operation function of the hippocampus. Forty years ago, when 

computational neuroscience was emerging as a distinct discipline, there were only a couple 

computational models of hippocampal function. There was Marr’s influential ‘simple memory 

model’ of the hippocampus, for instance, which was part of his larger computational theory of the 
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archicortex (Marr, 1971); the main objective was to offer a computational account for the 

hippocampus-neocortex interaction during memory encoding and retrieval. There were also 

computational models (e.g., Zipser, 1985) to explain navigation behavior and spatial location, 

thanks to the discovery of hippocampal place cells (O’Keefe and Dostrovsky, 1971). But the last 

30 years have seen an explosion of computational models for hippocampal function, in no small 

part because the hippocampus has been shown to be involved in all sorts of behaviors via all sorts 

of different tasks. Moreover, there are competing computational models, involving different 

assumptions and parameters, vying to offer better fits for the same behavioral and neural data. In 

fact, there are now so many models that it isn’t hard to find entire chapters and volumes dedicated 

to computational models of hippocampal function for a single family of behaviors (e.g., Gluck, 

1996; Burgess, 2007; Hasselmo et al, 2020). Contrary to Genon et al.’s assumption, then, it seems 

that the more behavioral functions the hippocampus is associated with, the greater the number of 

hypotheses for what its operation function may be.  

This shouldn’t be surprising, though, for the proliferation of computational accounts of 

hippocampal function has to do with the nature of computational modeling itself. In essence, a 

computational neural model consists in a formal or mathematical representation of the mechanisms 

responsible for the operations of a brain system as well as the way such mechanisms interact to 

bring about certain cognitive, behavioral, or physiological process (Moustafa, 2017). As a result, 

computational models include parameters and variables ranging over quantifiable measures, some 

of which are physiological (e.g., BOLD signal, dopamine release, etc.) and some behavioral (e.g., 

Hit rates, RTs, saccades, etc.). The relative success of a computational model for a brain structure 

or process is ascertained based on how well it ‘fits the data’, i.e., how closely it aligns with 

observed data and how precisely it generalizes to unobserved data. The issue, though, is that the 

data with which the fit of a model is tested are task-dependent. A computational model of 

reinforcement learning in the hippocampus, for instance, is going to be evaluated by how well it 

fits the data produced by a reinforcement learning task. Likewise, hippocampal models of 

relational memory encoding or spatial navigation would be tested against data produced by a 

memory or spatial navigation task. So, it is not surprising that as evidence accumulates showing 

hippocampal engagement during several different tasks, there is also an increase in the number of 

models offered to account for such findings in computational terms.  
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It sometimes happens, of course, that the same model can be employed to fit data from 

more than one study or more than one task (e.g., Krasich et al., 2023); this is indeed the best way 

to show that a model has explanatory breadth. But again, such tasks are usually thought to measure 

the same or very related cognitive process or behaviors. What is rarer is to find a single 

computational model that can account for two or more disparate set of findings, produced by 

different tasks, each tapping at theoretically different processes or behaviors. A recent example of 

this phenomenon is the computational model of the hippocampus as a predictive map (Stachenfeld 

et al., 2017), which was proposed to solve two computationally conflicting models: one of the 

hippocampus as a cognitive map (O’Keefe and Nadel, 1978) and one of the hippocampus as a 

reward predictor in reinforcement learning (Schultz et al., 1997). More recently, Whittington and 

colleagues (2020) offered a computational model to unify accounts of the hippocampus as a 

cognitive map and computational models of the hippocampus in relational memory task; there are 

thus instances where a model offers convergence between two or more disparate computational 

accounts of a brain structure. But the fact remains that these tend to be more the exception than 

the rule. And, critically, such convergent computational accounts are neither obvious nor the result 

of any straightforward inference. Thus, contrary to what Genon et al. intimate, there is little reason 

to believe that a more comprehensive behavioral profiling of a brain region is going to 

automatically make it easier to computationally characterize its operation function.   

But let us assume, for the sake of argument, that Genon’s et al (2018) intuition is correct, 

and that the more data is included in the behavioral profiling of a brain region, the fewer the 

hypotheses as to what its operation-function may be.  However, even if this was so, the vagueness 

with which Genon et al. (2018) characterize how to infer the operation-function of a brain region 

is problematic in a way that is reminiscent of concerns associated with the related proposal by 

Price and Friston (2005). In their widely cited paper, Price and Friston, too, worry about the 

seemingly undeniable fact that each brain region appears to be associated with multiple cognitive 

operations. As a result, they advocate for a new computational ontology in which each brain region 

is associated with a functional characterization couched at the right level of abstraction. They use, 

as an example, the fact that the posterior lateral fusiform (PLF) gyrus is associated with a plethora 

of cognitive processes—not unlike the case of the AI or the hippocampus in Genon et al (2018)—

but suggest that if one can find a computational label at an adequate level of abstraction so that it 

‘explains all patterns of activation’, one can generate a computational characterization broad 
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enough so that it will be ‘more useful than task-specific labels’ (Price and Friston, 2005: 268). 

This new computational ontology is perhaps just what the bottom-up approach advocated by 

Genon and colleagues (2018) needs. 

The problem for Genon et al (2018) is that the path to a new cognitive ontology couched 

in abstract computational terms is deeply problematic. As Klein (2012) persuasively argued, if the 

only way to accommodate all the tasks associated with a brain region is to offer a computational 

label sufficiently abstract to cover them all, then it may end up with a placeholder label that most 

likely won’t be particularly helpful. Price and Friston (2005) suggest that ‘sensorimotor 

integration’ could be a good characterization of the computational role of PLF, not unlike the ‘task 

engagement maintenance’ operation-function that Genon et al (2018) suggest for the AI. But both 

labels are so general that do little to guide our cognitive theorizing. As Klein puts it: 

Specific functional attributions, when available, provide relatively strong constraints on 

cognitive theories. The more we abstract away from those details, the less constrained 

our cognitive theorizing becomes. To put it more bluntly: suppose we see PLF activation 

and so know that there is some sensorimotor integration going on. It is hard to know what 

cognitive theory could possibly conflict with that: at that level of abstraction, any theory 

looks like it will be compatible with PLF activation. (Klein, 2012: 955)  

And the problem, of course, is that this concern is entirely replicated in the bottom-up approach 

proposed by Genon and colleagues (2018).9 

Finally, it is worth mentioning a third concern with the way the bottom-up approach 

suggests we should characterize computational functions. As stated, the suggestion is that as the 

behavioral profiling of a brain region becomes more and more comprehensive, the unique 

computational function of the a priori basic brain region will become clearer. However, this 

assumes that there is a one-to-one correspondence between a particular brain area and the right 

 
9 An anonymous reviewer suggested a different alternative: that instead of thinking of a computational characterization 
in abstract labels that simply reuse terms from our current ontology, we should think that the right ontology for the 
computational operations would have as its components ‘computational operations, which may or may not be 
expressible in human natural language terms’. This is an intriguing possibility, no doubt, but at this stage it is very 
unclear how it could possibility be implemented in the brain. For one, if the functions are non-expressible in natural 
human language terms, how would they inform psychological theories that are couched in human natural language 
terms? Second, as mentioned above, the most formal computational theories we have are highly task-dependent, as 
the values that the computational parameters can take must be specified over a particular numerical domain. 
Generalizing a single computational parameter over a large set of task-domains is not a trivial matter. Thus, while 
interesting, we suspect that to fully evaluate the viability of this proposal may require its own paper.       
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computational account of the neural circuitry structuring it (Figure 1C). But the truth of this 

assumption is questionable, for there is no reason to think that the topographical boundaries of a 

brain area will always map onto those postulated by the best computational characterization of its 

neural circuitry (we also mentioned this point in reference to the AI in section 4.1). Consider, 

again, the case of the hippocampus. One of the main reasons to include the six regions mentioned 

above as comprising the hippocampal formation was the discovery of two unidirectional neuronal 

pathways (Andersen et al., 1971): a trisynaptic pathway, going from EC to DG (synapse 1), from 

DG to CA3 (synapse 2), and then from CA3 to CA1 (synapse 3); and a monosynaptic pathway, 

directly connecting the EC with CA3 and DG via the perforant pathway. Indeed, the difference 

between these two pathways is the backbone of what’s likely the most powerful computational 

model of two kinds statistical learning associated with the hippocampus (Shapiro et al., 2017). The 

problem, though, is that recent evidence suggests that the old neuroanatomical mapping of the 

trisynaptic pathway is incomplete, and that its correct neuroanatomical characterization should 

include further projections to the subiculum and to other cortical areas not traditionally included 

in the hippocampus (Knierim, 2015). As such, if the two-paths model for statistical learning is 

correct, then it is likely that a full understanding of how the hippocampus carries out such 

computations will require us to move beyond its anatomical limits. Indeed, it may turn out to be a 

mistake to attribute a computational function to the hippocampus, for the best way to characterize 

its operation function might not respect its topographical boundaries at all. 

4.3. The task-process barrier 

In this final section, we challenge the way the top level, that is, the level of the 

psychological or behavioral functions (P1,…,Pn in Figure 1), is characterized by the bottom-up 

approach. The starting point is the recognition that, contrary to what the bottom-up approach may 

suggest (Figure 1C), we never measure cognitive processes or behavioral functions directly 

(Francken, Slors and Craver, 2022). What we measure is performance in tasks that we take to index 

behavioral processes or functions (Figure 1F). For instance, researchers may use the Stroop task 

to measure cognitive control, a false-belief task to study theory of mind, or an odd-ball task to 

measure attention. Unfortunately, oftentimes there is disagreement as to whether an experimental 

task actually measures the intended behavioral function, and sometimes these disagreements lead 

researchers to change their mind and accept that either the task does not index the intended 

behavioral function or that it actually measures a different one (Figure 1F).  
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Consider two examples. The first one concerns the serial reaction time (SRT) task, which 

is widely used to measure motor learning (Nissen and Bullemer, 1987). In the SRT task, 

participants are visually presented with a horizontal arrangement of four dots that can turn on and 

off. They are also presented with a response box consisting of four buttons, also arranged 

horizontally, each one corresponding to a different finger. Sequences of visually presented cues in 

the form of ‘on’ dots on the screen are presented and participants are simply asked to respond in a 

spatially congruent manner in the button box (i.e., leftmost dot corresponds to leftmost finger, 

second dot to the second finger, etc.). Both accuracy and reaction times are measured, and it is 

normally thought that increased accuracy and reduced reaction times reflect motor learning. 

However, recently some researchers have argued that the SRT is not a good task to measure motor 

learning, for three reasons (Krakauer et al., 2019). The first is that it can’t distinguish between two 

arguably essential components of motor learning: reaction times and movement time. The second 

is that SRT measures accuracy as a percentage of correct responses but says nothing about the 

quality of the execution of an action, which is a critical component of motor learning. And the 

third reason is that, contrary to the SRT’s assumption, learning does not occur implicitly but 

explicitly, as participants’ awareness of the sequence seems to account for most of their successful 

performance. As a result, they argue that SRT should not be seen as a task for measuring motor 

learning; at best, it measures the explicit learning of ordered sequences. 

The second example concerns the n-back task, which is widely used to measure working 

memory (Kirchner, 1958). This task requires participants to monitor a sequence of stimuli and 

indicate when the current stimulus matches the one presented “n” steps back in the sequence. The 

thought is that, as the number of steps back increases—i.e., as the “n” is larger—the more taxing 

the task is for working memory. Despite being widely used, though, many have argued that the n-

back is not a reliable measure of working memory. Miller and colleagues (2009), for instance, 

assessed the reliability of the n-back task against other working memory tasks employed in 

neuropsychological testing, and found that they had very little convergent validity. The results, 

perhaps more worryingly, show no correlation between n-back task performance and backward 

digit spam recall, another widely used measure of working memory. More recently, Rac-

Lubashevsky and Kessler (2016) studied individual differences in n-back task performance, and 

they identified two clear categories of performance: one corresponding to ‘maintenance’ and 

another one to ‘updating’. These categories led them to suggest that the n-back task does not 
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measure a single cognitive process but, likely, two. Lastly, Beuker and colleagues (2023) recently 

constructed a neural network model to simulate human performance in an n-back task and 

demonstrated that a working memory component alone cannot account for the retention of the 

maintained information, requiring instead a long-term episodic memory component to reach 

performance. They suggest that the n-back task, far from simply relying on working memory, may 

actually be tapping into episodic memory instead.  

The fact that these disagreements occur with two of the most widely used tasks in cognitive 

neuroscience is actually diagnostic of a much more pervasive phenomenon—that the link from 

task performance to behavioral/psychological function is never straightforward, but depends on 

the experimenters’ assumptions and background theoretical beliefs (Cronbach and Meehl, 1955). 

Many papers are rejected in the review process because the tasks do not clearly measure what they 

say they do, and the validity of experimental tasks as reliable measures of intended cognitive 

processes in many published papers is constantly questioned in laboratory meetings and 

professional conferences around the world. In sum, we often re-conceive what a task measures, 

not because something changed about the brain or the task, but because we often change how we 

understand the cognitive or behavioral-function it is supposed to measure or the relationship 

between the task and its intended target. The result is that, if we follow the bottom-up approach, 

we may end up mischaracterizing latent operation-functions associated with a particular task, but 

not because we select the wrong region. It would happen instead because we wrongly categorize 

the behavioral function it supposedly indexes. Big-data may reduce this concern but cannot 

eliminate it. These local conceptual confusions won’t get averaged out from aggregating massive 

amounts of brain data simply because they are not noise—they are just the wrong signal.  

5. Conclusion: the need for a piece-meal approach  

 In the past decade, some researchers in the cognitive neurosciences have proposed 

employing big-data approaches to resolve disputes about structure-function mappings and 

cognitive ontologies (McCaffrey and Wright, 2022). In a recent proposal, Genon and colleagues 

(2018) offer a concrete strategy to do just that. Here we argued that their ‘bottom-up approach’ 

suffers from serious shortcomings. Specifically, we argued that what constitutes a basic brain 

region is not obvious, and that its identification is likely never entirely a priori. We also argued 

that the characterization of the latent operation-function (i.e., computation) of a given brain region 

is a more complex process than the bottom-up approach assumes. Finally, we argued that the 
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bottom-up approach misses a critical conceptual barrier between task measurements and the 

intended target of the measure, posing serious challenges to the assumed straightforwardness with 

which big-data is supposed to help to characterize the behavioral profile of a brain region. 

Problems with big-data approaches to cognitive ontologies and structure-function 

mappings suggest that the fundamental difficulties with characterizing the function of brain 

regions go beyond the limits of experimental methods or the availability of empirical evidence. 

The solution very likely requires us to conceptually clarify, in advance, what are the right 

categories according to which brain data ought to be interpreted. Surely more data is better than 

less data (we are not denying that!), and it is very likely that better inferential statistics on big-data 

repositories, such as those afforded by data science and machine learning approaches (e.g, 

standardization, regulation via penalizing, etc., see Rokem and Yarkoni, 2023), are going to be 

required to make better sense of the massive amounts of neuroscientific results labs around the 

world are producing daily. Nevertheless, it is very likely that we will always have to resolve local 

issues about the nature of brain regions, the adequacy of one or another computational account, or 

the convergent validity of one or another experimental task. This careful and conscientious 

‘piecemeal’ approach to cognitive ontologies and structure-function mappings, which has been 

around for centuries, is likely not going to be replaced by solely top-down or bottom-up approaches 

any time soon—regardless of whether these approaches use the seductive power of big-data. 
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