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Abstract

Subintuitionistic (propositional) logics are those in a standard intuitionistic language
that result by weakening the frame conditions of the Kripke semantics for intuitionistic
logic. In this paper we consider two negation expansions of subintuitionistic logic, one
by classical negation and the other by what has been dubbed “empirical” negation.
We provide an axiomatization of each expansion and show them sound and strongly
complete. We conclude with some final remarks, including avenues for future research.
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1 Introduction

With the advent of Kripke semantics for modal logic, it became natural to
investigate logics weaker than S5 by weakening its frame properties. For intu-
itionistic logic things have tended in the other direction through the investiga-
tion of intermediate logics that obtain by strengthening the frame properties
of intuitionistic logic. There has been less interest in subintuitionistic logics
that obtain by weakening the frame properties of intuitionistic logic. To our
knowledge, there has been no study of expansions of subintuitionistic logic by
operators outside of the standard language. Our interest lies in expansions of
subintuitionistic logic that obtain by adding classical or classical-like negations

1 This research was funded in part by the European Research Council under the European
Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement nr
263227. Email: mikejde@gmail.com.

2 Postdoctoral research fellow of Japan Society for the Promotion of Science (JSPS). Email:
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to the language. Since we are interested in logics as consequence relations, our
work most closely resembles Greg Restall’s [14]. 3

In Kripke semantics, classical negation is ordinarily defined such that the
negation —A of a sentence is true at a state just in case A is not true at that
state. In this sense classical negation is extensional, since it does not require
looking beyond the state of evaluation. The problem with this definition, how-
ever, is that it is incompatible with Heredity, i.e., that if an atomic statement
A is true at some state w, then it is true at any state accessible to w. For
if A is not true at z so that —A is, and if y is accessible from z, we cannot
require that the truth of = A be preserved up to y since A may be true there. So
adding classical negation requires either eschewing Heredity, or else restricting
the accessibility relation in a way that allows Heredity to stay in force. The
latter option is not available in the case of intuitionistic logic since there are
no restrictions that would preserve the intuitionistic fragment. For instance,
one natural restriction is to let accessibility be identity but that restriction
results in classical logic.# We must therefore eschew Heredity, which makes
subintuitionistic logic ideal for the purposes of adding classical negation.

There is another way of adding a classical-like negation to intuitionistic
logic. A defining characteristic of classicality is that = A is true just in case A is
not. We may then define truth in a model to be truth at a distinguished base
state, and define negation so that = A is true in a model if, and only if, A is not.
This means that negation is no longer extensional in the sense that the truth of
—A at an aribtrary state in a model depends on whether A is true at the base
state, yet it is extensional in the sense that determining whether a negation is
true in a model requires going nowhere else besides the state relative to which
truth-in-a-model is defined, namely, the base state. Notice that, importantly,
this definition of negation is compatible with Heredity. Suppose ¢ is the base
state of a model and that A is not true there. Then —A is true at every state
in the model, and so its truth is trivially preserved up the accessibility relation.

In [3] and [4], Michael De and Hitoshi Omori give philosophical grounds
for adding such a negation to the language of intuitionistic logic, where they
there call it empirical negation. To put matters briefly, intuitionistic nega-
tion, standardly defined as implication to absurdity, is too strong to allow for
a generalization of intuitionistic logic to empirical domains, such as the phys-
ical sciences.® TFor instance, to express that a certain proposition (such as
Goldbach’s conjecture) has not been proven, it is too strong to say that the
supposition of the proposition leads to absurdity. The idea, then, is to expand
the vocabulary with an empirical negation that roughly expresses that “There
fails to be sufficient evidence at present to warrant the proposition that...”.

3 See [2], [6], [1] and the references cited therein for work on subintuitionistic logic.

4 Compare this with classical relevance logic which results by adding classical negation to
relevance logic in just this way, i.e. by letting the order relative to which truth is preserved
be identity. Here, however, we do not get a collapse to classical logic. See [10] and [11] for
details.

5 This project is given its fullest defense in the works of Michael Dummett.
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The negation has a number of interesting properties. One in particular is its
close affinity to classical negation even though adding it to intuitionistic logic
does not result in a collapse to classical logic. 6

The paper proceeds as follows. In §2 we present the weakest subintuition-
istic logic SJ of [14]. In §3 we expand SJ by empirical negation and show the
axiomatization sound and strongly complete. In §4 we do the same for classical
negation. In §5 we draw some comparisons to related systems, including weak
relevance logics and a system of [5] in which both classical and intuitionistic
negation coexist. In §6 we conclude with some final remarks.

2 Subintuitionistic logics revisited

We begin by presenting the weakest of the subintuitionistic logics, SJ which
we then go onto expand by empirical and classical negation respectively in §3
and §4.

Definition 2.1 The language £ consists of a finite set {A,V, —} of proposi-
tional connectives and a denumerable set Prop of propositional variables which
we denote by p, ¢, etc. Furthermore, we denote by Form the set of formulae
defined as usual in £. We denote a formula of £ by A, B, C, etc. and a set of
formulae of £ by ', A, X, etc.

2.1 Semantics

Definition 2.2 A model for the language £ is a quadruple (W, g, R, V'), where
W is a non-empty set (of states); g € W (the base state); R is a binary relation
on W satisfying what in [14] is called omniscience, namely gRw for all w € W;
and V : W x Prop — {0,1} an assignment of truth values to state-variable
pairs.” Valuations V are then extended to interpretations I to state-formula
pairs by the following conditions:

* I(w,p) = V(w,p)

e [(w,ANB)=1iff (w,A)=1and I[(w,B) =1

e [(w,AvB)=1iff [(w,A)=1o0r I(w,B) =1

e [(w,A— B)=1iff forallz € W, if wRz and I(x,A) =1 then I(z,B) = 1.
Semantic consequence is now defined in terms of truth preservation at g: ¥ | A
iff for all models (W, g, R, I), I(g,A) =11if I(9,B) =1 for all B € X.

Remark 2.3 Note that we are not assuming

(Heredity) If V(w,p) =1 and wRzx then V(z,p) =1,

6 However, see [7] and [5] for different approaches to combining both classical and intuition-
istic negation without such a collapse. It should be noted that the natural deduction system
presented in [7] is trivial as stated (i.e. any formula follows from any set of formulae), an
error that is to be blamed on EFQ—-. To see this let I be empty and « a contradiction.
The correct rule is obtained by deleting « from the left-hand side of the premise sequent (as
Lloyd Humberstone conveyed in personal communication).

7 Omniscient frames are sometimes referred to as strongly generated.
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nor that R is reflexive or transitive; R is assumed only to satisfy omniscience.
Typically, inuitionistic Kripke models are not pointed in the sense that they
contain a base state relative to which truth in the model is defined. It plays an
essential role here for logics—taken as consequence relations and not classes of
theorems—properly weaker than intuitionistic logic, but also for intuitionistic
logic expanded by empirical negation.

2.2 Proof Theory

Definition 2.4 The system SJ consists of the following axiom schemata.

(Ax1) A— A
(Ax2) A— (B— B)
(Ax3) (A-B)A(B—=C)) = (A—=0C)
(Ax4) (ANB)— A
(Ax5) (ANB)— B
(Ax6) ((C—=A)AN(C—=B))—(C—(AAB))
(AxT7) A— (AVB)
(Ax8) B — (AV B)
(Ax9) (A-C)AN(B—=C))— ((AVB)—C))
(Ax10) (AN(BVC)) = ((AAB)V(ANQ))
In addition to these axioms, we have the following rules of inference.
A A— B AvC (A= B)vC

(MP) — 5 (DMP) BV

. A B A—-B)VE (C—D)VE
(Adj) AN (DR) (((B 5 )C) S (f(l 5 D)))v B
Finally, we write I' - A if there is a sequence of formulae By,..., B,, A, n >0,

such that every formula in the sequence By, ..., By, A either (i) belongs to T';
(ii) is an axiom of SJ; (iii) is obtained by one of the rules (MP)-(DR) from
formulae preceding it in sequence.

Remark 2.5 Note that the following rule, included in the original formulation
of SJ, is derivable in view of (DR), (MP), (Ax1) and (Ax9).

A—-B C—D

(R) (B—=C)—= (A—> D)

To see this, assume A — B and C — D. Then by (Ax7) and (MP) we obtain
(A— B)VE and (C — D)V E where E is (B — C) — (A — D). Then by
applying (DR), we have E'V E, and by (MP), (Ax1) and (Ax9), we obtain E,
as desired.

Remark 2.6 It deserves noting that the following rules, known as Prefixing,
Suffixing and Transitivity respectively, are derivable in SJ in view of (R), (MP)
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and (Ax1):
C—D
Prefixi
(Prefixing) (A= C) = (A= D)
A— B
i
(Suffixing) B—-C)—=(A—=0C)
(Transitivity) A—-B B-—-C
ransitivity A — C
Proposition 2.7 The following formulae and rules are provable in SJ.
(1) AvB A—-C
CVB
(2) (AvC)N(BV(C)— (AANB)V(O)
Proof. Left as an exercise for the reader. O

2.3 Soundness and completeness
Theorem 2.8 (Soundness) For I'U{A} C Form, if T'F A then T = A.

Proof. The proof, by induction on the length of proof, can be found in [14].
The omniscience of ¢ in used in showing that (DR) preserves validity. a

Following [14], the following notions will be used in the proofs of complete-
ness.

Definition 2.9

(i) If IT is a set of sentences, let II_, be the set of all members of II of the
form A — B.

(i) ¥Fp At XU, - A.

(iii) X is a II-theory iff:
(a) if A,B€ X then ANBeEX
(b) if by A — B then (if A € ¥ then B € X).

(iv) X is prime iff (if AVB € X then A€ X or BeX).

(v) If X is any set of sets of formulae the binary relation R on X is defined
thus:

SRA iff (if A— B € X then (if A € A then B € A)).
(vi) ¥k A iff for some Dq,...,D, € A, X g Dy V-V Dy,
(vii) b 2 — A iff for some C1,...,C, € ¥ and Dy,...,D,, € A:
FanCiA---ANCyp — Dy V-V Dy,
(viii) X is IT-deductively closed iff (if ¥ 3 A then A € X).
(ix) (X, A) is a II-partition iff (i) XU A = Form and (ii) t/q £ — A.
In all the above, if IT = (), then the prefix ‘II-’ will simply be omitted.

With these notions in mind, some lemmas are listed without their proofs.
For details, see [14].
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Proposition 2.10 If A-C and B+ C, then AV B+ C.
Lemma 2.11 If (3, A) is a I-partition then ¥ is a prime I-theory.

Lemma 2.12 If ¥ t/ A then there are ¥ 2 X and A’ O A such that (X', A’)
s a partition, and X' is deductively closed.

Corollary 2.13 If X t/ A then there is I1 O X such that A ¢ 11, 11 is a prime
II-theory and 11 is II-deductively closed.

Lemma 2.14 If t/n ¥ — A then there are ¥’ O ¥ and A’ O A such that
(X', A") is a H-partition.

Lemma 2.15 Let X be a prime II-theory and A — B ¢ Y. Then there is a
prime Il-theory, A such that YRA, A€ A, B¢ A.

We are now in a position to prove completeness.
Theorem 2.16 (Completeness) For 'U{A} C Form, if ' = A then '+ A.
Proof. The proof, due to [14], is given in the appendix. O

Remark 2.17 Restall notes the following correspondences between frame con-
ditions and valid formulae.

Frame conditions ‘ Characteristic formulae
Heredity A— (B—A)
Reflexivity (AN(A— B))— B

Transitivity (A-B)—»((B—=C)—=(A4A—=0)
We will make use of this result later.

Remark 2.18 As observed by Heinirich Wansing in [15], the sets of theorems
for the systems of Corsi, Dosen and Restall coincide. However, Corsi and DoSen
show only weak completeness using standard techniques from modal logics,
whereas Restall shows strong completeness using techniques from relevance
logics. Restall’s axiomatization is better suited for our purposes since the
other axiomatizations will not work when we expand the language by empirical
negation (cf. Remark 3.6).

Remark 2.19 As we noted earlier, in a semantic setting there is no straight-
forward way of adding classical negation to intuitionistic logic since classical
negation breaks Heredity, the preservation of truth up the accessibility relation.
In subintuitionistic logics where Heredity is not in force, there is no obstacle
to adding classical negation. Recall that Heredity is required for validating the
schema A — (B — A), and that this schema has been criticized for introducing
fallacies of relevance, since the mere truth of A does not guarantee us that an
arbitrary B relevantly implies A. This suggests that SJ gets us at least one
step closer to relevance than full intuitionistic logic. What then is the relation
between subintuitionistic and relevance logic? It is, to be exact, that SJ is the
relevance logic B of [12] extended by axioms (Ax2) and (Ax3).®

8 We note that (Ax3) characterizes one of the many further conditions on the ternary rela-
tion. See [13, Theorem 2| for the details.
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Let us now turn to the Heredity-friendly way of adding a classical-like nega-
tion to subintutionistic logic, even though we are working with the weakest
subintuitionistic logic without the Heredity axiom, A — (B — A).

3 Empirical negation

Before turning to the proof theory of subintuitionistic logic with empirical
negation, we start with some preliminaries.

Definition 3.1 The language L., consists of a finite set {~, A, V, —} of propo-
sitional connectives and a denumerable set Prop of propositional variables which
we denote by p, ¢, etc. Furthermore, we denote by Form. the set of formulae
defined as usual in £.. We denote a formula of L. by A, B, C, etc. and a set
of formulae of L. by I'; A, X, etc.

3.1 Semantics

Definition 3.2 A model for the language L. is a quadruple (W, g, R, V),
where W is a non-empty set (of states); g € W (the base state); R is a bi-
nary relation on W with g omniscient; and V' : W x Prop — {0, 1} an assign-
ment of truth values to state-variable pairs. Valuations V are then extended
to interpretations I to state-formula pairs by the following conditions:

* I(w,p) = V(w,p)

e [(w,~A)=1iff I(g,A) =0

e I(w,ANB)=1iff I(w,A) =1and I(w,B) =1

I(w,AvB)=1iff I(w,A)=1or I(w,B) =1

e [(w,A— B)=1Iiff forall z € W, if wRz and I(z,A) =1 then I(z,B) = 1.

Semantic consequence is again defined in terms of truth preservation at g:

¥ e A iff for all models (W, g, R, 1), I(g,A) =1if I(g,B) =1 for all B € 3.

Remark 3.3 Note that we are neither assuming Heredity, nor that R is re-
flexive or transitive; R is assumed only to satisfy omniscience.

3.2 Proof Theory

Definition 3.4 The system SJ™ is obtained by adding the following axiom
schemata and rule of inference to SJ:

(Ax.1) AV ~A (iXN‘;) ) ~~;A - Nj .
(Ax.2) B — (~AV ~~A) (Ax5)  (~ A(Z V)B—;vwé v B)
(Ax.3) ( ) (DRP) CAS BT
Finally, we write I" k. A if there is a sequence of formulae By,...,B,, A, n >0,

such that every formula in the sequence By, ..., By, A either (i) belongs to T';
(ii) is an axiom of SJ™; (iii) is obtained by one of the rules (MP)-(DRP) from
formulae preceding it in sequence.
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Remark 3.5 Note that the following rule is derivable in SJ~:

AV B
~A — ~~B
To see this, assume AV B. Then by (Ax7) and (MP), we obtain (AVB)V(~A —
~~B), and by applying (DRP) we have (~A — ~~B) V (~A — ~~B) which
implies ~A — ~~B, as desired.
Remark 3.6 Note that even though (Ax..1) is valid and that B =, AV ~A,
B — (AV~A) is not valid in SJ~. This is the reason both (Ax. 1) and (Ax.2)

are needed. This also shows that the rule of inference from A to B — A,
employed in the axiomatizations of Corsi and DogSen, is not sound in SJ™.

(RP)

3.3 Some Basic Results

Theorem 3.7 (Classical deduction theorem) For TU{A, B} C Form., if
I'"A+. B thenT'F, ~AV B.

Proof. By induction on the length n of a proof of I'; A . B. The details are
given in the appendix. a

For the purpose of proving the other direction of the deduction theorem,
we need another lemma.

Lemma 3.8 The following are derivable in SJ™ :

A
(RC~) A—B (RIDN) i
~B = ~A A ~AVB
(3) ~~(A— A) (~-DS) —

Proof. For (RC~), assume A — B. Then by making use of (1) and (Ax.1),
we have BV ~A. Thus by applying (RP), we obtain ~B — ~~n~A, and finally
by (Ax.4) and (Transitivity), we obtain ~B — ~A, as desired.

For (3), first apply (RC~) to ~(A — A) — (A — A), an instance of (Ax2),
and we get ~(A — A) — ~~(A — A). This together with (Ax1) and (Adj)
gives us (~(A = A) = ~~(A — A)) A (~~(A — A) - ~~(A — A)), and by
(Ax9) and (MP), we obtain (~(A — A)V ~~(A — A)) - ~~(A — A). Thus,
we obtain the desired result in view of (Ax.1) and (MP).

For (RIDN), assume A. Then by (Ax8), we obtain ~(A — A) VvV A. By
applying (RP), we get ~~(A — A) — ~~A. The desired result follows by
this, (3) and (MP).

Finally, for (~-DS), assume A and ~AV B. By the former and (RIDN), we
obtain ~~A, and by this together with (Ax..3) and (MP), we obtain ~A — B.
Therefore, by applying (1) to this and the latter assumption, we obtain BV B
which implies B, as desired. a

Remark 3.9 Note that (~-DS) implies ez contradictione quodlibet:

A ~A

(~ECQ) =
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Proposition 3.10 ForI'U{A,B} C Form., if '+, ~AV B then I', A+, B.
Proof. Immediate in view of (~-DS). O
By combining Theorem 3.7 and Proposition 3.10, we obtain the following.
Theorem 3.11 ForT'U{A,B} C Form.,I';A+. B iff T' . ~AV B.
Corollary 3.12 ForTU{A,B} CForm.,At, B iff T+, ~B — ~A.
We note that the following are theorems of SJ™.

Proposition 3.13 The following formulae are provable in SJ™.

4) ~(AVB)— (~AAN~B) (6) ~A =~ A

(5) (~AV~B) = ~(AAB) (7 ~A — (~~A— B)

Proof. (4) and (5) are essentially proved using (Ax4), (Ax5) and (Ax7), (Ax8)
respectively together with (RC~). (6) follows immediately by (Ax.1) and
(RP). For (7), apply (Transitivity) to (6) and ~~~A — (~~A — B), an
instance of (Ax.3). O
3.4 Soundness and completeness

We now proceed to the proof of soundness and completeness.

Theorem 3.14 For T U{A} C Form., if 'k, A then T . A.

Proof. By induction on the length of the proof, as usual. a
Proposition 3.15 If A+, C and B+, C, then AV BF, C.

Proof. Assume A . C and B . C. Then, by Corollary 3.12, we obtain
Fe ~C — ~A and F, ~C — ~B respectively. By (Ax6), we get k. ~C —
(~A A ~B), and therefore -, ~C' — ~(AV B) by (Ax.5) and (MP). Finally,
we obtain the desired result by another application of Corollary 3.12. o

The following lemmas are useful for the completeness proof.
Lemma 3.16 If X is prime, Il-deductively closed and A ¢ ¥ then ~A € 3.

Proof. If ¥ is II-deductively closed, then by (Ax.1) we obtain AV ~A € %.
This together with A ¢ ¥ and the primeness of 3 implies ~A € ¥, as desired.O

Lemma 3.17 If ¥ is non-trivial, prime, II-deductively closed and A € ¥ then
~~AeX.

Proof. Assume the required assumptions and suppose for reductio that ~A €
Y. Then this implies ¥ Fp ~A. Moreover, A € ¥ implies that ¥ - A. There-
fore, these together with (~-ECQ) imply that ¥ b B for any B, and since X
is II-deductively closed, we obtain B € ¥ for any B. But this contradicts the
assumption that B is non-trivial. Thus the given assumptions imply ~A & ¥,
and in view of Lemma 3.16, this implies ~~A € X, as desired. O

Lemma 3.18 If ¥ is a non-empty prime Il-theory and ~A € ¥ then ~~A €
3.
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Proof. Since ¥ is non-empty, let B be an element of ¥. By (Ax.2) we have
Fe B — (~AV~~A) and since ¥ is a II-theory, we obtain ~AV~~A € 3. This
together with ~A ¢ ¥ and the primeness of ¥ imply ~~A € ¥, as desired. O

Theorem 3.19 For T'U{A} C Form., if ' |=c A then ', A.

Proof. The proof is given in the appendix. a

4 Classical negation

In [9], Ryo Kashima investigates some subintuitionistic logics with classical
negation, but it is important to note two points of departure from the present
work. The first is that Kashima proves only weak completeness, a point that
is important in the present context and the reason that our (and Restall’s)
frames are omniscient. Doing away with omniscience yields a class of theorems
equivalent to SJ’s, but a different consequence relation, hence a different logic
in our sense. Second, Kashima works with sequent calculi, whereas we prefer
to work with Hilbert-style axioms system.

Definition 4.1 The language £, consists of a finite set {—, A, V, =} of propo-
sitional connectives and a denumerable set Prop of propositional variables which
we denote by p, ¢, etc. Furthermore, we denote by Form_ the set of formulae
defined as usual in £_,. We denote a formula of £_ by A, B, C, etc. and a set
of formulae of £, by I'; A, X, etc.

4.1 Semantics

Definition 4.2 A model for the language £_ is a quadruple (W, g, R, V),
where W is a non-empty set (of states); g € W (the base state); R is a bi-
nary relation on W with ¢g omniscient; and V' : W x Prop — {0,1} an assign-
ment of truth values to state-variable pairs. Valuations V are then extended
to interpretations I to state-formula pairs by the following conditions:

* I(w,p) = V(w,p)

o I(w,mA)=1iff I(w,A)=0

e I(w,ANB)=1iff I(w,A) =1and I(w,B) =1

e I(w,AVB)=1iff I(w,A)=1or I(w,B) =1

e [(w,A— B)=1iffforall z € W: if wRz and I(z, A) = 1 then I(z,B) = 1.
Semantic consequence is defined in terms of truth preservation at g: ¥ =, A
iff for all models (W, g, R, I), I(g,A) =11if I(g9,B) =1 for all B € ¥.

4.2 Proof Theory

Definition 4.3 The system SJ™ is obtained by adding the following axiom
schemata to SJ.

((ANB) - -C)VvD
((ANC)—=-B)VD

(Ax_1) -—A = A (D-Antilogism)
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Finally, we write I" . A if there is a sequence of formulae By, ..., B,, A, n > 0,
such that every formula in the sequence By, ..., B,, A either (i) belongs to T';
(ii) is an axiom of SJ7; (iii) is obtained by one of the rules (MP)—(D-Antilogism)
from formulae preceding it in sequence.

Remark 4.4 As may be verified, the following rule is derivable in SJ™:

(AAB) = ~C

(AntllOngm) m

The above axiomatization is inspired by that for classical relevant logic given
by Robert Meyer and Richard Routley in [10, p.57].

4.3 Some Basic Results

We first observe two derivable rules in SJ™.

Proposition 4.5 The following formula and rules are derivable in SJ™.

A— —-B A— B
R —— -/ _|2
8) A—-—--A (RC—2) B A

Proof. For (RC—1), assume A — —B. By this, (Ax5) and (Transitivity),
we obtain (B A A) — —B and by (Antilogism), we obtain (B A B) — —A.
Moreover, B — (B A B) is provable by (Ax1), (Adj), (Ax6) and (MP). Thus
we obtain the desired result by (Transitivity). (8) is provable in view of (Ax1)
and (RC—1). For (RC—2), assume A — B. Then by (8) and (Transitivity), we
obtain A — ——B. Thus, by (RC—1), we have =B — —A, as desired. o

(RC—1)

Second, we observe that the complete set of de Morgan laws are provable.

Proposition 4.6 The following formulae are provable in SJ™.

9)  —(AVB)— (~AA-B) (11)  —(AAB) = (AV -B)
(10)  (~AV-B) = ~(AAB) (12)  (~AA-B)— ~(AV B)

Proof. (9) and (10) are easy in view of (RC—2). For (11), note first that
we obtain -(=AV —-B) — (-—=A A ——B) in view of (9), and thus we obtain
—(-AV-B) — (AAB) in view of (Ax-1). Now, by applying (RC—2), we obtain
(AN B) — —-—(=AV —B), and this together with (Ax_1) and (Transitivity),
we obtain the desired result. For (12), note first that we have A — (—-—AV
—=B) and B — (—==AV ==B) in view of (8), introduction of disjunction, and
(Transitivity). Thus we obtain (AV B) — (—-—AV ==B) by (Adj), (Ax9)
and (MP). This together with (10) and (Transitivity) implies (A V B) —
—(=A A —B), and finally, by applying (RC—1), we obtain the desired result. O

Third, we observe that some basic formulae are provable in SJ™.

Proposition 4.7 The following formulae are provable in SJ™.

(13) (AN-A) — B (14) B — (AV -A)
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Proof. For (13), by (Ax5), (8) and (Transitivity), we obtain (AA—-B) — ——A.
By applying (Antilogism), we obtain (A A =A) — ——=B, and thus we obtain
the desired result in view of (Ax.1) and (Transitivity). For (14), by applying
(RC—2) to (AA—A) — —B, an instance of (13), we obtain =—B — =(AA—A).
This together with (8) and (Transitivity) implies B — =(A A =A). Moreover,
in view of (11) and (Ax-1), we obtain =(A A =A) — (A V —=A). Thus, the
desired result follows by (Transitivity). O

Now we turn to prove the deduction theorem with respect to the material
conditional defined in terms of classical negation.

Theorem 4.8 (Classical deduction theorem) For I'U{A, B} C Form-,, if
I'NA+F.B thenT'F.-AV B.

Proof. By the induction on the length n of the proof of I'; A -, B. The details
are given in the appendix. a

Proposition 4.9 For TU{A, B} C Form_, if k. -AV B then ', A} B.
Proof. It suffices to prove the following:

A -AVB

(~Ds) =

Assume A and —A V B. Then by (Adj), we obtain A A (mAV B). Thus by
(Ax10) and (MP), we have (A A —A) V (A A B). Now, this together with (13)
and (1) implies B V (A A B), and thus by making use of (Ax1), (Ax5), (Adj),
(Ax9) and (MP), we obtain B, as desired. O

By combining Theorem 4.8 and Proposition 4.9, we obtain the following.
Theorem 4.10 For ' U{A, B} C Form_,, we have Ty A+, B iff T . ~AV B.

4.4 Soundness and completeness

We now proceed to the proof of soundness and completeness.

Theorem 4.11 For T U{A} C Form., if T k. A thenT =, A.

Proof. By induction on the length of the proof, as usual. a
Proposition 4.12 If A+.C and B+. C, then AV B+, C.

Proof. Assume A . C and B . C. Then, by Theorem 3.11, we obtain
F.—=AVC and . =BV C respectively. By (Adj), we get . (FAVC)A(=BVC),
and therefore k. (-A A =B) vV C by (2) and (MP). Moreover, by (12) and (1),
we obtain k. (A V B) vV C. Finally, we obtain the desired result by another
application of Theorem 4.10. O

We are now in a position to prove completeness.
Theorem 4.13 For T U{A} C Form-, if ' |=. A then T . A.
Proof. The proof is found in the appendix. a
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5 Reflections
5.1 Comparing SJ~ and SJ”

Although the logics share a lot in common, SJ~ and SJ™ are incompara-
ble: each has a theorem the other does not, assuming that we normalize
the language, assigning the same symbol for both negations, say —. For in-
stance, we have that B — (A V ~A) is provable in SJ™ but not in SJ™~, while
—-A — (=—A — B) is provable in SJ~ but not in SJ™.

There are further interesting points of comparison, but due to space con-
straints, we leave discovery of them to the interested reader.

5.2 Extensions of SJ™

One natural extension of SJ™ is to full intuitionistic logic with empirical nega-
tion, IPC™, a system axiomatized and shown strongly complete in [4]. Given
the strength of the intuitionistic conditional, the axiomatization of IPC™ is
much smoother than that of SJ~, requiring far fewer rules and a simpler and
more familiar axiomatization. We need only add to IPC two axioms and one
rule governing ~: axioms (Ax.1) (Law of Excluded Middle) and (Ax.3) (ex
contradictione quodlibet for empirically negated formulae) of SJ™, and the rule
stating that from AV B, one may infer ~A — B (called (RP) in [4]).

The most straightforward way to obtain IPC™ from SJ~ is by adding
the axioms corresponding to Heredity and the reflexivity and transitivity of
accessibilty, namely,

e A— (B — A) (Heredity),
* (A—= B) = ((B—C)— (A— (C)) (transitivity),
e (AN (A — B)) — B (reflexivity)

The resulting axiomatization is, however, redundant, as a number of the axioms
and rules can be shown derivable from a proper subset of the others.

5.3 Extensions of SJ™

In [5], Luis Farinas del Cerro and Andreas Herzig provide an interesting way of
adding classical negation to inuititionistic logic without a collapse to classical
logic. In this section we relate their results to our own by showing, semantically,
that their logic C'+ J is an extension of the subintuitionistic logic with classical
negation SJ 7. We also strengthen their weak soundness and completeness
results to their strong counterparts.

Definition 5.1 A CJ-model for the language £, is a quadruple (W, g, R, V),
where W is a non-empty set; g € W is omniscient; R is a reflexive and tran-
sitive relation on W; and V : W x Prop — {0,1} an assignment of truth
values to state-variable pairs satisfying Heredity. Valuations V are extended to
interpretations I to state-formula pairs in the same way as in Definition 4.2.

9 Note that (Ax10) in IPC™ can be swapped with (Ax~3) of SJ™, though this is not the
case for SJ™~ where the order of antecedents matters.
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Semantic consequence is defined in terms of truth preservation at g: ¥ [Ecj
A iff for all models (W, g,R,I), I(g,A) =1if I(g,B) =1 for all B € X.

Remark 5.2 First, del Cerro and Herzig did not employ the above semantic
consequence relation, but instead introduced the notion of validity defined as
follows: =y A iff for all models (W, g, R,I), I(w,A) = 1 for all w € W.
Second, while Heredity is ensured for atomic formulae, given the presence of
classical negation —, it fails for arbitrary formulae, in particular, only for for-
mulae containing classical negation.

The following essential notion is employed by del Cerro and Herzig.

Definition 5.3 A formula A € Form_, is persistent iff A € Prop or A is of the
form B — C for some B,C € Form_,.

By making use of this notion, we introduce an extension of SJ™.

Definition 5.4 Let CJ be the extension of SJ™ obtained by adding the fol-
lowing axioms.

(Axcyl) A — (B — A) where A is persistent
(Axc32) (AN(A— B))— B
(Axcs3) (A-B)—((B—-C)— (A= ()

We denote a derivation in CJ of A from I" by I' k¢ A.

Then, we have the following soundness and strong completeness results.
Theorem 5.5 ForI' U{A} C Form_, I' ey A iff T Feg A.
Proof. Ths proof is found in the appendix. O

This leads us to the following identity between C' + J-validity and CJ-
validity.

Theorem 5.6 For A € Form_, =c1; A iff Fcy A.

Proof. For the left-to-right direction, it is obvious in view of the definitions of
Ecg and =4 5. For the other direction, it suffices to prove that if Fcy A then
o+ A in light of the previous completeness theorem. This is easily shown by
checking that axioms are true at an arbitrary state in the model and that rules
preserves validity. We only note that the transitivity of R and Heredity for
persistent formulae are used in showing that (DR) preserves validity, and the
reflexivity of R is used in showing that (MP) and (DMP) preserve validity. O

6 Final remarks

In neither expansion of SJ is the intuitionistic conditional definable from the
other connectives. However, if we add the primitive subintuitionistic nega-
tion operator — to either, we can then define the intuitionistic conditional by
A — B:=—(AAN®B), for ® € {—, ~}. Subintuitionistic logic is therefore re-
coverable as long as we have both negations around (recalling that the falsum is
definable in the conditional-free fragments of both SJ™ and SJ 7, in the former
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by ~A A ~~A and in the latter by A A =A). Thus adding classical negation
to the conditional-free fragment of intuitionistic logic gives a properly stronger
expansion than adding the conditional. Relatedly, adding either subintuition-
istic negation or the conditional to classical logic yields the same expansion of
classical logic.

We wish to briefly mention some avenues for future research. One is to
investigate expansions of relevant logic by empirical negation. Classical relevant
logic, recall, is the expansion of the positive fragment R™ of R by classical
negation, obtained by adding to R the following axioms:

¢ == A — A (double negation);
e (AANB) —» -C = (AANC) — —B (antilogism).

Both of these classical principles are valid in SJ7, but the second fails in SJ™,
marking an important difference between classical and empirical negation. This
failure to validate antilogism makes empirical negation a better fit for relevance
logic while still offering a negation of a highly classical nature. The results found
here concerning SJ™~ should carry over to its relevant cousin B+ expanded by
empirical negation, something we hope to explore in future work.

The second avenue for future research concerns the investigation of first-
order subintuitionistic logics with classical and empirical negation. Some work
in this direction can be found in Ryo Ishigaki and Kentaro Kikuchi’s [8].°
They prove the soundness and weak completeness for Hilbert-style axiom sys-
tems by making use of tree-sequent calculi, and the same strategy should be
applicable to expansions with classical and empirical negation.

Appendix
Proof of Theorem 2.16

We prove the contrapositive. Suppose that I' I/ A. By Corollary 2.13, there is
a IT O T such that IT is a prime II-theory and A ¢ II. Define the model 2 =
(X,II, R, I), where X = {A : A is a non-empty non-trivial prime II-theory},
R defined as in Definition 2.9(v) and I is defined thus. For every state ¥ and
propositional parameter p:

IX,p)=1iff pe X
We show that this condition holds for an arbitrary formula B:
(%) I(X,B)=1if BeX

It then follows by a routine induction on the complexity of B that 2 is a
counter-model for the inference, and hence that I' = A. We show only the
interesting case when B has the form C' — D.

We have that I(X,C — D) =1 iff for all A s.t. XRA, if I(A,C) = 1 then
I(A,D) =1;iffforall Ast. ERA,if C € Athen D € AbyIH;if C — D € X.

10Gee also [16].
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For the last equivalence, assume C — D € ¥ and C' € A for any A such that
YRA. Then by the definition of X RA, we obtain D € A, as desired. On the
other hand, suppose C — D ¢ 3. Then by Lemma 2.15, there is a A such
that XRA, C € A, D ¢ A and A is a prime II-theory. Furthermore, the non-
triviality of A follows from the fact that D ¢ A. Thus, we obtain the desired
result.

Proof of Theorem 3.7

By the induction on the length n of the proof of 'y A+, B. If n = 1, then we
have the following three cases.

e If B is one of the axioms of SJ~, then we have i, B. Therefore, by (Ax8),
we obtain F. ~A V B which implies the desired result.

e If B € T, then we have I -, B, and thus we obtain the desired result by
(Ax8).

e If B = A, then by (Ax.1), we have ~AV B which implies the desired result.
For n > 1, then there are five additional cases to be considered.

 If B is obtained by applying (MP), then we will have I'; A, C' and T', A k-,
C — B lengths of the proof of which are less than n. Thus, by induction
hypothesis, we have ' . ~AV C and '+, ~AV (C — B), and by (DMP),
we obtain I' -, ~A V B as desired.

e If B is obtained by applying (DMP), then B = DV E and we will have
INAt., CVEand ' AtF. (C — D)V E lengths of the proof of which are
less than n. Thus, by induction hypothesis, we have I' -, ~AV C'V E and
't ~AV (C — D)V E, and by (DMP), we obtain I' -, ~AV DV E as
desired.

e If B is obtained by applying (Adj), then B = C A D and we will have
I'AlF. C and I', A, D lengths of the proof of which are less than n. Thus,
by induction hypothesis, we have I' F, ~AV C and T' -, ~A V D, and by
(Adj), (2) and (MP), we obtain I' . ~A V (C A D) as desired.

 If B is obtained by applying (DR), then B = ((D — E) — (C — F)) VG
and we will have T, Ak, (C - D)VG and I', At (E — F) V G lengths of
the proof of which are less than n. Thus, by induction hypothesis, we have
Pt ~AV(C - D)VGand T+, ~AV (E — F)V G, and by (DR), we
obtain I' -, ~A V B as desired.

e If B is obtained by applying (DRP), then B = (~C — ~~D)V E and we
will have I'y A . CV DV E length of the proof of which is less than n. Thus,
by induction hypothesis, we have I' . ~AV (C' vV D) V E. By (DRP), we
obtain I' -, ~AV (~C — ~~D)V E, ie. I' -, ~AV B as desired.

This completes the proof.
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Proof of Theorem 3.19

We prove the contrapositive. Suppose that I' /., A. By Corollary 2.13, there is
a II O T such that IT is a prime II-theory and A ¢ II. Define the model 2 =
(X,II, R, I), where X = {A : A is a non-empty non-trivial prime II-theory},
R defined as in Definition 2.9(v) and I is defined thus. For every state ¥ and
propositional parameter p:

I(Z,p)=1iff peX.
We show that this condition holds for an arbitrary formula B:
(%) I(X,B)=1iff Be 3.

It then follows that 2 is a counter-model for the inference, and hence that
I’ = A. The proof of () is by induction on the complexity of B. We show
only the case for empirical negation, ~.

We have that I(X,~C) =1 iff I(II,C) # 1; iff C ¢ 11 by IH; iff ~C € X.
For the last equivalence, suppose C' ¢ II and ~C ¢ % for reductio. Then, by
Lemmas 3.16 and 3.18, we obtain ~C' € II and ~~C € X. The former and
(7) implies that ~~C — D € II since II is a II-theory. Moreover, since X
is also a Il-theory and by ~~C — D (since ~~C — D € II_,), we obtain
D € ¥ in view of ~~C € X. But D is arbitrary, and this contradicts that
Y is non-trivial. For the other way around, suppose ~C' € ¥ and C € II for
reductio. Then, by the latter and Lemma 3.17 we obtain ~~C € II. The rest
of the proof is similar to the proof for the other direction, but we use (Ax.3)
instead of (7).

Proof of Theorem 4.8
By the induction on the length n of the proof of I'y A . B. If n = 1, then we
have the following three cases.

e If B is one of the axioms of SJ™, then we have . B. Therefore, by (Ax8),
we obtain F. =A V B which implies the desired result.

e If B € T, then we have I . B, and thus we obtain the desired result by
(Ax8).

o If B = A, then by (14), we have =A V B which implies the desired result.

For n > 1, then there are five additional cases to be considered.

e If B is obtained by applying (MP), then we will have 'y Ak, C and T, A I,
C — B lengths of the proof of which are less than n. Thus, by induction
hypothesis, we have ' -, “AV C and T' . =A V (C — B), and by (DMP),
we obtain I' -, =A V B as desired.

e If B is obtained by applying (DMP), then B = DV E and we will have
A+, CVEand T';Al, (C — D)V E lengths of the proof of which are
less than n. Thus, by induction hypothesis, we have I' -, =AV C'V E and
k. -AV (C — D)V E, and by (DMP), we obtain I' . “AV DV E as
desired.
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e If B is obtained by applying (Adj), then B = C A D and we will have
I'AF.Cand ', A . D lengths of the proof of which are less than n. Thus,
by induction hypothesis, we have I' v, =AV C and T' ., =A VvV D, and by
(Adj), (2) and (MP), we obtain I' . =A V (C' A D) as desired.

 If B is obtained by applying (DR), then B = (D — E) — (C — F)) VG
and we will have T, A+, (C - D)VG and ', A, (E — F) V G lengths of
the proof of which are less than n. Thus, by induction hypothesis, we have
'+ -Av(C - D)VGand I' . AV (E — F)V G, and by (DR), we
obtain I' ., —=A V B as desired.

 If B is obtained by applying (D-Antilogism), then B = ((CAE) — -D)V F
and we will have I'; A+, ((C A D) — —E) V F length of the proof of which is
less than n. Thus, by induction hypothesis, we have I' . =A V ((C' A D) —
—E)V F. By (D-Antilogism), we obtain I' . AV ((CAE) - -D)V F, ie.
I'+. AV B as desired.

This completes the proof.

Proof of Theorem 4.13

We prove the contrapositive. Suppose that I' /. A. By Corollary 2.13, there
is a IT 2 T" such that IT is a prime II-theory and A ¢ II. Define the interpre-
tation A = (X,II, R, I), where X = {A : A is a non-trivial prime II-theory},
R defined as in Definition 2.9(v) and I is defined thus. For every state ¥ and
propositional parameter p:

I(X,p)=1iff pe .
We show that this condition holds for an arbitrary formula B:
(%) I(X,B)=1iff BeX.

It then follows that 2 is a counter-model for the inference, and hence that
I' f4. A. The proof of (%) is by induction on the complexity of B. We deal
only with classical negation.

We have that I[(X,-C) =1iff I(X,C) # 1; iff C € ¥ by IH; iff -C € X.
For the last equivalence, assume C' ¢ ¥. Since ¥ is non-empty, let D be an
element of ¥.. By (14) we have k. D — (C'V =(C) and since ¥ is a II-theory, we
obtain C'V =C € X. This together with C' ¢ ¥ and the primeness of ¥ imply
-C' € ¥, as desired. For the other way around, suppose -C' € ¥ and C € X
for reductio. Then, we obtain C' A =C' € ¥ since ¥ is a II-theory. And this
together with (13) implies D € ¥ for any D. But this contradicts that ¥ is
non-trivial.

Proof of Theorem 5.5

For soundness, we need to check that the additional axioms are valid. Since
(Axcy2) and (Axcy3) are handled by Restall, we check (Axcyl). We split
the cases depending on the form of A. For the case when A is a propositional
variable, assume, for reductio, I(g,A — (B — A)) # 1. Then, for some
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wo € W, we have I(wp, A) =1 and I(wg, B — A) # 1. The latter is equivalent
to I(wy, B) =1 and I(wy, A) # 1 for some w; € W such that woRw;. But by
Heredity, we also have I(wy, A) = 1 which implies a contradiction. Therefore,
we obtain I(g, A — (B — A)) = 1. For the case when A is of the form C — D,
we make use of the transitivity of R. Details are left to the reader.

For completeness, we need to check that the binary relation is reflexive and
transitive, and also the persistence condition holds for p € Prop. Again, we
only check the last condition since the other two are shown in [14]. Assume
that p € ¥ and Y RA. Then, since A is non-empty, there is an element D such
that D € A. And in view of (Axcyl), we have by p — (D — p), and since
Y is a II-theory, we obtain D — p € ¥. Finally, by the definition of R and
D € A, we obtain p € A, as desired.
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