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1. Introduction

Recently	there	has	been	a	lot	of	discussion	on	evolutionary	debunk-
ing	arguments,	especially	in	the	moral	domain	(e. g.,	Street	2006;	see	
Vavova	2014	for	review),	and	lately	also	in	the	mathematical	domain.	
On	the	face	of	it,	evolved	features	of	numerical	cognition	support	re-
alism	about	numbers.	For	instance,	Joyce	(2006,	135)	has	claimed	that	
truth	and	fitness	in	the	mathematical	case,	unlike	in	the	moral	case,	
do	not	come	apart:	“we	have	no	grasp	of	how	this	belief	[the	belief	
that	1	+	1	=	2]	might	have	enhanced	reproductive	fitness	independent	
of	assuming	its	 truth”.	By	contrast,	Clarke-Doane	(2012)	has	argued	
that	the	evolutionary	challenge	for	moral	realism	applies	equally	to	
mathematical	realism:	if	evolutionary	debunking	arguments	can	suc-
cessfully	 undermine	moral	 realism,	 they	 can	 also	 undermine	math-
ematical	realism.	

Surprisingly,	in	these	discussions	about	mathematical	realism	and	
evolution,	there	has	been	no	attention	paid	to	evolved	features	of	nu-
merical	cognition	in	humans	and	other	animals.	For	instance,	Sinnott-
Armstrong	(2006,	43)	writes,	“People	evolved	to	believe	that	2	+	3	=	
5,	because	they	would	not	have	survived	 if	 they	had	believed	that	2	
+	3	=	4,	but	the	reason	why	they	would	not	have	survived	then	is	that	
it	is	true	that	2	+	3	=	5.	The	same	goes	for	the	belief	that	wild	animal	
bites	hurt.	In	such	cases,	the	truth	of	the	belief	explains	why	it	is	use-
ful	to	believe	it.”	As	I	will	demonstrate	further	on,	the	belief	that	2	+	3	
=	5	lies	outside	of	the	scope	of	evolved	numerical	cognition	—	without	
the	help	of	culturally	developed	tools	such	as	counting,	we	would	not	
know	whether	2	+	3	=	4,	5,	or	even	8,	although	we’d	know	that	2	+	3	is	
definitely	not	100.	

To	find	out	whether	evolved	numerical	cognition	supports	antire-
alism	or	realism	about	numbers,	philosophers	need	to	move	beyond	
broad	 generalizations,	 and	 look	 at	what	 the	 empirical	 data	 support.	
Fortunately,	we	are	in	an	excellent	epistemic	situation	to	do	this.	Nu-
merical	 cognition	 ranks	among	 the	most	 extensively	 studied	higher	
cognitive	functions	in	animals,	so	we	have	at	our	disposal	a	wealth	of	
empirical	data	that	is	potentially	relevant	for	philosophical	arguments	
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evolutionary	debunking	arguments.	Such	arguments	have	the	follow-
ing	general	form:1

1.	We	have	an	evolved	propensity	to	believe	that	p,	where	p	is	
a	belief	about	abstract	objects	 in	domain	D,	because	 this	
belief	conferred	an	adaptive	advantage	to	our	ancestors.

2.	Even	if	it	were	the	case	that	¬p	in	some	realist	sense,	it	would	
still	 have	 been	more	 adaptively	 advantageous	 to	 believe	
that	p.

3.	(from	1	and	2)	We	would	have	believed	that	p	regardless	of	
the	actual	truth	value	of	p.

4.	Therefore,	our	belief	 that	p	does	not	 track	a	mind-indepen-
dent	property	of	abstract	objects	in	D.

Premise	1	accords	an	important	causal	role	to	evolution	in	the	forma-
tion	of	our	beliefs:	evolution	has	played	a	“tremendous	role”	(Street	
2006,	109)	in	shaping	our	belief-forming	attitudes.	Remarkably,	prem-
ise	1	is	seldom	argued	for	in	detail,	yet,	as	Kahane	(2011,	111)	puts	it,	
this	 premise	makes	 an	 “extremely	 ambitious	 empirical	 claim”,	 espe-
cially	given	that	the	data	to	secure	this	premise	are	lacking	for	many	
domains	 in	which	evolutionary	debunking	arguments	are	proposed.	
The	next	section	will	consider	the	evolutionary	origins	of	numerical	
cognition	to	evaluate	the	plausibility	of	premise	1.	

Premise	 2	 holds	 that	 a	 realm	 of	 abstract	 entities	 (in	 the	 moral,	
mathematical,	 religious,	etc.	domain),	 if	 it	exists,	does	not	 influence	
the	 evolutionary	 trajectory	 of	 the	 cognitive	 faculties	 that	 represent	
them.	Therefore,	(3)	evolved	beliefs	are	insensitive	to	the	truth-value	
of	abstract	objects,	which	leads	to	the	conclusion	(4)	that	our	evolved	
beliefs	 do	not	 track	 facts	 about	 abstract	 objects.	Appealing	 to	 parsi-
mony,	antirealists	argue	that	antirealism	is	more	compatible	with	the	
evolutionary	history	of	our	beliefs	than	realism.	

1.	 This	 schema	 captures	 the	 structure	 of	 evolutionary	 debunking	 arguments	
against	realism.	For	a	more	general	schema	for	evolutionary	debunking	argu-
ments,	see	Kahane	(2011).

about	 the	 compatibility	 of	 numerical	 cognition	 with	 realism	 or	
antirealism.	

In	 this	 paper,	 I	will	 look	 in	 detail	 at	 the	 functional	 properties	 of	
evolved	numerical	 cognition	and	examine	whether	 this	 supports	 re-
alism	or	antirealism.	 In	section	2,	 I	briefly	review	evolutionary	argu-
ments	 and	 realism	 about	 numbers.	 Section	 3	 looks	 at	 the	 nuts	 and	
bolts	 of	 evolved	 numerical	 cognition,	 showing	 that	 there	 is	 over-
whelming	empirical	support	for	the	claim	that	a	wide	range	of	animals	
(including	humans)	have	an	evolved	propensity	to	represent	discrete	
magnitudes	in	their	environment	(“numerosities”).	Section	4	presents	
a	positive	program,	where	I	explore	how	realism	about	numbers	could	
be	 true,	 given	what	we	 know	 about	 evolved	numerical	 cognition.	 I	
formulate	an	argument	for	mathematical	realism	as	an	inference	to	the	
best	 explanation	 for	 functional	 features	of	numerical	 cognition.	Sec-
tion	5	concludes	that	evolved	features	of	mathematical	cognition	can	
be	explained	in	a	realist	way,	challenging	Clarke-Doane’s	evolutionary	
argument	against	mathematical	realism.	

2. Evolution and realism about numbers

An enduring debate in the philosophy of mathematics concerns the 
ontological status of numbers, such as 2, π, and	34,295.17.	Realists	(e. g.,	
Baker	 2005)	 argue	 that	 numbers	 exist	 mind-independently,	 where-
as	 antirealists	 (or	 nominalists)	 propose	 that	 numbers	 do	 not	 exist	
apart	from	our	own	minds	(e. g.,	Leng	2005).	Among	the	varieties	of	
mathematical	realism,	the	most	influential	remains	platonism,	which	
specifies	that	abstract	entities	are	nonphysical;	 they	are	not	 located	
in	space-time,	and	cannot	stand	in	causal	relation	to	physical	states	
of	affairs.	

What	reasons	do	we	have	to	assume	that	such	acausal	entities	ex-
ist?	Realism	about	numbers,	 as	well	 as	about	moral	 facts	 and	other	
putative	 abstract	 entities,	 has	 recently	 come	 under	 pressure	 from	
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are	not	numbers,	and	so	their	properties	do	not	directly	bear	on	the	
question	of	whether	numbers	exist.	However,	without	numerosities	
it	is	doubtful	that	we	would	be	able	to	represent	any	numbers	at	all.	
Studies	of	patients	with	brain	damage	(e. g.,	Dehaene	&	Cohen	1997)	
that	 affects	 their	 ability	 to	 represent	 numerosities,	 and	 of	 children	
with	 developmental	 dyscalculia	 (Mussolin et al. 2010), suggest	 that	
symbolic	arithmetic,	including	simple	arithmetical	operations	such	as	
addition	 and	 subtraction,	 crucially	 depends	 on	 our	 ability	 to	 repre-
sent	 numerosities.	 The	majority	 of	 cognitive	 scientists	 believe	 that	
cultural	numerical	representations	are	understood	by	being	mapped	
onto	numerosities	(see	Ansari	2008	for	a	review,	but	see	Rips	et	al.	
2008	for	a	dissenting	voice).	They	reach	this	conclusion	by	observing	
that	nonsymbolic	and	symbolic	representations	of	numbers	activate	
similar	brain	areas.	For	example,	the	spoken	word	‘three’,	the	Arabic	
digit	 3,	 and	 a	 collection	of	 three	 items	 all	 activate	 the	 intraparietal	
sulci,	which	 are	 implicated	 in	 a	 variety	 of	 numerical	 tasks	 (Eger	 et	
al.	2003).	Thus	numerosities	are	of	crucial	importance	to	understand	
how	we	represent	numbers,	even	if	the	latter	are	culturally	contingent,	
e. g.,	not	all	languages	have	systems	of	natural	numbers	(see	De	Cruz	
2008	for	review).	

Mammals,	birds,	amphibians,	and	even	insects	can	distinguish	be-
tween	small	numerosities,	consisting	of	up	to	three	(sometimes	four)	
entities	 (e. g.,	 Dacke	&	 Srinivasan	 2008).	 This	 quick	 and	 unlearned	
ability	 to	 enumerate	 small	 collections,	 subitizing,	 has	 been	 found	 in	
all	animals	tested	for	it,	including	human	newborns	(Antell	&	Keating	
1983).	Adults	are	faster	and	less	error-prone	when	calculating	with	nu-
merosities	that	lie	within	the	subitizing	range	than	with	larger	numer-
osities	(Revkin	et	al.	2008).	When	prevented	from	counting	or	using	
other	symbolic	representations	of	number,	Western	adults	are	unable	
to	calculate	precisely	with	numerosities	>	3.	For	instance,	adults	pre-
vented	from	subvocal	counting	(by	having	to	say	‘the’	aloud	with	each	
key	 press)	 become	 increasingly	 imprecise	when	 having	 to	 estimate	
larger	numbers	of	key	presses	to	make	(Whalen	et	al.	1999).	

Higher	 magnitudes	 are	 represented	 approximately,	 and	 can	 be	

Clarke-Doane	 (2012)	 has	 developed	 an	 evolutionary	 debunking	
argument	specifically	aimed	at	mathematical	realism.	It	relies	on	intu-
itions	elicited	by	the	following	toy	example:	Suppose	that	a	lion	is	hid-
ing	behind	bush	A,	and	a	second	lion	is	hiding	behind	bush	B.	Human	
ancestor	P	believes	that	1	+	1	=	2	and	flees.	Human	ancestor	Q	believes	
that	1	+	1	=	0	and	stays.	Prima	facie,	we	can	argue	that	because	1	+	1	=	2,	
ancestor	P	has	an	advantage	over	Q.	This	arithmetical	truth	figures	in	
the	evolutionary	explanation,	therefore,	our	belief	that	1	+	1	=	2	tracks	
a	mathematical	truth.	However,	Clarke-Doane	(2012)	proceeds	with	a	
counterfactual	scenario,	imagining	a	world	where	1	+	1	really	equals	0.	
Realistically	construed,	1	+	1	=	0	speaks	about	numbers.	Now	suppose	
we	hold	the	first-order	logical	truths	constant,	but	change	the	mathe-
matical	truth	to	1	+	1	=	0.	In	that	case,	ancestor	Q,	although	she	now	has	
the	correct	mathematical	belief,	would	still	get	eaten,	as	there	would	
still	be	one	lion	and	another	lion	waiting	for	her.	Accordingly,	numeri-
cal	truths	do	not	play	a	relevant	role	in	this	evolutionary	scenario	—	if	
the	numerical	truths	had	been	different,	but	the	first-order	properties	
remained	the	same,	it	would	have	been	more	adaptively	advantageous	
to	believe	that	1	+	1	=	2.	In	the	next	section,	I	examine	the	psychological	
literature	on	numerical	cognition	to	assess	whether	premise	1	holds	for	
numbers.	 In	section	4,	 I	scrutinize	Clarke-Doane’s	argument	in	more	
detail.	 I	 argue	 that	 the	 current	 cognitive	 scientific	 literature	 on	 nu-
merical	thinking	gives	us	no	good	reasons	to	believe	premise	2	is	true,	
which	opens	the	possibility	of	a	realist	understanding	of	this	literature.	

3. Evolved numerical cognition

3.1 An evolved ability to represent numerosities
A	growing	body	of	experimental	and	neuropsychological	literature	in-
dicates	that	animals	have	an	evolved	ability	to	detect	discrete	magni-
tudes	in	their	environment.	Cognitive	scientists	distinguish	between	
numerosities,	the	concrete,	discrete	magnitudes	that	animals	represent,	
and	numbers,	the	abstract	entities	that	are	studied	by	mathematicians	
and	philosophers	of	mathematics	(De	Cruz	et	al.	2010).	Numerosities	
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the	roars	of	either	1	or	3	unfamiliar	individuals.	As	lionesses	recognize	
each	other’s	voices,	the	recordings	mimicked	unfamiliar	intruders	into	
the	territory.	Lionesses	were	more	likely	to	approach	the	tape	recorder	
if	the	members	of	their	own	pride	that	were	present	outnumbered	the	
recorded	number	of	individuals	(e. g.,	6	of	the	own	pride	versus	3	re-
corded	voices),	presumably	because	the	probability	of	winning	a	po-
tentially	fatal	confrontation	was	higher	in	such	cases.

In	mammals,	numerical	cognition	depends	on	specialized	areas	in	
the	neocortex,	including	the	bilateral	intraparietal	cortex,	angular	gy-
rus,	and	prefrontal	 cortex	 (see	Nieder	&	Dehaene	2009	 for	 review).	
The	 brain	 areas	 involved	 in	 recognizing	 numerosities	 and	 perform-
ing	 arithmetic	 are	 similar	 in	 rhesus	 monkeys,	 three-month-old	 in-
fants,	 young	children,	 and	numerate	adults	 (Izard	et	 al.	 2008).	This	
suggests	 the	 continued	 importance	 of	 evolved	 neural	 structures	 in	
mature	mathematical	cognition.	People	with	developmental	damage	
to	the	intraparietal	cortex	have	difficulties	performing	even	simple	ar-
ithmetical	tasks,	such	as	4	+	5	(Molko	et	al.	2003).	Also,	the	proficien-
cy	with	which	children	and	adults	can	solve	nonverbal,	approximate	
numerical	tasks	correlates	strongly	with	their	mathematical	aptitude.	
Lourenco	et	al.	(2012)	found	that	college	students	who	were	better	at	
estimating	differences	in	number	and	cumulative	area	were	better	at	
advanced	arithmetic	and	geometry.

Taken	together,	this	evidence	indicates	that	vertebrates	and	inver-
tebrates	 can	 discriminate	 numerosities	 in	 their	 environment.	 Since	
animals	spontaneously	use	numerical	information	to	guide	their	deci-
sions	(e. g.,	choosing	a	food	source,	approaching	potential	competitors,	
or	 joining	 a	 shoal),	 it	 seems	plausible	 that	numerical	 cognition	has	
an	evolved,	adaptive	function.	Moreover,	evolved	numerical	cognition	
also	plays	a	critical	role	in	our	ability	to	engage	in	formal	arithmetic.	
Thus,	premise	1	seems	fairly	secure	for	the	domain	of	number.

3.2. Functional properties of numerical cognition
To	assess	whether	evolved	numerical	cognition	supports	realism	or	an-
tirealism	about	numbers,	we	need	to	look	at	its	functional	properties.	

distinguished	only	with	a	large	enough	ratio	difference;	the	higher	the	
numerosities,	the	larger	the	ratio	difference	needs	to	be	(Xu	&	Spelke	
2000).	For	instance,	chicks	can	discriminate	between	collections	of	2	
and	3	items,	but	not	between	3	and	4,	or	between	4	and	6	(Rugani	et	
al.	 2008).	Animals	 and	 infants	 can	also	perform	operations	 such	as	
addition	and	subtraction	with	small	numerosities:	babies	look	longer	
when	1	+	1	=	1	 than	when	1	+	1	=	2	(Wynn	1992).	Dogs	have	similar	
abilities	(West	&	Young	2002).	Animals	can	also	perform	addition	and	
subtraction	on	larger	numbers,	but	then	they	can	predict	results	only	
approximately;	e. g.,	rhesus	monkeys	cannot	exactly	predict	that	4	+	4	=	
8,	but	they	can	pick	out	8	when	presented	with	possible	solutions	2,	4,	
and	8	(Cantlon	&	Brannon	2007a).	

For	a	long	time,	behavioral	biologists	assumed	that	numerical	cues	
were	a	last	resort	on	which	animals	rely	only	if	no	other	information	
is	available.	However,	when	monkeys	can	choose	between	different	
types	of	cues,	such	as	color,	size,	shape,	and	numerosity,	to	perform	a	
matching	task,	they	prefer	numerical	cues	if	the	ratio	differences	are	
high	enough	to	allow	them	to	discriminate	between	different	sets	of	
items	 (Cantlon	 &	 Brannon	 2007b).	 Under	 more	 naturalistic	 condi-
tions,	animals	spontaneously	rely	on	numerical	information	to	guide	
a	wide	range	of	adaptive	decisions,	such	as	where	to	feed,	how	to	ag-
gregate	in	social	groups,	or	whether	or	not	to	attack.	Red-backed	sala-
manders,	when	offered	the	choice	between	a	tube	with	2	live	flies	and	
one	with	3	live	flies,	select	the	larger	quantity	(Uller	et	al.	2003).	Juve-
nile	guppies	raised	in	total	isolation	can	distinguish	between	groups	
composed	of	1,	2,	or	3	fish,	and	show	an	innate	preference	for	larger	
shoals	(Bisazza	et	al.	2010).	Wood	ducks,	of	a	brood-parasitic	species	
that	lays	its	eggs	in	nests	of	other	birds,	use	clutch	size	to	guide	their	
choice	of	 their	host’s	nest.	When	given	 the	choice	between	pairs	of	
nests	with	different	numbers	of	eggs	(20,	15,	10,	or	5),	females	choose	
the	nest	with	the	smaller	clutch,	presumably	because	 in	such	a	nest	
their	offspring	will	likely	receive	more	care	(Odell	&	Eadie	2010).	Mc-
Comb	et	al.	(1994)	conducted	an	experiment	with	free-ranging	lions	in	
Serengeti	National	Park,	Tanzania,	hiding	a	tape	recorder	that	played	
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location.	The	resulting	output	 feeds	 into	 the	summation clusters, neu-
rons	that	fire	at	various	thresholds	(third	layer).	These	summation	clus-
ters	provide	input	to	the	numerosity clusters,	which	encode	cardinal	val-
ues	(fourth	layer).	In	rhesus	monkeys,	summation	clusters	have	been	
located	in	the	lateral	intraparietal	area	(Roitman	et	al.	2007),	whereas	
numerosity	clusters	have	been	found	in	the	intraparietal	sulci	and	pre-
frontal	cortex	 (Nieder	et	al.	2006).	Neurons	 in	 the	numerosity cluster 
appear	insensitive	to	the	physical	characteristics	of	objects	(e. g.,	their	
size	or	shape),	but	are	sensitive	 to	cardinality.	They	do	not	respond	
exclusively	to	given	cardinalities	but	rather	have	a	response	that	is	dis-
tributed	around	given	magnitudes.	For	example,	in	the	rhesus	monkey	
brain,	individual	neurons	that	have	their	optimal	response	rate	when	
monkeys	see	4	items	also	exhibit	some	activation	for	values	between	

A	consensus	(e. g.,	Feigenson	et	al.	2004)	holds	that	animals	have	two	
distinct	 systems	 for	 representing	numerosities:	 one	 for	 small	 collec-
tions	(the	object-file	system)	and	one	for	larger	magnitudes	(the	mag-
nitude	system).	This	two-systems	account	explains	why	animals	rep-
resent	numerosities	 ≤	 3	precisely,	 and	 larger	numbers	only	 approxi-
mately.	The	object-file	system	(Fig.	1a)	represents	small	(≤	3)	sets	of	
discrete	objects	in	a	placeholder	format	as	slots	that	are	kept	in	work-
ing	memory.	For	example,	2	entities	are	represented	as	follows:	there	
is	 an	 entity,	 and	 there	 is	 another	 entity	numerically	 distinct	 from	 it,	
and	each	entity	is	an	object,	and	there	is	no	other	object:

(∃x)(∃y){(object[x]	&	object[y])	&	x	≠y	&	∀z(object[z]	→	[z	=	x]	∨	[z	=	y])}

Due	to	limitations	on	working	memory,	the	object-file	system	is	lim-
ited	to	3	(sometimes	4,	depending	on	individual	variation).	Animals	
lose	track	when	having	to	represent	an	entity,	another	entity,	another	
entity,	yet	another	entity,	etc.	This	explains	why	animals	can	discern	
collections	of	≤	3	at	a	glance,	but	are	inaccurate	for	larger	cardinalities	
(Feigenson	&	Carey	2005).

The	approximate-magnitude	system	handles	numerosities	>	3	(Fig.	1b).	
There	is	disagreement	about	how	this	system	works,	so	I	will	focus	on	
one	neural	network	model,	the	numerosity-detector	model2	(Dehaene	
&	Changeux	1993;	see	also	Dehaene	2007).	In	this	model,	numerosi-
ties	are	represented	through	a	multi-layered	neural	network.	Perceptual 
input,	provided	by	visual,	 tactile,	or	auditory	stimuli,	 constitutes	 the	
first	layer	of	processing.	The	stimuli	are	converted	into	representations	
of	 discrete	objects.	 For	 instance,	 our	 early	 visual	 processing	detects	
boundaries	between	objects	by	their	light	and	dark	contrasts.	These	
representations	of	discrete	objects	serve	as	 input	 to	 the	 location map, 
the	second	layer	of	processing.	The	location	map	abstracts	away	from	
individual	properties,	converting	each	object	into	a	separate,	parallel	

2.	 A	 competing	 model	 is	 the	 mode-control	 model	 (e. g.,	 Cordes	 et	 al.	 2007),	
which	proposes	 that	numerical	magnitudes	 are	 like	 cups	of	water	 that	 are	
being	 poured	 into	 a	 bucket	 (mental	 accumulator).	Numerosities	 are	 repre-
sented	along	a	mental	number	line,	with	each	numerosity	being	represented	
by	increasingly	broadening	tuning	curves	(scalar	variability).	

Figure	1:	Two	models	of	numerical	cognition:	(a)	the	object-file	
system	for	small	numerosities	≤	3,	(b)	the	approximate-magni-
tude	system	for	larger	numerosities.
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of	antirealism.	How	can	animals	adaptively	respond	to	first-order	logi-
cal	properties	in	their	environment	by	representing	numerosities,	giv-
en	 that	 truths	 about	numbers	do	not	 co-vary	with	first-order	 logical	
truths?	There	is	a	candidate	cognitive	mechanism	that	would	explain	
animal	adaptive	behavior	 in	 the	absence	of	numbers:	 the	object-file	
system.	As	we	saw	earlier,	the	object-file	system	(e. g.,	Feigenson	&	Car-
ey	2005)	maps	onto	first-order	logical	properties	of	the	environment.	
The	object-file	system	would	provide	a	straightforward	explanation	for	
how	animals	can	represent	numerosities,	assuming	antirealism	about	
numbers.	This	would	provide	support	for	the	antirealist	case.	

However,	 as	we	have	 seen,	 animals,	 infants,	 and	even	numerate	
adults	who	 are	 prevented	 from	 counting	 cannot	 keep	 numerosities	
over	3	or	4	in	working	memory,	and	need	to	rely	on	approximate	mag-
nitudes	rather	than	the	object-file	system.	They	cannot	use	object	files	
when	comparing	or	reckoning	with	numerosities	>	3.	When	ancestors	
P	and	Q	have	to	decide	whether	to	forage	at	a	bush	with	50	fruits	or	
one	with	100	fruits,	they	need	to	use	approximate	magnitudes,	rather	
than	object	files.	Similarly,	when	ancestors	P	and	Q	evaluate	whether	
to	engage	in	a	fight	with	ancestors	from	a	nearby	group,	they	rely	on	
approximate	magnitudes	to	examine	whether	their	own	group	or	the	
rival	group	is	larger.	

What	 do	 approximate	 magnitudes	 track?	 Given	 the	 naturalistic	
angle	of	evolutionary	arguments	for	or	against	realism,	it	makes	sense	
to	let	our	ontological	questions	be	informed	by	the	scientific	practices	
in	a	given	domain	 (see	Bangu	2012	 for	a	defense	of	 this	claim).	Sci-
entific	practice	suggests	a	crucial	explanatory	role	for	numbers	in	re-
search	on	numerical	cognition.	Cognitive	scientists	take	care	to	isolate	
numerical	 properties	 (rather	 than	 other	magnitude	 properties,	 such	
as	visual	density	or	continuous	size)	when	testing	animal	numerical	
cognition.	Such	controls	have	become	the	standard	in	studies	of	math-
ematical	cognition.	For	example,	even	when	using	naturalistic	stimuli,	
such	as	fish	 in	a	 shoal,	 to	examine	preferences	 for	 larger	 shoals,	 re-
searchers	take	care	to	control	for	visual	density	and	for	total	area	of	the	
shoals	(Dadda	et	al.	2009).	In	their	fMRI	study	of	numerical	cognition,	

2	 and	6	 (Tudusciuc	&	Nieder	 2007).	 Since	neural	 resources	 are	 lim-
ited,	 this	model	 predicts	 a	 logarithmic	 spacing	of	 neural	 thresholds,	
such	that	a	decreasing	number	of	neurons	are	allocated	to	increasingly	
large	numerosities.	As	a	result,	it	becomes	progressively	harder	to	tell	
apart	numerosities	as	 they	 increase.	Neurons	 in	numerosity	clusters	
respond	to	numerosities	in	a	wide	variety	of	formats,	including	visual,	
nonsymbolic,	symbolic,	and	auditory	formats	(e. g.,	Piazza	et	al.	2007).	

4. A realist case for evolved numerical cognition

4.1 What does numerical cognition track?
Based	 on	 a	 thought	 experiment	 involving	 ancestors	 predicting	 the	
presence	 of	 lions	 behind	 bushes,	 Clarke-Doane	 (2012)	 argues	 that	
animals’	adaptive	responses	would	remain	the	same	—	assuming	first-
order	 logical	 truths	 remained	 constant	—	if	 the	 corresponding	math-
ematical	truths	differed.	Thus,	even	if	1	+	1	=	0	(a	claim	about	numbers),	
we	would	still	be	better	off	believing	1	+	1	=	2	(our	beliefs	being	in	line	
with	first-order	logical	truths	about	lions	behind	bushes),	which	pro-
vides	the	basis	for	premise	2	(Even	if	it	were	the	case	that	¬p	in	some	
realist	sense,	it	would	still	have	been	more	adaptively	advantageous	
to	believe	that	p).	

One	difficulty	with	evaluating	the	plausibility	of	this	claim	is	that	
Clarke-Doane	does	not	say	anything	about	the	psychological	proper-
ties	of	 the	ancestors	 in	 this	scenario.	All	he	argues	 is	 that	 the	first-
order	logical	properties	of	the	situation	obviate	any	need	to	invoke	
numerical	 facts	 to	 understand	 the	 ancestors’	 behaviors.	 He	 holds	
that	their	behavior	can	be	adequately	understood	with	the	first-order	
logical	 properties	 at	 hand,	 but	 is	 silent	 on	 how	 exactly	 this	 corre-
spondence	 between	 first-order	 logical	 properties	 and	 adaptive	 be-
havior	is	achieved.3 

Thanks	to	the	wealth	of	empirical	information	about	numerical	cog-
nition,	we	can	examine	whether	Clarke-Doane’s	claim	is	plausible	by	
probing	how	numerical	cognition	would	work	under	the	assumption	

3.	 I	am	grateful	to	an	anonymous	referee	for	pressing	me	on	this	point.	
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this	does	not	 license	belief	 in	all	 its	theoretical	posits	(Maddy	1992).	
It	might	be	 that	mathematics	 plays	 an	 expressive	 role,	 an	 easy	way	
to	represent	numerosities	of	objects	that	the	brain	represents,	rather	
than	a	crucial	explanatory	role.	

To	make	 the	positive	case	 for	 realism,	 I	propose	 that	 the	best	ex-
planation	 for	 numerosities	 involves	 numbers	—	animals	make	 repre-
sentations	of	magnitude	in	the	way	they	do	because	they	are	tracking	
structural	(or	other	realist)	properties	of	numbers.	A	number	of	math-
ematical	realists	(e. g.,	Baker	2009,	Lyon	2012)	have	formulated	updat-
ed	versions	of	the	indispensability	argument	for	mathematical	realism,	
arguing	that	mathematical	truths	play	an	indispensable	role	in	scien-
tific	explanations.	If	we	are	ontologically	committed	to	the	existence	
of	 unobservable	 scientific	properties	 that	 play	 a	 crucial	 explanatory	
role	(like	electrons),	we	should	also	be	ontologically	committed	to	the	
existence	of	mathematical	entities.	

Baker	 (2005)	 considers	 the	 life	 cycles	 of	 species	 of	 the	 genus	
Magicicada.	These	North	American	insects	have	life	cycles	of	either	13	
or	17	years	(depending	on	the	species),	consisting	of	a	long	nymphal	
stage	underground	followed	by	a	brief	adult	phase	of	only	a	few	weeks	
above	 ground.	 It	 is	 evolutionarily	 advantageous	 for	magicicadas	 to	
have	long	life	cycles	that	do	not	intersect	with	other	cyclical	periods:	it	
helps	them	to	avoid	predators	or	matings	with	similar	species.	13	and	
17	are	prime	and	 thus	do	not	 intersect	with	 smaller	 cyclical	periods.	
The	fact	that	13	and	17	are	prime	is	an	essential	element	in	the	explana-
tion	of	why	the	Magicicada	life	cycles	have	these	particular	durations.	
While	there	are	various	physical,	nonmathematical	factors	in	this	ex-
planation	(e. g.,	why	it	is	adaptive	for	cicadas	not	to	have	life	cycles	that	
coincide	with	those	of	other	species),	the	primeness	of	13	and	17	is	an	
essential	element	in	the	explanation.	Thus,	according	to	Baker	(2009,	
614),	this	case	study	provides	an	“indispensable,	mathematical	expla-
nation	of	a	purely	physical	phenomenon”.

It	 seems	mysterious	 that	 acausal	 entities	 can	 figure	 in	 causal	 ex-
planations.	Clearly,	 long	 prime	 cycles	 do	 not	 intersect	with	 smaller	
cyclical	 periods,	 but	 it	 remains	 unclear	 how	 this	 mathematical	 fact	

Cantlon	et	al.	(2006,	845–846)	write,	“Arrays	consisted	of	blue	circle	el-
ements	that	varied	in	density,	cumulative	surface	area,	spatial	arrange-
ment,	and	size,	but	were	constant	in	both	the	number	of	elements	(16	
or	32)	and	in	local	element	shape	(circles).	Thus,	participants	adapted	
to	the	constant	number	and	shape	of	the	elements.”	The	authors	did	
this	to	prevent	neural	adaptation	to	surface	area,	spatial	arrangement,	
and	size,	as	they	wanted	to	exclusively	focus	on	number	and	shape	of	
the	 elements.	After	 habituating	participants,	 the	 authors	 found	 that	
the	bilateral	intraparietal	sulci	(IPS)	in	children	and	adults	were	more	
responsive	to	changes	in	number	than	changes	in	shape,	suggesting	
that	 “the	 IPS,	known	 to	be	part	of	a	 cerebral	network	 important	 for	
symbolic	number	processing,	is	also	recruited	in	nonsymbolic	numeri-
cal	processing”	(Cantlon	et	al.	2006,	852).	Neuroscientists	also	explic-
itly	appeal	to	numbers	to	explain	the	function	of	numerosity	clusters,	
which	 are	 insensitive	 to	 the	 physical	 characteristics	 of	 objects	 (e. g.,	
their	size	or	shape),	but	respond	to	cardinality.	Since	the	ancestors	in	
the	foraging	and	fight	scenarios	rely	on	the	magnitude	system,	and	the	
magnitude	system	represents	numbers	(at	least	according	to	cognitive	
scientists	investigating	it),	we	have	prima	facie	support	for	the	claim	
that	animal	mental	representations	of	numerosities	track	numbers.

4.2 The indispensability of numbers for numerosities
I	have	so	far	argued	that	scientific	practice	provides	a	prima	facie	real-
ist	case	for	numbers,	since	neuroscientists	and	cognitive	psychologists	
are	 interested	 in	 isolating	 numerical	 properties	 of	 the	 environment,	
and	since	they	refer	to	numbers	in	their	explanations.	An	antirealist	
might	 respond	 that	 although	 cognitive	 scientists	 who	 propose	 the	
magnitude	 system	 invoke	 numbers,	 they	 also	 use	 fictional	 entities	
such	as	location	maps,	and	clearly	there	are	no	location	maps	in	the	
brain.	 Scientists	 often	 use	 idealizations	 (such	 as	 frictionless	 slopes)	
that	play	a	crucial	role	 in	their	theories.	A	particular	model	can	con-
sist	of	real	entities	(e. g.,	unobservables,	such	as	electrons,	and	observ-
ables,	 such	 as	 results	 of	measurements)	 as	well	 as	 fictional	 entities	
(e. g.,	 computer	 simulations,	 idealizations).	 If	 a	 model	 is	 confirmed,	
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discriminated	by	the	approximate	numerical	system,	which	allows	the	
lioness	to	rely	on	it.	So	the	ratio	differences	between	the	numbers	of	li-
onesses	heard	on	the	tape	recorder	and	the	number	of	group	members	
present	 (another	mathematical	 fact)	 also	has	explanatory	value.	For	
instance,	McComb	et	al.	 (1994)	observed	that	when	the	tape	record-
er	played	3	voices,	the	probability	of	any	lioness	approaching	it	was	
only	0.5	when	4	pride	members	were	present,	whereas	it	was	close	to	
1	when	7	pride	members	were	in	the	vicinity.	The	mathematical	facts	
that	7	>	3	and	that	the	ratio	difference	between	these	numbers	is	rela-
tively	large	provide	a	general,	high-level	explanation	for	the	behavior	
of	individual	lionesses	in	this	experiment,	as	the	numerical	composi-
tion	of	the	own	and	rival	groups	guide	their	behavior.	

To	give	another	example	where	mathematical	 facts	have	explana-
tory	value,	take	shoal	selection	in	fish.	Shoaling	fish	prefer	to	join	large	
shoals	to	small	ones	to	reduce	their	risk	of	being	eaten:	predators	are	
confused	by	larger	shoals,	and	there	is	safety	in	numbers,	as	a	preda-
tor	can	eat	only	a	limited	number	of	individuals.	Mosquito	fish	show	
a	spontaneous	preference	for	the	larger	of	two	groups,	3	versus	2	and	
8	versus	4.	To	examine	what	guides	their	choice,	Dadda	et	al.	(2009)	
controlled	for	the	visual	density	of	different	shoals,	and	for	the	total	
space	a	shoal	occupied.	Nevertheless,	fish	consistently	chose	the	shoal	
composed	of	more	individuals.	They	were	even	successful	in	gauging	
this	when	they	were	able	to	see	only	one	fish	at	a	time.	Here	too,	math-
ematical	 facts,	such	as	 that	3	>	2	and	8	>	4,	provide	a	parsimonious	
explanation	both	for	features	of	numerical	cognition	(e. g.,	choice	of	a	
larger	shoal	over	a	smaller	one)	and	for	the	adaptive	value	of	decisions	
based	on	numerical	cues.

4.3 A realist account for numerosities
So	far,	I	have	suggested	that	what	we	know	about	evolved	numerical	
cognition	supports	realism,	drawing	on	the	observation	that	scientific	
practice	suggests	a	 realist	understanding	of	numbers,	and	 that	num-
bers	are	indispensable	for	explanations	about	mathematical	cognition.	
Some	 realists,	 such	 as	 Joyce	 (2006)	 and	 Sinnott-Armstrong	 (2006),	

could	 influence	 the	 evolutionary	history	 of	 life	 cycles	 in	Magicicada.	
Lyon	(2012)	draws	on	the	distinction	between	process	and	program	
explanations	(proposed	by	Jackson	&	Pettit	1990)	to	elucidate	the	role	
of	acausal	mathematical	entities	in	scientific	explanations.	A	process	
explanation	provides	a	detailed	account	of	the	proximate	causes	of	the	
event	to	be	explained.	A	program	explanation,	by	contrast,	appeals	to	
a	property	or	entity	that	is	not	causally	efficacious	but	that	neverthe-
less	ensures	the	instantiation	of	a	causally	efficacious	property	that	is	
an	actual	cause.	For	example,	a	square	peg	does	not	fit	into	a	round	
hole	with	a	diameter	equal	to	the	side	of	the	square.	The	geometric	
properties	are	causally	relevant	in	the	explanation,	even	though	they	
are	not	causally	efficacious.	 In	 this	case,	 the	process	explanation	ap-
peals	 to	 physical	 properties	 (the	 impenetrability	 of	 the	 overlapping	
parts	of	 the	peg),	whereas	 the	program	explanation	 cites	 geometric	
properties.	The	program	explanation	works	at	a	higher	level	than	the	
process	 explanation.	While	 process	 explanations	 appeal	 to	 specific	
physical	situations,	program	explanations	provide	modal	information.	
They	allow	us	to	generalize:	not	only	this	particular	peg	and	hole,	but	
any	square	peg	will	not	fit	into	any	round	hole	where	the	diameter	of	
the	hole	is	equal	to	the	side	of	the	square.	Similarly,	the	primeness	of	
13	and	17	provides	a	program	explanation	for	the	life	cycles	of	Magici-
cada,	even	if	these	mathematical	facts	do	not	contribute	to	the	actual	
physical	processes	that	are	involved.

Using	this	strategy	for	evolved	numerical	cognition,	the	realist	can	
argue	 that	 numbers	 are	 indispensable	 for	 program	 explanations	 of	
numerosities.	Consider	the	behavior	of	a	 lioness	 in	McComb	et	al.’s	
(1994)	tape	recorder	experiment.	The	lioness	decides	to	approach	the	
auditory	signal	of	3	roaring	individuals	when	7	members	of	her	own	
pride	are	in	the	vicinity.	A	plausible	explanation	for	her	decision	(one	
also	presumed	by	the	researchers	who	conducted	these	experiments)	
is	 that	 the	 lioness	 forms	 the	 belief	 numerosityown	 >	 numerosityrival.	
Physical	factors	in	this	explanation	are	the	seven	lionesses	of	the	group	
and	the	voices	of	the	three	roaring	intruders.	In	this	case,	the	ratio	dif-
ference	between	the	numerosities	of	the	groups	is	large	enough	to	be	
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restriction	on	the	kinds	of	things	that	can	exemplify	relations	(Shapiro	
1997,	chapter	3).

The	access	problem	arises	when	numbers	are	conceived	of	as	ob-
jects	that	can	be	considered	in	isolation,	like	cats	or	fridges.	Thus	con-
ceived,	knowledge	of	numbers	seems	dependent	upon	our	ability	to	
interact	with	 them.	 In	 a	 platonist	 ontology,	 numbers	 are	not	 spatio-
temporal	objects,	so	it	is	hard	to	conceive	of	an	interaction	between	
natural	beings	like	us	and	numbers	(Resnik	1981).	

If	numbers	are	positions	in	a	certain	structure,	direct	causal	interac-
tion	is	not	required	to	acquire	knowledge	about	them;	it	suffices	to	be	
familiarized	with	specific	instances	of	the	relevant	structure.	Shapiro	
(1997,	chapter	4)	develops	an	account	of	how	humans	learn	to	grasp	
patterns.4	 He	 outlines	 a	 rather	 elaborate	 staged	model,	where	 each	
stage	 is	 intended	to	account	 for	our	knowledge	of	 increasingly	com-
plex	mathematical	structures.	For	evolved	numerical	cognition,	only	
his	stage	one	(abstraction)	is	relevant.	Abstraction	takes	place	when	
subjects	learn	to	recognize	patterns,	such	as	cardinalities	of	small	sets.	
They	recognize	that	the	2-pattern	is	common	to	all	systems	that	con-
tain	exactly	two	objects,	the	3-pattern	is	common	to	systems	with	three	
objects,	and	so	on.	Shapiro	invokes	a	domain-general	capacity,	termed	
pattern recognition,	by	which	children	learn	the	natural	numbers:

In	part,	our	child	starts	to	learn	about	cardinal	structures	
by	ostensive	definition.	The	parent	points	 to	a	group	of	
four	objects,	says	“four,”	then	points	to	a	different	group	of	
four	objects	and	repeats	the	exercise.	Eventually,	the	child	
learns	to	recognize	the	pattern	itself	(Shapiro	1997,	115).

This	 scenario	provides	a	naturalistic	account	of	how,	 from	a	 real-
ist	point	of	view,	children	can	learn	about	numbers.	Unfortunately	it	
fails	 to	capture	 the	actual	cognitive	processes	 involved.	As	we	have	
seen,	our	brains	come	equipped	with	a	set	of	domain-specific	skills	to	

4.	 A	similar	account	is	Resnik’s	(1982,	97)	“experiencing	something	as	patterned”.	
I	will	concentrate	on	Shapiro’s	account,	as	it	is	the	more	elaborate.	

have	 argued	 that	 we	 can	 expect	 on	 evolutionary	 grounds	 that	 nu-
merical	beliefs	track	numerical	facts,	but	have	not	explicated	how	this	
tracking	is	supposed	to	take	place.	

As	with	all	naturalistic	accounts	of	mathematics,	the	chief	obstacle	
to	fleshing	out	a	functional	account	of	numerical	cognition	from	a	re-
alist	perspective	is	 the	access	problem	(Benacerraf	1973).	Benacerraf	
originally	understood	the	access	problem	in	terms	of	a	causal	theory	
of	 knowledge.	More	 recent	ways	of	dealing	with	 this	problem	have	
moved	 away	 from	 this	 framing.	 For	 example,	 Field	 (1989,	 26)	 gloss-
es	it	as	the	challenge	“to	provide	an	account	of	the	mechanisms	that	
explain	 how	our	 beliefs	 about	 these	 remote	 entities	 can	 so	well	 re-
flect	the	facts	about	them”	(see	also	Yap	2009).	Still,	any	naturalistic	
account	—	causal	or	not	—	will	have	 to	grapple	with	 the	 fact	 that	 the	
human	mathematician	is	“a	thoroughly	natural	being	situated	in	the	
physical	universe”,	and	that	therefore	“any	faculty	that	the	knower	has	
and	can	invoke	in	pursuit	of	knowledge	must	involve	only	natural	pro-
cesses	amenable	to	ordinary	scientific	scrutiny”	(Shapiro	1997,	110).	

I	will	here	focus	on	ante	rem	structuralism,	to	give	a	sense	of	how	
realism	 about	 numbers	 could	 be	 true,	 given	 what	 we	 know	 about	
mathematical	cognition.	Structuralism	holds	that	mathematical	 theo-
ries	describe	structures	and	positions	in	them.	According	to	Shapiro’s	
(1997)	ante	rem	structuralism,	nonapplied	mathematics	is	concerned	
with	 structures	 that	 are	 conceived	 of	 as	 abstract	 entities	 (platonic	
universals),	 i. e.,	structures	that	exist	 independently	and	prior	to	any	
instantiations	of	them.	The	precise	nature	of	these	entities	is	left	un-
specified,	as	 it	 is	not	essential	 to	mathematical	practice.	 Just	 as	one	
can	talk	about	a	goalkeeper’s	function	in	soccer	(i. e.,	keeping	the	ball	
out	 of	 the	 goal)	without	 going	 into	 detail	 about	 the	 precise	 proper-
ties	of	 the	person	in	this	position	(e. g.,	hair	color),	a	mathematician	
can	talk	about	the	natural	number	2	as	a	position	within	the	natural	
number	structure	without	having	to	worry	about	which	set-theoretical	
conceptualization	captures	2	best.	Mathematical	structuralism	is	not	
concerned	with	the	internal	nature	of	mathematical	objects	(e. g.,	num-
bers,	functions),	but	with	how	they	relate	to	each	other.	There	is	no	
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to	allocate	 clusters	of	neurons	 to	numerosities	of	 increasing	 size	ad	
infinitum.	The	adaptive	and	neural	constraints	together	explain	why	
decreasing	numbers	of	neurons	are	allocated	to	increasingly	large	nu-
merosities.	 In	 this	 picture,	 arithmetical	 facts,	 realistically	 construed,	
form	an	indispensable	part	of	a	physical-cum-mathematical	property	
complex.5 

Ante	 rem	 structuralism	 is	 a	 realist	 ontology	 compatible	with	 the	
evolved	features	of	numerical	cognition.	It	can	provide	a	general	and	
straightforward	explanation	of	what	animals	detect	in	numerical	cog-
nition.	It	also	meets	a	prima	facie	objection	against	mathematical	real-
ism,	namely	 the	 access	problem.	While	 ante	 rem	 structuralism	may	
not	be	the	only	way	to	connect	numerical	cognition	and	mathematical	
ontology,	this	is	a	first	stab	at	providing	such	a	connection,	bolstering	
the	case	for	mathematical	realism.	

5. Conclusion

There	 is	 a	 tension	 between	 realism	 about	 abstract	 objects	 and	 evo-
lutionary	accounts	of	human	cognition.	How	can	our	evolved	brains	
that	only	have	access	to	the	natural	world	acquire	true	beliefs	about	
putative	 abstract	 entities	 like	 numbers	 and	moral	 norms?	 Balaguer	
(1998,	 chapter	 8)	 has	 argued	 that	 empirical	 evidence	 can	 never	 de-
cide	between	realism	and	antirealism	because	we	have	no	epistemic	
access	 to	 the	acausal	mathematical	 realm.	Nevertheless,	 I	have	dem-
onstrated	that	a	closer	look	at	evolved	mathematical	cognition	—	both	
its	adaptive	value	and	its	functional	properties	—	can	address	the	evo-
lutionary	challenge	to	mathematical	cognition.	An	influential	version	
of	this	evolutionary	challenge	(Clarke-Doane	2012)	does	not	provide	
any	details	of	how	numerical	cognition	is	supposed	to	work	under	the	
5.	 There	 are	 other	 forms	 of	 structuralism,	 such	 as	modal	 structuralism	 (Hell-

man	 1989).	 Modal	 structuralism	 holds	 that	 mathematical	 statements	 are	
statements	 about	 possible	 structures.	 Modal	 structuralists	 aren’t	 ontologi-
cally	 committed	 to	mathematical	 structures	 over	 and	 above	 the	 structures	
we	perceive.	They	use	S5	modal	logic	for	this.	Given	that	evolved	numerical	
cognition	is	focused	only	on	structures	we	perceive,	it	would	require	further	
philosophical	work,	beyond	the	scope	of	this	paper,	to	determine	which	form	
of	structuralism	is	most	compatible	with	it.

recognize	numerosities,	rather	than	with	an	undifferentiated	capacity	
to	recognize	patterns.	However,	we	can	provide	a	structuralist	devel-
opmental	account	that	is	compatible	with	the	functional	properties	of	
numerical	cognition,	as	follows.	Even	after	extensive	training,	nonhu-
man	animals	(such	as	chimpanzees)	fail	to	represent	natural	numbers	
>	3	precisely	(Biro	&	Matsuzawa	2001).	They	represent	numerosities	
approximately,	 with	 increasing	 imprecision	 with	 larger	 magnitudes.	
How	 then	 do	 humans	 learn	 to	 represent	 a	 natural	 number	 like	 54?	
Through	their	object-file	system,	young	children	have	an	innate	capac-
ity	to	distinguish	1-patterns,	2-patterns,	and	3-patterns.	As	they	learn	
to	count,	they	realize	that	these	patterns	correspond	to	the	linguistic	
utterances	 ‘one’,	 ‘two’,	 and	 ‘three’.	 Remarkably,	 preschoolers	 always	
learn	the	numbers	1,	2,	and	3	in	that	order	(i. e.,	children	learn	that	‘one’	
represents	a	unique	cardinal	value,	then	‘two’,	then	only	‘three’).	While	
one	would	expect	the	next	step	is	four,	children	make	a	crucial	induc-
tion:	they	make	an	analogy	between	next in the numeral list and	next in 
series of object-files:	if	n	is	followed	by	n	+	1	in	the	counting	sequence,	
adding	an	individual	to	a	set	with	cardinal	value	n	results	in	a	set	with	
cardinal	 value	n	+	 1.	Children	generalize	 this	 to	higher	magnitudes,	
which	helps	them	to	understand	the	successor	function	(Sarnecka	in	
press).	Next	to	object-files,	the	approximate-magnitude	system	contin-
ues	to	play	a	critical	role	in	arithmetical	skills	in	adults,	as	it	helps	them	
to	gain	semantic	access	 to	symbolic	representations	of	numerosities	
>	3.	Cultural	means,	such	as	counting	words,	fingers	and	other	body	
parts,	and	tallies,	help	to	represent	natural	numbers	(De	Cruz	2008).	

Why	did	natural	selection	not	allow	for	animals	to	represent	natural	
numbers	>	3	exactly?	This	is	probably	due	to	the	adaptive	function	of	
numerical	cognition.	For	example,	animals	require	increasingly	large	
differences	to	distinguish	between	larger	numbers.	Smaller	numbers	
are	more	 ecologically	 relevant:	 the	 nutritional	 difference	 between	 1	
and	2	apples	is	large;	the	difference	between	10	and	11	apples	is	mar-
ginal.	A	fish	 is	 a	great	deal	 safer	 in	a	 shoal	of	 3	 individuals	 than	 in	
one	 of	 2,	whereas	 the	 difference	 is	 negligible	 for	 shoals	 of	 13	 or	 12	
fish.	There	are	also	neural	constraints:	brains	do	not	have	the	space	
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Dehaene,	 S.	 (2007).	 Symbols	 and	 quantities	 in	 parietal	 cortex:	 Ele-
ments	 of	 a	 mathematical	 theory	 of	 number	 representation	 and	

assumption	of	antirealism.	The	properties	of	evolved	numerical	cogni-
tion	are	more	readily	explained	by	a	realist	ontology	of	numbers	than	
by	an	antirealist	one,	and	realism	is	also	more	in	line	with	the	practices	
of	cognitive	scientists	who	 investigate	animal	and	 infant	 representa-
tions	of	number.	I	explored	one	realist	view	in	detail,	ante	rem	struc-
turalism,	to	give	a	sense	of	how	a	realist,	sophisticated	understanding	
of	numerical	cognition	could	work.

My	account	does	not	provide	a	decisive	argument	for	realism	about	
numbers,	but	it	poses	a	new	challenge	for	the	antirealist:	to	tell	a	plau-
sible	nominalist	story	that	can	explain	the	adaptive	behaviors	of	ani-
mals	that	rely	on	numerosities,	especially	given	the	practices	of	cogni-
tive	scientists	which	suggest	that	numbers	play	a	crucial	explanatory	
role	in	animal	adaptive	behavior.	
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