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Abstract An extension of intuitionism to empirical discourse, a project most seri-
ously taken up by Dummett and Tennant, requires an empirical negation whose
strength lies somewhere between classical negation (‘It is unwarranted that. . . ”)
and intuitionistic negation (‘It is refutable that. . . ”). I put forward one plausible
candidate that compares favorably to some others that have been propounded in the
literature. A tableau calculus is presented and shown to be strongly complete.
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1 Introduction

In mathematical discourse a uniform treatment of negated and unnegated statements
can be given by defining the former in terms of the latter. If 4 is a mathematical
statement then its negation may be defined as 4 — L where L is either taken as
primitive or as an abbreviation of some fixed absurdity such as 0=1. What counts as
an “absurdity” will depend on the background formal theory. Notice that in the usual
arithmetical setting, defining the negation of 4 as 4 — 0=1 gives us the constructive
properties of negation we expect. For example, ex falso quodlibet —that from A and
—4 anything follows—is derivable from modus ponens and the fact that 0=1 implies
everything. Negation introduction and elimination are then just special cases of
implication introduction and elimination.

However, there are issues concerning the choice of absurdity. If a theory does not
contain sufficient arithmetic then 0=1 may not do. Indeed, there may be no single
sentence able to play the role of absurdity across all mathematical discourses. Instead
we shall have to choose, for a given mathematical theory, some sentence able to
assume the role of absurdity. In practice this poses no problem on the assumption—
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and this assumption seems safe enough—that we can effectively choose a suitable
absurdity for any given theory we are likely to care about. For example in arithmetic
we may choose 0=1, in the theory of strict linear orders 0<0, and so on.

Constructively there is nothing problematic about implication interpreted accord-
ing to the familiar BHK clauses nor of an absurdity such as 0=1, so negation turns out
unproblematic in mathematical discourse.! Is the same true for empirical discourse?
Dummett thinks not, stating:

Negation . . . is highly problematic. In mathematics, given the meaning of “if . . .
then”, it is trivial to explain “Not A” as meaning “If A, then 0=1"; by contrast, a
satisfactory explanation of “not”, as applied to empirical statements for which
bivalence is not, in general, taken as holding, is very difficult to arrive at. Given
that the sentential operators cannot be thought of as explained by means of the
two-valued truth-tables, the possibility that the laws of classical logic will fail is
evidently open: but it is far from evident that the correct logical laws will always
be the intuitionistic ones. More generally, it is by no means easy to determine
what should serve as the analogue, for empirical statements, of the notion of
proof as it figures in intuitionist semantics for mathematical statements.
(Dummett 1996, p.473)

A blanket term for the analogue of proof for empirical statements is warrant or
verification. One need not spell out a precise theory of warrant in formulating a
semantics whose primary semantic values are warrants. Indeed, there has been no
precise spelling out of proof for the constructivist, since proof for them is taken as
intuitive and not relative to a given formal theory. Of course this has not prevented the
formulation of numerous semantics for constructive logics.> A similar point is made
by Kleene regarding the realizability interpretation of intuitionistic number theory
when he states “[t]he analysis which leads to this truth definition is not to be regarded
as more than a partial analysis of the intuitionistic meaning of the statements, since it
takes over without analysis, or leaves unanalyzed, the component of evidence”
(Kleene 1945, p. 110).

In what follows I shall be taking the notion of warrant or verification as primitive
and assuming, moreover, that a naive extension of a constructively acceptable
semantics to empirical discourse is one which replaces proofs as semantic values
with warrants (perhaps with other necessary modifications made as well).** The

" It should be mentioned in passing that some (e.g. (Cook and Cogburn 2000)) have objected to the use of
0=1 in a definition of negation. I shall not enter into this debate here.

2 Taking proof as proof-in-L, for some fixed logic L, has been thought to be problematic for constructivism
for reasons having to do with Godel’s incompleteness theorems. They would seem to imply that, if
constructive proof were just proof-in-L, there would be verification- or proof-transcendent truths, contra
constructivism as it is typically conceived. See e.g. Martin-Lof’s (Martin-Lof 1984, p. 11).

* Williamson (Williamson 1994) makes this suggestion regarding the BHK clauses in order to show that a
semantics so extended cannot make sense of empirical statements of the form ‘A may be undecided’. I
briefly discuss his argument in section 7.

* While I have taken the notion of warrant as primitive, so that one may fill in their favorite theory of
warrant in the discussion to follow, that discussion does highlight what basic properties warrants must have.
For instance, in a constructivist setting the notion of warrant is regarded as monotonic in the sense that if A
is warranted by a particular state a, and b stands in the relevant "inclusion" relation to a then A is warranted
also at b.
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verification of a statement A might be taken to be the holding in principle of
sufficient empirical evidence in support of A, where what counts as evidence is
either contextually determined or domain specific. For instance, seemings to John
might count as evidence for ‘John is hungry’ whereas they may not, e.g. because John
has a fever, for ‘The temperature is above twenty degrees celcius’. In other words, a
number of factors may serve to determine what counts as evidence for a given class of
propositions. In the case of mathematics, proof then turns out to be a species of
warrant.”

It is easy to see why the usual notion of constructive negation does not by itself
suffice for expressing negation in empirical discourse. Suppose we wish to express
that Goldbach’s conjecture is undecided at present. According to the arrow-falsum
definition, this statement is equivalent to ‘If Goldbach’s conjecture is decided (i.e.
proved or refuted) at present, then 0=1". But this is far too strong: it states that, with
respect to any evidential state we may be in, that Goldbach’s conjecture is decided is
refutable.® However, while it is vacuously true with respect to our present evidential
state that a proof of Goldbach’s conjecture—which we do not presently have—can be
transformed into a proof of 0=1, this may not be true with respect to future evidential
states at which the conjecture may turn out proved or refuted. To express such claims
the constructivist needs a weak negation that, when appended to a statement,
expresses that the statement lacks warrant at this evidential state, the state at present.
Such a negation has been referred to as ‘empirical’ in (Williamson 1994)) and
(DeVidi and Solomon 2006) and as ‘factual’ antecedently in (Heyting 1971, p. 18).

It follows that any negation stronger than intuitionistic negation will be too strong
to express that a particular evidential state (e.g. the present one) fails to support a
given statement. For if the negation is stronger than intuitionistic negation it will
express at least that the statement fails to be supported in every extension of the given
state. In particular then, strong negation cannot serve as an empirical negation in our
intended sense, but not for the reasons Williamson (Williamson 1994) cites. In
(Williamson 1994) Williamson suggests, but ultimately rejects, the use of any non-
standard intuitionistic negation, and in particular strong negation, as an empirical
negation. I discuss his argument in §7.

Dummett proposes that for empirical discourse we treat verification and falsifica-
tion on a par by taking them as sui generis notions. However, if we do so then we
must give up a uniform treatment of the conditions under which a sentence is verified
or falsified. The reason is that there is not a fixed (decidable, atomic) statement A to
serve as the absurdity which follows from an arbitrary empirical falsehood and from
which empirical negation could be defined as implication to A. On this, Dummett
remarks:

[w]e might regard the meanings of negations of numerical equations as being
given directly in terms of the computation procedures by which those equations

> What counts as constructively acceptable when the language is extended to include empirical statements
is unclear. For instance it is not clear that disjunction ought to satisty the disjunction property, that if A v B
is warranted (recalling that the A and B may be empirical) then either A is or B is. This issue is raised again
in section 4 but even more needs to be said concerning constructive acceptability.

© I am assuming that if a statement is intuitionistically refutable with respect to some evidential state s, it is
refutable with respect to all (or at least all extensions of s), i.e. refutability is not a relative matter.
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are verified or falsified: a proof of the negation of any arbitrary statement
then consists of an effective method for transforming any proof of that
statement into a proof of some false numerical equation. Such an explanation
relies on the underlying presumption that, given a proof of a false numerical
equation, we can construct a proof of any statement whatsoever. It is not
obvious that, when we extend these conceptions to empirical statements,
there exists any class of decidable atomic statements for which a similar
presumption holds good; and it is therefore not obvious that we have, for the
general case, any similar uniform way of explaining negation for arbitrary
statements. It would therefore remain well within the spirit of a theory of
meaning of this type that we should regard the meaning of each statement as
being given by the simultaneous provision of a means for recognizing a
verification of it and a means for recognizing a falsification of it, where the
only general requirement is that these should be specified in such a way as
to make it impossible for any statement to be both verified and falsified.
(Dummett 1996, pp. 71-72)

A semantics which treats verification and falsification symmetrically along the
lines just sketched by Dummett has been proposed by Thomason (Thomason 1969)
for the strong negation of (Nelson 1949). Similarly, Gurevich (Gurevich 1977)
motivates his semantics for strong negation by observing that “[iJn many cases the
falsehood of a simple scientific sentence can be ascertained as directly (or indirectly)
as its truth. An example: a litmus-paper is used to verify sentence [sic] “The solution
is acid” ” ((Gurevich 1977, p. 49)) by which he means ‘verify the falsity of” when he
says ‘verify’. In the context of constructivism we see that symmetrical treatments of
truth and falsity have been around for quite some time.

How should an empirical negation behave? If we take the following quote of
Dummett seriously then, at least relative the class of statements we have in mind,
empirical negation should look nearly classical:

Our reluctance to say that pi was not transcendental before 1882, or, more
generally, to construe mathematical statements as significantly tensed, is not
merely a lingering effect of platonistic misconceptions; it is, rather, to speak in
this way would be to admit into mathematical statements a non-intuitionistic
form of negation, as will be apparent if one attempts to assign a truth-value to
‘pi is not algebraic’, considered as a statement made in 1881. This is not
because the ‘not’ which occurs in . . . is not true’ or ‘. . . was not true’ is
non-constructive: we may reasonably view it as decidable whether or not a
statement has been proved at a given time. But though constructive, this is an
empirical type of negation that occurs in statements of intuitionistic mathemat-
ics. (Dummett 1977, p. 337, my emphasis)

If it is decidable whether or not a given statement A lacks warrant at present (or
any given time more generally), it will always be true, for example, that ‘either A is
(now) warranted or it is not’.

Empirical negation cannot simply be classical negation if we wish to add it in a
straightforward way to the usual proof systems for intuitionistic logic. For there is no
straightforward way of introducing classical negation to intuitionistic logic without
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the two negations collapsing into classical negation.” So on pain of collapse, empir-
ical negation must forgo certain classical principles. The same issue arises within the
setting of classical relevant logic (see (Meyer and Routley 1973) and (Meyer and
Routley 1974)), where the familiar law of contraposition in “arrow-form” fails
(though it holds in rule form) for “classical” negation, again, on pain of collapse.
Precisely which principles our account of empirical negation forgoes is discussed in
Section 4.

However, besides collapse, there is a host of other objections against classical and
classical-like negations that any proposal for a constructively or relevantly acceptable
negation will have to avoid. In the next section I look at these objections in turn and
argue that none of them are a problem for the empirical negation to be introduced in
Section 3, despite its close affinity to classical negation. Indeed the following section
could serve double duty as a survey of the numerous objections to classical-like
negations.

2 Constructivist Objections to Classical (and like) Negations
2.1 Conservativity

If L and L’ are logics in the respective languages £ and £ with £ ¢ £ then L' is a
conservative extension of L, when for every sentence 4 in L, if A is L'-provable then
it is L-provable. Conservativity has been thought to be a necessary condition on
meaning coherence in the sense that the rules governing a connective can only confer
coherent meaning on that connective if they conservatively extend a given coherent
base.® There are a number of reasons for desiring conservativity having to do
primarily with anti-holism, learnability, anti-realism and consistency (against e.g.
tonk-like connectives), but whichever reasons one has in mind, classical negation is
going to be problematic since the usual ways of proof-theoretically extending deduc-
tive systems for intuitionistic logic to include classical negation yield nonconserva-
tive extensions. A famous example witnessing this nonconservativity phenomenon
(assuming that the meaning of — is determined by the usual arrow introduction and
elimination rules) is famously Peirce’s law, (4 — B) — 4) — A, which is classically
but not intuitionistically provable. As such, classical negation has been deemed
incoherent, most notably by Dummett.

We need not enter the debate about whether conservativity is a necessary condition
for coherence, since one can remain neutral on the issue in cases where a given
connective meets the constraint. The empirical negation introduced in Section 3
yields a conservative extension to intuitionistic logic, and so failure of conservativity
is no objection to it.

7 There are ways of introducing classical negation without collapse, see e.g. [del Cerro and Herzig 1996], but
they are not straightforward adaptations of the usual style of proofs systems (e.g. Hilbert or sequent calculi).
§ Dummett is often thought to have held the conservativity constraint. There are a number of criticisms of
the constraint which seem to settle the matter against it. One is that there may be two connectives each of
which can be individually and conservatively added to a given logic though the addition of both yields a
nonconservative extension. Is each of these connectives individually coherent until present together? That
seems an implausible thing to say.
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2.2 Harmony

Inferentialists, who hold that the meaning of certain expressions is determined
completely by the rules which govern them, have been the initial defenders of
conservativity. In the case of the logical connectives they hold that the introduction
and elimination rules (sometimes just those of one type and not of the other)
completely determine the meaning of a logical connective.” But if conservativity
fails as a requirement for coherence, the inferentialist will need to appeal to some
other requirement to rule out classical negation as incoherent. Harmony has been
thought to fill this role. Roughly, harmony is the constraint that introduction and
elimination rules for a logical connective must be in harmony in the sense that the
elimination rules warrant precisely what is warranted from the premises of the
introduction rules alone.'® Some inferentialists have defended harmony while reject-
ing conservativity (e.g. see (Read 2000)). Inferentialism is typically restricted to the
view that the meaning of the logical fragment of our vocabulary is given completely
by inferential rules. This is sometimes referred to as moderate inferentialism. One
might wish to extend inferentialism to language as a whole, but it is unlikely that an
advocate of any such program would endorse harmony as a meaning-theoretic
constraint since it is far too constraining.

Should we require of empirical negation that it be governed by harmonious
introduction-elimination rules? If empirical negation is non-logical and we are mod-
erate inferentialists, then the answer is clearly “No”. On the other hand, if empirical
negation is deemed logical on grounds of topic neutrality, then the familiar intuition-
istic negation cannot be deemed logical on the same grounds and this seems implau-
sible. For recall that empirical negation is an operation on warrants of which proofs
are a special case, so in this sense it generalizes intuitionistic negation by applying to
a broader class of propositions, the mathematical and empirical. Now it is unlikely
that any inferentialist will accept this brief argument denying the logicality of
intuitionistic negation on grounds of topic neutrality, in which case they must
hold that, while topic neutrality may be a sufficient condition on logicality, it
cannot be a necessary one. According to an inferentialist, being characterizable by
rules satisfying certain proof-theoretic constraints (e.g. harmony, conservativity,
etc.) will be necessary and sufficient for logicality. But whatever conditions end
up being necessary and sufficient for logicality, it is dubious that empirical
negation will turn out logical on those grounds. Thus the issue of harmony seems
irrelevant to empirical negation.''

This is not to say empirical negation fails to satisfy proof-theoretic constraints
necessary and sufficient for logicality. Indeed one might hold that the burden of proof

? Indeed, it has been suggested that an operator is logical when its meaning is determined completely by its
rules of inference.

10 Thanks to an anonymous referee for clarifying some important points concerning my formulation of
harmony. The one given here corresponds to what Dummett (Dummett 1991, ch. 13) calls ‘stability’.

! From a semantic perspective, empirical negation likely will not be counted logical either. For instance,
relative to Kripke semantics, empirical negation is non-logical according to the criterion of permutation
invariance which states that a connective is logical if the set of truths in a model having that connective as
primary is invariant under permutations of the set of worlds, where truth in a Kripke model may be taken to
be truth at every or some distinguished point.
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lies on the opponent to show that empirical negation cannot be given harmonious
rules, which is an extremely strong claim to establish. But it is also debatable whether
the rules given in Section 5 for empirical negation are not harmonious. Read (Read
2008) argues that labeled natural deduction systems for a variety of normal modal
logics provide a way of furnishing harmonious rules for intensional connectives, and
if he is right then empirical negation, and a good deal of other connectives including
non-logical ones, satisfy the harmony constraint.'?

So far the objections to classical and like negations have been proof theoretic, but
there is a long history of model-theoretic objections as well. A number of them have
been voiced by relevantists in defending non-classical (paraconsistent) De Morgan
negation as an alternative to classical negation. Exactly these objections are open also
to the intuitionist. In the following section I will discuss these objections in their
original relevantist formulations and show how they connect directly to the present
topic of empirical negation.

2.3 Heredity

Meyer and Routley have shown that relevant logic, once touted as a fierce rival to
classical logic, can be viewed rather as an extension to classical logic with additional
intensional (relevant) implication and (De Morgan) negation operators. One need
only collapse the ordering < on states, defined by

a < biff ROab

for 0 the “base” state, by requiring that @ < b iff a=b."> Collapsing the ordering to
identity is required in order to ensure that the Heredity condition,

(Heredity) If M,ae Aanda < b then M,b = A,
is preserved when defining boolean negation ~ by'*
(1) M,aE ~Aiff M, a A

The formal semantics of relevant logic has taken a fair amount of criticism from its
inception for not having an adequate informal interpretation and the collapse of the
ordering that allows for boolean negation worsens that criticism.'> For the ordering is
supposed to represent an intuitive notion corresponding to something like information
gathering, so that ¢ < b when b is an informational extension of a. The restriction

12 The use of labeled systems makes Read’s approach controversial. The proof language makes explicit use
of an "accessibility" relation and formula labels typically thought of corresponding to points in a Kripke
structure. In fact, there are rules specifically for the accessibility relation. The question, then, is whether
such proof languages presume a prior understanding of the Kripke semantics from which they arose and
whether they are thereby anti-inferentialist in spirit.

13 A model for relevant logic is a quadruple (W, 0, R, V) where W is a non-emtpy set, 0 € W, R is a ternary
relation on W and Vis a function from W to subsets of W.

14 The literature on relevant logic refers to the negation defined by (1) as ‘boolean’ rather than ‘classical’,
so I have stuck with this terminology. In a sense boolean negation is a natural characterization of classical
negation for relational semantics, but I don’t think it is the only natural one. Fixed negation seems to me to
be just as natural.

'3 B. J. Copeland has been a main critic of relevantist semantics, charging them with being merely "pure”
rather than "applied". See e.g. (Copeland 1979), (Copeland 1983) and (Copeland 1986).
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requiring that a < b iff @ = b claims that states have no proper extensions and
embodies the unfounded Leibnizian optimism that each state is itself the best (in
terms of informational content) amongst all possible ones.

The point is that states are not perfect—i.e. complete and consistent. Moreover
propositions, construed as sets of states, are not just any such sets: they are the
hereditary ones. Now it is clear that boolean negation defined according to (1) is not
an operation on propositions in the sense that the class of propositions is closed under
that operation. For there are states a and b with @ < b such that a does not support a
proposition 4, and hence supports its boolean negation, while b supports 4. But then
the boolean negation of A4 is not preserved < -upward, and so the boolean negation of
A is not a hereditary set (read ‘proposition’). As boolean negation is just set-theoretic
complementation in disguise, another way of putting this is to say that complemen-
tation is not an operation on propositions.

Notice that the same objection may be levelled against classical negation by any
intuitionist who takes seriously a semantics on which boolean negation fails to be an
operation on propositions intuitionistically conceived. In Kripke semantics for intui-
tionistic logic (see Section 3), propositions, being < -closed (for < a preorder), are not
closed under boolean negation. That is, in a Kripke model M for intuitionistic logic
we may have M, a & ~A4 and yet M, b ¥ ~A (equivalently, M, b & A4) for some b>a.
Now the intuitionist might attempt the same move as the relevantist by collapsing the
preorder to identity (obtaining the class of “sheer reflexive” frames) so that Heredity
is preserved in the presence of boolean negation, but that will not work since the
resulting logic is classical (i.e. the set of arguments valid on the class of sheer
reflexive frames is classical logic). So the relevantist move is unavailable to the
intuitionist who must instead reject boolean negation as a genuine propositional
operation.

DeVidi and Solomon (DeVidi and Solomon 2006) work around this problem by
introducing an empirical negation, defined in the context of Kripke semantics, that
satisfies Heredity. Roughly the idea is this. The intuitionistic negation —4 of 4 is
supported at a state iff 4 is not supported at any (<-) later state. We might think of
some subset of states as having a property special to empirical negation, call this
property being “actualized” (as put in (DeVidi and Solomon 2006)) at some time, and
define negation relative to this property. Then we might think the empirical negation
~A of A is supported at a state when it is not supported at any later state that is
actualized. To be precise, let M = (W, A, <, V') be a usual Kripke model for
intuitionistic logic with 4 € W an additional set of actualized states. Define the truth
conditions for ~ by

l. M,ae ~ Aiff Vb, ifa < b and b € Athen b ¥ A.

It is easy to see that Heredity holds for the language extended with ~, that is, ~ is a
genuine propositional operation.

There are two serious problems with this “negation”. The first is that it is too weak.
Almost no properties thought characteristic of negation hold for it. In particular, the
law of excluded middle, a property we should think holds for empirical negation if we
follow Dummett’s remark quoted earlier, fails as does the law of non-contradiction
and various directions of the De Morgan equivalences (e.g. ~(4 A B) |= ~4 v ~ B).
Second, it does not get things right at the level of models for there will be states
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supporting ~A for every 4, i.e. states at which trivialism holds, a thesis rejected by
any constructivist. This will be the case, e.g., when no later state is actualized in
which case the truth conditions for ~4 will be vacuously satisfied for arbitrary 4.
For these reasons the empirical negation to be defined in Section 3 is better
motivated from a philosophical point of view and it also fairs much better in terms
of getting correct the inferences that ought to intuitively hold of empirical negation.

2.4 Implicit vs Explicit Information

Relevantists (e.g. Greg Restall) have argued that there is a “difference between claims
about states, and claims supported by states” (Restall 1999, p. 71). A state a’s failing
to support a proposition A should not imply that a supports some other proposition
—A expressing a’s lack of support for A—for this other proposition is about a. That
is, it should not be assumed generally that a state supports all the information about
itself. An intuitionist who even only weakly endorses Kripke semantics could file the
same charge against empirical negation if introducing it into the semantics requires
making the unjustified identification of implicit and explicit information.

Of course some states might support all the information about themselves, but to
say that all do is to make an unfair assumption about states. It would, however, be just
as unfair to assume that states never support some or all of the information about
themselves. Moreover, why not think that every model ought to possess at least one
such state intended to represent a privileged state of the model, for example, the
present state of available evidence (or warrant)? Such states will be complete in the
sense that every statement will be either warranted or not.

Given Dummett’s remark claims of the form ‘4 is warranted’ are in principle
decidable, we should think that the present state of available evidence either warrants
or fails to warrant the assertion of a given proposition. That is, the present state of
available evidence is complete relative to empirical negation ~ in the sense that 4 v ~4
holds good at it. In modeling empirical negation, then, we should include at least one
state representing the present state of available evidence for any claim of the
form ~A asserts that, at present, 4 lacks sufficient evidence to be warranted. Such a
state will form a classical model in the sense that the set of sentences in the language
involving only the connectives A and ~ will be maximally classically-consistent.

3 The Semantics of Fixed Negation

Since we will be interpreting a connective ~ to be read ‘There is insufficient evidence
at present'® to warrant the proposition that. . . > (— will continue to be read ‘It is
refutable that. . . ”) we must distinguish one state in each model as the present
moment. Such a state will be further singled out by the truth conditions given to
our empirical negation ~. These informal ideas motivate the semantical clauses for

' The usual intensional semantics for temporal indexicals such as ‘at present’ (i.c. ‘now’) treats such
expressions as non-indexical propositional operators, and this is how we have chosen to treat them here.
The same is true of non-temporal expressions such as ‘actually’ which is taken, by e.g. Lewis, to be
indexical.
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the connectives of our language, to be specified in a moment, the only novel one
being that for ~ .

Our language £ is a usual language £ for IPC (Intuitionistic Propositional Logic)
augmented with the logical symbol ~ .'” Let F = (W, <) be a Kripke frame for the
language £ of IPC. That is, W is a non-empty set of states and < is a partial order
(reflexive, transitive and anti-symmetric relation) on 7. We denote by W 1 the set of
all upsets in W, i.e. sets X s.t. y € X whenever x € X and x <y. An £ -model M is a
tuple (F,@,V) where @ € W is a distinguished element representing the state of
available evidence in M (other modally inequivalent states representing substates or
states containing evidence unavailable in M ) and V': Prop — W 1 is a propositional
valuation assigning propositions (i.e. upsets in W ) to propositional letters.'®

We arrive at the following truth conditions (writing M, a |[=4 to mean 4 is
supported by a state a in the model M ):

M,a| =ANBiff M,a|=Aand M,a| = B;
M,a|=AVBiff M,a|=AorM,a|=B;

M, al# 1 (i.eitisnever the case that M, a| = 1);
M,a|=A4— Biff Vb>a(M,b|=4= M,b| =B);
M,a|=~Aiff M, @|# A.

SNk WD

It is easy to verify by induction on formula complexity that (Heredity),
M,a|=Aand a < b imply M,b| = A4,

holds, as in the case of IPC, since M, a |[=~A iff forall b € W, M, b |=~A. Notice that
clause 6 is a special case of clause 1 of (DeVidi and Solomon 2006) when 4 = {@}
and each model is assumed to contain @. One may immediately notice the similarity
of ~ to the satisfaction operators of hybrid logic, the “actually” operator, and the
“now” operator of temporal logics."’

Truth in a model is truth at @, validity on a frame is truth in every model based on
that frame, and validity “simpliciter” is validity on every frame. We say that a
sentence A4 is an L -consequence of set I' of sentences, in symbols I' [=4, iff for
every model M, 4 is true in M whenever every member of I is true in M . We denote
the set of valid consequences {(I', 4) : I" |=4} by IPC".

We might have required that all models be rooted, i.e. that there be a minimum
with respect to the partial order, or, perhaps more in line with common informal
interpretations of intuitionistic models, that the models be tree-like. In any case, one

7 For definiteness, the set of logical symbols is {A, V, —, ~, L}, and Prop is a denumerable set of
propositional letters (constants) whose members we denote by p, ¢, etc. We define 74 :=4 — L.

'® We may read < in a number of different ways. My preferred way is in terms of informational containment
so that a < b reads ‘b contains all of the information contained in @’. Even though @ is to be thought of as
the present state of evidence, we need not read < temporally, e.g. by reading @ < b as ‘b is a state of evidence
arrived at temporally later than a which contains all the information contained in a’ for we might just think
of each state in the model as representing a possible present state of evidence.

1% One interesting application of~is that it may also be seen as providing an alternative, but inequivalent,
characterization of boolean negation in the setting of relevant logic. If we confine ourselves to the
simplified semantics for R then we may introduce~by letting ‘@’ denote the sole base world. Valid
consequence on the simplified semantics for R is already defined in the same way we have defined valid
consequence for IPC”, viz. in terms of truth preservation at @. It would be interesting to compare ~ and
boolean negation in the setting of relevant logic, a curiosity I mention only to set aside.
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obtains the same semantic consequence relation so we have chosen not to restrict our
models in any of these two ways. It is interesting to note, however, that there are
differences immaterial to consequence: e.g. if @ is always the root then 4 v~A4 holds
at every point of every model, whereas this is not true otherwise.

There are two notions of truth in a model we may distinguish: (i) actual truth
which is truth at the distinguished element, and (ii) global truth which is truth
common to all points in the model. A sentence is actually true in M = (W, <, @, V)
when it is true at @, and a sentence is globally true in M when it is true at every state a
€ W of M . These notions of truth are obviously quite distinct. We may also
distinguish between two types of consequence: local and actual consequence. A
sentence A4 is a local consequence of a set I" of sentences when for each model M =
(W, <, @, V') and every b in M , if every member of I is true at b then so is 4. And 4
is an actual consequence of I" when 4 is true at @ whenever every member of I is.
For the base intuitionistic language £, the distinction between actual and local truth is
one without a difference.?’ However, this is not true for £~ since now the
distinguished element plays a significant role, where before it did not.

I wish to quickly settle a possible objection with the proposed semantics. Hossack
writes

[i]f a sign is to be regarded a negation of p at all, it must be used in such a way
as to be incompatible with the assertion that p. The semantic rule has to hold,
which Dummett calls Exclusion, that p and its negation cannot both be true.
(Hossack 1990, p. 216).

One possible objection to the semantics for negation introduced here is that
we have states at which both 4 and ~4 are supported in apparent violation of
Dummett’s Exclusion condition. For instance let M=(W, <, V') be the two element
model with W= {@, a}, < the reflexive closure of {{@, @)} and V (p) = {a}. Then M,
a [=A A ~A. But what is crucial here is that it is never the case, in accordance with
Exclusion, that both 4 and ~4 are true, for truth (relative to an IPC™-model) is truth at
@. Notice that the empirical negation of (DeVidi and Solomon 2006) fails to satisfy
the Exclusion condition and so would not be deemed a negation according to Hossack
and Dummett.

Before moving onto the next section, it is worth discussing an issue that has been
raised concerning monotonicity and warrant. Tomassi (Tomassi 20006) states:

...non-monotonicity naturally suggests itself as a logical characteristic definitive
of [defeasible warrant]. At least, it is difficult to see how warrant could genuinely
be defeasible if it is not the case that further information could be obtained to defeat
an assertion so warranted. To allow that defeating information can turn up however
is precisely to allow the possibility that while X defeasibly warrants Z, the conjunc-
tion of X and Y might warrant the negation of Z. . . there is no obvious way of

20 A proof showing local validity implies actual validity is easy; the converse is not much harder. £-
models are £ -models and the truth conditions for L-sentences are the same as those for £ -sentences
restricted to £, where £ c L£7. For reductio, suppose 4 is an actual but not local consequence of I'. Then
there is a model M= (W, <, @, V) and a € M s.t. M |=T" but M, a |# A. But then the model M’ = (W, < @,
V),where @=a, is s.t. M, @ |=T" and M’ @ |# A4, which contradicts our supposition that 4 is an actual
consequence of I'.
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capturing the non-monotonic character of defeasible warrant within the framework
provided by Kripke semantics for intuitionist logic. (Tomassi 2006, p.37-38)

While I agree that defeasible warrant introduces an element of non-monotonicity, I do
not think it manifests at the level of logical consequence. Defeasible warrant is non-
monotonic over the progression of time relative to some partial ordering on states of
evidence. That is, if a and b are states of evidence such that a < b, where < is some
monotonic ordering of strength of evidence, and A is warranted at a, then A is
warranted at b. What we do not have is that if A is warranted at some time ¢ and ¢ < u
then A is warranted at u. One has to distinguish between the orderings over which
empirical truth is preserved. A statement A is warranted, in our sense, at a particular
time t if and only if all the available evidence at t warrants A; i.e. statements are
warranted relative to bodies of evidence. We should not want statements to be
warranted relative to sets of statements, as they would be if reasoning with a
defeasible warrant operator were non-monotonic. If we know that A, - B but
A, C + B, and both A and C are warranted, then B is not warranted relative to
{A}—it is simply not warranted. Ideally one should distinguish in the model two
separate orderings, one < over evidence and another < over temporal states, and
introduce a future or past temporal operator O into the language governed by <
such that A may hold according to some body of evidence at a moment t even
though o A may not hold according to that same body of evidence and moment
because A fails at the relevant < -successors of t.

4 Validities and Invalidities

The following lists some validities and inferences involving ~ and shows a significant
number of similarities between empirical and classical negation, most notably the
holding by the former of all of the De Morgan equivalences, DNE, LEM and LNC,
rule-form (EFQ), and classical reductio ad absurdum (RAA).

AV ~ 4 ~~A— A
(~4—4)— A -4 —~ A4
~(AANB) < (~AV ~B) ~(AVB)— (~AN~B)
~(4— B) —»~B (A4V ~ B) —~ (4 — B)
-~A4— A4 N(A/\NA)

AN~ A| =B A— B|=~B—~4

The following lists some notable exclusions to the above list, in particular all of the
— -forms of contraposition.

(A B) = (B—d) (A= B)—(~B o)
(AN~ A4) — B ~ (4 — B) — (AN~ B)
—(AN ~ A) ~A— —4

Nearly all of the rule-forms of contraposition fail as well, a feature familiar to
relevant logicians who have observed these sorts of failures for boolean negation in
the setting of classical relevant logic.
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It is worth noting that IPC™ is not closed under substitution of provable
equivalents, though it is obviously closed under uniform substitution. A logic is
closed under substitution of provable equivalents when I"' - 4, B+ Cand C+ B
imply I' - A(B/C), where A(B/C) is the result of replacing some occurrences of B in 4
with occurrences of C. A logic is closed under uniform substitution when I' - 4
implies I' - A(p/q) for p, ¢ atoms. For example pA ~ p - pA—p and pA—p + pA ~ p,
but - (pA—p) — L while - (pA ~ p) — L. This is not a particularly uncommon
phenomenon. For example, compare logics with “actually” operators®', temporal
logics with “now” operators, and paraconsistent logics with non-truth-functional
negations such as those of de Costa 1974, each of which fails to be closed under
substitution of provable equivalents.

More importantly, 4 |= B is weaker than |=4 — B since the latter implies the
former but not conversely—in other words, conditional proof fails. This explains,
e.g., the — -form failure of EFQ; — may take us to states at which both 4 and ~4
hold, and hence states where an arbitrary 4 (e.g. 1) need not (or in the case of the
example, must not) hold. Often it is the implication from | =4 — B to 4 |= B that fails.
For instance, this is the case with Tennant’s relevant logics CR and IR (see (Tennant
1997)). In particular, [=(4 A ~A4)—B holds but 4, —4 |# B which is quite the opposite
from IPC".

It appears the rules for — are no longer in harmony since the usual form of
— -elimination (in sequent form, 4 — B, 4 + B) holds while — - introduction in its
usual form (from ', 4 + B infer T’ - 4 — B) fails.*? But— -introduction is supposed to
be (and is on proposed ways of making rigorous harmony) the unique rule harmoni-
ous with — -elimination. There are two things to say here. First, the elimination rule
for—in the proof system for IPC™ of Section 5 is not the usual — -elimination rule
and, moreover, it is harmonious with the introduction rule given in Section 5 in the
sense of (Read 2008). There may be other worries concerning the proof system—in
particular, whether its use of labels can be justified on inferentialist grounds—that is
independent of issues regarding harmony. I must ignore these issues here. Second, it
is essential to the failure of — -introduction that there be occurrences of ~ which
means that the usual harmonious rules can be given to — for the — -fragment of
IPC™, whatever consolation that may count as. This is not always the case, e.g. with
non-conservative extensions which introduce theorems no longer provable by the
original harmonious rules of the base language.

4.1 Remarks

Given the failure of conditional proof, IPC™ is not an axiomatic extension of any
finite axiomatization of IPC in the sense that the former is obtainable from the latter
by the addition of axioms. For any axiomatic extension of a finitely axiomatized
system satisfying conditional proof, i.e. the deduction theorem in the context of

2! For instance, see [Hodes, 1984] and his notion of "weak" consequence according to which 4 and @4, the
latter read ‘actually A’, are provably equivalent but not intersubstitutable salva veritate.

22 Thanks to a referee for pointing this out. As remarked below, harmonious rules can be given to all
connectives with respect to a labelled proof system, but without unlabelled system for IPC”, it cannot be
said whether the same is true of other styles of proof systems (e.g. unlabelled natural deduction). This is an
interesting open problem.
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axiomatic systems, satisfies conditional proof. However, IPC™ is a conservative
extension of IPC. This is easy to see semantically, a self-evidence not usually exuded
on the proof-theoretic side. For if 4 does not contain ~ then it receives the truth
conditions it has in IPC-models and so if it were IPC™-valid then it would have
already been IPC-valid. As a final remark we note that IPC™ is Tarskian in that it
satisfies the structural rules of Reflexivity, Thinning and Cut.

Digression: It should not be surprising that the disjunction property, if I' -4 v B
then I' + 4 or I' + B, fails for IPC™. This sort of failure is notorious for extensions of
IPC. (So notorious in fact that it was conjectured by Lukasiewicz that IPC is the
strongest intermediate logic to have the disjunction property.”® Kreisel and
Putnam proved this conjecture false by showing that the system obtained by adding
4 —>BvVv(0)—((—4— B)Vv (~4 — C)) to IPC has the disjunction property.)
However, given our intended interpretation of the language it is not hard to justify the
failure of conditional proof and the disjunction property. The justification for the failure
of the latter rests on the assumption that it is decidable whether or not a proposition is
supported by the evidence available at present in which case we expect - 4 v ~A4 for
arbitrary 4 without either of - 4 or - ~4 holding. So we focus our attention on the
failure of conditional proof. End of digression.

There are two things to say about the failure of conditional proof. The first is that if
we are to take seriously Kripke semantics for intuitionistic logic and if adding
empirical negation is semantically acceptable then there is reason to reject conditional
proof. After all, it falls out of an acceptable semantics for the language. Now most
intuitionists do not find Kripke semantics acceptable primarily on the grounds that it
is usually couched within a classical metatheory. But at the propositional level, this
should not matter since IPC and its extension IPC™ to fixed negation are complete
with respect to a recursive set of finitely recursive models (i.e. models with a finite set
of states and a recursive accessibility relation and valuation defined on that set).
Indeed, if T' #pc A4 then, via a filtration technique, one can construct a finite
countermodel from the set of subformulae of I' U {4} (assuming I is finite).
Restricting the class of models so, the metatheory being classical or intuitionistic
then come to the same thing.

While this fact does not generalize to quantificational theories, one may still
furnish such theories with a constructive metatheory employing Kripke models even
though certain results classically provable will not be provable in the constructive
metatheory. This will not be problematic for a constructivist who finds something
appealing with an informal interpretation of Kripke structures for intuitionistic logic
and who wishes to make use of those structures in providing a semantics for her
constructive language while sticking to a constructively acceptable metatheory. I shall
therefore suppose that there are constructively acceptable versions of Kripke seman-
tics for intuitionistic logic.

Despite the failure of conditional proof for —, we may introduce other
implication connectives satisfying conditional proof. One natural way to do this
is to define A as being a consequence from T', where I is finite, just when [=AT’ —

23 Technically, IPC™ is not an intermediate logic since its language is not L but a proper extension of it. It
might be more appropriate to call it a ‘superintuitionistic’ logic though some authors use these terms
synonymously.

@ Springer



Empirical Negation 63

A. (Alternatively we could allow infinite sets of premises and infinitary conjunction,
but this is unnecessary given compactness for IPC™.) Under this definition of
consequence, consequence and implication coincide but the definition looks ad
hoc. Moreover we lose important theorems that were motivated by our original
concerns. For example EFQ for ~ fails (since now L would not be a consequence
of A A ~A) as do a number of other important consequences involving the conditional
that were valid under the original definition. So the revised definition of consequence
does not speak well to the informal interpretation we had originally given to the
language.

A more interesting conditional that satisfies conditional proof exploits the fact that
(the theory of) @ is essentially a classical model with an additional intensional
connective —. Notice that all the classical connectives are definable at @ in a
straightforward way, e.g. 4 > B .= ~4 — ~~ B (or equivalently ~4 v ~~B) says that
at an arbitrary point, either A fails to be @. Then I" - A (under the original definition
of ) iff - A" © A4 for finite I". One with a strong liking for conditional proof might
then think of material implication as the correct notion of implication for empirical
discourse.

5 Tableaux

Several complications present themselves on the side of proof theory. The first, which
we have already encountered, is that conditional proof fails. This means that in the
setting of natural deduction, a — -introduction rule would, in our case, turn out quite
cumbersome. (This of course is not true for any system for which conditional proof
fails.) The second, more troubling, difficulty is that since 4, ~4 |= L which, in a
natural deduction setting, we might call ~ E, and —4 |= ~4, it follows that any of the
usual presentations of natural deduction would generate a consequence relation
satisfying both =4 + ~4 and ~4  —4 (the latter following by ~ £ and —/) which is
clearly bad (in respect of the latter); for~is supposed to be strictly weaker than —.
Exactly the same problem emerges when adding classical negation to intuitionistic
logic in the usual systems of natural deduction.

For this reason we have chosen to give a signed and labelled tableau system for
IPC". The system is standard for IPC for this style of tableau system and adds two
additional rules for sentences of the form S ~4 where S'is a sign in {T, F} representing
the truth or falsity of a sentence at a state (e.g. “TA A B, i’ expresses that 4 A B is true
at state 7). For tableaux there are two types of sentences.

Definition 5.1

* A signed labelled sentence has the form SA4,i for S € {T,F}, 4 an IPC™-sentence
and i € {@} u N = Labels (the set of labels).
* A relational sentence has the form i <j for i, j € Labels.

A tableau for an argument Ay, . . . A, = B, with 4; the premises and B the

conclusion, starts by listing the T4;, @ in their natural order proceeded by FB, @.
More precisely we have the following definition of a tableau.
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Definition 5.2 (Tableaux)

e A tableau T = (X, <) is a partially ordered, finite set of sentences (labelled or
relational) with a minimum (root) such that for each « € 7 the set of predecessors
of & under < forms a linear order. If < is a partial order on a set X then « is a
minimum in X w.r.t. <iff forall fe X, a < 3.

* A branch of a tableau 7 is a maximal chain in 7.

Definition 5.3 (Closure)

* A branch closes iff there is an i € Labels and sentence A such that both T4, i and
FA, i occur on the branch.

* A tableau closes iff each of its branches closes.

* A branch (tree) is open if it is not closed.

A closed tableau for an argument is a proof of that argument. An argument 44, . . .
A,, = B is provable when there exists a closed tableau for it, in which case we write
Ay, ... A, Fpc ~ B, sometimes suppressing the subscript when it is clear.

We have the following rules, a pair for each connective ® indicating how to
decompose sentences preceded by T or by an F whose main connective is ®.

T~A,i F~Ai T-Ai F-A,i TA—B,i FA— B,i
\ | irj | irj |

FA,@ TAQ | irj P irj
(new j7) FB,j

(new j)

TAANB,1 FANANDB,i TAV B, FAV B,i irj SA,i
TA,i FA,i FB,i TA,i TB,i FA,i | i
TB,i FB,1 irk

The parenthetical ‘(new j)’ indicates that the label j must be new to the branch; i.e.
it must not occur as the label of any formula on the branch besides those introduced
by the rule. In the second to last rule of the second row, governing the transitivity of r,
Jjrk does not need to immediately follow i7j on the branch. All that is required is that
each occur on the branch.The same may be said about the conclusions of the other
rules, though it need not be. For definiteness we understand the other rules to be read
in the same light.

6 Completeness
The proof of completeness for the tableau system is given according to the usual

recipe. We confine ourselves to systematic tableaux, which means that the rules are to
be taken as “musts” rather than “cans™: if a rule can be applied, it must be applied. A
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systematic tableau is one in which every branch 3 is downward saturated (defined
below). The goal then is to show that every open branch of a systematic tableau forms
a Hintikka set (defined below), and that every Hintikka set is satisfiable. Complete-
ness then follows almost immediately.

Definition 6.1 A branch [ is downward saturated provided the following hold.

7. If TA A B, i occurs on (3 then TA, i and TB, i occur on 3.
8. If TA v B, i occurs on 3 then either TA, i occurs on 3 or TB, i occurs on [3.
9. If T4, i and irj occurs on 3 then FA, j occurs on /3.
10. IfTA — B, i and irj occurs on [ then either F4, j occurs on 3 or T4, j occurs on [3.
11. If T ~A4, i occurs on [3 then E4, @ occurs on .
12. If EA A B, i occurs on (3 then either F4, i occurs on 3 or FB, i occurs on [3.
13. IfEA v B, i occurs on 3 then both F4, i and FB, i occur on £.
14. If F~4, i occurs on (3 then for some j, irj and TA, j occur on f3.
15. If FA — B, i occurs on (3 then for some j, irj, TA, j and FB, j occur on 3.
16. If F ~4, i occurs on (3 then T4, @ occurs on (.
17. For all i occurring on 3, iri occurs on 3.
18. If irj and jrk occur on (3 then irk occurs on f3.

Definition 6.2 A set H of formulas is a Hintikka set if it satisfies the conditions of
Definition 6.1 by replacing ‘occurs on’ by ‘is a member of” and ‘3* by ‘H’, and the
further condition that for no propositional letter p and i € Labels are both Tp, i and
Fp,iin H.

Lemma 6.3. Every open branch [ forms a Hintikka set. i.e. the set of formulas
consisting of the nodes of (3 is a Hintikka set.

Proof. Immediate by Definitions 5.2 and 6.2.

Lemma 6.4 (Model existence). Every Hintikka set H is satisfiable in an IPC™-model
MY =W, <, @, V) defined as follows. Let label (H) be the set of labels in H, i.e. label
(Hy={i:SA,ie HAS e {T, F}}. Set

W= label(H)

o I<jiffirieH

* @=@

e WVp)=1{ie W:Ip,ie< H}.

Proof We do two things. The first is to verify that M’ is indeed a model. The second
is to show that the Fundamental Lemma 6.5 holds.

We claim that < is a partial order. Clearly for all i € W, i <i by definition and the
fact that for each i € label (H), iri € H by the “reflexivity” rule. Transitivity follows
similarly by the definition of < and the fact that irj, jrk € H only if irk € H by the
“transitivity” rule and downward saturation. Anti-symmetry is vacuously satisfied
since the rules never allow that irj, jri € H for i # .
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To finish verifying that the structure defined above is an IPC™-model we have only
left to show that fornoi € Wand 4 € L™ do we havei € V' (4) andi € V' (A),where X is
the W-complement of X. As the result follows trivially by the definition of V' (as the
reader may wish to verify), our verification that A"’ is a model is concluded.

All that is left is proof of the following “Fundamental Lemma”.

Lemma 6.5 (Fundamental Lemma). If T4, i € H then M" | i | = A, and if FA, i € H
then M , £ A.

Proof We proceed by induction on formula complexity.

Base A4 is an atomic letter p or L. The case for L is trivial, so suppose Tp, i € H. Then i
eV (p),so M, il=p.

Now suppose Fp, i € H. Then i V (p) , so M i |# p.

Now assume the induction hypothesis (IH) holds for all formulas of complexity
less than A’s.

Case 1 AisB A C.Suppose TB A C, i€ H. Then (TB, i), (TC, i) € H,so By IH M i
|= B and M , i |=C. Hence M" , i |=B A C.

Now suppose FB A C, i € H. Then either FB, i € H or FC, i € H. By IH
either M7, i # B or M, i # C whence M | i |£B v C

Case2 AisBV C.Suppose TBV C, i< H. Then either TB,ie Hor TC, i € H. By IH

either M | i |=B or M"" | i |=C, whence M"i=B v C
Now suppose FB v C, i € H. Then both FB, i, C, i € H. By IH M i+B
and M, i # B, whence M, i #B v C

Case 3 A is —B. Suppose T—B, i € H. Then for allj s.t. irj € H and FB, j € H. By IH,
for all j s.t. i <j, M, j |= B. Hence M" i=B.

Now suppose F—B, i € H. Then there is aj s.t. irj € Hand TB, j € H. Then
i <j and by IH M" j |=B. Hence M", i|#B.

Case4 Ais B— C.Suppose TB — C, i€ H. Then for each; s.t. irj € H, either FB, j
€ Hor TC, j € H. By IH either M | j |= B or M j |=C for each j > i. Hence
M",il=B— C.

Now suppose FB — C, i € H. Then there is a js.t.irje H,TB,j e H
and FC,j € H. Thus i <j and by IH M" , j |=B and M", j # C. Hence M" , i #

B— C.
Case5 Ais~B.Suppose T ~B,ic H. Then FB, @ € H, whence by [H MH,@qﬁB, SO
M i |=~B.
Now suppose F ~ B, i € H. Then TB, @ € H, whence by IH M | @ |=B,
so M i £ ~B.

Theorem 6.6 (Completeness). If I' - B then I |=B. (Recall that " |=B means that for
every model M , if M |= T then M |= B.)

Proof Suppose I" + B. Then there is a systematic tableau 7'with open branch  s.t. for
each v e I', Ty, @ occurs on § and FB, @ occurs on (. Let H be the Hintikka set
whose elements are the nodes of 3. Then by the fundamental lemma, there is an
IPC™-model M” s.t. M, @ |=I" and M",@ # B, thus I" # B. Contraposing, if I'|=B
then I'+B.

@ Springer



Empirical Negation 67

7 Final Remarks

We have considered an operation ~ such that the truth of ~4 at an arbitrary point of
evaluation is determined completely by the truth of A at a distinguished point
representing all evidence available at present. When consequence is defined as
preservation of truth in a pointed model, ~ looks nearly classical. Moreover, it seems
plausible that any semantics defined with respect to a class of models which distin-
guishes a point according to which truth in that model amounts to truth at that point,
solicits the characterization of a family of connectives defined in terms of the
distinguished point.

If verificationism is a theory about ordinary discourse, then any intuitively coher-
ent connective used in such discourse ought to admit of a constructively acceptable
semantics where expressive adequacy is a concern. A theory T is expressively
adequate with respect to a connective % picked out by natural language expressions
if there is a connective ® in the language of T'which corresponds, in an intuitive sense
given the 7 -rules governing ®, to %. For instance, IPC is expressively adequate
with respect to conjunction to which A corresponds. IPC is clearly not expressively
adequate with respect to weak and empirical negations, just as certain theories of truth
(of e.g. Kripke) are not expressively adequate with respect to “exclusion negation” (as
opposed to “choice negation”), the operation which takes an intermediate truth value
to truth in a three-valued semantics such as Kleene’s.

This expressive inadequacy sometimes brings with it predictable paradoxes of an
impoverished language as noted e.g. in (Williamson 1994), where Williamson gen-
erates a Fitch-like paradox for an intuitionistic language enriched with an additional
warrant operator K read ‘at some past, present or future time someone possesses a
warrant to assert A’. The argument runs as follows. The claim that A will never be
decided may be formalized as KA A —~K—A. But ~K4 implies —4 (shown below)
which, together with KA A —=K—4, yields the contradiction =4 A —A4. Here is the
argument Williamson gives, a mild variation of Fitch’s original, to show that K4
implies —A4.

AN—KA supposition

K(4 A —KA) 1 BHK interpretation

KANK—KA 2 distribution

KAN—KA 3 axiom T

~(4 A —KA) 1,41

—KA — —4 5 intuitionistic propositional logic

A

If in line (1) we replace — with ~ we can obtain everything up to the penultimate
line (even with intuitionistic negation out front), but we can not obtain the conclusion,
line (6).*

Williamson rejects any solution to this paradox that uses a “non-standard nega-
tion” — on the grounds that (i) it must satisfy —4 — —4, and (ii) K—A4 but not K—4
will have to be treated as sufficient for a negative solution to ‘4 will one day be
decided’. First, his argument for (i) relies on the use of principles that are questionable

24 In fact, the paradox is blocked in a Kripke semantics for IPC with a standard-going S5-like epistemic
operator K since A A KA will then be consistent.
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on the addition of an empirical negation and K to the language. One of these is (4 A —A4)
that he thinks should hold but which does not in IPC". His reason for thinking so is
that “[—A] should at least be inconsistent with 4 (Williamson 1994, 139).

They are inconsistent in IPC™ (when — is ~) but that need not imply the validity of
—(A4 A —A) and when the intended discourse is empirical, I see little reason to think it
should. Another questionable inference is closure under provable implications, in the
form A + B rather than - 4 — B, which he makes liberal use of. But this inference
may not be warranted in logics extending IPC to include K and —. Indeed it is not
warranted in both IPC™ and the logic Williamson himself defines on (Williamson
1994, p. 140), a logic of strong negation with a warrant operator.

Williamson’s justification of (ii) assumes that the only consistent rendering of ‘A
will never be decided’ for the intuitionist is —(KA v K—A) (for non-standard —), a
claim itself established on the assumption of (i), viz. that - =4 — —4 (see (Williamson
1994, p. 139)). But we have already seen why (i) ought to be rejected and hence (ii)
along with it.*®
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