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The ongoing deployment of renewable energy sources (RES) calls for an enhanced integration of RES into energy markets,
accompanied by a new set of regulations. In Germany, for instance, the feed-in tariff legislation for renewables has been successively
replaced by first optional and then obligatory marketing of RES on competitive wholesale markets.This paper introduces an agent-
basedmodel that allows studying the impact of changing energy policy instruments on the economic performance of RES operators
andmarketers.Themodel structure, its components, and linkages are presented in detail; an additional case study demonstrates the
capability of our sociotechnical model.We find that changes in the political framework cannot bemapped directly to RES operators
as behaviour of intermediary market actors has to be considered as well. Characteristics and strategies of intermediaries are thus an
important factor for successful RES marketing and further deployment. It is shown that the model is able to assess the emergence
and stability of market niches.

1. Introduction

Electricity and heat production are the main sources of
worldwide CO2eq emissions and hence one of the main
drivers of anthropogenic climate change [1]. In order to
ensure a successful transition of these sectors to carbon-free
or low-carbon, a further expansion of the usage of renewable
energy sources (RES) is needed [2]. To initiate the neces-
sary investments and changes in technical, organizational,
and financial regimes, various policy approaches are being
discussed and implemented. In 2016, most countries in the
world had RES targets or support policies in place [3].

As one of the earliest examples, the German government
has adopted targets for the installation of renewables: by
2025, the share of renewable energy in the electricity sector
shall be expanded to 40–45% and to 55–60% by the year
2035 [4]. The most important policy instrument to achieve
these targets is the Renewable Energy Sources Act (German:
“Erneuerbare Energien Gesetz”) (EEG), which was enacted
in 2000 [5]. Its longevity and structural stability make it
a fruitful case study to investigate energy policy in the

field. In its original state, it mainly operated as a feed-in
tariff (FiT) law which guaranteed a fixed remuneration for
renewable energy sources for electricity (RES-E). It has been
effective in fostering the deployment of RES-E [6]. Several
amendments and revisions have been undertaken, such as, in
2012, when theGerman government introduced, for example,
amonthly adjustment of feed-in tariffs for solar panels and an
optional variable market premium to support the marketing
from RES-E at the power exchange [7, 8] (see “The Market
Premium” in the appendix).

The main intention of the EEG is to have a regulatory
impact on the market conditions and the technoeconomic
regime, as well as on the involved market actors who play
a key role in the energy system’s transition, as they provide
the necessary investments in RES-E technologies. However,
the invoked investment dynamics were not stable under
all circumstances. With the fall of system prices and the
accompanying relative sluggish adjustments of incentives, the
deployment of solar plants in Germanywent up from roughly
2.0GW in 2008 to 7.5 GW/a in the years 2010–2012. The
deployment went back to 1.9 GW in 2014 [9], which created
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considerable market distortions and unstable investment
behaviour.

The deployment and integration of RES can only be
reliably regulated, as long as policy instruments do consider
the interdependencies and interactions with and of the
involved actors aswell as the resultingmarket interplay on the
investment dynamics. The motivation for the development
of the agent-based model AMIRIS is therefore to study
the adequacy of policy measures which affect the entities
that comprise the electricity system; the aim is to examine
the impact of policy on the involved market actors on the
microlevel (e.g., income situation of renewable power plant
operators) as well as their effects on the macrolevel (e.g.,
power exchange prices and market structure) [10].

The remainder of the paper is structured as follows.
In Section 2, we will elaborate on the complexity of the
energy system transition, and our motivation to choose an
agent-based model (ABM) approach to address our research
questions. Section 3 will give a brief overview of the AMIRIS
model. For further detail, the technically interested reader
can refer to Section 4, which describes the agents and their
behaviours in detail. To exemplify themodel’s capabilities and
questions to be addressed, Section 5 presents a case study
on the marketing of RES-E at the power exchange and how
an amendment of the policy regime affects market actors in
different ways. Here we will show how the heterogeneity of
agents, for example, different portfolios, affects the income
and behaviour of the represented renewable electricity mar-
keters and power plant operators. Section 6 discusses the case
study and gives an overview of the lessons learned from the
use of the ABM approach. Section 7 concludes with lessons
learned from both the case study and themodelling approach
in general.

2. Modelling the Complexity of
Energy Transitions

2.1. Challenges of Modelling the Impact of Energy Policy
Measures on the Behaviour of Actors. The pathway of the
development of the global energy system, namely, the antic-
ipated shift of supply from centralized fossil-fuelled power
plants towards a decarbonised and RES dominated regime,
is uncertain; many possible energy futures are conceivable
[12]. Part of the uncertainty of which energy future will
materialize results from the unexplored behaviour of the
market actors who implement new technologies, as their
relationships and intentions remain understudied. Bale et
al. [13] state that “Energy systems can be understood as
complex adaptive systems in that they have interrelated,
heterogeneous elements (agents and objects). In addition,
there is no autonomous control over the whole system, and,
in that sense, self-organized emergent behaviour arises that
cannot be predicted by understanding each of the component
elements separately.” As such, the result of markets at the
macrolevel of the system is based on a variety of individual
actions on the microlevel [14].

In Germany, individual options of choices and the num-
ber of actors in the system have increased substantially since
the liberalization of electricity markets and the introduction

of the EEG and its several amendments [17]. They decide
under the influence of cognitive biases [18, 19] and inherent
uncertainty and are therefore only bounded rational [20].
Policies are directed towards those actors to induce a desired
collective behaviour and are uncertain in their effect as well.

Electricity is different to most other commodities, for
at least two reasons: it is not storable at low costs, and the
demand side is only marginally elastic. Hence, it is necessary
to balance supply and demand on short notice at all times
in order to ensure system stability. This situation got more
challenging with the large-scale integration of RES-E into
the system. Due to inherent output forecast limitations and
their nondispatchability, RES-E can always be subjected to
high balance energy cost due to day-ahead forecast errors
and cannot hedge risks on future markets [21–24]. As such,
additional intermediary market actors which specialize in
forecasting and dispatching variable renewable energy (VRE)
emerged. These intermediary market actors increased the
order of complexity in the market.

Additionally complicating is the fact that diverse elec-
tricity markets, like spot and futures, control energy as well
as CO2 certificates markets interacting with and influencing
each other [25]. As a result, the heterogeneous power plant
and marketing actors can react very differently to energy
policy adjustments and the development of the electricity
system as a whole can follow diverse pathways [26]. This is
a tremendous challenge from a modelling perspective.

2.2. Overview of Agent-Based Models in Energy System
Modelling. Given the challenges mentioned above, we have
chosen an agent-based modelling (ABM) approach, which
addresses these questions by placing the actors, their interre-
lationships, and their influencing environment in the centre
of the modelling exercise [14]. The origin of the ABM
approach is found in the field of artificial intelligence and
cellular automata research and has been used for analysing
complex and interrelated systems in such various research
domains as ecology, social sciences, and software engineering
[27].TheABM approach enables themodeller to describe the
complex relationships of the systems entities by identifying
a set of attributes, behavioural rules, adaptations of those
behavioural rules in response to the behaviour of others and
the environment, and an environment itself [28].The analysis
is executed step by step and allows for developing these rela-
tionships on an evolutionary path in an artificial laboratory-
like environment [29, 30]. Agent-based models are therefore
particularly suitable for the simulation of multiply linked
and complex systems with autonomous actors. The system’s
behaviour is not centrally determined but evolves bottom-up
from the actions taken by the individual agents to a complex
system with emergent structures.

The ABM approach has been successfully applied in the
energy sciences. Recent publications have investigated the
role of certain technologies, like the market diffusion of PV
[31, 32] and biomass power plants [33], or the value of storage
technologies [34]. Others have put their focus on certain
aspects of the demand side of the energy system, as this aspect
is associated with a need for a more “human” modelling and
preference depiction: their works focus on demand response
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Technoeconomic regime:
Technology and cost environment, 
which determines the material 
scope of decision-making of actors

Coordination mechanisms: 
coordinate the decisions of actors via, for 
example, market or bureaucratic
structures

Regulatory framework: regulates coordination and constrains
or expands the scope of decision-making of actors or
influences the technoeconomic regime via policy instruments

Actors: adapt to
environment and
coordinate , for 
example, via markets

Figure 1: A sketch of the system that is represented by the AMIRIS model.

[35–37], adoption of dynamic tariffs [38], price elasticities
[39], and smart meter diffusion [40], among others. Another
branch focuses on energy trading on the balancing mar-
ket [41], the merit order effect [42], emission trading and
investment decisions [43], and forecasting [44, 45]. For a
comprehensive review of energy market applications, the
reader might want to refer to [25, 46] and to [47] for a special
focus on newly emerging market structures.

2.3. Conceptual Approach of the AMIRIS Model. Figure 1
depicts the model’s scope of analysis; it shows components
and interrelations between actors, regulatory frameworks,
technologies, and markets which are addressed by the sim-
ulation. The technoeconomic layer represents technologies
and corresponding costs that are available to the actors of
the energy system. It is characterized by technical parameters
like efficiencies and durability values and cost parameters.
In this sense, the technoeconomic layer determines what is
technically feasible. Actors sketched as dots in the technoeco-
nomic layer coordinate themselves, for example, via markets,
like the spot market and balancing energymarkets.Theymay
set up contracts to invest in technologies and sell or buy
energy.

The technoeconomic layer is influenced in several ways by
the overlying regulatory framework layer, which may change
the apparent costs of technologies by, for example, increase
of research and development in certain technologies, deploy-
ment incentives like feed-in tariffs, or the financial promotion
of RES-E direct marketing. The term direct marketing here
refers to selling RES-E at market places for electricity via the
market premium model under the EEG (see “The Market
Premium” in the appendix). Furthermore, this layer may as
well enhance or reduce actors action space by regulating
markets or by setting up rules that prohibit certain decisions
and behaviours of actors.

Solid arrows represent possible vectors of analysis,
while dashed arrows are not explicitly incorporated in
the model. More influences may appear in such a system
that are not subject to the actual implementation, like,

for example, feedback from actors to the regulatory level
or impacts from actors onto the technoeconomic layer
itself.

With the ambition to model the agents and the impact
of policy framework adoptions in the process of market inte-
gration of RES-E, knowledge about the relevant actors and
their expectations, motivations, and strategies is required.
To depict the qualitative differences among market actors,
systematic actors analysis has been carried out. The actors
characteristics of RES-E power plant operators and direct
marketers have been developed on the basis of document
analysis and expert interviews [10, 48]. These two agents
types are modelled in detail compared to other (system)
relevant actors of the power system (see Sections 3 and
4). The assumptions were then tested and reassessed in
semistructured expert interviews with representatives from
the most important actor groups, as well as in the context of
an actor workshop. An exemplified version of the typecast of
actors into agents is given in the case study in Section 5. The
current state of the model will be presented in the following
two sections.

3. AMIRIS Model Overview

3.1. Agent Topology. Themodel comprises two different types
of agents: (a) agents with scope of decision-making and (b)
agents without scope of decision-making. Type (a) agents
are able to adapt to changed circumstances and may decide
which action to perform. Contrary to this, type (b) agents
have strictly defined tasks to perform during simulation from
which they cannot deviate. The model covers the following
type (a) and type (b) agents:

(i) Wind, solar, and biomass power plant operator agents
as well as the thermal power plant operators generate
electricity with their plants (type (a)).

(ii) Direct marketer agents trade electricity from RES on
the power exchangemarket and control powermarket
(type (a)).
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Figure 2: The AMIRIS model.

(iii) Optionally, a storage operator agent can be associated
with a direct marketer that in turn can improve the
operation and coordination of plants in her portfolio
(type (a)).

(iv) The day-ahead power exchange market agent deter-
mines the wholesale power market price via a merit
order model (its implementation is discussed in
Section 4.3.2) (type (b)).

(v) The negative minute reserve market allows offering
control power provision (type (b)).

(vi) The grid operator agent manages the generated elec-
tricity from wind, solar, and biomass which is not
traded by direct marketers. It is sold mandatorily on
the day-ahead power exchange market (type (b)).

(vii) The total load of the German power system serves as
a static demand sink (type (b)).

(viii) The regulatory framework agent holds information
about the total installed power in the system, the
remuneration schemes, and undertakes calculations
according to the EEG (type (b)).

The agents interact in a changing environment influenced
by the energy policy framework of the Renewable Energy
Sources Act (EEG) and its corresponding RES-E support
scheme as well as the Energy Industry Act [49] and grid
regulations. Figure 2 gives a schematic overview of the
model interconnections. Boxes represent agents in themodel;

multilayered boxes indicate that these agent types have
multiple instances during the course of simulation. Solid lines
represent money and power flows, which are differentiated
by open and closed arrows, respectively. Regulatory influence
is depicted with dashed lines. Wind, PV, and biomass power
plant operators (PPOs) can sell electricity either to the direct
marketer or to the grid operator.

As the focus of the AMIRIS model is to investigate the
effects of the market integration process of renewable energy
sources on the involved actors, the cost and revenue structure
of marketers that trade electricity from RES-E PPOs are
implemented in detail and will be discussed in Section 4.2.1.
PPOs can sign contract with direct marketers and switch
contracts at the beginning of each year if a better offer is
received (see also Section 4.2.2).

3.2. Process Overview and Scheduling. The model has a one-
hour time resolution and is usually run over the course of
8–20 calculative years. Computation time on a conventional
desktop computer is in the order of minutes. Internal time
is set by the regulatory framework class. The following steps
are calculated each time frame, which equals one calculative
hour:

(i) Generated electricity and its virtual distribution to
direct marketers or to grid operator are determined.

(ii) The residual load, the merit order, and corresponding
wholesale power market price are calculated.
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Table 1: External input parameters for the AMIRISmodel. 𝑙 indicates the type of the primary product as follows: 𝑙 = 1: uranium, 𝑙 = 2: lignite,𝑙 = 3: coal, and 𝑙 = 4: gas. Index 𝑖 defines the power plant type with 𝑖 = 1: nuclear, 𝑖 = 2: lignite, 𝑖 = 3: coal, 𝑖 = 4: combined cycle gas turbine
(CCGT), 𝑖 = 5: open cycle gas turbine (OCGT), 𝑖 = 6: offshore wind, 𝑖 = 7: onshore wind, 𝑖 = 8: photovoltaics, and 𝑖 = 9: biomass.

Parameter Description Unit
𝐶𝑙prim(𝑡) Time series of costs of the primary products used for the calculation of the stock market prices [€/MWh]
𝐶carb(𝑡) Time series of cost for carbon dioxide emission certificates [€/𝑡CO2]𝐶𝑖var(𝑡) Time series of variable costs of conventional power plant of type 𝑖 = 1–5 [€/MWh]𝜂𝑖min(𝑡) Time series of minimal efficiency of conventional power plant of type 𝑖 = 1–5 [%]𝜂𝑖max(𝑡) Time series of maximal efficiency of conventional power plant of type 𝑖 = 1–5 [%]
𝑤𝑖(𝑡) Normalized generation potential time series for 𝑖 = 6, 7, 8 [%]𝛼𝑖 Availability factor to regard shut-down periods (𝛼1 = 0.8, 𝛼2 = 0.8, 𝛼3 = 0.7, 𝛼4 = 0.7, and 𝛼5 = 1.0) -
PRbal(𝑉) Histogram of 2011 prices for balancing energy [€/MWh]𝑐mark Costs for marketing [€]𝑐IT Costs for IT [€/a]𝑐trade,var Costs of charges for trading at the exchange market [€/MWh]𝑐trade,fix Costs for permission of trading at the exchange market [€/a]𝑐liab Costs for the liability of equity to be able to trade at the exchange market, payed once [€]𝑐pers,spec(𝑉) Specific costs for personnel depending on traded volume [€/MWh]
𝑐fcst(P) Costs for forecast of electricity generation volume dependent on installed capacity [€/MW]
𝑀(𝑡) Time series of management premium according to the EEG [€/MWh]𝑅(𝑡) Time series of remuneration for renewable energy power plants according to the German Renewable Energy Act [€/MWh]𝑃𝑖inst(𝑡) Time series of installed power of corresponding technology 𝑖 [MW]𝐷(𝑡) Time series of demand for Germany [MW/h]𝐺𝑖(𝑡) Power generation in 𝑡 from technology 𝑖 [MWh]

(iii) The grid operator calculates the marginal capacity
price for the control power provision of the negative
minute reserve market by a regression model.

(iv) With an appropriate portfolio, marketers can offer
firm capacity at the control power market.

(v) Revenues and costs are assigned to the marketers and
the power plant operators.

(vi) Marketers forecast the electricity production of their
portfolio and estimate the market price at 𝑡 + 24 h
and decide on curtailment of contractedRES-E power
plants.

3.3. Modelling Framework. AMIRIS uses the free and open
source agent-based modelling and simulation development
framework Repast Simphony, which facilitates model design,
execution, and data export and serves as an initial context
builder for our model. Repast Simphony has been con-
jointly developed by the University of Chicago and Argonne
National Laboratory [50]. It is available directly from the web
(http://repast.sourceforge.net/ (last accessed: 23.09.2015))
and licensed under “newBSD” (“NewBSD” is a BSD 3-Clause
License; see https://opensource.org/licenses/BSD-3-Clause
(last accessed: 23.09.2015)). The model is implemented in
the Java programming language (http://www.oracle.com/
technetwork/java/index.html (last accessed: 23.09.2015)).

4. Agents and Input Data

4.1. Input Data. At initialization of the program several data
files are read according to the scenario under investigation.

The files contain time series and lists as shown in Table 1 that
can be categorized as input for (a) the electricity generation
from renewable and conventional power plants, (b) the calcu-
lation of marginal costs of conventional power plants, (c) the
direct marketers’ typecast, and (d) the regulatory framework.
The total installed power in the system 𝑃inst(𝑡) for all types
of technologies is based on a study for the Federal Ministry
of Environment, Nature Conservation, Building and Nuclear
Safety covering long term scenarios of renewable energy
plant deployments in Germany [51]. For conventional power
plants, the installed power is multiplied by an availability
factor to take shut-down periods into account. In order to
represent the electricity generation of fluctuating renewable
power plants, normalized generation potential time series𝑤(𝑡) for wind and solar are used. These generation time
series are derived by the EnDat module of the energy system
model REMix [52, 53]. EnDat uses a historic weather time
series containing wind speeds and solar radiation of the year
2006 that is processed with characteristic system curves for
wind and photovoltaic power plants in Germany [52]. In the
model, the shape of the demand curve 𝐷(𝑡) is represented
by the total German electricity demand of 2011 [16]. The
scale can be varied according to the underlying scenario
study. Marginal costs are determined regarding fuel specific
costs and additional variable costs as well as costs for carbon
dioxide emission certificates. Fuel specific costs are calculated
by primary product costs and efficiencies for correspon-
dent technologies. The calculations’ underlying scenarios are
found in [51], and details on the applied values are given in
[10].

http://repast.sourceforge.net/
https://opensource.org/licenses/BSD-3-Clause
http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index.html
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Costs 𝑐 for various marketing services for compensations
are represented in Table 1 and used for a typecast of the cost
structure of actors. The use of the various cost parameters is
described further in Section 4.2.1.

The input for the regulatory framework is given by
a time series 𝑀(𝑡) containing the management premium
and its decrease over time [54] (compare also “Revenue”
in Section 4.2.1). The Renewable Energy Sources Act [4]
and its remuneration schemes for different technologies are
represented by time series 𝑅(𝑡).
4.2. Agents with Scope of Decision-Making

4.2.1. The Direct Marketing Agents. In the process of sim-
ulation, the direct marketer agents have the possibility of
basing their decisions on the current market conditions. The
marketer’s business is to profitably sell renewable electricity
at the power exchange market. Success or failure of their
businesses is evaluated by the profits 𝑝(𝑡), which is the
difference between revenues 𝑖(𝑡) and costs 𝑐(𝑡):

𝑝 (𝑡) = 𝑖 (𝑡) − 𝑐 (𝑡) . (1)

The typecast parameters shown in Table 2 allow a repre-
sentation of the real market actors heterogeneity. Different
types of marketers with diverse revenue and cost structures
(compare Section 5) are implemented in the model. The
forecast quality of a marketer, described by 𝜎 and 𝜇, is
crucial for a successful business. By reducing forecast errors,
balancing energy procurement costs can be minimised.

Revenue. Revenues can be generated by the support scheme
as well as on two markets: the power exchange market
and the control energy market, with revenues 𝑖XM and 𝑖CE,
respectively. In reality the control energy market consists
of the primary, secondary, and minute reserve markets.
On these pay-as-bid markets, participants can offer control
power to the system operator for grid stability require-
ments. The balancing energy market determines the cost (or
incomes) for a trader or supplier that deviates from their day-
ahead schedule within its corresponding balancing region.
Balancing market prices are determined by control energy
demand requirements of the system operator. Hence, it is
rather an accounting system than a market.

Additional regulated revenues are derived from payouts
of the management premium 𝑀(𝑡) for direct marketing.
Within the implementation of the market premium scheme
in the year 2012, the management premium has been intro-
duced as additional entity for compensating for the costs
associated with direct marketing duties compared to the
FiT scheme (see “The Market Premium” in the appendix).
The more efficiently direct marketers fulfill their marketing
services for RES-E power plant operators (PPO), the higher
the decision scope for either increasing their own profits or
the bonus payments to their associated PPOs (see also “Bonus
Payments” below).

Whereas the power exchange market represents the
marketer’s primary source of revenue, participation in the
control energy market is optional. The model allows for
the participation in the negative minute reserve market

Table 2: Variables describing properties of direct marketers. Varia-
tions of variable values are used to define the type of marketer and
to reflect heterogeneity of actors.

Variable Unit Description

𝜎price

Uncertainty of price
forecast of direct marketer,
depending on the traded
volume 𝑉 with values 0.15,0.2, or 0.25

𝜎power

Uncertainty of power
forecast of direct marketer
with values 0.15, 0.2, or 0.25

𝜇power

Estimated value of power
forecast of direct marketer
with values 0.05, 0.1, or 0.15

P [MW]

Power generation portfolio
of marketer, that is,
P = ∑𝜏,rc P𝜏,rc of
technologies 𝜏 in

remuneration classes rc
C [€] Initial capital of marketer

(due to opportunity costs with the day-ahead spot market
biddings and the required curtailed operation mode, positive
reserve provision is financially not attractive for RES-E plant
operators and is therefore not modelled). The marginal
capacity price at which bids of the direct marketing agents
are accepted is determined by the grid operator agent every
fourth simulated time step by a multiple linear regression
model (compare Section 4.3.1).

The direct marketing agents can follow two bidding
strategies to maximize profits:

(i) “Low-Risk-Strategy”: with this strategy marketers
offer a capacity price on the pay-as-bid market corre-
sponding to the median of the preceding month’s 180
4 h-price-blocks. This way acceptance of a bid is very
likely but only at a relative low capacity price ΠCE.

(ii) “High-Risk-Strategy”: with this strategy marketers
offer a capacity price on the pay-as-bid market corre-
sponding to the median of the preceding month’s 180
4 h-price-blocks plus the standard deviation of these
prices.This way acceptance of a bid is less likely but in
case of acceptance a relatively high capacity priceΠCE
is ensured.

Further revenue 𝑖bal(𝑡) can originate in case the own local
imbalance can reduce the imbalances of the corresponding
balancing grid region.

Costs. Both fixed and variable costs are considered in the
total cost determination. For yearly fixed costs 𝑐fix, IT and
trading permission are regarded. Further, upon starting the
direct marketing business, the marketer has to provide a
liable equity. The different positions of variable costs depend
primarily on the amount of electricity traded by the direct
marketer. Trading fees are to be paid for each traded MWh,
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Figure 3: Specific personnel costs 𝑐pers,var per installed capacity of the marketers in the model. Data from [11].

whereas costs for balancing energy depend on the deviation
between the forecast and actual VRE generation.

The balancing energy price is determined at each time
step by the grid operator by uniform random selection out
of a price histogram based on balancing energy prices of
the year 2011 in Germany. The balancing price as well as
the balancing volume may take negative and positive values;
thus balancing costs can contribute to the marketers’ revenue
for 𝑐bal(𝑡) < 0 and 𝑖bal(𝑡) = −𝑐bal(𝑡) (see also (A.1) in the
appendix).

Payments for balancing energy and expenses for the staff
and IT are the largest cost positions for direct marketers
[11].The specific personnel costs reveal substantial economies
of scale and range from several €/MWh for portfolios
smaller than 50MW to only €cents/MWh for +500MW
of contracted VRE capacities (compare Figure 3). Addi-
tionally, expenses for the power output forecast 𝑐fcst affect
the profit calculation. As direct marketers mainly manage
a generation portfolio and do not own the corresponding
plants, a competition for acquisition of generation plants
follows. To bind customers and to be financially attractive to
potential new customers, marketers make bonus payments
for the contracted power plant operators, another cost factor
described in the following section.

Bonus Payments. At the start of the simulation, the bonus
is defined to be half of the management premium of the
corresponding year; that is, 𝑐bonus(𝑡 = 0) = (1/2)𝑀(𝑡 = 0). In
order to guarantee the direct marketer flexibility and control
over costs, bonus payments can be adopted at the end of each
simulated year. Within each adoption process the specific
operating results𝛽(ORspec) are evaluated. Further, the ratio of
capital to operating results may additionally adjust the bonus
payouts by 𝛽󸀠(ORcapital) in case of negative operating results.

Table 3: Definition of bonus parameters 𝛽 and 𝛽󸀠 depending on
operating results (OR); that is, ORcapital = C/OR.
ORspec [€/MWh] 𝛽 ORcapital 𝛽󸀠
≥1.0 1.1 0 0.0[0.6, 1.0[ 1.05 ]0-1] 0.5[0.4, 0.6[ 1.00 ]1-2] 0.7[0.2, 0.4[ 0.95 ]2-3] 0.8<0.2 0.90 ]3-4] 0.875

]4-5] 0.95

The values for the bonus adjustments are given in Table 3.
The bonus does not merely increase the profit margins of the
marketers; instead, they will invest their surpluses to increase
the bonus payouts for the PPOs if the specific operational
results are larger than 0.5 euro/MWh.This definition ensures
a competition between the marketers seeking to attract new
PPOs. In the model, bonus costs are thus calculated by

𝑐bonus (𝑡)
= {{{

𝑐bonus (𝑡 − 1) ⋅ 𝛽 (ORspec) ⋅ 𝛽󸀠 (ORcapital) for OR < 0,
𝑐bonus (𝑡 − 1) ⋅ 𝛽 (ORspec) for OR ≥ 0.

(2)

Curtailment. The AMIRIS model allows for a market-driven
curtailment of RES-E according to the incentives of the
implemented policy instrument. In case of potentially high
renewable electricity generation and low demand, the mar-
keter may decide to switch off plants of her portfolio to
avoid payments due to negative wholesale electricity prices
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(compare Section 4.3.2). The marketer’s decision is based on
a price forecast, given by

Πfcst (𝑡) = Πperf (𝑡 + 24) ⋅ (1 + 𝜎price ⋅ 𝑔) , (3)

with the random error variable 𝑔 drawn from a normal
distribution times the perfect foresight price Πperf (𝑡 + 24).
Plant specific opportunity costs for curtailment determine
whether RES-E generation is being curtailed. The estimation
of these costs depends on the variable market premium 𝐹(𝑡)
and the management premium 𝑀(𝑡) according to

󵄨󵄨󵄨󵄨Πfcst (𝑡)󵄨󵄨󵄨󵄨 ≥ 𝐹 (𝑡) + 𝑀 (𝑡) for Πfcst (𝑡) < 0. (4)

In case the sumof both premiums is lower than or equal to the
absolute value of the forecast wholesale power market priceΠfcst(𝑡), the direct marketer will advise the corresponding
PPOs to shut-down generation.

4.2.2. The RES-E Power Plant Operator Agents. The potential
generation of electricity from renewables is given by the plant
operator’s installed capacityPrc,𝜏 multiplied by a normalized
weather time series 𝑤𝑖(𝑡):

𝐺rc,𝜏 (𝑡) = P𝜏,rc (𝑡) ⋅ 𝑤𝑖 (𝑡) , (5)

with 𝑖 = 𝜏 in this case.
Plant operator agents are distinguished primarily by the

generation technology 𝜏 in operation, that is, plants using
wind, solar radiation, or biomass, as well as by the corre-
sponding remuneration class rc the technology is assigned
to (see also Section 4.3.4). The height of the remuneration
class rc is calculated from empirical data about historical
developments of FiTs and so-called “values to be applied”
(replacing the FiT in the direct marketing regime) [55].
Each RES-E technology is subdivided in four representative
remuneration classes, since the remuneration for a specific
plant depends on the year of installation, the resource site,
the type and size of the technology, and the energy carrier
in use (the resource site is taken into account for wind
power plants; the type and size of technology is relevant
for PV and biomass plants and the energy carrier in use
for biomass plants only). Table 4 lists all characterizing
parameters for the renewable power plant agents. Their
revenue is based on the remuneration of the fed-in electricity
as well as on the bonus payments 𝑖bonus they receive from
the direct marketers. The value of 𝑖bonus corresponds to the
costs of the marketer 𝑐bonus. PPOs opting for direct marketing
receive new bonus offers at the beginning of each year from
different direct marketing agents (see also “Bonus Payments”
in Section 4.2.1). To capture transaction costs when switching
the partnering agent, the difference between the old and new
bonus offer must at least exceed a certain threshold 𝑥min.This
threshold increases with the height of the remuneration class
rc, as the relative attractiveness of additional bonus payments
correlates directly with the height of remuneration an agent
is already receiving (see also Section 5).

4.3. Agents without Scope of Decision-Making. Figure 2 shows
all agents in the AMIRIS model. Direct marketers and power

Table 4: Variables that characterize the type of renewable power
plant agents.

Variable Unit Description

𝜏 - RES-E technology of the
power plant operator

rc - Remuneration class this
agent is assigned to

P𝜏,rc(𝑡) [MW]
Installed capacity of this

technology in the
corresponding

remuneration class

𝑥min [€/MWh]

Threshold which needs to
be exceeded by a new
bonus offer in order to

switch contracts with direct
marketers

plant operators are implemented with heterogeneous charac-
teristics.They have several options for decision-making. Nev-
ertheless, other agents without scope of decision-making are
inevitable to complete the electricity systems representation.
Hence, they hold important information for the hole systems
functionality. They perform model endogenous calculations
that are not subject to their own pursuit of strategic goals like
revenue maximization.

4.3.1. Grid Operator Agent. According to the Ordinance on
a Nationwide Equalisation Scheme (German: “Ausgleich-
smechanismusverordnung”) [56], the grid operator is re-
sponsible for the settlement of the support schemes in place
and the payouts of FiTs andmarket premiums to the PPOs or
directmarketers, respectively. He calculates ex post the height
of the market premium for each remuneration class rc. For
this, he receives the past months market values MV𝜏 of the
VREs from the wholesale power market agent.

The agent also determines the balance energy price by
uniform random selection of PRbal. Additionally, the grid
operator conducts the auctions for the negative minute
reserve market. The marginal capacity price MCPCE is
determined by a multiple linear regression model with the
independent variables of the wholesale power market price𝑥1, the load 𝑥2, and the onshore wind feed-in 𝑥3:

MCPCE (𝑡) = −𝛼1 ⋅ ∑𝑡+4𝑡=ℎ 𝑥1,ℎ4 − 𝛼2 ⋅ ∑𝑡+4𝑡=ℎ 𝑥2,ℎ4 + 𝛼3
⋅ ∑𝑡+4𝑡=ℎ 𝑥3,ℎ4 + 𝛽

(6)

with 𝛼1 = 0.5304, 𝛼2 = 0.0029, 𝛼3 = 0.0005, and 𝛽 = 154.1.
The estimation of the regression parameters 𝛼 has been

derived from the negative minute reserve prices of the year
2011 [10].

4.3.2.Wholesale PowerMarket Agent. The agent representing
the power exchangemarket defines thewholesale power price
every time step and disburses the market revenue to the cor-
responding agents according to the uniform market clearing
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Table 5: Associated residual loads, RL, and wholesale power prices according to analysis of market situations with low (0–20 €/MWh) and
negative (<0 €/MWh) prices in Germany 2011 [15, 16].

Power price [€/MWh] 20 10 5 0 −5 −10 −30 −50 −75 −100
RL intervals [GW] 29.6 27.1 26.6 26.1 25.7 20.7 15.7 11.7 8.7 6.7
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Figure 4: Average monthly wholesale power market prices gener-
ated by the model (the underlying data input is given in the case
study Section 5). The line represents a linear fit to the data.

price MCPXM. For the calculation of the MCPXM a merit
order model is implemented. The merit order calculation is
based on the residual load and the marginal costs of the
conventional power plants MCPPconv. Marginal costs of each
power block 𝑞 of 200MW are set by (see also Table 1)

(i) fixed and variable costs of primary products 𝐶prim(𝑡)
(including fuel transportation or shipping);

(ii) certificate costs of carbon dioxide emissions 𝐶carb(𝑡);
(iii) efficiencies 𝜂(𝑡) of the power plants;
(iv) other variable costs 𝐶var(𝑡) (i.e., for insurance, etc.).

Once these costs are determined, they are ordered from the
lowest to the highest value. The MCPXM is set by the last
200MW power bloc 𝑞 needed to satisfy the residual load:

MCPXM (𝑡) = min(MCPPconv | 𝑛∑
𝑖=1

𝑞𝑖 ≤ RL) . (7)

Simulated average monthly clearing prices are shown in
Figure 4 for the years 2014 to 2019. Over the course of the
simulation the price-spread increases due to rising CO2-
certificate and fossil fuel prices but the average price decreases
due to the increased VRE feed-in with marginal costs of
approximately 0 €/MWh. The general structure of the price
curve reoccurs annually because only one representative
weather year and load profile are used.

Conventional must-run (must-run capacities are due
to power plants that offer complementary goods on other
markets (like ancillary services or heat) and therefore need to
be present in the wholesale market at all times, irrespective
of very low or negative wholesale market prices) capacity

is included via the definition of so-called “residual load
intervals.” The residual load intervals have been derived
from the analysis of market conditions in which wholesale
market prices have dropped below 20 €/MWh (reference year
2011, [10]). If the lower-bound of an interval boundary is
exceeded in a specific hour, the regular MCPXM calculation
mechanism described above is replaced by the associated
price of the corresponding residual load interval. Table 5 gives
the residual load reference values and its associated wholesale
power prices of the year 2011 in Germany. Over the course
of the simulation, the interval boundaries decrease from year
to year according to the development of the retirement of
conventional base-load capacities in [51].

The calibration of the power exchange model is con-
ducted by markups and markdowns of the conventional
power plant agents, which are added to or subtracted from
the MCPPconv values. The validation of the merit order model
can be found in [10].

4.3.3. Demand Side Agent. The model’s demand side is
represented by a time series comprising total load values for
each simulation step.The annual total energy consumption is
scaled according to scenario A values from [51].

4.3.4. Regulatory Framework Agent. The regulatory frame-
work agent holds all the energy policy information necessary
for simulating the market integration process of RES-E.
The law differentiates the remuneration for PPOs dependent
on the general type of the RES-E technology installed, the
potential full-load-hours at the installation site for wind
onshore plants, the size of the plant for PV plants, and
the chosen technology of biomass plants as well as on the
corresponding biomass substrate in use [4]. In addition,
as remunerations decrease over the years (since 2012 the
decrease of remunerations for wind onshore and PV plants
is carried out on a quarterly or even monthly basis) a
complicated payout structure has evolved in reality since
2000. As a consequence, by the year 2017, there are over 5.000
different remuneration categories within the EEG support
scheme and about 1.5 Mio. RES-E power plants in place [55].

A mapping of plants to actors in every detail would
require knowledge about each owner, plant type, and remu-
neration for each plant. Besides the fact that such information
is, if at all, not easy to access,mapping of all PPOs individually
would lead to a multiagent system (MAS) with over a million
agents to be parametrized.

Therefore, four different remuneration classes are defined
for each year and each renewable technology type 𝜏. This
more homogeneous assignment allows for a transparent
handling of the remuneration schemes in the model. Each
class contains information about the remuneration, the tech-
nology, and the corresponding installed power.
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Table 6: Table representing the direct marketers’ initial portfolios.

Direct marketer BM [MW] PV [MW] Wind [MW]
Big utility 522 1697 14145
Municipal utility 904 3394 8492
Small municipal utility 395 3394 1619
Green electricity provider 930 1697 3237
Startup 2602 23759 6873

The regulatory framework agent saves and updates this
information at the beginning of each year and remits the
relevant data to the grid operator agent, who is in charge
for the payouts of the support instrument in place (see also
Section 4.3.1). Further, the agent calculates the reference
market values MV𝜏,ref on a monthly basis and governs the
height of the management premium (compare “The Market
Premium” in the appendix).

5. Case Study

5.1. Model Setup and Agent Parametrization. In this section
a case study shall demonstrate the model’s basic working
mode and give an example for possible fields of analyses.
The case study examines the effects of a change in the
regulatory framework, taking into account the interplay of
the power plant owners and their possibility of changing their
contracted direct marketers.

The regulatory framework refers to the market premium
under the German Renewable Energy Sources Act (EEG) in
its version of 2012 [7], when the market premium scheme has
been introduced. Two variations of the correspondent man-
agement premium are analysed. In “Scenario 1,” the level of
the management premium 𝑀(𝑡) for variable (VRE) and dis-
patchable renewables is set to 3.7 €/MWh and 1.125 €/MWh,
respectively, in accordance with the initial values of the EEG
2012. In “Scenario 2,” 𝑀(𝑡) for VRE is reduced by 50%
to 1.85 €/MWh; for dispatchable renewables no changes are
assumed.This decrease of themanagement premium forVRE
reflects the decision of policymakers in 2012 when figuring
out that the original height of 𝑀(𝑡) has led to considerable
windfall profits for wind PPOs.

On the basis of an actor analysis [10, 48] (compare
Section 4.2.1), five different types of direct marketers were
aggregated for this case study: (1) big utility, representing big
and medium power supply companies; (2) municipal utility;(3) small municipal utility; (4) green electricity provider; and(5) startup. The technology specific size of the portfolios is
linearly growing each month according to the underlying
time series of installed power of each technology. These
numbers are based on empirical data on the number of plant
operators receiving FiTs or market premiums published by
the grid operators in Germany [55]. In the simulation, yearly
changes in portfolio sizes and composition might take place
due to the marketers’ competition for PPOs. The simulation
period for the case study is set to 2014 to 2019.

The initial technology specific composition of the portfo-
lios for the starting year 2014 is displayed in Table 6. A more
detailed resolution disclosing corresponding remuneration

classes can be found in Table 9. Other important differentia-
tion factors are the direct marketers’ specific forecast capabil-
ities as well as their capital resources (compare Section 4.2.1
and the appendix). Their initial parametrization is given in
Table 7.

In Section 4.2.1, we describe how the bonus payments of
marketers are changing throughout the simulation.The PPOs
can cancel their contract at the end of each simulation year
and enter into a new contract with another direct marketer
offering higher bonus payments if the corresponding thresh-
old value of 𝑥min is exceeded (compare Section 4.2.2). The
threshold 𝑥min depicts transaction costs and is parametrized
according to the power plants’ remuneration classes. It is
assumed that contracts for plants in lower remuneration
classes have lower thresholds as they gain proportionally
higher revenues (compare Section 4.2.2). Values have been
derived by taking the height of the starting bonus, rounding
it to an integer, and dividing it by four. The corresponding𝑥min values per remuneration class are displayed in Table 8.

5.2. Results

Scenario 1. In this scenario, the height of the management
premium is set according to the EEG2012.Overall good oper-
ating results are achieved by all marketers in this case, except
for the smallmunicipal utility (see Figure 5(a)).Thismarketer
shows a nonprofitable operation for 5 of the 6 simulated
years and operates with constantly decreasing bonus payouts.
The big municipal utility and the green electricity provider
start with the highest operating results of about 1.2 €/MWH
and 1.8 €/MWh, respectively. Their average results show
a decrease in the following years and a convergence to
0.5 €/MWh. Both marketers increase their bonus payouts
accordingly reaching a maximum of up to 2.5 €/MWh in
the last year of simulation. The operating results of startups
and big utilities exhibit a slow but steady growth for the
first-mentioned marketer and a nearly constant income on
average for the big utilities. Both fluctuate around a profit of
0.5 €/MWhanddecrease or increase their bonus payouts over
the years according to their operational results.

The specific balance energy cost (compare Figure 5(c))
of the small municipal utility is between double and triple
the costs of its competitors. This cost factor does not change
significantly over time and therefore poses a constant burden
for the marketer.

The switch of power plant owners to other marketers
offering a higher bonus payment starts after year two of
the simulation. At this moment the gap between lowest
and highest bonus offered is large enough to encourage
plant owners with a small threshold to switch the marketing
partner. The small municipal utility is the first to lose
clients to the green electricity provider, as the difference
of the bonus payouts is the largest between these two; see
Figure 5(b). In the following years, a part of the clients of
all other marketers switch to the green electricity provider
as well, except for clients from the big municipal utility.
Over the course of the simulation, the big utilities portfolio
is reduced by about 5GW, the one of the small municipal
utility is reduced by about 2.7GW, and the startup loses
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Table 7: Table representing the direct marketers’ initial forecast uncertainties and capital resources.

Direct marketer 𝜎price 𝜎power 𝜇power M€
Big utility 0.15 0.15 0.05 100
Municipal utility 0.15 0.15 0.05 50
Small municipal utility 0.25 0.25 0.15 20
Green electricity provider 0.2 0.15 0.05 20
Startup 0.15 0.2 0.1 20

Table 8: Table representing the power plant owners’ changing thresholds 𝑥min.

Remuneration class WAB [€/MWh] PV [€/MWh] BM [€/MWh]
1 0.5 0.5 0.5
2 1.0 1.0 2.0
3 1.5 1.5 1.5
4 2.0 2.0 1.0

Table 9: Installed capacity per remuneration class as assigned to the marketers at the beginning of simulation.

Direct marketer BM [MW] PV [MW] Wind [MW]
Big utility

RC 1 360 881 1648
RC 2 22 567 5342
RC 3 125 29 5960
RC 4 15 220 1195

Municipal utility
RC 1 719 1761 1030
RC 2 45 1134 3339
RC 3 125 59 3725
RC 4 15 440 398

Small municipal utility
RC 1 240 1761 206
RC 2 15 1134 668
RC 3 125 59 745
RC 4 15 440 -

Green electricity provider
RC 1 479 881 412
RC 2 30 567 1336
RC 3 375 29 1490
RC 4 46 220 -

Startup
RC 1 599 12329 824
RC 2 37 7940 2671
RC 3 1750 412 2980
RC 4 216 3077 398

about 2GW. The sum of them is added to the portfolio of
the green electricity provider doubling its portfolio size; see
Figure 7(a).

Scenario 2. In the scenario with a 50% reduced management
premium for VRE, the simulation shows a different devel-
opment of the marketers business success as can be seen in
Figure 6. The “big municipal utility” and green electricity
provider start with positive operating results; the other

marketers’ results are negative. Whereas the green electricity
provider can assure his income throughout the simulation
and increases his bonus payouts, the “big municipal utility”
earns about 0.5 €/MWh until year four hardly changing the
bonus. In this year the gap between own bonus payouts
and the highest payouts of the green electricity provider is
large enough to lose wind and biomass power plants. The
loss of biomass plants especially reduces the high profitable
income from the reserve market and, accordingly, the bonus
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Figure 5: Specific operational results, bonus payouts, balance energy costs, and income from the control energy market for all 5 marketers
in the first scenario.

is reduced in the following years with negative results of about−0.8 €/MWh.
The startup has an operational result of just below zero,

depletes all its available capital until the fourth year, and

reduces its bonus payout to 0 €/MWh. Already after the
second year, the bonus difference to the green electricity
provider is too large, losing a part of its biomass power plants
to this competitor. Accordingly, the income of the reserve
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Figure 6: Specific operational results, bonus payouts, balance energy costs, and income from the control energy market for all 5 marketers
in the second scenario with reduced management premium.

market decreases while the cost for balance energy increases.
The specific operational result drops to about −1 €/MWh in
year three.The capital of the startup is used up and bonus pay-
ments are stopped. Biomass, wind, and photovoltaic power

plant operators switch to the green electricity provider that
offers the highest bonus payouts. The new portfolio implies
a reduction of balance energy costs leading to a positive
operational result in year four. Yet the capital stock remains
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Figure 7: Continued.
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Figure 7: Evolution of the marketers’ portfolios for Scenario 1 (a) and Scenario 2 (b).

negative and bonus payouts are still ceased. A large fraction
of the remaining biomass plants leave the startup, resulting
in increased balance energy costs and negative operational
results of up to −2 €/MWh in the following years.

With an operational result of about −0.6 €/MWh over
the years, the big utility gradually reduces its bonus payout
without hardly any effect on its results.The only slow decrease
of bonus is due to the operational result to capital ratio;
compare Table 3 and Figure 8. The small municipal utility
loses money for every MWh produced. On average, this
marketer is losing every year 0.6 €/MWh more than in the
previous year. After the fourth year, it stops bonus payouts
and most of its portfolio’s wind and biomass plants switch
to another marketer. At the end of simulation, it is the
green electricity provider that increases its portfolio by about
4.5 GW from the big utility, 3.5 GW from “big municipal
utility,” 3 GW from small municipal utility, and 17GW from
the startup, Figure 7(b).

6. Discussion

6.1. Discussion of Case Study Results. The case study reveals
valuable insights concerning the income and portfolio
dynamics of different RES-E marketer actor classes. Scenario
1 shows that incumbent marketers such as big utilities that
focus on a largewind power portfolio-share can benefit due to
economies of scale from lower specific operational costs and
better forecast qualities. On absolute levels, their economic
success is among the best (see Figures 8 and 9). However,
we also identify a mediating disutility of scale. As described
earlier, marketers can profit by trading electricity on different
electricity markets, namely, the wholesale power market and
the negative minute reserve market. Yet, only the electricity
of biomass plants has been allowed to participate in the
control power market in the model (since 2017 also wind
power plant operators are allowed to bid firm capacity on
the control power market if certain prequalifying conditions
are fulfilled in a pilot phase). Trading electricity of these
controllable plants implies less balancing costs and improves
overall operational results. The access to this dispatchable

resource is limited and unevenly distributed among the
marketers’ portfolios. However, the actors analysis revealed
that upcoming small marketers often have better access to
biomass PPOs through personal connections to local farmers
and thus comparatively more biomass contracted in their
portfolio. Having access to this dispatchable energy source
can mitigate the disadvantages of small portfolio sizes. In
combination with an adequate forecast quality, this can lead
to financially successful marketing of RES-E, as the results of
the green electricity provider depict, allowing a niche of new
market entrants to survive next to incumbent marketers.

Additionally, the model allows the investigation of how
the market structure changes if marketers are enabled to
compete for new PPOs to complement their portfolio. The
bonus payout follows a simple adjustment rule: the higher the
operational result is, the higher the bonus marketers pay to
their contracted PPOs. This leads to a convergence towards
a common specific operational result for all marketers in
Scenario 1 (except for the small municipal utility) and ensures
a strong competition concerning the bonus payout and
the attraction of new PPOs. In this scenario, the bonus
adjustments and the contract switches of PPOs to other
marketers are onlymoderately dynamic. Comparatively small
gaps between bonus heights arise, and plant capacities of only
about 10GW in total switch marketers. Except for the small
municipal utility, the system stabilizes to a state in which four
successful marketers coexist.

Slight changes in the regulatory framework (a reduc-
tion of the management premium for VRE) lead to com-
pletely changed income and portfolio dynamics; compare
Figures 10 and 11. In Scenario 2, only one marketer manages
to trade the electricity profitably and to increase bonus
heights. All other marketers have to decrease their bonus
payouts and thus a large difference in payouts exists between
the marketers even in an early stage of simulation. Startups,
for example, struggle in the first four years with their oper-
ational result just below zero. During this time, they reduce
the bonus height to be profitable. In year four, the startup
manages to have a positive result but at the same time its
bonus payouts ceased and a large difference in bonus height to
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the other marketers has emerged. Even with a well balanced
portfolio with a relatively large share of biomass plants, they
cannot offer bonus payouts and lose the biomass plants to
competitors. With the remaining variable renewables in their
portfolio and forecasts of minor quality, it is impossible for
the startup to trade profitably.

Clearly, the observed effect of a changed management
premium depends on the initial parametrization of the
studied marketers as well as on the behaviour of the power
plant owners. It is therefore important that an rigorous and
profound actors analysis is performed to gain parameter
values from empirical actors data. A relative comparison
between two scenario variants as presented here should be
uncritical, however. The question of parameter choice is
discussed in the upcoming subsection.

6.2. Model Outlook: Overcoming Current Weaknesses. In
agent-based modelling, the complexity of the modelled sys-
tems inevitably hampers the reporting of results as well as the
policy advice. However, for some years now, attempts have
been made to establish standards for the model description
[57], model calibration and validation [58], and the setting
up of simulation experiments [59].

In this line of reasoning, some of the used parameter
assumptions should be systematically elaborated in further
studies. Only an automated sensitivity analysis of a broad set
of parameters would offer the required confidence intervals
for a comprehensive quantitative evaluation. For example,
the setting of a starting bonus for all marketers is not very
realistic. Starting conditions should be adapted to the actors
according to their capabilities in order to avoid skewed
results in the beginning of the simulation. The threshold
parameter 𝑥𝑥min and the capital of the marketers can only
be based on educated guesses so far. Individual decisions and
confidentiality limit the information flow in these cases.

Likewise, the decision-making of actors has to be studied
and implemented with sufficient accuracy. The presented
bonus adjustment rules are grounded on the assumption
that marketers aim for an operational result of 0.5 €/MWh
(stated as “typical margin” in power trading in general in the
interviews) and adapt the bonus payouts according to the
budgetary surplus. An alternative approach would assign dif-
ferent goals for the operational results to different marketers.
However, it would be hard to estimate the marketers aim for
the operational results individually as those numbers would
be handled confidentially in real-world examples in most
cases. An even more sophisticated approach would optimize
the marketer’s profit in dependence on the choice of bonus
height.

Improvements of the presented bonus adjustment rules
would certainly address the current myopic decision rules, as
they are only based on operational results and the capital of
the last year. Additional learning from previous years would
improve the adoption of decision thresholds.

In general, the adaptability of AMIRIS’ agents—how
they change behaviours during the simulation—needs to be
enhanced. In this context, an important development goal is
themodel endogenous expansion of installed RES-E capacity.
This would allow for an estimation of the possible height of

incentives to reach certain deployment goals and to study
potential barriers for RES-E investments. Developments for
this are currently carried out.

Further model enhancements consider the use of flexibil-
ity options, the analysis of the demand side, and the mod-
elling of additional support mechanisms. This way, further
relevant dimensions in the future energy system’s complexity
are represented.

Besides the use as a standalone model, AMIRIS may
complement studies done with traditional energy system
optimization models in order to enhance insights for the
electricity system transformation from a market-based per-
spective (for a recent example, see, e.g., [60]). This way, the
so-called “efficiency gap” between optimal and real market
outcomes could be analysed. Additionally, conclusions might
be drawn from such complementary studies about why deci-
sions of heterogeneous actors on the microlevel might not
necessarily result in a cost-optimal system configuration at
the macrolevel and likewise on necessary policy instruments
design to achieve a cost-optimal system configuration.

6.3. Lessons Learned Using an Agent-Based Model Approach.
In a recent study, Macal presented a classification of
agent-based modelling approaches, namely, individual,
autonomous, interactive, and adaptive ABMs, in increasing
order of sophistication [61]. In adaptive ABMs, agents
change behaviours during the simulation. In comparison,
an interactive agent-based model offers individuality of the
agents with a diverse set of characteristics, endogenous and
autonomous behaviours, and direct interactions between
agents and the environment [61]. AMIRIS falls under the
interactive category. The agents are modelled with particular
scopes in decision-making, for example, the marketers’
decisions regarding the adjustment of bonuses. The agents’
interactions such as the one between marketer and plant
operator or between marketer and market determine their
success on the microlevel of actors. Nevertheless, agents do
not change behaviours during simulation.

For the purpose of themodel, however, this adaptability is
not necessary in order to study complex system interrelations.
With the case study, we present evidence for the existence of
economic niches that arise for smaller, upcoming marketers
and which can prevent a market concentration towards the
biggest marketers with best forecast qualities and lowest spe-
cific operational incomes. We thus show that specific agent
attributes like portfolio composition and size are decisive for
the evolutionary economic success of marketers. This shows
that sophisticated behavioural modelling is not always neces-
sary in an ABM to make claims about emergent phenomena
in systems and the complexity of agent interactions. Likewise,
it would be hard to gain these insights about portfolio effects
from other simulation methods but ABM.

The modelled market modules have been validated with
classical “history friendly” methods (compare [10]). Results
of AMIRIS depend on the interplay between several imple-
mented modules generating a macrooutcome that remains
hard to validate due to missing empirical data about market
structure developments. Therefore, model results are to be
interpreted as possible and plausible tendencies of the system
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development—an interpretation that is suitable for most
models with explorative character including ABMs.

AMIRIS allows importing changes in the regulatory
framework as input parameters for explorative scenarios,
considering that no normative system targets are to be
achieved by individual actors. Specific policy interventions
can be dynamically traced in the model. According to
the classification of intervention modelling carried out by
Chappin [62], this level should be aimed for when assessing
interventions in a model context. In this way, our approach
allows examining the impact of policy instruments consider-
ing the complex interplay between the regulatory framework,
the actors, and the technoeconomic regime (see also Figure 1).

7. Conclusion

The agent-based model AMIRIS has been developed in
order to analyse the impact of policy instruments regulating
renewable energy market integration. The model depicts the
electricity system as a complex sociotechnical system and
focuses on the interdependencies between the regulatory
framework, actors, andmarkets.Themodel contributes to the
scientific literature in several ways.

AMIRIS offers configurations of scenarios under different
external input parameters like RES-E policy support mech-
anisms. While there are other energy related ABMs that
explore the impact of policy instruments on energy markets
(see, e.g., [42, 43]), the focus on RES-E in a high temporal
resolution and the typecast of actor groups is unique in the
field of energy systems analysis to our best knowledge.

Different agent specifications enable defining the degree
of uncertainty and bounded rationality of the actors and
modelling heterogeneous system entities. Marketers espe-
cially can be defined in detail by specifying, for example, their
portfolios and cost structures and their capitalization and
forecast uncertainties.The specification of agents is crucial for
the right interpretation of simulation results, so actor analyses
have been conducted prior to model implementation and
simulations. The gained insights from such analyses are used
to map agent decision rules and to characterize the actors
and to configure corresponding parameters in AMIRIS. It
is shown that many market dynamics can be unraveled if
heterogeneous agent attributes are taken into consideration.

The case study demonstrated how only minor policy
changes can have a considerable effect on the agent popu-
lation. This indicates how well-prepared and parametrized a
transition of regulatory framework conditions has to be in
order to further ensure the functioning of the system and
the survival of particular actor classes. In Scenario 2, for
example, the economic survival of the startup and further
marketers might have been possible in case the regulatory
framework would have been changed by more circumspect
planning. We thus show that the intermediary market actors
have to be considered in case amendments of RES-E policy
instruments are planned as new interdependencies between
plant operators and marketers arise.

Niches play a vital role in innovation formation in
sociotechnical systems and are a fundamental driver of
system transition [63]. With AMIRIS, the emergence and

stability of energy market niches can be depicted without
prior knowledge about their prospect of success. Their
economic success would be hard to identify and trace in
other, more traditional modes of simulation. The model is
thus also business relevant if the results are viewed from an
actors perspective. For instance, the case study revealed that
competition and related changes of actors’ portfoliosmay lead
to bankruptcy of otherwise successful marketers.

To sum up, the paper demonstrates that agent-based
models are suitable in multiple dimensions to study the
dynamics of electricity systems under transition which are
driven by a diverse set of heterogeneous actors. While there
is still many open development goals (see Section 6.2), we do
not regard any of these issues raised as a fundamental concern
impossible to overcome.

Studying the energy system transition demands methods
that are able to capture the system’s complexity and dynamics.
An important property of ABM approaches is their ability
to flexibly use models in the model, enabling the researcher
to represent the system in multiple layers. We conclude that
agent-based modelling approaches like AMIRIS have the
ability to enhance the knowledge that is required to ensure a
successful energy system transition while preventing system
breakages.

Appendix

The revenue calculation is described in detail in the following
section. Revenue can be generated at the wholesale (XM)
and control energy market (CE); balancing energy (bal) can
add to the revenue if circumstances are favourable. The total
revenue is given by

𝑖 (𝑡) = 𝑖XM (𝑡) + 𝑖CE (𝑡) + 𝑖bal (𝑡) . (A.1)

The sold volume𝑉XM(𝑡) traded at the power exchangemarket
is refunded with the management premium 𝑀(𝑡) and allows
earnings of

𝑖XM (𝑡) = 𝑉XM (𝑡) ⋅ (ΠXM (𝑡) + 𝑀 (𝑡)) , (A.2)

with the wholesale power market price ΠXM(𝑡). Likewise,
revenues from the control energy market equate to

𝑖CE (𝑡) = 𝑉CE (𝑡) ⋅ ΠCE (𝑡) . (A.3)

The revenue frombalancing energy equals negative balancing
costs of the marketer; that is,

𝑖bal (𝑡) = −𝑐bal (𝑡) . (A.4)

The fix costs are calculated as

𝑐fix = 𝑐IT + 𝑐trade,fix. (A.5)

Variable costs equate to

𝑐var (𝑡) = 𝑐XM,trading (𝑡) + 𝑐pers,var (𝑡) + 𝑐bal (𝑡)
+ 𝑐fcst (𝑡) + 𝑐bonus (𝑡) . (A.6)
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Trading costs are based on the fees at the exchangemarket for
every traded MWh with

𝑐XM,trading (𝑡) = 𝑐trade,var ⋅ 𝑉 (𝑡) . (A.7)

In case balancing energy is required, the corresponding
volume 𝑉bal(𝑡) must be procured for a price PRbal and costs
are defined as

𝑐bal (𝑡) = PRbal ⋅ 𝑉bal (𝑡) . (A.8)

According to the actors analysis the prices PRfcst per MW
typically decrease with larger portfolio sizes, so

𝑐fcst (𝑡) = 𝑐fcst (P) ⋅ P (𝑡) . (A.9)

The size of𝑉bal(𝑡) is the difference between the real actual𝑉(𝑡)
and the forecast 𝑉fcst(𝑡) electricity feed-in at time 𝑡:

𝑉bal (𝑡) = 𝑉 (𝑡) − 𝑉fcst (𝑡) , (A.10)

where the latter has been forecast by the marketer 24ℎ before
and is determined by

𝑉fcst (𝑡 + 24 h) = 𝑉 (𝑡 + 24 h)
⋅ (1 + 𝜇power + 𝜎power ⋅ 𝑔) , (A.11)

with 𝑔 representing a random variable from a normal
distribution. 𝑉(𝑡 + 24 h) denotes the actual feed-in volume
24 h ahead. The revenue of the RES operator agents is based
on the remuneration and the bonus payments from the direct
marketer; that is,

𝑖 (𝑡) = 𝑉el ⋅ (Πrc (𝑡) + 𝑖bonus (𝑡)) . (A.12)

The Market Premium. The aim of the market premium
under the EEG is to integrate renewable energy sources
into the energy market system by fostering direct marketing.
Producers receive a financial compensation for the difference
between energy-source-specific values to be applied (replac-
ing the fixed feed-in tariff) as a calculation basis and themar-
ket value. This is the average energy-source-specific monthly
value of the hourly contracts on the spotmarket for electricity
(Part 3, Division 1 and Annex 1 EEG 2017). Compensating for
occurring costs fromdirectmarketing the values to be applied
are higher than the replaced feed-in tariffs. The difference is
set to 2 €/MWh for dispatchable renewables and 4 €/MWh
for intermittent renewables (Section 53 EEG 2017). Under
EEG 2012 such a difference has been separately disclosed as a
management premium (Section 33g EEG 2012).
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