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Abstract We prove that all extensions of Heyting Arithmetic with a logic that has
the finite frame property possess the de Jongh property.
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1 Introduction

In this paper we generalize de Jongh’s theorem that the propositional logic of
Heyting’s Arithmetic, HA, is precisely Intuitionistic Propositional Logic, IPC. We
show that, if we extend HA with a propositional logic �, that has the finite frame
property, then the resulting theory HA(�) has precisely the propositional logic �.
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198 D. de Jongh et al.

We explain our result in a bit more detail. Consider a theory T in constructive
predicate logic. A propositional formula ϕ is T -valid iff, for all substitutions σ of
formulas of the language of T for propositional variables, we have T � σ(ϕ). The set
of T -valid formulas is the propositional logic of T . We will call this logic�T . The de
Jongh property for T is the statement that the propositional logic�T of T is precisely
Intuitionistic Propositional Logic, in other words, �T = IPC.

The original theorem of de Jongh was that Heyting’s Arithmetic HA has the de
Jongh property. In the past many generalizations have been proved; we will give an
enumeration below. In these generalizations the objective was mostly to prove (or in
rare cases disprove) the de Jongh property for extensions of HA with some properties
like e.g. Church’s Thesis. In this paper we will go in a different direction. The idea is to
strengthen the logic from the intuitionistic logic to an intermediate one. Intermediate
logics are all those logics of strength between intuitionistic and classical logics. Define
the de Jongh property for T with respect to an intermediate logic � as the statement
that �T = �. Our conjecture is the following.

Conjecture 1.1 Let HA(�) be the result of extending HA with � for all formulas.
Then �HA(�) = �.

In this paper we will prove this conjecture for logics � with the Finite Frame
Property, namely,

there exists a class of finite frames F such that � is precisely the logic valid on
all models on frames in F. For this class F we then have:

� = {ϕ | F |� ϕ} = {ϕ | for all M on F,M |� ϕ}

For intermediate logics, as for normal modal logics, the finite frame property � is in
fact equivalent to the ostensibly weaker finite model property (FMP), which expresses
that there is a class of finite models M such that � is precisely the logic valid on all
models in M. (See Sect. 3 for more background.)

For logics � with the finite frame property, indeed HA(�) has the de Jongh prop-
erty with respect to �. As we will discuss in the conclusion (Sect. 6), there seems to
be little chance of generalizing the methods of this paper to a more extensive class of
intermediate logics.

In our proof we will only employ substitutions of �0
2-sentences. From this it fol-

lows by quite general reasoning, that, assuming that our class of frames is recursive,
we have a uniform version of the de Jongh property. This means that, for � with
the finite frame property, there is a single substitution σ� such that HA(�) � σ�(ϕ)

iff � � ϕ. Or, in a different formulation, there is an embedding of the Lindenbaum
Heyting algebra of � into the Lindenbaum Heyting algebra of HA(�).

2 A brief history of de Jongh’s theorem

The following brief overview of the history of de Jongh’s Theorem for propositional
logic is adapted from [35].
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Intermediate Logics and the de Jongh property 199

1969 Dick de Jongh proves in an unpublished paper his original theorem that
�HA = IPC. He uses substitutions of formulas of a complicated form, namely
∀x(α(x)∨ ¬α(x)) with α almost negative. As a reminder, a formula is almost
negative if it does not contain ∨, and ∃ only in front of an equation between
terms (see [27]). In fact he proves a much stronger result, namely that the
logic of relative interpretations in HA is Intuitionistic Predicate Logic. See the
extended abstract [7]. De Jongh’s argument uses an ingenious combination of
Kripke models and realizability.

1973 Harvey Friedman in his paper [9] gives another proof of de Jongh’s theorem for
HA. He provides a single substitution σ mapping the propositional variables
to �0

2-sentences such that HA � σ(ϕ) ⇔ IPC � ϕ. Thus, Friedman shows
that IPC is uniformly complete for�0

2-substitutions in HA. Friedman employs
slash-theoretic methods as introduced by Kleene [14].

1973 Craig Smoryński strengthens and extends de Jongh’s work in a number of
respects in his very readable paper [25]. To state his results we need a few defi-
nitions. We write D(�1) for the set of disjunctions of�0

1-sentences, Prop(�1)

for propositional combinations of �0
1-sentences. Let us remind the reader of

some relevant principles (see [27] for extensive discussions).
MP is Markov’s Principle MP:

∀x(A ∨ ¬A) ∧ ¬¬∃x A → ∃x A.

RFNHA is the formalized uniform reflection principle for HA, where ∀y Ay is
closed:

ProofHA(x, �Ay�) → Ay

TI(≺) is the transfinite induction scheme for a primitive recursive well-ordering
≺:

∀x((∀y ≺ x)Ay → Ax) → ∀y Ay.

We have de Jongh’s Theorem for the following theories T :
HA, HA+RFN(HA), HA+TI(≺), and HA+MP.
For the first three theories we can take the range of our substitutions either �0

1
or D(�1). For HA+MP we can take the range of our substitutions Prop(�1).
Smoryński uses Kripke models in combination with the Gödel-Rosser-
Mostowski-Kripke-Myhill theorem to prove his results.

1975 Daniel Leivant in his PhD Thesis [16] shows that the predicate logic of inter-
pretations of predicate logic in HA is precisely intuitionistic predicate logic.
Leivant’s method is proof-theoretical. In fact Leivant shows that one can use as
interpretation a fixed sequence of�0

2-predicates. Leivant’s results yield another
proof of Friedman’s results described above.

1976 de Jongh and Smoryński in their paper [8] show de Jongh’s Theorem for HAS.
They also show uniform completeness for HAS with respect to a substitution
with range among the �0

2-sentences.
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200 D. de Jongh et al.

1981 Yu.V. Gavrilenko in [11] proves de Jongh’s Theorem for HA + ECT0, i.e.,
the theory of provable realizability over HA. The principle ECT0 is Extended
Church’s Thesis (see [27]):

∀x(A → ∃y By) → ∃u∀x(A → ∃v(T uxv ∧ B(Uv))),

where A is almost negative and u does not occur free in A and B and v not
in B. In the formula ECT0 above, T stands for Kleene’s T -predicate and U
for the corresponding result-extracting function [13]. Gavrilenko proves this
result as a corollary of the similar result by Smoryński for HA.

1981 As a reminder, the principle DNS stands for ‘double negation shift’ (see [27]):

∀x¬¬Ax → ¬¬∀x Ax

Albert Visser in his Ph.D. thesis [31] provides an alternative proof of de Jongh’s
theorem for HA, HA+DNS, and HA+ECT0 for �0

1-substitutions adapting the
method of Solovay’s proof of the arithmetical completeness of Löb’s logic
for substitutions in PA [24]. In fact, his proof extends to the same theories
extended with appropriate reflection principles or transfinite induction over
primitive recursive well-orderings.

1985 In his [33], Albert Visser provides an alternative proof of de Jongh’s uniform
completeness theorem employing a single �0

1-substitution. The proof is veri-
fiable in HA+con(HA). Here, con(HA) formalizes the consistency of Heyting
Arithmetic. Note that de Jongh’s theorem implies con(HA), so the result is, in
a sense, optimal. Visser’s proof uses the NNIL-algorithm, an algorithm that is
used to characterize the admissible rules for �0

1-substitutions. See also [36].
1991 Jaap van Oosten in his paper [30] provides a more perspicuous version of de

Jongh’s semantical proof of de Jongh’s theorem for (non-relativized) interpre-
tations of predicate logic. Van Oosten uses Beth models and realizability. See
also [29].

1996 Using the methods developed by Visser in [32] and by de Jongh and Visser in
[6], one can prove uniform completeness with respect to �0

1-substitutions for
HA+ECT0, HA+ECT0+RFN(HA+ECT0), and
HA+TI(≺)+ECT0.

It is well known that the de Jongh property does not hold for HA + MP + ECT0.
Consider the formulas χ and ρ, which are defined as follows.

• χ := (¬p ∨ ¬q),
• ρ := [(¬¬χ → χ) → (χ ∨ ¬χ)] → (¬¬χ ∨ ¬χ)
Clearly, ρ is not provable in IPC. We use r for Kleene realizability. In his classical
paper [23], G.F. Rose showed that: ∃e ∀σ∈subHA N |� e r σ(ρ). Here subHA is the
set of substitutions from the propositional variables to sentences of the arithmetical
language. Thus, Rose refuted a conjecture of Kleene that a propositional formula is
IPC-provable if all its arithmetical instances are (truly and classically) realizable. Note
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Intermediate Logics and the de Jongh property 201

the remarkable fact that one and the same realizer realizes all instances! Inspecting the
proof, one sees that only a small part of classical logic is involved in the verification
of realizability: Markov’s Principle. See David McCarthy’s paper [19] for a detailed
analysis. Thus we obtain:

∃e ∀σ∈subHA HA + MP � e r σ(ρ).

Hence, a fortiori, ρ ∈ �HA+MP+ECT0 . See [22] for an interesting recent survey of
propositional realizability logic.

3 Intermediate logics and the finite model property

Intermediate logics (also called superintuitionistic logics) are the logics between IPC
and CPC, classical propositional logic, i.e. the sets of of formulas closed under IPC-
deduction and uniform substitution. Most anything one needs to know about these
logics can be found in [4]. We will enumerate the best known of these logics and men-
tion a few basic facts, mainly concerning the finite model property. The well-known
theorem for normal modal logics that the finite frame property and the finite model
property for a modal logic L coincide (see e.g. [1]), applies to intermediate logics
as well [4]. This means that every sentence not provable from the logic cannot only
be refuted in a finite model of the logic, it can also be refuted in a frame validating
the logic. So, it is appropriate to use the terminology that a logic has the finite model
property (FMP) if there is a class of finite frames for which it is complete. As in the
case of modal logics, not all intermediate logics are complete with respect to a class
of frames, and not all those which are complete for such a class have the FMP. But
all except one of the well-known intermediate logics which we will now discuss are
known to be complete with respect to a class of finite frames.

LC, Dummett’s logic, axiomatized by, e.g. (ϕ → ψ)∨ (ψ → ϕ), is complete with
respect to the finite linear frames.

KC, Jankov’s logic (also called the logic of weak excluded middle, whereas real in-
tuitionists might prefer, if anything, the logic of testability), axiomatized by ¬ϕ∨¬¬ϕ,
is complete with respect to the finite frames with a unique endpoint.

KP, the logic of Kreisel and Putnam, axiomatized by

(¬ϕ → ψ ∨ χ) → (¬ϕ → ψ) ∨ (¬ϕ → χ).

It is complete with respect to the finite partial orderings satisfying the property: For
each u and each set X of points succeeding u, there exists a v accessible from u such
that all points of X are accessible from v and every endpoint above v is also above
some point from X . KP was the first logic shown to have the disjunction property: If
� ϕ ∨ ψ , then � ϕ or � ψ , where � stands for provability in the given logic (here
KP) [15].
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202 D. de Jongh et al.

Tn, the Gabbay-deJongh logics, which are complete with respect to the finite trees
which have splittings of exactly n, i.e. each node has exactly n immediate successors.
Tn is axiomatized by

∧

k≤n+1

⎛

⎝

⎛

⎝ϕk →
∨

j =k

ϕ j

⎞

⎠ →
∨

j =k

ϕ j

⎞

⎠ →
∨

k≤n+1

ϕk

T1 coincides with LC. Tn-frames for n> 1 do not have a first order definition. More-
over, Tn for n> 1 is not canonical ([4]). However, it is first-order definable on finite
frames: it is characterized by the condition that every point has at most n immediate
successors. Finally,Tn for n> 1 has the disjunction property [5].

BDn , the depth n logics are complete with respect to the finite partial orderings
(but also to the trees, or to the splitting trees) of depth n. BD1 is classical logic, and
is axiomatized by Peirce’s Law, ((ϕ → ψ) → ϕ) → ϕ. An axiomatization of BDn
for n> 1 is obtained by iteratedly substituting Peirce’s Law into itself, e.g. BD2 is
axiomatized by ((ϕ → (((ψ → χ) → ψ) → ψ)) → ϕ) → ϕ.

Sc, Scott’s logic, axiomatized by ((¬¬ϕ → ϕ) → (ϕ ∨ ¬ϕ)) → ¬ϕ ∨ ¬¬ϕ. It
is complete with respect to the finite partial orderings satisfying the property: In each
generated subframe all the endpoints are connected by an R, R−1-chain containing
only points of depth 0 or 1 (or equivalently the finite frames which do not have a
p-morphism onto the asymmetric four-element tree of depth 3). This is not equiva-
lent to a first-order definition. Like Tn and KP, Scott’s logic also has the disjunction
property [4,15].

ML, Medvedev’s logic of finite problems [20] has the finite frame property (it is
complete with respect to the finite boolean algebras without their top element), but
it has no known axiomatization and is not known to be decidable. It contains Scott’s
logic and KP and is contained in Jankov’s logic. It is not finitely axiomatizable and
its infinite axiom systems will need an infinity of atoms [18]. ML coincides with the
set of formulas all whose essentially negative substitution instances are provable in
KP, or stated in another form, it is the logic of the valid schemata obtained by adding
¬¬p → p for atoms only to KP (due to [17], see also [3]).

The Propositional Logic of Realizability. Plisko [22] discusses several variants
out of which we choose the logic of the effectively realizable formulas, although for
most purposes it makes little difference. The logic has no known axiomatization, it
is not known whether it has the finite model property or is decidable. It does have
the disjunction property. From our earlier remarks it follows that it contains Scott’s
logic with ¬ψ ∨ ¬θ substituted for the sole variable in Scott’s axiom. Just like ML,
the Propositional Logic of Realizability is contained in KC, but it has been shown to
neither contain nor be contained in ML.

All logics using only →,∧,¬ in their axioms have the finite model property, but
none but IPC itself have the disjunction property (see [4]). The same is true for logics
with axioms using only NNIL-formulas (No Nesting of Implications on the Left); in
fact, these logics are the same as the ones using only → (see [38]).
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Intermediate Logics and the de Jongh property 203

Fig. 1 Scheme of lemma 4.1: A new model of HA is constructed by equipping a set of models of HA with
a new root, and attaching the standard model ω to it

4 Arithmetics and finite frames

In this section, we prove our main result. We follow Smoryński’s classical paper [25].
In that paper Smoryński gives two proofs. We will use the second more complicated
one, which is more flexible for applications. But first we will sketch in a few lines the
first proof which gives us a partial result, and indicate why it does not generalize. The
idea (of both proofs) is, given a propositional Kripke-model, to construct a Kripke
model for HA on the same frame, and then to exhibit arithmetical sentences with
exactly the same forcing behavior as the propositional variables on the propositional
model.

First, one should realize that any node k in a model K is attached to a classical
structure Mk (not necessarily a model of HA [2]). The simple proof now starts with
the basic lemma:

Lemma 4.1 Given a (non-rooted) model of HA (or equivalently a set of models for
HA), one can obtain a new model of HA by equipping this non-rooted model with a
root to which the standard model of the natural numbers is attached. See Fig. 1.

Proof Assume K, K′, r as in the statement of the lemma. Assume also that r � A(0)∧
∀x (A(x) → A(x + 1)). It is sufficient to show that r � ∀x A(x), since the K-part of
the model already satisfies (internal) induction. We have that r � A(0) ∧ (A(n) →
A(n + 1)) for each natural number n. This enables us, by applying external induction,
to conclude that the new root forces A(n) for each n, from which r � ∀x A(x) follows.

��
The simple proof now continues using the fact that IPC is complete with respect

to the finite trees that are everywhere splitting (each node has at least two immediate
successors). One builds a propositional Kripke-model on the same tree by starting
with non-standard models for PA (and thus for HA!) on the endpoints, and attaching
the standard model to each of the other nodes. By the basic lemma 4.1, using induction
on the depth of the nodes, this is a model of HA.

The non-standard models at the endpoints are chosen to be incomparable in the
following sense: each of them has its own �0

1-sentence, which, in PA, contradicts
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204 D. de Jongh et al.

all the others. Then, because one has a finite everywhere splitting tree, each node is
completely determined by the endpoints which are accessible from it. This is suffi-
cient to create for each node a sentence true on exactly that node (and its successors).
Finally, disjunctions of those sentences will characterize arbitrary upward closed sub-
sets of the model, in particular those determined by the valuations of the propositional
variables in the propositional model.

To those intermediate logics that are complete with respect to a set of finite splitting
trees, this method will immediately apply. The point is that we do not only get a model
of HA but, because of the form of the frame, also of HA(�). This is immediately clear
for ϕ(α1, . . . , αn) if ϕ(p1, . . . , pn) is a member of � and α1, . . . , αn are arithmetic
sentences with constants for the elements of the appropriate domains of the models.
If in such a case α1, . . . αn have free variables, then the truth value of the universally
quantified version of ϕ(α1, . . . , αn) depends only on the value of sentences arising
by substitution in ϕ(p1, . . . , pn), and, since we declared these to be true already, the
universally quantified forms have to be true as well. In particular, one obtains in this
manner the de Jongh property for HA with respect to the logics Tn (for n> 1) and
BDn, but not for KC, KP, and ML. Also not for T1 = LC, because linear frames do
not split everywhere.

Especially, the need to characterize each node exactly by the endpoints accessible
from it seems essential in this setup of the proof. So, for the general case we will
need a different way to proceed. One basic idea remains the same. We want to fit a
root to a number of models. Smoryński’s second method does this in a much more
sophisticated manner than the first, and with this method one can under certain strict
conditions have a root with a non-standard model attached to it. To set the stage, we
need a sequence of lemmas. We start with a few well-known lemmas on Kripke models
of HA. For definitions of forcing in such Kripke models, see [25] and [28].

Lemma 4.2 Suppose K is a Kripke model of HA. Let A�x be a �0
1 -formula. Then, for

any node k and any �d in Dk, we have k � A �d iff Mk |� A �d.

Proof We first prove, by induction on the complexity of A, that, for any �0
0-formula

A�x , and any node k and any �d in Dk , we have k � A �d iff Mk |� A �d. The proof uses
the fact that HA proves the decidability of�0

1-formulas. We treat the case of restricted
universal quantification.

Suppose we have the desired property for By �x in �0
0. If k � ∀y< eBy �d , then

evidently, for all d ′<Mk e, k � Bd ′ �d. Hence, by the Induction Hypothesis, for all
d ′ <Mk e, Mk |� Bd ′ �d. Hence, Mk |� ∀y< e By �d .

Conversely, suppose (a) Mk |� ∀y< e By �d . In order to derive a contradiction,
suppose (b) k � ∃y< e ¬ By �d . It follows by the Induction Hypothesis and writing
out the negation and restricted existential quantification, that Mk |� ∃y< e ¬By �d ,
contradicting (a). So, canceling (b), we conclude k � ∃y<x ¬ By �d . Then, by decid-
ability, k � ¬∃y< e ¬ By �d . So, by intuitionistic predicate logic, k � ∀y<e ¬¬ By �d .
By decidability again, k � ∀y< e By �d .

The step from �0
0 to �0

1 is easy. ��
The following lemma is due to Wim Ruitenburg.
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Lemma 4.3 Let K be a model of HA. Let A�x be a �0
2-formula. Then, for any node k

and for any �d in Dk, we have: k � A �d iff, for all k′ ≥ k, Mk′ |� A �d.

Proof Suppose A�x is ∀�y S �y �x , where S is �0
1 . We have:

k � ∀�y S �y �d ⇔ ∀k′≥k ∀�e∈Dk′ k′�S�e �d
⇔ ∀k′≥k ∀�e∈Dk′ Mk′ |�S�e �d
⇔ ∀k′≥k Mk′ |�∀�y S �y �d

This gives us the desired property. ��
Next, we need some basic insights from the theory of interpretations.

Lemma 4.4 Let T be any RE theory. Then Q + con(T ) interprets T .

Here Q is Robinson’s Arithmetic, a very weak arithmetical theory introduced by
Tarski, Mostowski and Robinson in their book [26].

This is a general version of a fundamental theorem due to Hilbert and Bernays,
which was worked out by Wang. The proof was simplified by Feferman. The methods
that lead to the general version are due to among others Solovay et al. See [37], for
context, explanation and references. A very crude explanation of the result is as fol-
lows. The Model Existence Lemma tells us that, if a theory T is consistent, there is a
model N of T . A moment’s reflection shows that the construction of this model, via
the Henkin construction, is syntactical in nature. By fine-tuning the argument, we can
see that inside a theory that contains the consistency statement of T we can construct
an interpretation of T . Here the heuristic is that interpretations are something like
uniformly defined internal models.

Thus, inside any model M of Q + con(T ) we can construct a model M′ of T .
Moreover, if M is a model of PA, and if T is an arithmetical theory extending Q, then
we can easily prove, using an argument that is essentially due to Dedekind, that M′ is
an end-extension of M modulo a definable embedding. The idea is that inside M we
can define the obvious function that maps the numbers of the theory into the numbers
of the internal model M′ by recursion. We can prove by induction that the numbers of
M are mapped to an initial segment of M′. We formulate this in a lemma. For precise
discussions of this and similar lemmas, see [12].

Lemma 4.5 Suppose T is an arithmetical theory extending Q. Then every model M
of PA + con(T ) contains an internally definable end-extension (modulo a definable
embedding) satisfying T .

Finally, we formulate Smoryński’s fundamental lemma. Consider a non-rooted
Kripke model K of HA and a model M of PA. Suppose K is definable in M. This
means that the set of nodes K of K is definable, that the ordering on the nodes is
definable, that there is a formula δ(k, d) giving the domain elements of the node k,
and that there are arithmetical formulas AP (k, �d) representing k � P �d . Moreover, we
ask that M verifies basic properties like the fact that the relation between the nodes
is a partial ordering. We have:
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206 D. de Jongh et al.

Lemma 4.6 There is a definable embedding of M as an initial segment of the model
associated with each node of K. This embedding is unique in the strong sense that
there can be only one definable embedding that commutes with 0 and successor. Thus
we can form a rooted model K+ by adding M as a new root to K. We have: K+ is a
model of HA.

The proof of this result is in Smoryński’s classical paper [25]. The idea is a simple
extension of the idea of the basic lemma 4.1. Given a nonrooted model of HA, we
cannot just add an arbitrary non-standard model as the root, since such a model does
have induction for its own language but not for the enriched language in which we
can also talk about K. However, if K is internally definable this problem disappears
and we can add the non-standard model as a root. One could say that the non-standard
model internally thinks it is standard and that as soon as it can talk about K the earlier
external argument can be internalized.

We are now ready for the main construction, which diverges from Smoryński’s
proof [25].

Theorem 4.1 Suppose that� is the logic of a given class of finite frames F. Let HA(�)
be the result of extending HA with � for all formulas. Then

�HA(�) = �,

i.e. the propositional logic of HA(�) is �. Our result works both when we consider
logics of substitutions of formulas and when we consider the logics of substitutions of
sentences.

Proof Let� be the logic of a given class of finite frames F. Suppose� � ϕ. There is
a finite model K with frame in F, such that K � ϕ. Let the ordering of our model be
�. We can arrange it so that the nodes of K are 0,…, n − 1 and, if i � j , then i ≤ j .
We define:

• incon0(PA) := ⊥, inconk+1(PA) := provPA (inconk(PA)),
• Ck := ¬inconk(PA) ∧ inconk+1(PA),
• C0(x) := incon1(PA),
• Ck+1(x) := ¬ proofPA(x, inconk(PA)) ∧ inconk+2(PA).

We note that the Ci are mutually exclusive. We define Ti , for 0 ≤ i < n, by
Ti := PA + Cn−i−1. By Löb’s Theorem and �0

1-soundness, each of the Ti is consis-
tent. Moreover, again by Löb’s Theorem, for i < n − 1, we have Ti � con(Ti+1). Let
N0 be any model of T0. By Lemma 4.4, we can construct an internal model, say N1 of
T1, in N0. The model N1 will be an end-extension of N0. We iterate this construction,
obtaining an internal model Ni+1 of Ti+1 in Ni . Since ‘being an internal model of’
and ‘being an end-extension of’ are transitive relations, we find that if i ≤ j ≤ n − 1,
then N j is an internally defined end-extension of Ni .

We now construct a Kripke model S by making Nk the model associated to the
node k and taking over the ordering of K. By Smoryński’s Lemma 4.6, we find that S
is a model of HA. Since the frame of our model is in F, we see that S satisfies HA(�).
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Consider any proposition p in K. We want to find an arithmetical formula σ(p)
such that, for all k < n, S, k � σ(p) iff K, k � p. A first choice to consider would
be σ(p) := ∨

K,k�p Cn−k−1. However, it is easy to see this won’t wash. Consider,
for example, i ≺ j and suppose S, i � σ(p). Then S, i � Cm , for some m with
K,m � p. It follows that Ni |� Cm , and hence that m = n − i − 1. By persistence,
we find that S, j � Cn−i−1, but then N j |� Cn−i−1. A contradiction.

So this does not work. In the light of Ruitenburg’s lemma 4.3, we can diagnose the
problem as follows: the sentenceσ(p) is not constructively equivalent to a�0

2-sentence
or some other kind of sentence that gives us a transfer from classical satisfaction and
constructive forcing. However, our σ(p) is classically equivalent to a �0

2-sentence,
and therein lies the simple solution. Suppose {k | K, k � p} = {k0, . . . , km−1}. We
define:

• σ�(p) := ∀x0, . . . xm−1 (Cn−k0−1(x0) ∨ · · · ∨ Cn−k(m−1)−1(xm−1)).

It is easy to see that constructively σ�(p) is equivalent to a �0
2-sentence and that

classically σ�(p) is equivalent to σ(p).
By Ruitenburg’s Lemma 4.3, we find:

S, i � σ�(p) ⇔ K, i � p.

Hence, by induction, we find that, for any ψ :

S, i � σ�(ψ) ⇔ K, i � ψ.

So, S, 0 � σ�(ϕ). ��
Remark 4.2 A remarkable aspect of the above proof is that, where Smoryński used
Rosser-style self-reference, it only employs Gödelean self-reference—since it uses
Löb’s Theorem.

Remark 4.3 We note that we can employ a fixed series of models in our main argu-
ment that can be chosen independently of the finite frames. This uses an argument
originally due to Harvey Friedman [10]. We define by Carnap’s version of the Fixed
Point Lemma a formula A(x) such that:

PA � ∀x (A(x) ↔ (con(PA + A(x + 1)) ∨ ∃y≤x proofPA(y,¬ A(0)))).

Let Ti := PA + A(i)+ incon(PA + A(i)). Let Ci := con(Ti+1)∧ incon(Ti ). We
easily see that the Ti are consistent and that Ti is equivalent to PA +Ci . Moreover, the
Ci are incompatible. We note that, by Löb’s Theorem, Ti � con(Ti+1). We now start
with a model N0 of T0 in which we construct an internally definable end-extension
N1 that is a model of T1, etc. Thus we obtain a sequence of models Ni , where each
next model is a definable end-extension of the previous one. Moreover, Ni |� Ci .

Can we extend the above proof to other arithmetical theories besides HA as basis?
We note that we can extend it to weaker theories like i-I�1, the intuitionistic version of
I�1, since the construction of an end-extension from a consistency statement already
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works in the classical theory I�1 [12]. Secondly, the proof also works for stronger
theories like HA plus uniform reflection, or HA extended with an RE set of negations
that are �0

2-conservative over PA.
We have one somewhat more interesting extension of our result, for intermediate

logics with what we will call the endpoint replacement property:

Definition 4.4 Consider an intermediate logic �.

(1) Let F be a class of frames for the logic. We say that � has the endpoint replace-
ment property with respect to F if the following holds. Take any F in F, a set of
endpoints {ui | i ∈ I } of F , and a set {Mi | i ∈ I } of (possibly infinite) models
of � with roots {ri | i ∈ I }. Let G be the frame that is the result of replacing
the endpoints {ui | i ∈ I } by the frames of {Mi | i ∈ I }. Then any model M
on G which is such that its submodels generated by {ri | i ∈ I } are exactly the
{Mi | i ∈ I } will validate �.

(2) � has the endpoint replacement property if � has the endpoint replacement
property with respect to its class of frames.

Of the logics we mentioned, the following have the endpoint replacement property:
IPC, KC, LC, and Tn. The logics KP, Sc, ML, and BDn do not have the property with
respect to a class of frames for which they are complete. On the negative side: for KP
and Sc this is obvious from the fact that the simple 3-element fork which is a frame
for both is no longer a frame for either when attached to an endpoint of itself. On the
positive side, we will just show the most complicated case: the Tn.

Proposition 4.5 Tn has the endpoint replacement property.

Proof Let F be a frame for Tn, let {ui | i ∈ I } be a set of endpoints of F , and let
{Mi | i ∈ I } be a set of models of Tn with roots {ri | i ∈ I }. Let M be a model on
the frame G that is the result of replacing the endpoints {ui | i ∈ I } by the frames of
{Mi | i ∈ I } such that the models generated by the ri are exactly the Mi . We have
to show that the assumption that Tn(ϕ1, . . . , ϕn+1) is falsified in M will lead to a
contradiction. We can then assume without loss of generality that the root satisfies the
antecedent of Tn for ϕ1, . . . , ϕn+1 and falsifies each of ϕ1, . . . , ϕn+1. Let us define N
as the set of nodes in M that falsify each of ϕ1, . . . , ϕn+1. This will be a downward
closed set containing the root, falsifying Tn(ϕ1, . . . , ϕn+1) everywhere. Since for each
k ≤ n + 1,

∨
j =k ϕ j is falsified at each v ∈ N , also ϕk → ∨

j =k ϕ j is false at v for
some k ≤ n + 1. This means that for each v ∈ N , there is a k ≤ n + 1 and a wk with
v ≤ wk such that wk makes ϕk true but no ϕ j for j = k. Note that such nodes wk and
w j for different k and j are always incomparable. Note also that x � Tn iff x ∈ N .

Let us first consider the case that one of the ri is in N . That is impossible, since then
ri � Tn(ϕ1, . . . , ϕn+1) whereas the model Mi is supposed to be a model for Tn. The
second possibility is that none of the ri are in N . Note that then, if Mi contains any
wk-node as described above, its root ri will have to be a wk-node, and there cannot be
w j -nodes for any j = k in Mi . If we now restore the endpoints {ui | i ∈ I } in M in
place of the models {Mi | i ∈ I } and define

V ′(pm) = {w ∈ F \ {ui |i ∈ I }|w � ϕm} ∪ {ui | ri � ϕm},
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then it is obvious that for this new valuation, for each v ∈ N (and in particular for the
root of F), v �′ Tn(p1, . . . , pn+1), since one of the pk → ∨

j =k p j will be falsified
at the appropriate wk .Thus, the resulting model will falsify Tn(p1, . . . , pn+1). This is
again a contradiction, because F is a frame for Tn. ��
Theorem 4.6 Suppose that � has both the finite model property and the endpoint
replacement property with respect to a class F of finite frames. Suppose that U is a
consistent extension of HA(�) with an RE set of negations N. Then U has the de
Jongh property for �.

Before we turn to the proof of our theorem, we remind the reader of some basic
facts concerning Rosser sentences. Let V be any consistent RE extension of i-EA, the
intuitionistic version of Elementary Arithmetic. Using Craig’s trick, we can arrange
that the axiom set of V is given by an elementary predicate α. This predicate can be
taken to be a�0

1(i-EA)-formula. This means that both αx and ¬αx are i-EA-provably
equivalent to a �0

1-formula and that αx is i-EA-provably decidable. Using this predi-
cate, we can find a reasonable arithmetization proofV , the proof-predicate for V , such
that proofV (x, y) is �0

1(i-EA). Let provV (x) be ∃y proofV (y, x).
Consider formulas A and B. Suppose A = ∃x A0x and B = ∃y B0 y. We define:

• A ≤ B :↔ ∃x (A0x ∧ ∀y<x ¬B0 y),
• A < B :↔ ∃x (A0x ∧ ∀y≤x ¬B0 y),
• (A < B)⊥ :↔ B ≤ A,
• (A ≤ B)⊥ :↔ B < A.

Using Gödel’s Fixed Point Lemma, we can find a Rosser sentence R for V such
that i-EA � R ↔ provV (¬ R) ≤ provV (R). We clearly have i-EA � ¬ (R ∧ R⊥).
Using Rosser’s argument, we can show that both V + R and V + ¬ R are consistent.
We note that both R and R⊥ can be rewritten over i-EA plus�0

1-collection to the strict
�0

1 form. Since we work in extensions of HA, we may assume that R and R⊥ are �0
1 .

We turn to the proof of theorem 4.6.

Proof Let � and U be as required for theorem 4.6. Consider any ϕ such that � � ϕ.
Let K be a counter-model in F. Suppose the non-endpoints of K are a0, . . . , an−1
and that we have chosen our enumeration in such a way that ai � a j implies i ≤ j .
We repeat our construction from the proof of theorem 4.1 of a sequence of mod-
els with Ni for 0, . . . , n − 1, with the modification that we take as our base theory
W := PA + con(U ). So Nn−1 will satisfy con(U ) and incon(PA + con(U )).

We enumerate the endpoints as b0, . . . , br−1. We construct a sequence of �0
1-

sentences S0, . . . , Sr−1, with the following properties, for i < j ≤ r − 1:

W � con(U + Si ) and U � ¬ (Si ∧ S j ).

The easiest way to construct such a sequence is by induction on r . If r = 1, we take
S0 := �. Suppose we have constructed S′

0, . . . S′
s−1 with the desired properties. Let R

and R⊥ be the pair consisting of the�0
1 Rosser sentence for U +S′

s−1 and its�0
1 oppo-

site. We take Si := S′
i , for i < r − 1, Sr−1 := (S′

r−1 ∧ R), and Sr := (S′
r−1 ∧ R⊥). We

now construct in Nn−1 inner Kripke models of U + Si . The construction is analogous
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to the classical case. It is essential that the base theory in which we do the construc-
tion is classical! See Appendix A of [34] for a description of how to do an internal
Kripke model construction. This gives us models M j of U + S j , internally definable
in each Ni .

We build a Kripke model for arithmetic by associating Ni with ai and M j with b j .
This will be a model of HA + N by the internal version of Smoryński’s Lemma 4.6,
noting that the additional negations in N are always downwards preserved. It will be a
model of� by the endpoint replacement property. We associate to each propositional
atom p in K the sentence:

E p :=
∨

ai �p

(Ci ∧ con(U )) ∨
∨

b j �p

S j .

As before in the proof of theorem 4.1, we transform E p to a classically equivalent
�0

2-sentence, say E+
p . Letσ be the substitution p �→ E+

p . By Ruitenburg’s Lemma 4.3,
we find that our new model does not force σ(ϕ). ��

So, for example, for � = IPC,LC,KC,Tn, we do have the de Jongh property for
HA(�) plus the negation of the sentence expressing the Primitive Recursive Markov’s
Principle, and for HA(�) plus the negation of the sentence expressing the decidability
of the Halting Problem. (See [27] for definitions of these properties.)

5 A uniformization result

In this section we show how to prove uniformization using recursion-theoretic argu-
ments. This style of result is originally due to Franco Montagna [21] and, indepen-
dently, Albert Visser [31].

Theorem 5.1 Consider any theory T with elementary axiom set and any interpreta-
tion N, such that N interprets i-EA, the constructive version of EA (which is also
known as I�0 +exp), in T . Let Ai be an elementary decidable sequence of sentences
in the language of T .

Suppose, for every i , T � Ai . Then there is a �0
1 -formula R(x) such that:

a. i -EA � (R(x) ∧ R(y)) → x = y,
b. for any i , T � RN (i) → Ai .

Proof Let R(x) be such that:

i-EA � R(x) ↔ ∃p (proofT (p, RN (x) → Ax ) ∧
∀q≤p ∀y≤q ¬ proofT (q, RN (y) → Ay))).

We work with the reasonable assumption that the code of the numeral of y is larger
than y, that the code of a formula in which a numeral occurs is larger than the code
of that numeral, and that the code of a proof is larger than the code of any formula
occurring in it. Also we assume that proofs have single conclusions. (See [12] for
discussions of such reasonable assumptions.)
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We verify the uniqueness clause (a). Reason in i-EA. Suppose R(x) and R(y)
with witnesses p and q, respectively. In case p = q, we are done. Suppose q < p.
From R(x), we have: ∀y′≤q ¬ proofT (q, RN (y′) → Ay′). Since, by our assump-
tions on coding, we must have y < q, we find ¬ proofT (q, RN (y) → Ay). This
contradicts R(y).

We verify (b). Suppose, in order to derive a contradiction, that T � RN (i) → Ai .
Let π be a proof that witnesses this fact. Via a finite search among proofs with Gödel
number smaller or equal to the Gödel number ofπ , we may obtain the T -proofπ∗ with
smallest Gödel number with a conclusion of the form RN ( j) → A j . Say we have:
π∗ : T � RN (i∗) → Ai∗ . By the definition of R, it follows that R(i∗) is true. So, by
�0

1-completeness, T � RN (i∗). Hence, T � Ai∗ , contradicting the assumption. We
may conclude that Ti � R(i) → Ai . ��

Let � be any intermediate logic with the finite frame property. Suppose the set of
finite frames F corresponding to � is decidable. We can easily find an elementary
enumeration (ϕk)k∈ω of all �-underivable formulas, such that we can find a counter-
model Kk with frame in F of ϕk in an elementary way from k. In our main theorem,
we have shown that we can transform Kk in an elementary way into a�0

2-substitution
σk such that HA(�) � σk(ϕk).

Theorem 5.2 Under the circumstances described above, we have the uniform
de Jongh property for HA(�) with respect to �.

Proof Let Ai := σi (ϕi ). Applying theorem 5.1, with HA(�) in the role of T , we find
R(x)with the promised properties. Take τ(p) := ∃y (R(y)∧true�0

2
(�σy(p)�)). Here

true�0
2

is the�0
2-truth predicate and �σy(p)� is an arithmetization that sends y to the

Gödel number of σy(p).
Suppose HA(�) � τ(ϕ j ). It follows that HA(�) � R( j) → σ j (ϕ j ), contradicting

the assumption. ��

6 Cautionary afterword

We have proved our results with pleasant, pedestrian methods. The reason for this
luxurious situation is the simplicity and power of the two basic ideas on which every-
thing rests: Smoryński’s idea of the preservation of HA under adding ω as a root and
Smoryński’s extension of the idea to non-standard models, provided that the rest of
the Kripke model is definable in the new root. These ideas allow us to construct Kripke
models step-by-step with a lot of control over their properties.

However, as Johan Cruijff said elk voordeel heb z’n nadeel, i.e., every advantage
comes with a disadvantage. The disadvantage is that the essential dependence on these
ideas makes the results not easily extendible.

A first possible direction of extension would be more frame classes. We note that
there is not much hope to extend our results to frame classes with infinite models—at
least not with the methods at hand. The reason is that the preservation of HA under
adding a suitable root is essentially a tool for constructing finite objects. Of course,
we may extend the construction to non-standardly finite models, but these are rather
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artificial from the point of view of frame classes of intermediate logics. The good
news here is that almost all known natural logics do have the finite frame property. A
possible exception is the Propositional Logic of Realizability. In this connection it is
worth pointing out that de Jongh’s original proof could handle infinite frames but that
it did need trees.

The second possible extension would be more arithmetical theories. There seems to
be no hope to extend our results to extensions of HA that lack the Smoryński property.
For example, we do know that HA + ECT0 has the de Jongh property of IPC, but the
extension of HA + ECT0 with intermediate logics is a complete terra incognita. In
this case it could be interesting to look for counterexamples to the extension of our
results.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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