
Copyright or Copyleft? An Analysis of Property Regimes for Software Development 

 

 

Paul B. de Laat 

 

Faculty of Philosophy, University of Groningen, Oude Boteringestraat 52, 9712 GL Groningen, 

The Netherlands 

 

 

Abstract 

 

Two property regimes for software development may be distinguished. Within corporations, on 

the one hand, a Private Regime obtains which excludes all outsiders from access to a firm's 

software assets. It is shown how the protective instruments of secrecy and both copyright and 

patent have been strengthened considerably during the last two decades. On the other, a Public 

Regime among hackers may be distinguished, initiated by individuals, organizations or firms, in 

which source code is freely exchanged. It is argued that copyright is put to novel use here: 

claiming their rights, authors write `open source licenses' that allow public usage of the code, 

while at the same time regulating the inclusion of users. A `regulated commons' is created. The 

analysis focuses successively on the most important open source licenses to emerge, the problem 

of possible incompatibility between them (especially as far as the dominant General Public 

License is concerned), and the fragmentation into several user communities that may result. 

 

Keywords: commons, intellectual property rights, licensing, open source, software 

 

* Tel.: +31-594-540155; 

fax: +31-50-3636160. 



 
 

 2 

E-mail address: P.B.de.Laat@philos.rug.nl. 



 
 

 3 

Copyright or Copyleft? An Analysis of Property Regimes for Software Development 

 

 

1. Introduction 

 

In the `new economics of science', the production and distribution of knowledge are analysed 

from the point of view of information disclosure (cf. Dasgupta and David, 1994). The central 

question is whether knowledge is pursued in order to increase the public stock of knowledge, or 

to generate rents from its private exploitation. From this perspective, two kinds of systems may 

be distinguished, usually referred to as Science and Technology. In the former, knowledge is to 

be published openly, while in the latter, results are to remain a secret. This distinction between 

regimes can also be arrived at by focusing upon market mechanisms. Technology is the realm of 

the market, supported by intellectual property rights (IPRs) as granted by the state. Science, on 

the other hand, is a regime created by the state in an effort to correct market failure by granting 

subsidies and creating public laboratories. As Dasgupta and David stress, knowledge workers 

may be `scientists' or `technologists'—or both. It is not their cognitive practices, but the regime in 

which they work that will decide upon the matter. 

 

In this article, a specific kind of knowledge will be analysed: software. Under what kind of 

market and non-market modes are computer programs being developed? In line with the analysis 

above the distinction between public disclosure and private appropriation of knowledge will be 

the central focus. IPRs will feature prominently in the analysis, surprisingly in both regimes. In 

the case of software, the market regime is in force within companies, mostly producers of 

hardware or software. The non-market regime, somewhat unusually, obtains within communities 

of computer hackers, who can be found anywhere, both inside and outside universities. 



 
 

 4 

Therefore, in order to avoid misleading connotations, these two software regimes will no longer 

be referred to as Technology and Science, but as Private and Public Regimes respectively. 

 

Software merits special attention, as it has unique qualities that set it apart from other types of 

knowledge products. A programmer starts with an idea that is specified in an algorithm. It is this 

algorithm that can be programmed. In the early days of computing, this took place directly in a 

language that the computer could read (machine language). Such languages, however, are 

difficult to `read' by human beings, let alone to change. Therefore, higher order languages, more 

easily readable, were invented to make programming easier. Since then, programming is done in 

a computer language, which subsequently has to be transformed into a machine language. In 

computer jargon: source code has to be translated by a compiler into object code. It will become 

clear that this distinction between algorithm, source code and object code plays a vital role in 

both regimes. 

 

First the Private Regime as it obtains within companies will be analysed. It will be shown that 

from the 1980s onwards, both secrecy and IPRs have evolved considerably. Next, the analysis 

focuses on the Public Regime of hackers freely sharing source code, which has evolved 

alongside. IPRs will be shown to play a rather different role here: as copyright holders, authors 

created new kinds of licenses that regulate the inclusion of others (instead of excluding them). 

From the 1990s onwards, this movement for `open source software' has also made inroads into 

the private sector: by way of experiment, some firms took a free ride on existing projects, or 

opened up software projects of their own to outside hackers. The analysis will show that, as a 

result, open as well as mixed property regimes evolved (combining elements of both the Private 

and the Public Model), and new open source licenses were formulated in order to accommodate 

business interests. 



 
 

 5 

 

Within the academic community, open source software development is increasingly attracting 

attention. For purposes of comparison, the following sources should be mentioned in particular. 

First and foremost several studies by Yochai Benkler and Lawrence Lessig, legal scholars who 

opened up valuable avenues for research on open source software (Benkler, 2001, 2002a, 2002b; 

and Lessig, 2002a, 2002b). More recently, Research Policy published a special issue on this 

matter (Vol. 32, No. 7, 2003), in which several authors touched upon the subject of property 

rights. From these, West (2003) in particular is relevant for purposes of comparison. All of these 

sources I will refer to later at several instances. On beforehand, it would seem useful to mention 

on what account my analysis is different. Broadly speaking, concerning the matter of IPRs, I do 

not restrict myself to the simplified picture of the open source community as using only two 

types of license (either the General Public License or the Berkeley Software Distribution license; 

cf. below), but I explore more fully the whole range of `open source licenses’ that evolved, 

whether drafted by individuals, organizations or companies. Moreover, the complexities arising 

from combining source code with different licenses are explored. As a result, a more fine-grained 

picture will emerge of the open source movement and its communities of users. 

 

 

2. Private regime 

 

2.1 Protection of intellectual property 

 

In order to develop new products and/or processes, companies have to invest in research and 

development (R&D). These investments, however, are tricky: the fruits of them may easily be 

expropriated and/or imitated by competitors. Companies, therefore, have no choice but to protect 



 
 

 6 

their competitive advantage from R&D. The exploitation of newly developed intellectual assets 

has to be safeguarded, whether by legal or institutional arrangements. Thus, the Private Regime 

hinges critically upon excluding others from a firm's intellectual assets (Liebeskind, 1996). 

 

A variety of protective mechanisms are in use. In a series of studies that have been conducted 

over the last decades it has been established, that these cluster into three main strategies of 

intellectual property protection (Levin et al., 1987, the `Yale survey'; Harabi, 1995; Cohen et al., 

2000, the `Carnegie Mellon survey'; Cohen et al., 2002): (1) relying on lead time and 

manufacturing/service advantages over competitors; (2) stressing secrecy of all aspects of R&D; 

(3) patenting of obtained inventions. Their use is not completely a matter of free choice, but 

depends on the specific context and character of R&D. From the Yale and Carnegie Mellon 

surveys it can be deduced that in the last two decades the importance of both patenting and 

secrecy has grown remarkably (Cohen et al., 2000, pp. 12-13). In terms of effectiveness, lead 

time and secrecy rank higher than patents for both products and processes (both in the US and 

Europe) (Cohen et al., 2000, pp. 9-10). It has to be remarked, moreover, that these strategies are 

usually combined. For example, the patenting strategy appears never to be used in isolation 

(Levin et al., 1987). 

 

Below, I will analyse the ways in which these three mechanisms are actually used by software 

firms to protect their source/object code, especially as they change over time. Note that someone 

like Benkler (2001, 2002a) uses them as tools in distinguishing strategies for the production of 

information generally. In effect, he combines the three protection mechanisms: while his 

`Mickey' and `romantic maximizer' strategy rely on patenting (or, more generally, on IPRs), his 

`quasi-rent seeker' strategy relies on both lead time and secrecy. I prefer to keep the three 

protection strategies separate, while, as remarked above, many combinations will appear in 



 
 

 7 

practice. 

 

About the lead time strategy not much needs to be said. In software development, it would seem 

to have been always in use. Firms rush to implement new features or invent new systems, in 

order to stay ahead of the competition. Many important `battles' between software producers bear 

witness to this strategy: whether it is Word vs. Word Perfect, Microsoft Internet Explorer vs. 

Netscape Communicator, or any other. Over the years, however, its essential features have 

remained the same. As to the other two strategies, of secrecy and patenting, a closer analysis is 

needed, while in the last two decades these have been extended and adapted to the specific 

context of software. 

 

2.2 Secrecy 

 

In the early days, software was tied to hardware. The company (like IBM or Digital) that sold this 

combined package, as a rule took care of maintenance also. Software as a special product did not 

exist as yet. Accordingly, protection was never an issue. This started to change in the 1970s, as 

hardware and software were `unbundled' and turned into products of their own. A decade later, 

the personal computer was created and started to sell in the millions. In the slipstream, software 

was about to become big business. How to fight imitators and guarantee a continuing stream of 

income from software? 

 

As a first protective step firms decided to sell software in object code only. As a result, customers 

can hardly know what the software is all about, let alone change it according to their own wishes. 

This is so, while machine language can hardly be interpreted properly by a programmer. 

Moreover, the road back, from object code to source code (decompilation), which would allow 



 
 

 8 

proper interpretation, is hardly feasible. In that sense, software in object code may be said to have 

been turned into a black box: not to interpreted, not to be changed. 

 

Next to this technical means, companies considered legal means to keep their software a secret. 

Actually, they would have preferred to pursue IPRs as a way of protecting their intellectual 

assets. But the courts were not (yet) very hospitable to granting either copyright or patent 

protection to any aspect of software (cf. below). Therefore, trade secrecy laws became 

companies' first legal choice. According to these, information may qualify as a trade secret 

provided that (a) the information derives economic value from remaining a secret, and (b) the 

firm takes pains to keep it a secret. In two ways, these laws were used as a means to protect 

software (cf. Johnson, 2001, ch. 6). 

 

Trade secrecy has first and foremost been employed to tie software developers down. 

Incidentally, this is the staple way for all employers, whatever their branch of business, of 

protecting their intellectual assets. As a matter of routine, employees have to sign clauses of 

confidentiality, in which they agree not to disclose company information. Both in their present 

job, and if they quit, for a period of some years afterwards, employees are obliged to keep secret 

confidential information of economic value in general, and software in particular. This would 

presumably cover both object code and source code. Apart from the fact that nothing can prevent 

someone from starting to work elsewhere on the general ideas of the software involved, this 

solution has met—and still meets—a curious fate. Confidentiality clauses do have a place in 

(US) law, and (US) courts do enforce them. Nevertheless, if the experiences of Silicon Valley 

concerning employees in information technology apply more generally, companies turn out to be 

hesitant to try to enforce these clauses (for the sequel, cf. Hyde, 1998). What are the reasons 

firms as matter of routine ask their employees to sign such clauses, but as a rule never bother to 



 
 

 9 

enforce them if need be? 

 

First and foremost, such court cases mostly fail. According to Hyde's findings (1998), juries and 

judges simply dislike suits against departing employees. Only in rare cases, such as when 

information stored in material form is stolen (documents, diskettes), someone is convicted. The 

background for such reticence may be economical: most observers agree that the economic 

success of Silicon Valley hinges mainly upon the `high velocity' labour market in which 

employees switch jobs frequently, thereby spreading around knowledge and information. 

 

But there is another reason why companies have remained hesitant to appeal to the courts (Hyde, 

1998). Whatever the outcome, they are sure to acquire a bad reputation of being a bully towards 

their (leaving) employees. Such a reputation can be very harmful in attracting young talent that 

wants to be unfettered by contractual ties. Compare the famous lawsuits of Intel (1989) and IBM 

(1991) against ex-employees, accused of taking trade secrets to a competitor. Both suits were 

lost, and subsequently backfired by creating a nasty public reputation for the firms involved. 

 

Next, software firms targeted their users. Upon obtaining a copy, they were to signs secrecy 

clauses. This is, of course, an exceptional measure. No user of any other kind of invention has to 

swear secrecy. Whether an automobile, a drug or a DVD player, there is no need for such clauses. 

The decisive difference is, of course, the instant reproducibility of software: it can be copied in 

an instant, at almost no cost. With the advent of the Internet, it can also be spread all over the 

globe. In order to fight this nightmare of software `piracy' (as it is called), software lawyers 

turned to trade secrecy laws. For tailor-made software, the client was made to sign confidentiality 

clauses. For mass-distributed software, firms invented the `shrink-wrap' license: upon 

unwrapping the software, users automatically comply to licensing terms that forbid to copy or 



 
 

 10 

distribute the software any further (cf. Branscomb, 1994, ch. 8). The validity of the latter legal 

`invention' has always been doubtful: is this really a contract between equal partners? 

 

More importantly, a subtle nuance throws doubt upon the whole approach of relying on trade 

secrecy (cf. Johnson, 2001, ch. 6). If software is tailor-made for a customer, (s)he will usually 

require to obtain the source code, in order to be able to modify the software if necessary; this 

undermines the second basic condition for information to qualify as a trade secret, viz. keeping it 

a secret. Similarly, although only object code is provided, selling software on a mass scale does 

much to annihilate trade secrecy in a formal sense. In practice, therefore, this protection has 

never acquired much force. Another circumstance for it to fade into the background probably is, 

that later on stronger and more reliable instruments of protection came to the fore: copyright and 

patenting. 

 

2.3 Copyright and patenting 

 

So much for the strategy of secrecy. While still in use, from the 1980s onwards firms started to 

push for vesting property rights in software (for the general line of argument below about 

copyright and patenting of software, cf. Johnson, 2001, ch. 6; for more details, cf. Samuelson, 

1990). Referring back to the Levin/Cohen typology of intellectual property strategies: a patenting 

strategy—or, more generally, an IPRs' strategy—unfolded. This is mainly the case for the US, in 

other continents the developments are `lagging behind'. Below, therefore, I will concentrate on 

developments in the US. 

 

Company lawyers soon met with success in applying for copyright protection of software. 

Copyright has actually been developed for literary works like novels, plays and poems, and for 



 
 

 11 

works of art like paintings and sculpture. It gives its creator all the rights of publication and 

distribution of the product in its literal form, extending far beyond his/her lifetime. The actual 

creative expression is thereby protected, not the underlying ideas. Note, that the critical issue for 

authors is not whether to ask for copyright or not; that will be obtained easily enough after fixing 

one's text on paper or disc. Rather, the issue is whether to sue a supposed infringer or not. That 

will cost money and effort. 

 

Gradually legal institutions in the US became favourable to copyright claims for software. This 

has meant in practice, that both object code and source code came to enjoy protection; copyright 

has turned into an effective deterrent against software piracy. But neither the underlying ideas nor 

the algorithm as a whole were protected by copyright. Firms soon realized, therefore, that what is 

most valuable in software, going beyond the literal text, was still unprotected. So they started to 

push for broader copyright protection, encroaching upon the domain of underlying ideas. In a 

range of lawsuits, the so-called `look and feel' of software was tested out. This comprises aspects 

such as commands, icons, screen layout, screen sequence, and user interface functionalities 

(Samuelson and Glushko, 1990). 

 

At first, these efforts met with success. After 1990, however, gradually the tide turned, and most 

previous `gains' were lost. Courts took a more critical stance and expressly limited copyright to 

the verbatim text of (object/source) code. They adopted the position that software features only 

qualify for protection if they are merely of aesthetic value. If they are considered to be functional 

features (as well), copyrights are not granted. The famous 1990s' lawsuit that Apple finally lost 

against Microsoft (about its graphical user interface) marks this turn around. Since then, the 

reach of copyright protection did not change much anymore. In spite of these changes in legal 

status, copyright has remained—and still is—the standard way of protecting one's software 



 
 

 12 

packages. 

 

Subsequently, American firms explored the other imaginable option for software: patenting. In 

general, patents are granted for inventions. They are sought routinely for the fruits of industrial 

R&D. In particular, to obtain a patent an invention must be useful, novel and non-obvious; 

moreover, it should be found statutory subject matter (as a machine, article of manufacture, or 

process). If a patent is granted, the inventor obtains the right to exclude others from making, 

using or selling the product; if others want to exploit the invention, they have no choice but to try 

and obtain a license. A patent lasts for 20 years. In the case of software, in particular, this meant 

that developers started to present their inventions as implemented in the software for 

patentability, not the software itself. If protection is granted, it covers not only object code and 

source code literally, but also the underlying idea or algorithm. 

 

At first, legal bodies were reluctant to accept software (or rather: software-related inventions) as 

statutory matter. Would that not imply that mental processes became protected, limiting the 

freedom of thought? Would it not also imply protection of mathematical algorithms, abstract 

ideas, scientific principles, or laws of nature, thereby obstructing the free development of science 

and technology? Both were explicitly forbidden by the courts. Gradually, these obstacles have 

been overcome. Starting with Diamond vs. Diehr (1981), but really accelerating from the 1990s 

onwards, patents have been granted to software in abundance. 

 

Software patents now as a rule are claimed both as a process and as a machine; the latter kind of 

claims, `embodied' as they are, usually more easily pass the statutory test. It is instructive to see 

how the US Patent and Trademark Office now treats process claims. Let us peruse their 1996 

guidelines, and see how they formulate matters (Patent and Trademark Office, 1996). Abstract 



 
 

 13 

ideas are still the absolute threshold that cannot be passed. If a computer-related invention 

consists solely of mathematical operations, it will not be considered statutory. A demonstrable 

link with physical reality has to exist. This can be achieved in two ways. As a first option, the 

process may require physical steps to be performed outside the computer: either before the 

computer performs its operations (`pre-computer process activity'; e.g., measurement and 

analysis of electrocardiograph signals, Arrythmia, 1992) or after (`post-computer process 

activity'; e.g., controlling a robot with a collision avoidance memory, In re Warmerdam, 1994). 

As a second option, the process claim may be argued to be limited `to a practical application 

within the technological arts'. This is to mean that the software not only performs an algorithm in 

the abstract, but also uses it for a practical purpose; an example would be an algorithm modelling 

noise that is actually used to remove noise from a digital signal. 

 

By now, US patent claims for software have grown into a flood: from almost 4000 in 1988, to 

almost 21,000 in 1999. Software patent grants have risen in a similar fashion: from 2000 in 1988, 

to about 20,000 in 1999. A rough estimate holds that more than 20,000 patents are currently 

granted yearly. On top are big companies like IBM, AT&T and Motorola. Notice, though, that 

elsewhere, e.g. in Europe, patenting is still the subject of heated debate. 

 

Something remarkable has happened here. Copyright has been invented to protect works of 

culture, while patenting is meant to protect the fruits of science and technology. Usually, a work 

of creation is either the one or the other. In the case of software, companies tried to have it both 

ways (cf. Samuelson, 1993, p. 304). In the beginning (early 1980s), they stressed the literary 

aspects of software: it is a text written in computer language and/or machine language, worthy of 

copyright protection. Since that tactic, though successful, yielded only limited gains (verbatim 

protection of code), they changed their tune: software also performs, behaves, acts, transforms. 



 
 

 14 

Therefore, it may also be considered a process, or a machine, and qualify as an invention (if 

useful, novel and non-obvious). This tactic also succeeded; this time, protection of a broader kind 

was the result. So currently the property rights of both copyright and patent may be invested in 

software. I can think of no other intellectual product to enjoy such double protection. No wonder, 

that some jurists, in order to circumvent this exceptional dual position, have argued for sui 

generis protection of software. It seems unlikely, though, that their opinion will prevail. 

 

 

3. Public regime 

 

3.1 Open source communities 

 

At the same time, another quite opposite approach is germinating. The movement for `open 

source software' stresses the free flow of software in source code form.
1
 The model advocated is 

one of a community of programmers, who freely exchange the pieces of software they produce. 

One asks each other for advice, comments, and fixes for bugs. Using the instruments of copyright 

or patent to protect one's intellectual assets as described above is considered improper and 

detrimental to software development. Note, that these programmers proudly call themselves 

`hackers'. To them, this word has positive connotations; whizz-kids causing havoc are denoted as 

`crackers'. 

 

What are the advantages of such a model? Eric Raymond, one of open source's most ardent 

                                            
    

1
About the common denominator for this movement a lot of discussion has taken place. Next to the term `open source 

software' also the term `free software' is frequently used. The former is linked to economic justifications of source code 

sharing (cf. below, sections 3.1 and 3.4), while the latter is used by those stressing the freedom to cooperate that the 

model allows (cf. below, section 3.3). Throughout the article, I will use the more neutral term `open source software'. 



 
 

 15 

protagonists, puts it as follows: `Given enough eyeballs, all bugs are shallow' (Raymond, 1997). 

If the open source process goes on and on, the code involved will grow ever better in quality. As 

a result, software reliability is greatly enhanced. No matter of small importance, as unreliability is 

considered one of the main defects of software in general. One basic condition should be fulfilled 

if this model is to work at all: developers should not restrict their sharing to object code 

(`binaries'). In such a closed form, amending and fixing software is just too cumbersome; it is 

almost a black box. Therefore, the original source code should be shared; hence the name of this 

movement. 

 

Next to enhanced quality, open source gives control to the user: he/she is free to repair, modify, 

update the software as needed. While proprietary software, in binary form, keeps the producer in 

full control, open source software hands over control to users. In particular, this enlarged control 

gives the software `eternal life'. The use of commercial software will soon stop whenever the 

product is taken off the market. This is so, while the `key' has not been delivered to the customer. 

If, however, source code is made available, use may continue well beyond the commercial 

lifetime of the product. Experienced users know how to handle the software, and may continue to 

consult each other. 

 

What motivates co-developers to contribute? A recent survey among developers on the 

sourceforge platform (which hosts open source projects for free) yielded the following answers 

(Lakhani et al., 2002). First and foremost seem to be the intellectual stimulus and the 

improvement of skills that writing code provides. Next are the felt need for the software (whether 

for work or for hobby), the desire to support the case of open source software, and the joy of 

working in a team. Lower on the list is the motive that one may obtain recognition from one's 

peers, upon which one's reputation and status are founded. These results are further confirmed by 



 
 

 16 

a second, much larger hacker survey carried out by Rishab Ghosh and co-workers (Ghosh et al., 

2002). Also here, learning and sharing of skills and knowledge, the desire to be part of the open 

source community, and improvement of software functionality were the main motivators 

reported. Less importance, again, is attributed to the improvement of job opportunities and the 

development of an open source reputation.
2
 

 

Recognition and reputation may not be the prime motivators, hackers do care about them. No 

wonder, therefore, that in all open source projects credit is given to the original developer, and to 

those after him/her; the authorship of pieces of code and patches is made clear to every 

participant. The model, as can be seen, closely resembles the university publication system, in 

which disinterested scholars openly and freely comment upon each other's work, giving due 

credit (in the form of references) where credit is due. 

 

After a slow start in the 1980s, the number of open source communities has grown steadily. At 

this time of writing, current projects in cyberspace are estimated to number over 60,000 

(Freshmeat, 2005; Sourceforge, 2005). As a result, many reliable and high quality software 

packages have been produced. Their success has much to do with the development of the 

Internet, which facilitated open distribution and participation enormously. And in turn, some 

open source projects have yielded pieces of software that facilitate the running of the Internet (cf. 

O'Reilly, 1998). Important examples of the latter are: BIND (Berkeley Internet Name Daemon), 

which makes the domain name system (for www-addresses) work; Sendmail, which takes care of 

routing e-mail messages; and Perl, a scripting language predominantly used for web-server 

                                            
    

2
Because of a different methodology, a third larger hacker survey (David et al., 2003) can hardly be compared with 

the first two surveys. Nevertheless, it is surprising to find that in the survey items relating to supporting the case of open 

source software score highest of all as motivators to start `hacking', higher than reasons of improvement of skills or of 

software functionality. 



 
 

 17 

software. All of these open source projects are still running. 

 

The most successful stories of open source software are, of course, Linux and Apache. Linux 

goes back to 1991, when the Helsinki student Linus Torvalds wrote a new operating system for 

his 80386 PC. Over the years the number of participants, as well the size of the program, have 

grown at a tremendous rate. Nowadays, Linux is by far the biggest open source program 

available. The Apache project started in 1995, when a group of Californian web-masters came 

together to update the web-server software as originally developed by Rob McCool at the 

National Center for Supercomputing Applications, University of Illinois. Soon hundreds of 

hackers cooperated, and Apache became the number one server software on the Internet. 

 

3.2 Licenses 

 

What about the terms of disclosure of open source software? Is the source code simply put on a 

website, from which it can be downloaded by anybody? Actually, things are more complicated 

than that. IPRs do play a role here, though in an unorthodox fashion. Like with any piece of 

commercial software, open source authors claim copyrights in their products. As authors, they 

then proceed to write a license for future users of copies. Anyone downloading the software, is 

supposed to automatically comply to its terms (`click-wrap license').
3
 

 

Within the open source movement, gradually a consensus has developed about what constitutes a 

proper `open source license'. After heated discussions the Open Source Initiative (OSI), created 

                                            
    

3
Note that, strictly speaking, running the software is always allowed. The license terms only speak to copying, 

modification and (re)distribution of the code. So a user is only bound by the license if (s)he actually does more than just 

run the downloaded package. In that sense, the term `click-wrap license' is slightly misleading. 



 
 

 18 

in order to promote the cause of open source software in general, formulated a yardstick, called 

the `open source definition' (OSI, 1997-2005). A license conforms to this definition, if it allows 

to freely use, repair and modify the source code. It should also allow the program, corrections 

and modifications to be publicly redistributed for further use, repair and modification. So a 

continuous cycle of modification and public (re)distribution in source code is to be allowed 

explicitly. Moreover, everyone is to be included in the process; specific persons or groups may 

not be excluded by the license. Similarly, using the program is to be allowed for all purposes; the 

license may not discriminate against specific fields of endeavour (for all of these clauses, see 

OSI, 1997-2005). 

 

Early on in the 1980s, two influential licenses have been formulated: the General Public License 

(GPL) and the Berkeley Software Distribution (BSD) license. These reflect fundamental 

differences of opinion among hackers about intellectual property and corporate interests. Since 

then, many more licenses have been written by open source hackers. All of them, however, take 

these two licenses as point of departure. It is worthwhile, therefore, to dwell somewhat longer on 

them, and on the historical circumstances in which they were created. 

 

The hacker community is mainly of American origin, and developed along two branches since 

the early 1970s (the sequel is based on McKusick, 1999, and Raymond, 1999). The first hacker 

branch had its base at MIT's Artificial Intelligence Laboratory. Using PDP computers from DEC, 

they wrote their own operating system (ITS, for the PDP-10) and many application programs. 

From 1969 onwards they used the defense-built ARPAnet to freely exchange their software. The 

other branch consisted of hackers from Berkeley (University of California) and New Jersey (Bell 

Laboratories, part of AT&T). They created Unix, an operating system written in C-language that 

promised portability from one machine to the next. In the beginning, from 1974 onwards, it was 



 
 

 19 

open source avant la lettre. Newly produced Unix versions (invariably called BSD) were 

distributed in source code to anyone who applied for a copy, for free, and freely redistributable. 

 

In the early 1980s two important changes took place. For one thing, the East Coast branch had to 

switch to the PDP-11, and decided to switch to UNIX as well. As a result, both hacker branches 

started to converge. For another, in 1984 AT&T was split up. The company had always kept 

track which parts of the Unix code were actually written by its own employees. It henceforth 

started to enforce its copyrights for commercial purposes. Any Unix-user had to apply for a new 

kind of license: source code was still delivered, but it was no longer freely redistributable, and no 

longer without charge. So BSD-versions entered into a semi-commercial maelstrom. Hackers 

were dismayed, especially as license fees grew year after year. They decided to regain the tools 

that—they felt—were stolen from them. Two kinds of countermovement ensued. 

 

3.3 General Public License 

 

The most radical approach was developed by Richard Stallman, a programmer at MIT. In 1984 

he resigned from his job and started the ambitious project of writing a free operating system from 

scratch (called GNU). It should be compatible with Unix, and ultimately replace this non-free 

operating system. The Free Software Foundation (FSF) was set up to further the project. At great 

speed Stallman proceeded to write several GNU pieces such as the GNU Emacs editor, the GNU 

Debugger and the GNU C Compiler, all of which were freely distributed by the FSF. 

 

These releases came with a license called the GPL, also colloquially referred to as `copyleft' 

(FSF/GNU, 1989/1991) (Table 1). As any other open source license that was formulated later, 

the GPL allows source code to be freely used and modified, and to be freely (re)distributed. A 



 
 

 20 

discussion permanente among hackers is allowed, even encouraged. However, the license 

comprises an intriguing invention: modifications and recombinations may only be redistributed 

under the same license terms as the original work. For any redistribution of (modified) GPL-ed 

code the GPL is mandatory. In the wording of the GPL (preamble): `If you distribute copies of 

such a program, whether gratis or for a fee, you must give the recipients all the rights that you 

have'. Rights and duties are passed on from one recipient to the next in an endless chain. 

 

This implies two things. For one thing, it is not allowed to deviate from the public path. 

Modifying the software and bringing it on the market only in object code with say the usual 

shrink-wrap license is forbidden. Such a commercial move is allowed, but only if a full source 

code version is publicly available as well. In this way, all modifications remain in public view 

forever. For another, it implies that GPL-ed code, from the original lines to its various 

modifications, always remains tied to the GPL. Once code has been GPL-ed, it remains so 

forever. Therefore the GPL has been compared to a `virus':
4
 whenever a programmer turns to 

combining GPL-ed code with other code, the product as a whole (being `a work based on the 

Program') may only be redistributed under GPL-conditions. 

 

Later on, the FSF also drafted a more `lenient' license. It was specifically written for use with 

libraries, which are collections of functions needed to write software (e.g., a C+-library). Suppose 

a library becomes GPL-ed. Then a new program that links with that library has to be licensed on 

GPL-terms as well. In order to create room for other (especially proprietary) kinds of licensing, 

the Library (or Lesser) General Public License (LGPL) was created (FSF/GNU, 1991/1999) 

                                            
    

4
The term `virus' was probably first coined inside Microsoft, in order to discredit open source initiatives (cf. Mundie, 

2001). Despite its negative connotations, the term is commonly used nowadays in the literature about open source. 

Therefore I feel free to use the term as well. 



 
 

 21 

(Table 1). It is quite similar to the GPL, but for the fact that it allows linking with a library, 

without dictating any license terms upon the new program. But, of course, modifications of the 

library itself still have to comply to the strict LGPL-terms. 

 

Why did Richard Stallman formulate these (L)GPL regulations? Why this focus on keeping the 

code `free'? From reading his famous GNU Manifesto (Stallman, 1985/1993) it would seem that 

two motivations stand out. For one thing, Stallman seems to loathe IPRs, for software in 

particular. He argues that property rights are quite unnecessary for motivating programmers to 

write code; these are passionate enough as it is. Moreover, next to superfluous IPRs are also 

harmful: they inhibit the use and distribution of software. For another, Stallman considers the 

hacker scene to be a community within which sharing one's programs is `a fundamental act of 

friendship'. Copying software is `as natural as breathing'. The ideal to be pursued is a hacker 

community of friends in which source code is property held in common. 

 

3.4 Berkeley 

 

Next to the FSF, another kind of movement to set Unix free developed among programmers from 

Berkeley. Instead of writing a whole new operating system from scratch (the Stallman approach), 

they proceeded to `liberate' Unix files, libraries and utilities one after the other. Their approach 

was to check all files upon original `authorship'. If they were sure to be the sole authors, they felt 

free to (re)issue files on their own terms. If, however, files were a joint product of Berkeley and 

New Jersey programmers, they had no choice but to rewrite them from scratch. Based on this 

procedure, and with the help of many outside hackers, `freed' Unix files were issued one after the 

other. After a series of releases (starting in 1989), a complete Unix system (for 386 PCs) became 

available in 1992. 



 
 

 22 

 

These releases came with a liberal kind of license: the BSD license, in use from 1989 onwards 

(BSD, 1998; cf. Table 1). Essentially, everyone may freely use, modify and distribute binaries 

and source code, in original or modified form. Everything is allowed, if only the original inventor 

is credited by retaining the copyright notice in all subsequent versions. Such a license, of course, 

allows everyone to take pieces of the code, modifying and adding wherever necessary, and sell 

the package as a closed commercial product only (i.e., without disclosing the source code). 

Exactly this, branching off the public path and exclusively taking the private path, had been 

disallowed by the GPL. In those early days of open source software, a number of other licenses 

were formulated upon the same model that were to be used widely since: MIT License, and 

Apache Software License. For practical purposes, as the differences are typically small, I will 

refer to these as a whole as `BSD-style' licenses. 

 

Why this more liberal attitude? In their Unix time these Berkeley hackers had become convinced 

of the superiority of open source practices: it allows bug fixing, improving performance and 

adding new features freely (McKusick, 1999, p. 40). To them, open source simply yields better 

software. And good software was all they cared about. Therefore, they did not feel the need to 

add regulative clauses à la the GPL to their licenses: these would only inhibit the further spread 

of their software. Any redistribution, whether open or closed, was welcome to them. In this 

sense, they supported software both as a public and as a private good. 

 

3.5 Spectrum 

 

This describes the spectrum of licenses, as it emerged from open source's early days (the 1980s). 

Not surprisingly, many hackers and/or not-for-profit organizations were not satisfied with these 



 
 

 23 

existing licenses, and sat down to write yet another license to accompany the release of their 

source code (companies, mostly entering the scene from 1998 onwards, did likewise; these are 

analysed below). Several organizations try to keep abreast of these developments. The OSI 

maintains an up-to-date list of licenses that they `approved' to conform to their `open source 

definition' (OSI, 2005). This certification program, by the way, had unintended consequences: as 

Bruce Perens remarked, it `inadvertently encouraged the proliferation of licenses' (Moen, 2000). 

Also the FSF, tied specifically to the cause of copylefted software, regularly reports about 

licenses currently in use, and comments upon them (FSF/GNU, 1999-2002). 

 

What was the yield? I studied a dozen of such new licenses, whether or not they were conform to 

the `open source definition'; all licenses I could detect that accompanied published source code 

were analysed. I found that a number of new nuances were introduced: modifications may be 

freely distributed, but a request for a copy from the original maintainer is to be complied with; 

modifications may only be redistributed to the original developer; modified versions must be 

renamed; advertisements for the product should always mention all copyright holders involved; 

commercial distributions are not allowed; classes of users and/or purposes are excluded. 

Nevertheless, I would argue that a substantially new kind of license did not emerge. All of them 

are essentially variations on the same theme: BSD-like (most of them) or GPL-like (few of 

them). With the odd exception of course: the Hacktivismo Enhanced-Source Software License 

Agreement (Hacktivismo, 2002). It is a political manifesto even more radical than the GPL. 

While fully endorsing the GPL philosophy, it imposes political restrictions on use and 

modification of source code: the software may not be used to violate human rights, and neither 

destructive viruses nor code for surveillance purposes may be incorporated. Note that as a result, 

it does no longer qualify as a `proper' open source license. 

 



 
 

 24 

At the same time, it should be pointed out that all of these `new' licenses just did not attract a 

following. They are hardly used by anyone else than their original designer, issuing his/her own 

piece of software on these terms. They never became sociologically significant: open source 

licenses (company-drafted licenses, to be discussed shortly, excluded) essentially remained 

dominated by the well-known (L)GPL and BSD-like licenses. This statement can be 

substantiated by statistics about the actual application of `approved' open source licenses. 

Although open source projects tend to appear and disappear quickly, and counting them in 

cyberspace is quite a task, available statistics, for whatever they are worth, all point in the same 

direction: the GPL is by far the most popular license. The Freshmeat open source software 

platform recently tracked about 36,000 packages; most popular were the GPL (70%), LGPL (6%) 

and BSD license (6%) (Freshmeat, 2005). If I combine the first two licenses into (L)GPL, and 

count licenses similar to the BSD (but excluding the `'new' ones just discussed) together in the 

category of BSD-style licenses, the results are even more telling: 77% belongs to the (L)GPL 

family, and at least 15% to the BSD-style family. In the public domain was just 1.3% of projects. 

Another open source software platform, sourceforge, provides similar figures (Sourceforge, 

2005): more than 60,000 projects, with the GPL accounting for 68%, the LGPL for 11%, the 

BSD license for 7%. In terms of `families': (L)GPL licenses 79%, BSD-style licenses at least 

14%. Just 2.6% of the packages were wholly in the public domain.
5
 

 

The fact that most open source developers choose the GPL for their work can be explained as 

follows. The regulations of the GPL provide a guarantee that all subsequent contributions to and 

modifications of one's code remain a public affair; no one may take the code and develop a 

closed package from it that remains private. In that sense, `appropriation' of one's intellectual 

                                            
    

5
These freshmeat and sourceforge statistics apply to all projects undertaken in cyberspace, including those that carry 

open source licenses as written by companies (which will be discussed below). 



 
 

 25 

assets is being prevented. 

 

3.6 Public domain 

 

The core of the open source software development process is public disclosure of its vital text: 

source code. In addition, it comes with a license that is intended to further an ongoing public 

discussion of the code that supposedly contributes to ever higher quality and more features. IPRs 

will be shown to play a supportive role here. This time not of exclusion of others (as in the 

Private Regime), but of inclusion of all that care to join. 

 

In legal terms literary and artistic creations are either copyrighted, or in the public domain 

(meaning that free use of them is allowed). A work enters the public domain, either because the 

term of copyright expires, or because the author decides to renounce his/her rights. Open source 

software does not neatly fit into these categories. On the one hand, it is always copyrighted, 

hackers explicitly assert to be their authors; on the other, several kinds of public use are explicitly 

allowed. So open source software seems to be both at the same time. 

 

In order to account for this paradox, I suggest that we no longer look at a work as a whole, but 

distinguish between its various uses instead. Each use separately, then, may be either reserved to 

owners (`rights of exclusion'), or allowed to anyone (`users' privileges'). The distinction between 

private right and public privilege applies to each and every use separately, not to the work as a 

whole. This approach, going back to Wesley Hohfeld, has been further developed of late by 

Michael Heller (cf. the account in Elkin-Koren, 2001, p. 196; further references therein). From 

this point of view, some products belong as a whole to the public domain (e.g., scientific data, or, 

of course, works with copyright term expired). But as a rule products belong to both categories: 



 
 

 26 

copyright holders obtain rights upon some specific uses, but other uses are excepted by law (such 

as fair use) or fall outside the scope of copyright (such as reading a text). 

 

This finer distinction is useful to better appreciate the case of software. Copyrighted software is 

such a `mixed good': copyrights obtain, but at the same time copyright exceptions apply (e.g, to 

decompilation for certain purposes), and uses outside the scope of copyright law are free (e.g., 

running the software). Seen from this angle, open source licenses can be interpreted as efforts at 

tilting the balance from private to public uses. The way in which this is achieved is remarkable: 

an exception to copyright law is created, not by law, but by contract. Open source licenses, at 

least the ones conforming with the `open source definition', have in common that the rights of 

publication and distribution of code as conferred by copyright become public privileges. At the 

same time, they stipulate regulations that users have to satisfy. The BSD-style license mentions 

very few regulations, while the GPL prescribes more of them (requiring, in particular, that 

modified code always remains open and GPL-ed). So open source licenses may be interpreted as 

creating, as it were, a kind of `regulated' public domain by contractual exception (which, 

obviously, differs from the public domain proper). With that, the usual role imputed to IPRs has 

been reversed. While in the Private Regime copyrights (and patents) are used to exclude others, 

in the Public Regime these are used for including others. This inclusion, however, is not a 

blanket one: copyrights specifically allow imposing regulations upon participating hackers. 

 

Why do open source software authors not take to the usual solutions for handling property rights? 

One customary solution is to retain copyright's exclusive rights without exceptions. This is, of 

course, the usual practice for scientific publications. In academia, this scheme is satisfactory 

(apart from the question who obtains these rights): it allows (by lawlike exception) fair use, 

which gives scientific discussions enough leeway. At the same time, no more freedoms are 



 
 

 27 

allowed (such as rewriting the text) because nobody really needs this option: science is better off 

with academics writing a whole new text than rewriting texts of colleagues. For open source 

software, however, this scheme would provide too little freedom. Code gets better, adepts 

believe, by rewrite en plein public; it needs that kind of collective effort. Therefore, open source 

licenses provide precisely that kind of freedom. 

 

Another solution that suggests itself is to refrain from rights altogether and put the source code 

squarely in the public domain. Although some hackers do prefer this solution, the large majority 

does not: in their view, this would allow too many freedoms. The typical hacker does want to 

impose some regulations upon his fellow hackers. For one thing, as they care about their 

reputation, hackers want to remain recognized as the authors of their specific pieces of code. 

Therefore they write clauses requiring that copyright notices be retained in all subsequent 

versions of the software. For another, the more radical branch of the open source movement (as 

embodied in the FSF) is focused upon keeping source code free. In order to impose this condition 

upon users, `virus-like' regulations have been written into the GPL. All of these various clauses 

would be not enforceable without copyright asserted. 

 

I first formulated this approach to interpreting the paradox of open source software in De Laat 

(2002, pp. 99-101). It may usefully be compared with other recent analyses. Benkler (2001, 

2002a), on the one hand, introduced the `Joe Einstein' strategy (for information production in 

general), used by non-market actors to appropriate the benefits of their information outputs which 

are made freely available to the public. Open source communities fit the description. In Benkler 

(2002b), the author proceeded to develop a more specific and more elaborate model of hackers as 

practising `peer production', based on a commons of source code. This commons is open to 

everyone, but with regulated use: a `regulated commons'. These regulations are then cogently 



 
 

 28 

analysed in terms of their functions for keeping the production of open source software alive. 

Lessig (2002a, ch. 4, and 2002b), on the other hand, provides an analysis of open source licenses, 

and concludes that the code commons is protected by a combination of contract law and 

copyright. In my analysis, the same notions turn up, but they become connected to each other: the 

open source movement creates and sustains a commons of source code open to any hacker, which 

is regulated by licenses that derive their legal force from copyright and contract law combined.
6
 It 

is the complexities of this regulation, especially as these increase by firms accessing the 

commons, that will be explored more fully below. 

 

 

4. Open source in industry 

 

4.1 Incorporating the product 

 

Gradually, as open source became more successful, corporations undertook to come to terms 

with the phenomenon. They perceived open source primarily as a threat: their corporate clients 

could be tempted to switch to open source products, being free after all. But they also felt 

challenged to incorporate some of the open source dynamics into their own business practices. 

 

From the 1990s onwards, firms at first took open source products as given, and attached `free-

riding' practices to them.
7
 The following approaches can be delineated which, it should be noted, 

                                            
    

6
In order to avoid confusion, henceforth I will adopt the term `regulated commons' or `source code commons', instead 

of `a kind of regulated public domain', which was used above. 

    
7
Notice that although firms do take a free ride, they do not cause the usual `free-rider problem' of diminishing the 

value of the collective outcome involved. Actually, rather the opposite happens: the firms involved contribute to the 

cause of open source software, directly by providing services and additional software (though not for free; cf. below), 

and indirectly by increasing the size of the open source community (which is the source of further improvements of the 



 
 

 29 

unfolded simultaneously rather than consecutively (cf. Hecker, 1998, who employs a somewhat 

different classification): (1) tying services; (2) readying one's hardware for them; (3) developing 

commercial closed applications on top. 

 

(1) First, companies start to sell services to facilitate the use of open source software. Actually, 

many firms were set up with just that goal in mind. This may take many forms. Copies of 

programs can be distributed (either in source code or object code), say on CD-ROM or DVD, in 

order to facilitate its installation. Also, bug fixing, customizing, enhancements, consulting, and 

training of personnel can be provided. Finally, books and documentation about open source 

software can be sold. All of such companies I will refer to as `support sellers'. Sometimes they 

start to develop additional software; with these extra's, they try to distinguish themselves from 

the competition. 

 

Some examples are the following. Around Linux, from 1995 onwards a whole free-riding 

industry sprung up. Next to Red Hat/Fedora and SUSE (now part of Novell), Knoppix, 

Mandriva, and Xandros remain today as some of the main distributors of Linux services. In a 

similar fashion, Apache services are provided by Covalent Technologies and C2Net Software 

(now part of Red Hat). And O'Reilly has managed to become the distributor par excellence of 

state-of-the-art books about open source software. 

 

(2) In addition, established hardware firms take measures to let open source software run on their 

existing products. For the purpose, enabling software (such as device driver code) has to be 

written. Examples in case of Linux include HP, SGI and IBM, soon followed by Compaq and 

Dell. Henceforth, clients may choose Linux on their computer systems (instead of say Windows 
                                                                                                                                                                           

code available to all). No social dilemma is involved. 



 
 

 30 

or Unix). 

 

(3) As a third practice, companies take advantage of the broad base of free software, and proceed 

to develop and sell closed application packages that run on top of it. Until now, these consist 

mainly of already existing packages that are `ported' to Linux. After supporting this operating 

system on their computers, companies announced they would convert their existing applications 

to run on it too. Corel ported Word Perfect to Linux (1998), while IBM did so for Lotus (1999). 

Oracle and Informix joined by porting their database software to Linux (1999). All of this is 

commercial software: in object code and for a fee. 

 

What kind of property regime applies, whenever new code is being produced? Often, free-riders 

simply stick to their old ways, and continue a closed regime. Supporting software (approach 1), 

enabling software (approach 2) or applications (approach 3) come with a commercial license. 

Sometimes, however, another approach is taken, and a public regime is tried out: supporting or 

enabling software are opened up with an open source license. Let me illustrate this statement by 

showing the different ways in which support sellers of Apache web server software may release 

applications on top of the free base (which comes with a BSD-license). On the one hand, a firm 

may release the extra software as binaries with a commercial license (notice that, in the process, 

selling support—approach 1—and selling applications—approach 3—merge together). A case in 

point is Covalent Technologies with its `Enterprise Ready Server' (binaries, $ 1495); this is 

Apache with some proprietary software for web infrastructure management on top. On the other 

hand, a firm may add software in source code, with an open source license attached to it. Take 

C2Net Software, that sells support for the `Stronghold Secure Web Server' (from $395 onwards). 

This is Apache, with extra modules that are based on the OpenSSL, SSLeay and mod_ssl 

projects. After these had been proprietary at first, the company preferred to open up these 



 
 

 31 

projects: they became open sourced on the same license terms as Apache. 

 

Usually, support sellers have this choice, of providing add-ons either on open or on closed terms. 

Notice, though, that this is not so if the software base comes with the regulatory GPL, and the 

enhancements are closely connected with it. Then the `virus' character of the GPL leaves hardly 

any choice but to attach a GPL to the extra's as well. A case in point is Red Hat, which sells `Red 

Hat Linux' on CD-ROM or DVD with documentation and support. Apart from compiling and 

testing for performance and reliability, the firm also develops new programs. An example is the 

Red Hat Package Manager (RPM), that simplifies the task of installing and removing 

applications on top of Linux. Red Hat has attached the same license as applies to the Linux 

kernel (the GPL), while the RPM `interacts sufficiently' with the kernel `to make any other 

licensing scheme difficult' (Red Hat, 1995-1997, par. I.3). An additional reason for choosing the 

GPL is, that their managers endorse the points of view of the FSF; to them, software should be 

free (cf. Young, 1999). 

 

The overall conclusion may be drawn, that support sellers sometimes contribute software 

themselves. Then, a public regime of software development may be tried out, either voluntarily, 

or semi-compulsorily (if the enhancements interact closely enough with GPL-ed files in the free 

base). Such open regimes are the first instances of corporations actually adopting the hacker 

model of software development. On a small scale, hacker logic has entered the firm. 

 

4.2 Incorporating the process 

 

After these modest beginnings, of free-riding upon open source products, firms took a closer look 

at the process of open source. They started to open up, by way of experiment, some of their own 



 
 

 32 

software projects to the outside world; opening up no longer remained confined to additions to 

software created by hackers outside of the company. The source code was put on a public 

website, for any hacker to load down. Moreover, further development of the software was 

actually to take place in the open: the website involved became a public software laboratory. The 

first company that ever did so on a grand scale was, of course, Netscape: in March 1998, it put 

almost the entire source code base of its experimental webbrowser, Communicator 5.0—

numbering about two million source lines of code—, on the Internet. Soon after, other firms 

followed suit. Apple, AT&T, Borland, HP, IBM, Intel, Nokia, and SUN, as well as dozens of 

smaller firms, initiated similar experiments (cf. West, 2003; De Laat, 2004). 

 

How to make money with such a move? Actually charging a fee for the open source package 

would not constitute much of a `business model', for two reasons. Any buyer may start to resell 

the software for a lower price, or even put it on a website, available to everyone at no charge. In 

addition, asking money for the software would severely hamper the development of a dedicated 

community of developers. Instead, companies focused their efforts on mobilizing as many 

hackers as possible to download the code—at no charge—, and to return comments, bug fixes 

and modifications. A thriving open source community was to be created that would produce ever 

improving software. On the assumption that a broad base of users/contributors develops, 

basically three ways to make money evolved, which mirror the discussion in section 4.1 above: 

selling (1) support, (2) connected hardware, and (3) commercial software on top. So, I would 

argue, whether one takes a free ride upon open sourced software from someone else, or opens up 

one's own software, the ways to make money are basically the same. 

 

(1) To begin with, companies, as connoisseurs par excellence of their public source code, are in 

the best position to offer various kinds of services to users: documentation, consulting, 



 
 

 33 

customizing and training of personnel. So, in effect, companies turn into `support sellers' of the 

source code they have created in the first place. This is a model with a fully open regime for one's 

software, both base and enhancements (à la Red Hat selling Linux, cf. above). An example in 

point is Zope Corporation, that in November 1998 opened up its main product, a web 

applications server called Zope. Complete source code can be downloaded for free from their 

website. Since then, many more applications, for content management in particular, have been 

open sourced as well. Around all of these projects thriving communities of contributing hackers 

have developed. Income flows from customizing solutions for customers, consulting, training 

and the like. 

 

(2) Next, firms may turn to a public regime of open sourcing, with the ultimate goal in mind that 

it will enhance the sale of connected hardware. A recent example involves HP. It open sourced 

its e-speak technology, a platform designed to facilitate the delivery of e-services (January 2000). 

Their reasoning was, that if enough applications would be forthcoming, sales of supporting 

hardware (like servers and storage) would increase. 

 

(3) Finally, firms may try to earn money by developing additional software on top of the freed 

base, and sell the whole product as fully supported closed binaries. After all, all open source 

licenses allow this distribution of source code compiled into binaries (as long as one does not 

`secretly' introduce modifications). Here we witness the introduction of a mixed property regime 

for one's software: open at the base, closed on top. An apt example is Netscape. Its policy had 

always been to release the browser proper, called Netscape Navigator, in several branded 

versions (binaries): Netscape Communicator Standard Edition (with extra's like Netscape 

Messenger for e-mail), Netscape Communicator Professional Edition (with even more extra's like 

Netscape Calendar). The more extra's, the higher the price. Netscape intended to continue this 



 
 

 34 

policy with the open sourced 5th generation browser Communicator, and sell a whole range of 

branded versions with increasing degrees of sophistication. 

 

Steps of opening up source code are not to be taken lightly. A calculus is involved here, of 

carefully comparing closed and open alternatives. In considering to open up source code, any 

firm has to ask itself: are we really going to make more money in (1) services, (2) hardware 

and/or (3) commercial software that build upon a freed and therefore expanded user base, than by 

simply sticking to our software and selling it all on a commercial basis? As for the third strategy 

in particular, an additional tactical problem has to be addressed (cf. West, 2003): how much is to 

be opened up, how much is to remain closed? Where has the dividing line best be drawn? 

 

Observe, that open sourcing one's software implies that the public domain—or, more accurately, 

the source code commons—is being embraced (as contractual exemption). However, while 

hackers do so for creating an ever ongoing cycle of public learning, companies have other 

motives. They do not access the commons for its own sake, but while the public learning cycle, 

presumably, will generate outcomes (like a massive user base and improved quality) upon which 

other activities may prosper: services, hardware and/or closed software. An instrumental view of 

the source code commons predominates. It may usefully be compared with the more general 

strategy of information production, called the `studious (or scholarly) lawyer', as introduced by 

Benkler (2001, 2002a). It is the strategy followed by individuals or organizations that distribute 

their information outputs for free, so as to be able to capture the correlated markets. 

 

4.3 Licenses 

 

In opening up source code, companies had to confront the issue of licensing. What regulations, if 



 
 

 35 

any, did they attach to the uses of their code? Did they choose the licenses as pioneered by the 

open source movement, or prefer to write down new licenses? After all, unlike free hackers, 

companies have to keep a keen eye on their corporate interests. Some firms were content to pick 

and choose one of the existing, dominant licenses. Examples involve Borland (for its Kylix 

libraries) and HP (for its e-speak technology) that chose a (L)GPL. The majority of them, 

however, started to write their own licenses; their juridical departments could not resist the 

temptation. Judging from the lists maintained by the FSF and the OSI, some 20 new licenses 

were created, intended to accompany the source code that a firm divulged on the Internet. What 

were the results? Did it create anything new, and how significant these proposals became in 

sociological terms? 

 

After reading all these texts, I found, like before, that much energy was invested in producing 

new types of regulations. In the main, however, existing malls were followed: the BSD-style 

license (very often; the Intel Open Source License, the Sleepycat Software License, and the Zope 

Public License are examples) and the GPL (very seldom; the Common Public License from IBM 

is an example). As exceptions to this rule two licenses, I would argue, stand out as new 

contributions. First the Mozilla Public License (MPL), together with its `twin sister' the Netscape 

Public License (NPL), both conforming to the `open source definition' (the subtle differences 

between the two will be analysed below). Netscape created these for its browser release in 1998. 

Both try to formulate a middle position between the GPL and the BSD license. Secondly, the 

Jahia Collaborative Source License (JCSL), created recently by the Swiss Jahia company, may be 

considered a new kind of license (Jahia, 2003). It is a reasoned exposé trying to find a centre 

point between open source licenses on the one hand, and proprietary licenses on the other. It 

allows free use for research purposes only, and institutes an exchange system of code 

contributions for royalties. As a result, although source code is provided, the license does not 



 
 

 36 

conform to the `open source definition'. 

 

However, as before, history is relentless. Almost all of these `company licenses' remain a 

footnote in history. Regulating the release of their master's software is their only function ever. 

They just do not catch on. As for BSD-like (or GPL-like) company licenses, firms `clone' the 

original: they are not inclined to use the originals themselves—let alone clones produced by other 

firms. Similarly, the novel JCSL is not in use by any other firm. In the sourceforge and freshmeat 

statistics, all of these licenses are below the .15 % mark, or even non-existent. As a consequence, 

the picture of dominance by the (L)GPL followed by BSD-style licenses has not changed. 

 

However, one significant exception applies. Precisely the first ever `company license' that 

appeared, written by Netscape (the MPL in particular), must be considered a success. For one 

thing, many software packages in cyberspace carry MPL-terms, simply because the public 

browser experiment, started in 1998, is still running. For another, the MPL has become a model 

for other firm licenses: a new mould has been created. After substituting their own name for 

Netscape, companies simply copied its terms, either literally or semi-literally, and put their own 

name on top of the document (sometimes without even mentioning Netscape). Examples include: 

Apple, Borland (its Interbase Public License), Jabber, Lutris Technologies, Nokia, Ricoh and 

SUN (both the SUN Public License and the SUN Industry Standards Source License). As a 

result, we find both `original-MPL' packages and `clone-licensed' packages in cyberspace. Their 

numbers are just making themselves felt: the MPL proper covers 1.6% of sourceforge registered 

packages, while the MPL and its company clones included yield a percentage of 1.9%.
8
 In 

absolute numbers: 958 packages are MPL-ed; with clones included the number becomes 1160 

                                            
    

8
For the freshmeat platform, the MPL-percentages are lower: .60 and .66 respectively (Freshmeat, 2005). 



 
 

 37 

packages (Sourceforge, 2005). In comparison: the Apache Software License and the MIT License 

(members of the `BSD-family') apply to about 1100 projects each. 

 

What are the contents of the N/MPL, and precisely why has it become fairly popular? Before 

going into the details of this, some background information is necessary about why Netscape 

decided to open source its browser at all. 

 

4.4 Netscape 

 

In 1994, Netscape had given away its Navigator browser, as binaries, for free, if used for non-

commercial purposes. In response, Microsoft wrote the Internet Explorer, and distributed it, as 

binaries, for free to anyone. Thereupon, Netscape opened up the complete source code of its 

browser to the outside world (March 1998). This was the first major company project ever to 

become open sourced. The details are as follows. 

 

In open source circles usually two kinds of releases exist alongside each other: a `developer 

release' (more up-to-date but in the experimental phase), and a `product release' (more mature 

and stable, considered fit for the average user). Netscape used a similar logic. Their product 

version, Communicator 4.0, which was already available for some time, was announced to 

become free of charge (to anyone). No source code however was released, as Netscape wanted to 

focus external help particularly on the developer version that they were working on. The source 

code of that version, Communicator 5.0, was put on a web-site created for the occasion. A 

special branch was created inside Netscape, the Mozilla group, in order to lead the whole open 

source effort, channel incoming contributions, decide on fixes and patches to the software, and 

release new versions regularly. 



 
 

 38 

 

Netscape devoted much attention to the matter of licensing (the sequel is based on Hecker, 1998; 

Mozilla, 1998-2005; Hamerly et al., 1999). In view of their policy of releasing commercial 

editions in the future, what kind of license terms should be attached to downloading the free 

browser? At first the BSD-license was contemplated, which, after all, allows almost anything. 

However, it was considered too liberal: it does nothing to encourage users to donate back their 

modifications to the open source community. Therefore, Netscape's attention turned to the GPL, 

which requires any actual redistribution to be publicly available. They soon found out, however, 

that the `viral' character of the GPL would jeopardize Netscape's commercial interests: future 

modifications of the browser by outside hackers could impossibly be incorporated into their 

commercial software releases. 

 

For one thing, consider the (future) branded versions of the Communicator 5.0 browser 

(binaries). These would preferably contain as yet those proprietary modules and cryptographic 

modules that had been removed from the browser just prior to its public release. As a result of 

incorporating future GPL-ed modifications into that commercial browser, Netscape feared that it 

would be forced to open up the whole product (on GPL-terms). Meeting those terms would be a 

heavy task, requiring rewriting as much proprietary code as possible, and removal of 

cryptographic modules (being prohibited by US law). For another, client and server software 

would have much source code in common between them; choosing a GPL for the client source 

code would force Netscape to open up their future server software (on GPL-terms). This was 

outright unacceptable to the firm. 

 

Therefore company lawyers took to writing a new license: the Netscape Public License (NPL). 

Its core text is essentially similar to the GPL, and even more strict: all modifications one 



 
 

 39 

composes have to be published as open source code, on the same NPL-terms. At the end of the 

license, amendments are formulated that grant Netscape special rights: it may at any time use 

source code from the public browser repository in its commercial products without having to 

expose the source code of these products (contrary to other NPL-terms). Moreover, Netscape 

may ignore NPL-terms, and attach license terms other than the NPL to that code (`alternative 

licensing'). One might paraphrase this proposal as a GPL for everybody—except for Netscape; to 

that firm BSD-like terms apply. 

 

This license proposal was `beta-tested' in public, via a special web-site. Many hackers were 

enraged, especially by the special rights Netscape reserved for themselves. In response, the 

company decided to reduce the asymmetry involved. For smaller modifications of NPL-ed code 

conditions remained the same: these still have to be made publicly available (on NPL-terms). For 

a `larger work' however (combining original source code with new code, but where old and new 

code are organized in separate files), terms were relaxed: its creator was allowed room to 

distribute it as `a single product'. As for licensing, the old code obviously has to remain NPL-ed, 

while the new added code may be released under any other license (par. 3.7 of the NPL). Note 

that the connecting application programming interface has to be disclosed (NPL-ed) in order to 

enhance competition. So contributors no longer automatically work for the open source 

community and for Netscape, but may choose to exploit their greater findings all by themselves 

(as explained above, the LGPL had pioneered a similar kind of exception before). Effectively, the 

special rights for Netscape were limited now to smaller modifications. 

 

The NPL, thus modified, was used for Netscape's browser release (version 1.0) (Mozilla, 1998b). 

However, the firm also created another license: the Mozilla Public License (MPL) (Mozilla, 

1998a). The MPL is simply a reduced version of the NPL: the NPL minus the amendments 



 
 

 40 

granting special rights to Netscape (Table 1). So for smaller modifications this MPL requires 

publication on the same terms (GPL-like), while hackers contributing major improvements may 

choose the type of license to go with them (for the newly written code, that is) (BSD-like). 

Netscape suggested that the Mozilla, striking the right balance between the more liberal BSD 

license and the more regulatory GPL, would be a fine license for such major browser 

contributions. In addition it suggested that the MPL was a license in its own right, applicable 

more generally as well beyond the specific context of Netscape's browser release. The company 

was right on both counts. Not only the MPL came to be widely used within the Mozilla project, it 

also became the mould upon which many other `company licenses' were drafted. As argued 

above, about a dozen other companies took up the Netscape proposals. 

 

4.5 Incompatibility with the (L)GPL 

 

This success was soon overshadowed by an unexpected drawback that came to light. The 

Netscape browser was not only a stand-alone product; its code could also be embedded in other 

software. However, developers wanting to incorporate N/MPL-ed code into a (L)GPL-ed 

package faced insurmountable licensing problems. An example is the Mozilla code for browser 

functionalities: it could not properly be incorporated into the GNOME project for developing a 

graphical user interface, a project that had already started under GPL-terms. 

 

Why is this so? It is because both the (L)GPL and the N/MPL have regulative terms that clash 

with each other (cf. also FSF/GNU, 2001). Take a FSF-hacker that considers combining N/MPL-

ed code with new code (a modification) or with new files (a larger work). Any modification of 

N/MPL-ed code has to be issued on the same license terms; so a GPL is not allowed. As for a 

larger work, while existing files have to retain N/MPL-terms, new files may be issued under any 



 
 

 41 

other license. However, that other license cannot be a GPL, while GPL-terms would dictate that 

the whole product becomes GPL-ed. The same type of analysis applies when N/MPL-ed code is 

to be combined with existing code already under the GPL (a modification) or with existing files 

already under the GPL (a larger work); in both instances the terms of the N/MPL and the GPL 

clash as well. Finally, the same type of problems also emerge if instead of the GPL the Lesser 

GPL is taken into consideration (cf. in particular Mozilla, 2001-2003). The inescapable 

conclusion is that hackers preferring (L)GPL-style software development cannot in any useful 

way incorporate N/MPL-ed code. 

 

In hacker circles this has been dubbed the incompatibility problem: the N/MPL is incompatible 

with the (L)GPL. Notice that among the main licenses—(L)GPL, BSD license, N/MPL—this is 

the only incompatibility. A BSD-style license is compatible with the (L)GPL because of its 

liberal terms (a combination of BSD-licensed code with (L)GPL-ed code may simply be issued 

under the (L)GPL); in the same vein, the BSD-license is compatible with the N/MPL. As about 

80% of open source projects in cyberspace circulate on (L)GPL-terms, this incompatibility is a 

serious matter for the license as drafted by Netscape. Any code with a N/MPL will be shunned by 

the large majority of open source developers, since they cannot legally use it for development 

purposes (cf. Wheeler, 2002/2005). Using the metaphor of the regulated commons (Benkler, 

2002b), this incompatibility means that fences, as it were, are erected between source code 

packages inside the commons. Users fragment into several communities, each with their own 

developmental privileges. While the BSD-community may use all code in the commons, the 

(L)GPL- and MPL-communities are barred from using code from each other. 

 

Soon after the 1998 issue of the Mozilla browser on N/MPL-terms, Netscape decided that it 

would have to remedy the situation. As a first quick fix, in September 1999, upon moving from 



 
 

 42 

version 1.0 to version 1.1 of the N/MPL, section 13 was added (Mozilla, 1999a, 1999b, 1999c). 

It allowed contributors of new files to the browser repository (whether Netscape or others) to 

attach one or more licenses of their choosing (`multiple licensing'). In order to prevent splitting of 

the code base (particularly into a GPL-ed base and a NPL-ed base), Netscape even expressly 

encouraged contributors to attach more licenses than just one (Mozilla, 1999c). In practice, this 

option was mainly used to attach a dual license: MPL + GPL. 

 

This multiple licensing option remedied the incompatibility problem. However, only for the new 

files that came in. Already existing files still carried the single N/MPL. Thereafter, various 

options to eliminate the problem as a whole were considered by Netscape—and rejected (for an 

extensive discussion cf. Mozilla, 2001-2003). Releasing yet another version of the existing 

N/MPL, or composing an entirely new license were rejected, while unintentionally new legal 

problems might be created. Dual licensing with MPL + GPL was rejected, while it would not 

satisfy developers preferring to release on LGPL terms; similarly, dual licensing with MPL + 

LGPL would make life difficult for GPL-developers. Therefore, in the end a triple licensing 

scheme was chosen: the preferred format for all files was to become MPL + LGPL + GPL. 

Future developers would pick and choose the license(s) that suited them best: GPL-developers 

were to pick the GPL in order to create combined works, LGPL-developers were to choose the 

LGPL in order to incorporate browser code, and proprietary works were to be created by 

choosing the N/MPL (as before). This transformation would take time, of course. While the 

policy was declared in force with immediate effect for contributors of new files (2001), all 

creators of existing files (other than Netscape) had to be asked for permission to relicense their 

files in the repository according to the triple scheme. 

 

Surprisingly, Netscape also announced that the Netscape Public License would be phased out in 



 
 

 43 

due time. Why was the firm willing to give up the special rights it had so much struggled to 

obtain? The open source Mozilla project was to prepare the ground for the next generation 

browser product. Netscape indeed released a product version as late as November 2000, called 

Netscape 6 (the number 5 was cancelled); thereafter, Netscape 6.1, 6.2, and 7 appeared, all free 

of charge. However, the original plans to compose and sell more elaborate commercial editions 

(in binaries) never materialized. This is probably due to the fact that Netscape came in troubled 

waters: it was taken over by AOL, and lost the larger part of the browser market to Microsoft's 

Internet Explorer. So the special rights for Netscape, of creating modifications of source code 

without public release and of relicensing on other terms, were never exercised. While the original 

rationale had evaporated, Netscape decided to eliminate the NPL altogether. 

 

But the Mozilla Public License remained, be it extended with other licensing options (the `triple 

license'). Obviously, MPL-clones are sure to encounter the same problem. No wonder that some 

firms that prefer such a clone for their releases have also taken to a multiple licensing scheme. In 

October 2000, SUN open sourced OpenOffice, an `office productivity suite' with applications for 

word processing, spreadsheet, presentation, graphics and database management. Components can 

be used as stand-alone products and as embeddable into other code. Therefore the MPL, SUN's 

preferred choice, would not do, and the corporation devised a dual licensing scheme of its own 

(SUN, 2000a). OpenOffice files carry a choice between the (L)GPL on the one hand, intended for 

use by (L)GPL developers, and the SUN Industry Standards Source License (SISSL) on the other, 

to be used by anyone else (SUN, 2000b). This SISSL was composed for the occasion, with terms 

quite similar to the MPL. Its relicensing terms are even laxer: all modifications of source code 

(also small ones) may be taken private, provided that certain specified standards for file formats 

and application programming interfaces are respected. If compliance is broken, a reference 

implementation of the modification must be sent back to SUN in source code; it will then be 



 
 

 44 

added to the OpenOffice code base. In this way, open competition is maintained. 

 

A similar change of license policy happened to the Qt graphical user interface toolkit, developed 

by Trolltech from Norway. The program became popular as a basis for the open source K 

Desktop Environment (KDE). However, the firm used to sell it with a commercial license (and 

still does), which aroused resistance within open source circles. As a first response, in 1998 Qt 

was also open sourced, with the Q Public License (QPL) attached to it, a self-made license, quite 

close to the asymmetrical NPL (Trolltech, 1999). However, the QPL was found to be 

incompatible with the GPL, still seriously hampering the use of Qt and KDE in GPL-circles (cf. 

Hecker, 1998). Therefore, after some more pressure by the FSF, two years later the company 

decided to attach a dual license to the open source release of Qt: QPL + GPL. 

 

Potentially, of course, the problem of incompatibility applies also to the remaining, rarely used 

open source licenses. After all, it takes only one ill-considered clause in a new license and 

incompatibility (with the (L)GPL, or with the MPL for that matter) is the result.
9
 In addition, 

mutual incompatibilities among the scarcely used licenses may emerge. In that case, even more 

fences are erected within the source code commons. A stark example is the Common Public 

License from IBM: as a copyleft license, it is only compatible with BSD-like licenses. 

Nevertheless, as about 95% of all open source licenses are (L)GPL, BSD-like or MPL-like, the 

above analysis exhausts the problem of incompatibility for the most part. 

 

It may be concluded that no other viable open source license types exist other than the (L)GPL 

                                            
    

9
The FSF, committed as it is to the cause of free software, scrupulously keeps track of all open source licenses 

currently in use and, based upon their interpretation of compatibility, labels them as either compatible or incompatible 

(FSF/GNU, 1999-2002). 



 
 

 45 

and the BSD license. The MPL can hardly stand on its feet alone as a single license, because the 

`viral' nature of the (L)GPL bars use of MPL-ed code or MPL-ed toolkits in (L)GPL-circles for 

purposes of development (and vice versa). Releasing source code under such terms introduces a 

fence in the commons between (L)GPL-ed and MPL-ed code, fragmenting users into 

communities with differential privileges (namely: BSD-, (L)GPL- and MPL-communities). If 

developers want to make full use of the creative energies of all potential visitors of the commons, 

only the (L)GPL and the BSD license (either on their own, or as part of a multiple license) are to 

be advised for their source code releases.
10

 

 

This analysis clearly shows that the (L)GPL is not only the most widely used open source license, 

but also, precisely because of this, imposes conditions on anyone contemplating terms upon 

which to open up his/her source code. How does the proposed license compare with the (L)GPL? 

Can the source code be used by (L)GPL-developers without running into legal contradictions? 

The political program as formulated by Richard Stallman 20 years ago may in this respect be 

called a success. Not least by his continuous insistence on copyleft, most open source software 

packages have actually become copylefted, and as a result, the (L)GPL calls the tune to all other 

types of open source developers. This has an important function for keeping the `peer production' 

of open source software alive; to wit, both private appropriation and potential fragmentation into 

communities with differential user privileges have largely been held at bay. The source code 

commons may be imagined as having a fence almost all around it (the (L)GPL), but still almost 

no fences on the inside. 

 

                                            
    

10
No wonder that the OSI, complaining of the ever expanding number of open source licenses, works on proposals 

that will cut down the number of licenses effectively in use to a handful (including at least the (L)GPL and the BSD 

license) (LaMonica, 2005). 



 
 

 46 

 

5. Summary and conclusions 

 

In this article the two main kinds of property regimes for software development have been 

described and analysed. On the one hand, a Private Regime obtains within corporations, using the 

strategies of secrecy and of copyright and patent to protect their intellectual assets from imitation 

and expropriation by others. So the core of this regime is exclusion of outsiders. These strategies 

of protection have been strengthened in the last decades, in a very distinctive fashion. As for 

secrecy, apart from requiring this from their employees, software producers went ahead and 

asked the same from their users. As for the patenting strategy, from the 1990s onwards software 

patents have been granted in abundance, at least in the US. Moreover, already earlier than that, 

copyright had been developed into a legally acknowledged way of protecting software code 

verbatim. By adding the twin sister of patenting, the patenting strategy proper has evolved into a 

full-blown IPRs' strategy. 

 

On the other hand, a Public Regime has evolved in hacker communities, in which source code is 

freely exchanged and discussed. While retaining copyright, authors of software formulate so-

called open source licenses that transform their private copyrights into public privileges by 

contractual exception. The terms of the license effectively regulate public uses of the code. So 

property rights are not used for excluding others, but for including them, be it with some amount 

of regulation. A `regulated commons' is created. The first licenses ever written, the (L)GPL and 

the BSD-style licenses, have remained dominant from the beginning, and currently cover about 

80% and about 15% respectively of all open source packages. 

 

In order to come to terms with this phenomenon, corporations at first took a free ride upon 



 
 

 47 

existing open source software by selling support, connected hardware, or closed applications on 

top. Interestingly, support sellers that developed additional software sometimes chose a Public 

Regime for these enhancements (e.g., Red Hat); almost silently, the open source model had 

entered the corporate world. Thereafter, from 1998 onwards, firms started to open up some 

projects of their own to the outside world. In these initiatives, a Public Regime was applied, quite 

similar to the one in hacker circles. This was not philanthropy; the business models behind them, 

closely mirroring the strategies discussed above, were selling of support, connected hardware or 

additional closed software on top. In these instances the source code commons is not accessed for 

its own sake, but as a means of generating revenue in connected ways. In the case of selling 

software on top in particular, we witness the innovation of a mixed model of property relations: a 

Public Regime for the base, and a Private Regime for the enhancements, all being carried out 

within—or at least supported by—one and the same firm. 

 

So, effectively, the Public Regime has been incorporated into corporate logic. A new type of 

exploitation strategy of intellectual assets has been born. Besides exploiting them directly, by 

protecting them from others (Private Regime), firms may also exploit them indirectly, by sharing 

them first (Public Regime). The assertion referred to at the beginning of this article, that all 

strategies of knowledge appropriation depend critically upon the exclusion of others (Liebeskind, 

1996), must be qualified; at least for software, the inclusion of outsiders may usefully become a 

part of them. The commons may become a basis for future profits. 

 

As for licensing, firms mostly created their own license. All the while, guarding their business 

interests was a predominant concern. From all of these initiatives, only one viable new type of 

license emerged that also became a model for other company licenses: the Mozilla Public 

License (MPL). Developed by Netscape in order to accompany its browser source code release in 



 
 

 48 

1998, it essentially occupies a middle position between the (L)GPL and the BSD-style licenses. 

 

As a result of the open source movement, the spectrum of available software licenses has been 

extended. Software used to be sold on shrink-wrap license or contractual terms; or, after rights 

had been waived or had expired, it ended up in the public domain. Open source licenses have 

actually opened up a new terrain between both extremes (Table 1). The hacker community took 

the first steps by inventing the (L)GPL and the BSD license. Thereupon, the move into business 

prompted company-specific licenses to be invented, from which only the MPL emerged as 

modestly successful. 

 

Soon it became apparent, however, that the MPL is incompatible with the (L)GPL. Choosing a 

MPL thus amounts to making one's source code irrelevant, for development purposes at least, to 

80 % of the hacker population. A fence, as it were, would be erected inside the source code 

commons. In order to remedy this problem and effectively connect with developers of all 

persuasions, Netscape had to broaden the MPL with other licensing options and attach a multiple 

license (including both the LGPL and the GPL). In general it may be concluded that in releasing 

source code, developers are best advised to choose the (L)GPL or a (L)GPL-compatible license 

(like the BSD license). If, nevertheless, an incompatible license is preferred, a multiple licensing 

policy including the (L)GPL (or a compatible license) is recommended. In this way the gap with 

GPL-developers will be bridged, the active participation of all hackers ensured and fragmentation 

of users/developers avoided. 

 

With this, of course, the analysis has only just begun. At the moment, open source in industry is 

still a marginal phenomenon, the vast majority of their software is released on closed terms. Will 

open source grow in importance as a new model of developing software? More generally, is `peer 



 
 

 49 

production' of code the best way of developing reliable software, and a closed regime only 

strengthening monopolies that harm the public at large? Or, alternatively, is a closed regime a 

vital condition for the software industry to prosper, and open source a mistaken conception that 

harms business interests? All of these questions remain to be answered. 

 

--------------- 

INSERT TABLE 1 ABOUT HERE 

--------------- 

 

References 

 

Benkler, Y., 2001. A political economy of the public domain: Markets in information goods 

versus the marketplace of ideas. In: Dreyfuss et al., pp. 267-292. 

Benkler, Y., 2002a. Intellectual property and the organization of information production. 

International Review of Law and Economics 22, 81-107. 

Benkler, Y., 2002b. Coase's Penguin, or, Linux and The Nature of the Firm. The Yale Law 

Journal 112, 369-446. 

Branscomb, A.W., 1994. Who Owns Information? From Privacy to Public Access. BasicBooks, 

New York. 

BSD, 1998. The BSD license. Available at http://www.opensource.org/licenses/bsd-license.php, 

accessed 24 February 2005. 

Cohen, W.M., Goto, A., Nagata, A., Nelson, R.R., Walsh, J.P., 2002. R&D spillovers, patents 

and the incentives to innovate in Japan and the United States. Research Policy 31, 1349-

1367. 

Cohen, W.M., Nelson, R.R., Walsh, J.P., 2000. Protecting their intellectual assets: 



 
 

 50 

Appropriability conditions and why U.S. manufacturing firms patent (or not). National 

Bureau of Economic Research, Cambridge, Massachusetts: Working paper 7552. 

Dasgupta, P., David, P.A., 1994. Toward a new economics of science. Research Policy 23, 487-

521. 

David, P., Waterman, A., and Arora, S., 2003. FLOSS-US: The free/libre/open source software 

survey for 2003. SIEPR, Stanford University, California. Available at 

http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf, accessed 17 June 

2005. 

De Laat, P.B., 2002. Eigendomsrechten op software: copyright annex patent of open source? 

[Property rights in software: copyright plus patent or open source?] Krisis, Tijdschrift voor 

Empirische Filosofie 3(2), 89-107. 

De Laat, P.B., 2004. Evolution of open source networks in industry. The Information Society 20, 

291-299. 

DiBona, C., Ockman, S., Stone, M. (Eds.), 1999. Open Sources: Voices from the Open Source 

Revolution. O'Reilly, Sebastopol. 

Dreyfuss, R.C., Zimmerman, D.L., First, H. (Eds.), 2001. Expanding the Boundaries of 

Intellectual Property: Innovation Policy for the Knowledge Society. Oxford University 

Press, Oxford. 

Elkin-Koren, N., 2001. A public-regarding approach to contracting over copyrights. In: Dreyfuss 

et al., pp. 191-221. 

Freshmeat, 2005. Statistics and top 20. Available at http://freshmeat.net/stats/#license, accessed 

28 January 2005. 

FSF/GNU, 1989/1991. GNU General public license. Available at 

http://www.gnu.org/licenses/gpl.html, accessed 24 February 2005. 

FSF/GNU, 1991/1999. GNU Lesser general public license. Available at 



 
 

 51 

http://www.gnu.org/licenses/lgpl.html, accessed 24 February 2005. 

FSF/GNU, 1999-2002. Various licenses and comments about them. Available at 

http://www.gnu.org/philosophy/license-list.html, accessed 24 February 2005. 

FSF/GNU, 2001. Frequently asked questions about the GNU GPL. Available at 

http://www.gnu.org/licenses/gpl-faq.html, accessed 24 February 2005. 

Ghosh, R.A., Glott, R., Krieger, B., and Robles, G., 2002. Free/libre and open source software: 

Survey and study. Final report (D18), Part 4: Survey of developers. International Institute 

of Infonomics, University of Maastricht, The Netherlands. Available at 

http://flossproject.org/report/FLOSS_Final4.pdf, accessed 17 June 2005. 

Hacktivismo, 2002. The Hacktivismo enhanced-source software license agreement. Available at 

http://www.hacktivismo.com/about/hessla.php, accessed 24 February 2005. 

Hamerly, J., Paquin, T., with Walton, S., 1999. Freeing the source: The story of Mozilla. In: 

DiBona et al., pp. 197-206. 

Harabi, N., 1995. Appropriability of technical innovations: An empirical analysis. Research 

Policy 24, 981-992. 

Hecker, F., 1998. Setting up shop: The business of open-source software. Available at 

http://www.hecker.org/writings/setting-up-shop.html, accessed 24 February 2005. 

Hyde, A., 1998. Silicon valley's high-velocity labor market. Journal of Applied Corporate 

Finance 11(2), 28-37. Larger version available at 

http://www.andromeda.rutgers.edu/~hyde/, accessed 24 February 2005. 

Jahia, 2003. License FAQ. Available at http://www.jahia.org/jahia/page336.html, accessed 24 

February 2005. 

Johnson, D.G., 2001. Computer ethics, third ed. Prentice Hall, Upper Saddle River, New Jersey. 

Lakhani, K.R., Wolf, B., Bates, J., DiBona, C., 2002. The Boston Consulting Group Hacker 

Survey. Release 0.73. Available at 



 
 

 52 

http://www.bcg.com/opensource/BCGHackerSurveyOSCON24July02v073.pdf, accessed 

11 February 2005. 

LaMonica, M., 2005. Open-source board eyes fewer licenses. CNET News.com, 16 February. 

Available at http://news.com.com/Open-source+board+eyes+fewer+licenses/2100-7344_3-

5578799.html, accessed 3 March 2005. 

Lessig, L., 2002a. The future of ideas: The fate of the commons in a connected world. Vintage 

Books, New York. 

Lessig, L., 2002b. Open source baselines: Compared to what? In: Hahn, R.W. (Ed.), Government 

Policy toward Open Source Software. AEI-Brookings Joint Center for Regulatory Studies, 

Washington, D.C., pp. 50-68. 

Levin, R.C., Klevorick, A.K., Nelson, R.R., Winter, S.G., 1987. Appropriating the returns from 

industrial R&D. Brookings Papers on Economic Activity, 783-820. 

Liebeskind, J.P., 1996. Knowledge, strategy, and the knowledge of the firm. Strategic 

Management Journal 17 (Winter Special Issue), 93-107. 

McKusick, M.K., 1999. Twenty years of Berkeley Unix: From AT&T-owned to freely 

redistributable. In: DiBona et al., pp. 31-46. 

Moen, R., 2000. A public discussion of open source licensing. First appeared in 

LinuxWorld.com. Available at 

http://www.linuxmafia.com/faq/Licensing_and_Law/licensing-discussion.html, accessed 

24 February 2005. 

Mozilla, 1998a. Mozilla public license version 1.0. Available at 

http://www.mozilla.org/MPL/MPL-1.0.html, accessed 24 February 2005. 

Mozilla, 1998b. Netscape public license version 1.0. Available at 

http://www.mozilla.org/MPL/NPL-1.0.html, accessed 24 February 2005. 

Mozilla, 1998-2005. Netscape public license FAQ. Available at 



 
 

 53 

http://www.mozilla.org/MPL/FAQ.html, accessed 24 February 2005. 

Mozilla, 1999a. Mozilla public license version 1.1. Available at 

http://www.mozilla.org/MPL/MPL-1.1.html, accessed 24 February 2005. 

Mozilla, 1999b. Netscape public license version 1.1. Available at 

http://www.mozilla.org/MPL/NPL-1.1.html, accessed 24 February 2005. 

Mozilla, 1999c. NPL version 1.0M FAQ. Available at http://www.mozilla.org/MPL/NPL-1.0M-

FAQ.html, accessed 24 February 2005. 

Mozilla, 2001-2003. Mozilla relicensing FAQ. Available at 

http://www.mozilla.org/MPL/relicensing-faq.html, accessed 24 February 2005. 

Mundie, C., 2001. The commercial software model. Remarks made at the Stern School of 

Business, 3 May. Available at http://www.microsoft.com/presspass/exec/craig/05-

03sharedsource.asp, accessed 21 January 2005. 

O'Reilly, T., 1998. Measuring the impact of free software. Available at 

http://www.ddj.com/documents/s=2861/nam1012433798/index.html, accessed 24 February 

2005. 

OSI, 1997-2005. The open source definition, version 1.9. Available at 

http://www.opensource.org/docs/definition.php, accessed 24 February 2005. 

OSI, 2005. The approved licenses. Available at http://www.opensource.org/licenses, accessed 24 

February 2005. 

Patent and Trademark Office, 1996. Examination Guidelines for Computer-Related Inventions. 

No. 950531144-5304-02. 

Raymond, E.S., 1997. The cathedral and the bazaar. Available at 

http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/, accessed 24 February 

2005. 

Raymond, E.S., 1999. A brief history of hackerdom. In: DiBona et al., pp. 19-29. 



 
 

 54 

Red Hat, 1995-1997. Red Hat Linux 5.0: The official Red Hat Linux installation Guide. 

Available at http://www.redhat.com/docs/manuals/linux/RHL-5.0-Manual/user-guide/, 

accessed 21 January 2005. 

Samuelson, P., 1990. Benson revisited: The case against patent protection for algorithms and 

other computer program-related inventions. Emory Law Journal 39, 1025-1154. 

Samuelson, P., 1993. A case study on computer programs. In: Wallerstein, M.B., Mogee, M.E., 

Schoen, R.A. (Eds.), Global Dimensions of Intellectual Property Rights in Science and 

Technology. Office of International Affairs, National Research Council, pp. 284-318. 

Samuelson, P., Glushko, R.J., 1990. Survey on the look and feel lawsuits. Communications of 

the ACM 33, 483-487. 

Sourceforge, 2005. Software map. Available at 

http://sourceforge.net/softwaremap/trove_list.php?form_cat=14, accessed 28 January 2005. 

Stallman, R., 1985/1993. The GNU manifesto. Available at 

http://www.gnu.org/gnu/manifesto.html, accessed 24 February 2005. 

SUN, 2000a. The OpenOffice.org project: Foundations of office productivity in a networked age. 

Available at http://www.openoffice.org/white_papers/OOo_project/OOo_project.html, 

accessed 24 February 2005. 

SUN, 2000b. SUN industry standards source license, version 1.1. Available at 

http://www.openoffice.org/licenses/sissl_license.html, accessed 24 February 2005. 

Trolltech, 1999. The Q public license, version 1.0. Available at 

http://www.opensource.org/licenses/qtpl.php, accessed 24 February 2005. 

West, J., 2003. How open is open enough? Melding proprietary and open source platform 

strategies. Research Policy 32, 1259-1285. 

Wheeler, D.A., 2002/2005. Make your open source software GPL-compatible. Or else. Available 

at http://www.dwheeler.com/essays/gpl-compatible.html, accessed 24 February 2005. 



 
 

 55 

Young, R., 1999. Giving it away: How Red Hat software stumbled across a new economic model 

and helped improve an industry. In: DiBona et al., pp. 113-125. 

 

 

Abbreviations 

 

BSD = Berkeley Software Distribution 

FSF = Free Software Foundation 

GPL = General Public License 

IPRs = intellectual property rights 

LGPL = Library (or Lesser) General Public License 

MPL = Mozilla Public License 

NPL = Netscape Public License 

OSI = Open Source Initiative



 
 

 56 

Table 1 
Rights granted to distribute modified code in the main open source licenses; public domain and 

shrink-wrap license included for comparative purposes 

 In source code In object code only 

(commercial use) 

Shrink-wrap license N/a No 

General Public License 

(GPL) 

Yes (if GPL-ed) No 

Library (or Lesser) General 

Public License (LGPL) 

Yes (if LGPL-ed) No, unless linked code 

Mozilla Public License 

(MPL) 

Yes (if MPL-ed) No, unless separate files 

(`larger work') 

BSD license Yes Yes 

Public domain Yes Yes 

Yes = rights granted; no = rights not granted; n/a = not applicable. 

All open source licenses stipulate that copyright remains with the original developer, and a 

copyright notice is to be retained in all modified versions. 

 


