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P. Introduction.

1. 1., A fragment .[C] of IpL (intuitionistic propositional logic) .is a subset of the set of formulae of

IpL built up from the propositional variables and constants (T and ,l) by -means of connectives

from the set C only. If C=[cl,c2,...}, then we write [cl,c2,1..] for [C]. In this note., we

mainly consider the primitive connectives A, v and --4; one can, however, also think at defined

connectives cA where A=A(P1,...,Pn) is some formula, with cA(Bl,...,Bn) :-
Examples of defined connectives are (-,A = A-arL)- and -(A H B-= (A-B)A(B-A)). So
e.g. [n,v,-] contains all formulae of IpL, and [H] is the fragment containing all formulae built

up with t-4 only.

1.2. The interpolation theorem for IpL reads:

Let A,B be formulae of IpL such that AF-B. Then there is an interpolant I for

AI-B, i.e.

i) AH and IIH3;

ii) all propositional variables of I occur both in A and in B.

This theorem is a consequence of the interpolation theorem for intuitionistic predicate logic, first

proved by Schutte in [S62].

1.3. In this paper, we consider relativizations of the interpolation theorem to elementary fragments

(fragments based on primitive connectives, or -n), and we show

interpolation holds in all elementary fragments.

There are many fragments of intuitionistic propositional logic for which interpolation fails, e.g.

[n,- ,-.,S] with S(A,B,C)=(Av-,A)n(A--)B)n(-,A-C) (first proved by J. Zucker in [Z78]; see

also [R81]). For intermediate logics the situation is the same (see [M85]). In classical logic,

however, interpolation holds in all propositional fragments (proved by F. Ville: see [KK71],

[KK72], Ch. 1, Exercises).

Another notion of fragment is considered in [R8?], where a strong version of interpolation is

proved for the subset NNIL (No Nestings of Implication to the Left) of formulae of IpL, defined

inductively by

all propositional variables and constants are,.in NNI,L,

NNIL is closed under n and v,
if A E NNIL and P is a propositional variable, then P--)A E NNIL.

1.4. The rest of this paper is organized as follows: in §2 we fix the notation and present a sequent
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calculus for IpL, §3 consists of three lemmata about elementary fragments, §4 contains Schutte's

method to prove the interpolation theorem for IpL, which is used subsequently to show

interpolation for all elementary fragments, in §5 we discuss the consequences of not adding the

constants T and 1 to the fragments. §6 is rather tentative: it reports on unsuccessful attempts to

prove interpolation for some fragments containing the connectives H and

1.5. Acknowled eg ments.

The author is indebted to M.H. Lob, who pointed out to him an error in a previous version of

theorem 4.5.

§2. Preliminaries.

2.1. Notation.

All formulae are in intuitionistic propositional logic, with as connectives and the

constants T and 1. P,Q,... are propositional variables; together witJ T, 1 we call them
atoms. A,B,C,... are formulae; r,A,I",... are finite (possibly empty) sets of formulae. We write

I', A for the union of I' and A; I',A stands for I', { A 1.

For sets of formulae F, G we define

F=G := \ AE F3BE G(A=B) and `dBE G3AE F(B-A),

where A=B stands for AI-B and BI-A. We also put

AF := {A1A...AAn I A1,...,AnEF),

FAG := {A-.B I AEF, BEG},
-1F := (-A I AEF).

We define a(A) [a+(A)], the set of all [strictly positively occurring] atoms in A, by

a(T) = a+(T) = {T},

a(1) = a+(1) = { 1),
a(P) = a+(P) = {P},

a(AAB) = a(AvB) = a(A-)B) = a(A) u a(B),

a(-1A) = a(A),

a+(AAB) = a+(AvB) = a+(A) u a+(B),

a+(B),

a+(-,A) =O;
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p(A) [p+(A)], the set.of all [strictly positively occurring] propositional variables in. Ai is defined by

p(A) = a(A) - {T,1 },

P+(A) = a+(A) - {T,1}.

2.2. The derivation system.

We use the following sequent. calculus, denoted by SC:

(P) ][-,p I- P

(T) I'FT

(1) r,1 F C

FI-A IFFB
(AR

F F AAB

F,AFC r,B FC

r,AvB F C

r,AFB
(-*R)

F F A-*B

r,A,B I- C
(AL) , -,

r,AAB F C

(-*L)
IF FA

'r,BF,C

I',A-*B F C

r,A F 1 IF FA
(-1R) (-,L)

r F -nA I',-1A ,F B

Te main formula of a rule is the newly formed formula of the conclusion: AAB for (AR) and

(AL), A 1 vA2 for (vR), AvB for (vL), A--)B for, and (-*L), `,A for (,R) and (,L).

SC has the following derived rules:

(CUT)

(WEAK)

(SUB):

cut elimination: if FFA- and r,AFB then` rIB;

weakening: if, FFA `.then T,AFA;

substitution: if FFA then - 11'[P=B] FA[P:=B:

3
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The proofs are standard (as for related systems, e.g in [S62] and [T75]).

Note that the Subformula Property only holds in the following version:

if B occurs in a cut-free derivation of °F l- A, then B=1 or B is
a subformula of F,A;

the addition B=1 is made necessary by the inwhi ch 1 is eliminated.
The following consequence is important in the context of this paper:

let II be a derivation of IF F A. Then we have

i) if B is a formula occurring inn, then all `connectives' in B

occur in F,A;

ii) if c E { A,v,-,- } and (cR) or (cL) is a rule applied in
then c occurs in F,A.

For later use (4.5, 4.6), we define a variant SC* of SC and: prove it equivalent to SC.

2.3. SC* is SC with (vL) and (-L) replaced by:

(vL)*
F,A F C F,B FC ][,A-+BFA` F,BFC

(AvBz F) (---)L)* (A-413o r')
F,AvB 1- C F

F F F F .A_ is derivable in SC*.

2.4. Lemma. F F A if and only if F F* A.

Proof. We write F Fn A for: '11' F A has a derivation with length at most n'; idem for F F*n

A. With induction over n one-easily proves:

(1) if F, AvB,A Fn'C, then F, A Fn C;
(2) if F, AvB,B, Fri C, then; ',:B; I-

(3) if IF, A-4B,B Fn C, .then- _F, B C-

(4) if I' Fn C, then F,AFnC;
(5) if r F*n C, then IF, 0 F*n C.

We turn to the 'if part of the lemma. Assume i.e. F *.n A . for some n; we show F

Fn A with induction over n. If n=1 then IF F* A is an axiom, hence F F A; if n>1 and F F*

A is (an axiom or) the conclusion of (vL)* w or a rule, different from, L)*, then the result

directly follows from the induction hypothesis (using that every instance of (vL)* is an instance of

(vL)). If IF F* A is the conclusion of (-aL)*, when the premises :are, of the form F', B

F* F' F - {B-+C}. Now apply (5) to obtain r", B-+C, C F*n-1 A, and
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then the induction hypothesis.

Finally we prove the 'only if part, with, induction over, the length of aderivation.of F I- A.

Assume I l- A, so I' Fn A for some n. If n=1 then F F A is an axiom, hence 11'F* A; if
n> 1 and F I- A - is (an- axiom- or,)- the conclusion.of-an. instance of - (vL)* or a rule different from

(vL), (-L), then the result directly. follows from the induction hypothesis. There are three cases

left:

i) F F- A is the conclusion of (vL) with premises of the form F', BvC, B I- A and r', BvC, C

F- A where r' := r - (BvC}: apply (1), (2), the induction hypothesis and (vL)*.

ii) r F- A is the conclusion of (-L) with premises of the form r" 1 -B . ;and: r', C F- A where

F':= I- {B-4C}: apply (4) to obtain r", BBC 1 n-1 B, then the induction hypothesis and

(_L)*.
iii) r I- A is the conclusion of with premises of the form I", B-C F- B and F', B-C,
C F- A where r" := F - {B-4C): apply (3) to obtain r, c Fn-1 A, then the induction hypothesis

and

§3. Elementary fragments.

Before turning to interpolation, we derive some properties of elementary fragments.

3.1.Lemma.

ii) Let AE [-]. Then a+(A)={X} for some atom X, and A =
iii) {AE [A,-4] I a+(A) is a singleton}_ [-*J;

Proof.

i) Formula induction, using

(AAB)- (CAD) -

ii) We have A = (n>_0) for some atom X, so a+(A)=( X). Also

A = (Aln...nAn)->X = (((AlA...AAn)-*X)-4X)-X =

iii) Formula induction, using (i), (ii) and

(-4L)*. []

_
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3.2.Lemma.

i) [A,-V, -4] = A [v,-*].

ii) There is a mapping = satisfying: if AE [A,V, ], BE [v,-a], then

A=>B.E [v,-*], _A .B = (A- *B) and p(A=B) = p(A=-*B);

as a consequence we have [A,v,-*]-*[V,-*] _ [v,--*].

Proof.

i) Formula induction; using the following equivalences:

(AAB)V(CAD) _ (AvC)A(BvC)A(AvD)A(BvD),

(AAB)-- (CAD) C))A(A-*(B `D`))

ii) Let AE [A,v,-*], BE [v,--fl. By (i) we have A-AlA...AAn with AiE [v,-*] (i-1,...,n); from

the proof of (i) it follows that p(A)=p(AlA...AAn). Now put

AFB := Al-*(A2--*...--+(An-*B)...),

and one easily sees that (ii) is satisfied.

3.3.Lemma.

=` [v,-,].i) [A,V,-i]
ii) There is a mapping u satisfying: if AE [A,v,=,] then--;

uA E [v,-i], .A =-,A and p(4A) = p(-iA);

as a consequence we have -i[A,V,-,] _ [v,-i].

Proof. Analogous to that of 3.2, using the equivalence

and the definition

] A := - 1v...v-7An)

for AE [A,v,-,] with A=AlA...AAn and AiE [v,-i] (i=1,...,n).

[]

[]
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§4. Interpolation in elementary fragments.

4.1. Lemma (Schiitte [S62]). Interpolation holds in [A,v,-,-].

Proof. Let A F B. Then there is a derivation in SC of A F B. With induction over the length of

the derivation it is shown that any partition r,A F C of a sequent in the derivation has an

interpolant I, i.e.

IFI;
I,AFC;
p(r) n p(A,C) C p(I).

From this. the lemma follows (take r={[A},-O=QS; C=B).

The method to obtain the interpolant I for r,A F A can be rendered as follows:

(iPl) T [TI A,P F P (iP2) r,P [P] A F Pr

(iT) r [T] A F T

(ill) r [T] 4,1 F C

(iAR)
r [Ill A F A r [12] A F B

_l--[I1 AI2] A F AAB

(ivL l )
IF [Ill A,AFC F[I2]B.,OFC

11'.[11A121 AvB,,A F C

(ivL2)
r,A[I1]AFC , I'B 1121AF-C

r,AvB 111V121 A F C

(i-*L 1
I'[I1]AFA F[I2]13AFC

r °[I1 AI21 A-B,A F C

(i-*L2)
A[I1]rFA r,B[I2]AFC-

r,A-*B [11'- 421 A F C

r,1,[1]AFC(i12)
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F[I]AFA
i- L1)

F [I] A,-,A F B

We explain this notation with an example.

(iAR) means:

-L2)

if I' F I l and 11,A F A and r F 12 and I2,A F B
then F F I1A12. and I1AI2,A F AAB;

A [I] -117+ A .

F,-,A [-,I] A F B

so (iAR) indicates how an interpolant for F, AFAAB can be obtained from interpolants for F,

AFA and 17, A-B.

For rules not mentioned here ((AL), (vR) (-*R), (-1R)), the in'terp'o-la'nt'fo'r the conclusion `is the

same as for the premise. []

4.2. With Schiitte's method (i.e. the method used in the proof of Lemma 4. 1), it is easy to prove

interpolation for [-] and for the fragments containing A([A],-[A,v], [A,-*], [A,-,],

This is not evident for fragments containing v or -*, but'not A ( [v], [-*], [v,-*], [v,-i],

as (ivLl) and (i-*Ll) introduce A in the definition of the interpolant. To

illustrate this, we present the following example where Schiitte's method is applied to a proof of

(PvQ)-*R F (PvQ)-*R :

P,(PvQ)-*R [P] F P =Q,(PvQ)-*R [Q] F Q

P,(PvQ)-*R [P] F PvQ , R [R] P i- R Q,(PvQ)-*R [Q] F PvQ R [R] Q F R

(PvQ)-*R [P-*R] P F R (PvQ)-*R [Q-*R]' Q F R

(PvQ)-*R [(P-*R)A(Q- *R)] PvQ F R

(PvQ)--*R [(P-*R)A(Q-*k)] - I- (PvQ)-*R

Since - is definable in fragments containing -* (using the constant 1), we have

and [v,-*,-]=[v,-*], so the only fragments for which interpolation still has to be shown are [v],

[v,--->] and [v,-,]. We have a closer look at these four fragments in the rest of this section.

4.3. Interpolation in [v] is trivial: if AB-E [v] and A F B then A=P1v...vPm; B=Q1v...vQn

with Vi_<<m3j_<n(Pi=Qj), so p(A) cp(B), and A is an interpolant. (By a similar argument,

interpolation in [A] is trivial.)

[A,V,-j],[A,V,--11, [A,-4,-], [A,V,---),-] )

[v,-4,-]),

[--)],
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4.4. Theorem (Zucker [Z781). Interpolation holds in [-fl.

Proof (somewhat different from Zucker's). Let A;BE [L+] with AF=B. Schutte's method gives us

an interpolant I in the fragment [A,->]. With induction over the length of the derivation of AI-B

one can show that p+(I)cp+(A), so by Lemma 3.1(iii) there is an I' equivalent to I in [->]. []

4.5. Theorem. Interpolation,holds. in [v,->].

Proof. Let A,B E [v,-->] with A I- B. By Lemma 2.4 there is a derivation jj in SC* of A F
B. We define inductively the subtree Ij+ of IT:

a) A F * B is in r{+;
b) if the conclusion of a rule is in jj+,, -then sods (are) the premise(s); with the following

exception:

(*) if the rule involved is an instance of (_>L)* with a subformula occurrence of A as

main formula, then only the right handpremise is in {j

With induction over the structure of IIt one easily observes (using the peculiar definition of-

(vL)* and (->L)*):

(1) every sequent in 11+ is of the form A0,1T I * C, where AO is a strictly positive

subformula occurrence of A and IF u {C} a collection of subformula occurences

of B.
F .f ,.

In other words: the sequents in IT+
z

contain noinegative subformula, occurrences of A and exactly

one subformula occurrence, namely in the premise.

Now we prove, with formula induction:

(2) for every strictly positive subformula occurrence AO of A,

there is an I=I(Ao,ll+) with
i) IE [v,->],

ii) p(I) c p(A) n p(B),
iii) A0 F- I,

iv) for every sequent A0 Ifi F * C (A0e I-) in 11+_ we have I,F F C;

from this the theorem follows (take A for An).

9
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I) AO=P, P an atom: take

P if P e p(B)
J otherwise,

,then (i), (ii), (iii) are trivial. For (iv), we argue as follows: if, PE p(B), then I(P,rj+)=P=AO and

(iv) holds trivially; if Pe p(B), then P p(F,C, by (1), and with -A0,FI-C we get (using :-AO=l?

and (SUB)) T,I'FC.

II) AO_A1vA2: now put

I(A1vA2x.+).:= I(A1;1[+) v;I(A2,+:) : .

(i), (ii) and (iii) are evident, (iv) is proved as follows with induction over the length of a

.subderivation of II+ containing only sequents of --the form A1vA2,F F* C (A1vA2,z I'). We

distinguish three cases, writing I for ,I(A1vA2,rj+):

a) The sequent is an axiom: then so is I,I' F C.

b) A1vA2,i' F C as the conclusion of a (vL)*-rul

A1,I' F* C A2,I' F* C

A 1 vA2,I` b;* C;

by the induction hypothesis (2), we have I(A1,rj+),I'FC and I(A2,rj+),I'FC, hence we have

I,I'FC by (vL)*.

c) A1vA2,I' F* C is the conclusion of a rule with premise(s), containingr AlvA2, e.g. (vL)*:

A l vA2,I",D F* C A l vA2,F,E=1-* C

A1vA2,I",DvE F* C

by induction, have I;I",DFC and T,r',EFC.- hence I,1",DvEF-C by (vL). Similar

for other rules.

III) AO=A1- A2: let

I'i,A1--)A2 F* Al A2,I7i,F* Ci
(_. Li)*

Fi,Al-4A2 F* Ci

(i=1,...,n, n>_0) be all the instances of (---)L)* in rj+ with as main formula. By 2.4 we

have Fi,A1-A2 F Al (i=l,...,n), and with 4.2 we find interpolants Ji (i=1,...,n) in [A,v,-4]

with

10
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(3) F 1-Ji,

(4) Ji,A 1--)A21-A 1,

(5) p(Ji) Cp(I,i)np(A 1 -+A2)

Now put

I(A1-A2,fF) (J1v..,.vJn)=>I(A2,II+).

We show (i) - (iv) of (2), writing I for I(A1-->A2,f+).

(i): by Lemma 3.2(ii).

(ii): by (5) and (1) we have p(Ji)cp(B)np(A) (i=1,...,n), so p(I)Cp(A)np(B) by the induction
hypothesis (2) and Lemma 3.2(ii).

(iii): by (4) we have Ji,A1-->A2E-A1 (i=1,...,n), hence J1v...vin,Al-3A2l-A1; also

A2FI(A2,1j+) by the induction hypothesis (2). This gives

so with Lemma 3.2(ii) we get A1->A2f-I.

(iv): let Al-+A2,I' F* C be a sequent in fj+. Three cases:
a) it is an axiom: then so is I,FFC.

b) it is the conclusion of one of the so r=ri, C=Ci. Now FiFJi by (3), so
F FJ1v...vJn; also, by induction hypothesis (2j`, I(A2,I1+),r FCi, hence we have

(J1v...vJn)-I(A2,rj),F FCi, i.e. (by Lemma 3.2.(ii)) I,F !-Ci.

c) it is the conclusion of anotherinstance of a rule, with Al-A2 as main formula: now

(iv) follows with induction, as under (IIc)
above.:"

[]

4.6. Theorem. Interpolation holds in [v,-,].

Proof. Analogous to that of Theorem 4.5 above. We `only present the differences.

IT+-is defined in 4:5, but now with the exception

*)' if the rule involved is aninstance`of with a subformula occurrence of A as

main formula, then the"premise is 'not in fj+

(6) for every strictly positive subforrnula occurrence

there is an I=T(Ao,f I'+") with

i)

ii)

A0FI,

IE [v,-,],

p(I) S p(A) n p(B),

v) for every.sequent AO,I' F C (A0 1) in II+ we have it F C.

11
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AO=P or A0=A1vA2: as in 4.5.

A0=A1vA2: let

(-,Li)
FiF-A 1

I'i,-iA 1 I-Ci

(i=1,...,n, n>_O) be all the instances of (-,L) in II with --A1 as main formula. By 4.2 we find

interpolants Ji (i=1,...,n) in [A,v,-,] .with

(7) riFJi,
(8) JiF-AI,

(9) P(Ji),cp(ri)np(A

Now put

I(-,A1,fl+) := W1v...vJn).

We show (i) - (iv) of .(6), writing, I for ;I

(i):

(ii):

by Lemma 3.3(ii).

Al,w).

by (9) and (1). we have p(Ji)Cp(B)np(A)

hypothesis (6) and Lemma 3.3(ii)..

o. p(I)Cp(A)np(B) by the induction

(iii): by (8) we have JiF-A1 (i=1,...,n), hence J1v...vJnF-A1. This gives -,AlF`(J1v...vJn),

so with Lemma 3.3 (ii) we get -,A 1 F-I. ur

(iv): let -,A 1,I' F-* C be a sequent in n+. Three cases:

a) it is an, axiom: then so is I,I'F-C.

b) it is the conclusion of one of the (-,Li)*, so T'=rim C=Ci. Now FilJi by (7); so

FiF-Jiv...vJn; hence we have -(J1v...vJn),FiF-Ci, i.e. (by Lemma 3.3.(ii)) I,FiF-Cil

it is the conclusion of an-instance of another, rule, with -,A1 as-main formula: now (iv)

follows with induction, as under (IIc) in 4.5., []

§5. Fragments without T or 1.

To make life simpler, we considered T and .l as constants which are present in every fragment.

If we do not choose to do so, we have to be slightly more careful, as we shall now explain.

5.1. T is definable in fragments containing - (by P---)P),, A. and -, .by -,(PA-,P)), or v
and -, (by -,-,(Pv-1P)); similarly, 1 is definable in fragments containing -n and A, --, and v,
or --,,and -)..In such .fragments we have e.g. the following derivable sequents:

12
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P-.PF- Q -Q,
PA -,P F- 'Q A -,Q,

and an,interpolant J. for any of these must satisfy p(I)=i, which is impossible without constants.

The obvious remedy is to strengthen the premise in the formulation in the Interpolation Theorem by

adding any of the following-conclusions--,

P(A) n p(B) #-,0, or,
not-(A F- ,1) and not F- B).

§6. Other fragments, open problems.

In this last section we consider fragments containing and and sketch some attempts to

prove interpolation.

6. 1. The only fragments based on A, V, -4 and <-* are

[A,-->]) and

for

A (A-*B) = AAB,
(AAB) H B = A B,

A H (AvB) = A B,

(AHB) H (AvB) = A A B.

So [E-a] is the only new fragment. We conjecture that interpolation holds, but a proof has not been

found. We sketch two approaches.

6.2. The sequent calculus SC(H) for [H] is defined as the axioms (P), (T) and (1), plus the

following rules:

(<-4R)>
F,A I'- B I',B F- A

'T F AHB

FF- A I',BF- C I'FB F,AF- C
(HL)

F,AHB F- C r,A-*B F- C

13
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To see that a formula AE [H] is derivable in SC(-*). if and only if it is derivable in SC

(considering A-*B as an abbreviation of (A-4B)A(B-4A)), one argues as follows. Define SC+

.as the; union of. SC -And :SC(-) -show that the cutruleis a derived rule in- SC+, observe that

(A-.B)A(B-4A) I- At- B and A - B l- (A-B)A(B-A)

are derivable in SC+ and conclude, for sequents F F A in [H].x 'F F A- derivable in SC(H)

if and only if IF F A derivable in SC+ if and only if F' 11',A derivable in SC.

It is not immediately clear how to prove interpolation for [<-*] with SC(- ): the 'interpolation

rules' to be used in Schiitte's method are e.g.

(i-*L 1)
F[I1]AFA F112]B,Al-C

F [11A12] AHB,A F C

(i<-4L2)
A [I1]r FA. F,B[I2]AF

F,A->B

so we get interpolants containing A and -->.

6.3. Another candidate method to prove interpolation for [H] , which works in classical, logic (see

[Z78]), is: show A(p) F A(A(T)). Unfortunately, this does not hold for all AE [H]: to see this,

take A(p) := (p H q) H (p H r), then A(A(T)) = A(q"r) = q<->r,, but

(p H q) H (p H r) F q<->r is not derivable;

to see this, take p:=1, q:=-,-,r.

Despite these unsuccessful attempts, we state the following conjecture.,

interpolation holds for [H].

6.5. Fragments with -,-,.

We introduce a new connective - for double negation. The sequent calculus SC(-) is based on

sequents F F A or F F (think of this last sequent as being equivalent to F F 1), and

contains the axioms and rules of SC (possibly with sequents r F ), together with
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F F- A r,A F-
(- L) (- R),

(-L)

r,,A F-

r,A F

,

(-R)

rF

r,-1A F-

(W)

r,-A F- ]F-~A

IF FA

The cut rule is a derived rule of SQ-), and it is easy to see that

-A F --,-,A and --r-,A F -A

are derivable in SC(-). For fragments containing - but not -,, the rule (-,R) can be skipped,
but (-1L) is still needed because of (-R). To extend Schi tte's method; the following

'interpolation rules' are needed:

IF [I] A FA
(iLl)

r [I] -,A, A F

A V

(i-,L2)
r,-,A [-,I] A F

F [I] A,A F
(iLl)

r [I] A,-A I -

r,A [I] A F
(i-L2)

r,-A [-I] A F

Unfortunately, this extension of Schiitte's method may (by (i-,L2)) introduce -, in the definition

of an interpolant for A F B with A,B in some fragment containing but not Closer

inspection learns that (i-1L2) is only needed in fragments containing -1 or -a, so interpolation

holds in the rather trivial fragments [-], [-,n], [-,v] and [-,n,v]. For the other fragments, the

question arises:

which fragments containing - and -4 satisfy interpolation?

6.5. Uniform interpolation.

Finally we state the following open problem: does IpC satisfy uniform interpolation, i.e. are there,

for every formula A and every Pca(A), a uniform right interpolant IR=IR(A,P) and a uniform

left interpolant IL=IL(A,P) such that

15
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A I- IR, IL I A,-
.

a(IR),a(IL) CP,
for all B with A E- B and a(A)na(B)cP we have IR I- B, and
for all B with,,I B I- A and a(A)na(B)cP we haves B I- IL?

In classical logic, the left and right'variant are equivalent. Uniform interpolation holds for classical

propositional logic, but not for classical predicate logic (see [H63]),. and hence not for intuitionistic

predicate logic.
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