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§1. Introduction.

1.1. A fragment [C] of IpL (intuitionistic propositional logic) is a subset of the set of formulae of
IpL built up from the propositional variables and constants (T and ) by means of connectives
from the set C only. If C={c{,cy,...}, then we write [c{,Cy,...] for [C]. In this note, we

mainly consider the primitive connectives A, v and —; one can, however, also think at defined
connectives ¢ where A=A(Py,...,P,) is some formula, with ¢ (B1,....Bp) := A(By,....B).
Examples of defined connectives are — (—A =A—1) and <& (A < B = (A—»B)A(B—A)). So
e.g. [A,v,—] contains all formulae of IpL, and [¢3] is the fragment containing all formulae built
up with < only.

1.2. The interpolation theorem for IpL reads:

Let A,B be formulae of IpL such that AFB. Then there is an interpolant I for
AFB, i.e.

i) AFI and I+B;

ii) all propositional variables of I occur bothin A and in B.

’

This theorem is a consequence of the interpolation theorem for intuitionistic predicate logic, first
proved by Schiitte in [S62].

1.3. In this paper, we consider relativizations of the interpolation theorem to elementary fragments
(fragments based on primitive connectives or —), and we show

interpolation holds in all elementary fragments.

There are many fragments of intuitionistic propositional logic for which interpolation fails, e.g.
[A,—,—,8] with 8(A,B,C)=(Av-A)A(A—B)A(—A—C) (first proved by J. Zucker in [Z78]; see
also [R81]). For intermediate logics the situation is the same (see [M85]). In classical logic,
however, interpolation holds in all propositional fragments (proved by F. Ville: see [KK71],
[KK72], Ch. 1, Exercises).

Another notion of fragment is considered in [R87], where a strong version of interpolation is
proved for the subset NNIL (No Nestings of Implication to the Left) of formulae of IpL, defined
inductively by

all propositional variables and constants are in NNIL,
NNIL is closed under A and v,
if Ae NNIL and P is a propositional variable, then P—A € NNIL.

1.4. The rest of this paper is organized as follows: in §2 we fix the notation and present a sequent



calculus for IpL, §3 consists of three lemmata about elementary fragments, §4 contains Schiitte's
method to prove the interpolation theorem for IpL, which is used subsequently to show
interpolation for all elementary fragments, in §5 we discuss the consequences of not adding the
constants T and L to the fragments. §6 is rather tentative: it reports on unsuccessful attempts to
prove interpolation for some fragments containing the connectives <> and ——.

1.5. Acknowledgements.

The author is indebted to M.H. L&b, who pointed out to him an error in a previous version of
theorem 4.5.

§2. Preliminaries.

2.1. Notation.

All formulae are in intuitionistic propositional logic, with A,v,—,— as connectives and the
constants T and 1. P,Q,... are propositional variables; together with T, L we call them
atoms . A,B,C,... are formulae; I',A,I",... are finite (possibly empty) sets of formulae. We write
I',A for the union of I" and A; T',A stands for I',{A}.

For sets of formulae F, G we define
F=G := VAeFABe G(A=B) and VBe GdAe F(B=A),
where A=B stands for AFB and BFA. We also put

AF := {A{A.AAL | AgsnApeF),
F—-G := {A—>B | AeF, BeG},
—F = {_IA | Ae F}

We define a(A) [at(A)], the set of all [strictly positively occurring] atoms in A, by

a(T)=a™(T) = (T},

a(Ly=at(L)={1},

a(P) =a*(P) = (P},

a(AAB) =a(AvB) =a(A—B) =a(A) LU a(B),
a(—A) =a(A),

at(AAB) = at(AvB) =at(A) U at(B),
at(A—B) =a*(B),

at(=A) =0;



p(A) [pT(A)], the set of all [strictly positively occurring] propositional variables in A, is defined by

P(A) = a(A) - {T9-L},
pt(A) =a*(A) - (T,L1}.

2.2. The derivation system.

We use the following sequent calculus, denoted by SC:

Te main formula of a rule is the newly formed formula of the conclusion: AAB for (AR) and
(AL), A1vA, for (VR), AVB for (vL), A—B for (=R) and (—L), —A for (=R) and (—L).

(P)

(M)

(L)

(AR)

(VR)

(—R)

(=R)

I'PFP

e T

ILLFC

I'tA TFB

I - AAB

'k Ai
— (=1,2)
'+ AIVA2

I'’AFB
I'FA—B

AF L

I'kF-A

SC has the following derived rules:

(CUT)

(WEAK)

(SUB)

(AL)

(vL)

(=LD)

(=L)

ILABFC

s

I, AAB F C

I'ArFC TBEFC

I, AvB I C

't A TI'BFC

I’ A—-BFC

I'rA
I'-AFB

cut elimination: if TFA and I',AFB then T'FB;

weakening: if TFA then T',AFA;

substitution: if I'FA then I'[P:=B]-A[P:=B].



The proofs are standard (as for related systems, e.g. in [S62] and [T75]).
Note that the Subformula Property only holds in the following version:

if B occurs in a cut-free derivation of ' F A, then B=1 or B is
a subformula of T',A;

the addition B=1 1is made necessary by the presence of (—=R), in which L is eliminated.
The following consequence is important in the context of this paper:

let [T be aderivation of I'" F A. Then we have

i) if B isaformula occurring in [], then all connectives in B
occurin I A;

i) if ce {A,v,—,~} and (cR) or (cL) is arule applied in [I,
then ¢ occurs in T A.

For later use (4.5, 4.6), we define a variant SC* of SC and prove it e:quivalent to SC.

2.3.SC* is SC with (vL) and (—L) replaced by:

I'ArFC TIBFC I''A-BFA TIBLFC
(vL)* (AvBeI) (—L)* (A—-Bel)
IAVB + C IA-B+C

We write T'F* A for: I' F A is derivable in SC¥*.

24.Lemma. I' F Aif and only if I" F* A.
Proof. We write I' b, A for: 'I' F A has a derivation with length at most n'; idem for I F*
A. With induction over n one easily proves:

(1) if I, AVB,AF, C,then I, A+, C;

2) if I, AvBBF,C, then I,B+, C;

3) it T, A—B.B I, C, then ', B, C;
@ if T'ky C,then T, A Fn C;

(5) if I'F*, C, then T, AF*, C.

We turn to the 'if part of the lemma. Assume I' H* A,ie. I'F*, A for some n; we show I’

Fh A with induction over n. If n=1 then I' F* A is an axiom, hence I'F A; if n>1 and T F*
A is (an axiom or) the conclusion of (vL)* or a rule different from (—L)*, then the result
directly follows from the induction hypothesis (using that every instance of (vL)* is an instance of
(vL)). If T F* A is the conclusion of (—L)*, then the premises are of the form I, B>CF* B
and I, CH* A where I'":=T - {B—C}. Now apply (5) to obtain I'"", B—C, C F*p.1 A, and



then the induction hypothesis.

Finally we prove the 'only if' part, with induction over the length of a derivation of I" F A.
Assume '+ A,so I'F, A for some n.If n=1 then I'F A is an axiom, hence I" F* A; if
n>1 and I'F A is (an axiom or) the conclusion of an instance of (vL)* or a rule different from
(vL), (—=L), then the result directly follows from the induction hypothesis. There are three cases
left:

1) ' F A 1is the conclusion of (vL) with premises of the form I, BvC,BF A and I, BVC,C
F A where I'":=T - {BvC}: apply (1), (2), the induction hypothesis and (vL)*.

i) ' + A is the conclusion of (—L) with premises of the form I"'+ B and I, CF A where
I":=T - {B—C}: apply (4) to obtain I, B—C F_;1 B, then the induction hypothesis and
(—=L)*.

iii) ' + A is the conclusion of (—L) with premises of the form I, B—CF B and I', B—>C,
CF A where I':=T - {B—>C}: apply (3) to obtain I", C k- _{ A, then the induction hypothesis
and (—L)*. [l

’

§3. Elementary fragments.

Before turning to interpolation, we derive some properties of elementary fragments.

3.1.Lemma.

1) [A—=]EA-]

ii) Let Ae[—]. Then at(A)={X] for some atom X, and A = (A—X)—X.
iii) {Ae[A,—]1aT(A)is a singleton} =[-].

Proof.

i) Formula induction, using

(AAB)—(CAD) = (A= (B—=C)A(A—(B—-D)).
ii) We have A = Aj—(Ay—..—(A;—X)...) (n20) for some atom X, so at(A)={X]}. Also
A= (A1AAA) DX = ((AA.AA ) HX)-X)-X = (A-X) X

iii) Formula induction, using (i), (ii) and

(A-X)->X)IA(B-X)—X) = (A—>(B—X))-X. 1]



3.2.Lemma.

i) [Av,—]=Alv,>].

ii) There is a mapping = satisfying: if Ae[A,v,—], Be[v,—], then
A=B e [v,—], A=B =(A—-B) and p(A=B) =p(A—B);

as a consequence we have [A,v,—]-=[v,—=] =[v,—>].

Proof.

i) Formula induction, using the following equivalences:

(AAB)V(CAD) = (AVOABVC)A(AVD)A(BVD),
(AAB)—(CAD) = (A—>(B—-C)A(A—=(B—D)).

i) Let Ae[A,v,—], Be[v,—]. By (i) we have A=A{A..AA with A;e [v,—] (i=1....,n); from
the proof of (i) it follows that p(A)=p(AjA...AA). Now put ’

A=B = A1>(Ay—>...—(A,—B)..),
and one easily sees that (ii) is satisfied. 0
3.3.Lemma.
) AVl = Alv,Al
ii) Thereis amapping | satisfying: if Ae[A,v,—], then
UA e [v,—], A ==A and plA) = p(—A);
as a consequence we have —[A,v,—] =[v,—].
Proof. Analogous to that of 3.2, using the equivalence
—(AAB) = —=—(—=Av-B)
and the definition

UA = ——(=Aqv..v—Ap)

for Ae[A,v,—] with A=A A..AA, and Ase[v,—] (i=1.....n). []



§4. Interpolation in elementary fragments.
4.1. Lemma (Schiitte [S62]). Interpolation holds in [A,v,—,—].
Proof. Let A F B. Then there is a derivation in SC of A F B. With induction over the length of
the derivation it is shown that any partition I',A I C of a sequent in the derivation has an
interpolant I, i.e.

THI

LAFC;

p(I) N p(A,0) < pD.

From this the lemma follows (take I'={A}, A=, C=B).

The method to obtain the interpolant I for I'_/A F A can be rendered as follows:

&

(iP1) I'[TIAPFP @ipP2) I’P[P]AF+P
am) CTIAFT
il1) r[TiaLrcC il2) ILL[L1]ARC

T[jJAFA  T[L]A+B

(iAR)
I'IiAL] AF AAB
T1AAFC T[L]BAFC
GvL1)
T [I;Aly] AVBA FC
TA[JAFC TBLJAFC
(ivL2)
F,AvB [IIVIZ] AF C
T[I;JAFA T[L]BAFC
(i-L1)
T [II/\Iz] A-BAFC
AlITFA TB[L]AFC
(i—L2)

[LA-B[[1-L1AFC



I'[I]IAFA A[IITHA
(i—L1) (1—-L2)
I'l]JA-AFB I''-A[-I]AFB

We explain this notation with an example.
(iAnR) means:

if TFI;{ andIj, A+ A and I'F1y and I5,AFB
then I' F I1Alp and IjAly,A F AAB;

so (iAR) indicates how an interpolant for I' , AFAAB can be obtained from interpolants for I",
AFA and T, AFB.

For rules not mentioned here ((AL), (VR), (—=R), (—=R)), the interpolant for the conclusion is the
same as for the premise. M

4.2. With Schiitte's method (i.e. the method used in the proof of Lemma 4.1), it is easy to prove
interpolation for [—] and for the fragments containing A ([A], [A,V], [A,—], [A,—],
AV, LIA VAL (A=) [AV,—,]).

This is not evident for fragments containing v or —, butnot A ( [V], [-=2], [V,—=], [V,—],
[—,—], [v,—,]), as (ivL1) and (i—L1) introduce A in the definition of the interpolant. To
illustrate this, we present the following example where Schiitte's method is applied to a proof of
(PvQ)—R F (PvQ)—>R:

P,(PvQ)—R [P] FP Q.(PvQ)—R [Q] FQ
P,(PvQ)—R [P] FPvQ R [R] PFR Q,PvQ)—R [Q] FPvQ R [R] QFR
(PvQ)—R [P—R] PFR (PvQ)—R [Q—R] QFR

(PvQ)—=R [(P>R)A(Q—R)] PVQFR

(PvQ)—R [(PR)A(Q—-R)] F(PvQ)—R

Since — is definable in fragments containing — (using the constant 1), we have [—,—]=[—]
and [v,—,—]=[V,—], so the only fragments for which interpolation still has to be shown are [v],
[—], [v,—] and [v,—]. We have a closer look at these four fragments in the rest of this section.

4.3. Interpolation in [v] is trivial: if A,B € [v] and A} B, then A=P{v...vP,, B=Q;v..vQ,
with ViSmEIan(Pi=Qj), so p(A) C p(B) and A is an interpolant. (By a similar argument,
interpolation in [A] is trivial.)



4.4, Theorem (Zucker [Z78]). Interpolation holds in [—].

Proof (somewhat different from Zucker's). Let A,Be[—] with AFB. Schiitte's method gives us
an interpolant I in the fragment [A,—]. With induction over the length of the derivation of A+B
one can show that pT(I)CpT(A), so by Lemma 3.1(ii) there is an I' equivalentto I in [-]. []

4.5. Theorem. Interpolation holds in [v,—].

Proof. Let A,B € [v,—] with A I B. By Lemma 2.4 there is a derivation [] in SC* of A F*
B. We define inductively the subtree I1* of IT:

a) A+* B isin [I™;

b) if the conclusion of a rule isin [T, then so is (are) the premise(s), with the following
exception:

*) if the rule involved is an instance of (—L)* with a subfqrmula occurrence of A as
main formula, then only the right hand premise is in IT*.

With induction over the structure of T one easily observes (using the peculiar definition of
(vL)* and (—L)*):

(D every sequentin [T is of the form Al F* C, where Ay is a strictly positive
subformula occurrence of A and I" U {C} a collection of subformula occurences
of B.

In other words: the sequents in " contain no negative subformula occurrences of A and exactly
one subformula occurrence, namely in the premise.
Now we prove, with formula induction:

) for every strictly positive subformula occurrence A of A,
there is an I=I(A(,IT") with
i)y Ielv,—],
ii) p() <€ p(A) N p(B),
i) AgFL
iv) for every sequent AT * C (AgeD) in II* wehave LT+ C;

from this the theorem follows (take A for Ag).



I) Ag=P, P an atom: take

IPIIH):= P if Pe p(B)
T  otherwise,

then (i), (ii), (iii) are trivial. For (iv), we argue as follows: if- Pe p(B), then I(P,H+)=P=A0 and
(iv) holds trivially; if Pep(B), then Pgp(I',C) by (1), and with Ag,IHC we get (using Ap=P
and (SUB)) T,I'FC.

II) Ag=A1VAj: now put
I(A]VALITH =T(ALITH v I(ALITH;

(1), (ii) and (iii) are evident, (iv) is proved as follows with induction over the length of a
subderivation of [I* containing only sequents of the form AvAL I'F* C (AvApy ¢ T'). We
distinguish three cases, writing I for I(A;vA,,IT™): )

a) The sequent is an axiom: then sois I,I' + C.

b) A;vA,,I' F* C is the conclusion of a (vL)*-rule:

ATHC  ApIH*C

AIVAz,r F* C

by the induction hypothesis (2), we have I(A{,IT),I'+C and I(A,,ITH),I'FC, hence we have
LTHC by (VL)*.

¢) AqvA,I' F* Cis the conclusion of a rule with premise(s) containing A1vA,, e.g. (VL)*:

A1VA2,F‘,D F*C A1VA2,F',E F*C

AlvAz,I",DvE F*C

by induction, we now have LI",DFC and LI",E+C, hence LI",DVEFC by (vL). Similar
for other rules.

1II) A0=A1—)A2: let

I‘i,Al——>A2 o Al A2,1“i * Ci

(=Lp*
I‘i,Al-——>A2 F* Ci

(i=1,...,n, n20) be all the instances of (—L)* in ITT with A;j—A, as main formula. By 2.4 we

have I';,A1—>As F Aq (i=1,....,n), and with 4.2 we find interpolants J; (i=1,...,n) in [A,v,—]
with

10



3) TH;,

(4) Ji,Al—)Azl'Al,
&) pJPCpdPNp(A1—Ag).
Now put

I(A1—=AITH) = (V.. VI =T(AL ITH.

We show (i) - (iv) of (2), writing 1 for I(A1—>A2,H+).

(1): by Lemma 3.2(ii).

@i): by (5) and (1) we have p(J;)Sp(B)Np(A) (i=1....,n), so p(NSp(A)Np(B) by the induction
hypothesis (2) and Lemma 3.2(ii).

(iii): by (4) we have J;,A1—AsFA (i=1,...,n), hence Jiv..v],A1>AsFA¢; also
Azl—I(Az,H"') by the induction hypothesis (2). This gives
A=A V.. V) -I(AL,IT), so with Lemma 3.2(ii) we get A{—AsFL

@iv): let A{—>A,,I' H* C be a sequent in [T*. Three cases: ’

a) itis an axiom: then sois LI'+FC.

b) itis the conclusion of one of the (—L;)*, so I'=I'j, C=C;. Now TI'jH]; by (3), so
IjFJpv...v]; also, by induction hypothesis (2), I(A2,H+),Fil-Ci, hence we have
(J1v..VI)—=I(A, ID,IHG;, ie. (by Lemma 3.2.(ii)) LI+HC;.

¢) itis the conclusion of another instance of a rule, with A1—A, as main formula: now
(iv) follows with induction, as under (IIc) above. [

4.6. Theorem. Interpolation holds in [v,—].

Proof. Analogous to that of Theorem 4.5 above. We only present the differences.
ITT is defined in 4.5, but now with the exception

*) if the rule involved is an instance of (—L)* with a subformula occurrence of A as
main formula, then the premise is not in 1.

This [T satisfies (1) of 4.5, and we prove the following analogue of (2):

©6) for every strictly positive subformula occurrence Ay of A,
there is an I=I(Ap,ITT) with
i) Ie[v,—],
ii) p(D < p(A) N p(B),
iii) AgFl
iv)  forevery sequent Ap,TF* C (AgeT) in IT* we have LT+ C.

11



A0=P or AO=A1vA2: as in 4.5.

A0=A1VA2: let

TjHA;
(—L;) .

Iy = G

(i=1,...,n, n=0) be all the instances of (—L) in [] with —A1 as main formula. By 4.2 we find
interpolants J; (i=1,...,n) in [A,v,—] with

@) I‘iI—Ji,

(8) J iI-Al,

©) pUJp<pTpPNp(Ap).
Now put

I(—AITH = 4dve.vip.

We show (i) - (iv) of (6), writing I for I(=A{,ITH).
(1): by Lemma 3.3(ii).
@(i): by (9) and (1) we have p(J;)SpB)p(A) (i=1,...,n), so p()CSp(A)"p(B) by the induction
hypothesis (6) and Lemma 3.3(ii).
(iii): by (8) we have J;FAq (i=l....,n), hence Jyv..vJ FA 1. This gives —A1F=(J1v...v]
so with Lemma 3.3(ii) we get —A{FL
(iv): let —A{,T F* C be a sequentin IT*. Three cases:
a) itis an axiom: then sois II'FC.
b) itis the conclusion of one of the (—L;)*, so I'=Ij, C=C;. Now IjH]; by (7), so
[FI V... V] hence we have —(J1v...v]),IFC;, ie. (by Lemma 3.3.(1)) LI;FC;.
c) itis the conclusion of an instance of another rule, with —A{ as main formula: now (iv)

n)

follows with induction, as under (IIc) in 4.5. [1

§5. Fragments without T or L.

To make life simpler, we considered T and L as constants which are present in every fragment.
If we do not choose to do so, we have to be slightly more careful, as we shall now explain.

5.1. T is definable in fragments containing — (by P—P), A and — (by —(PA=P)), or v

and — (by ——(Pv—P)); similarly, L is definable in fragments containing — and A, — and v,
or — and —. In such fragments we have e.g. the following derivable sequents:

12



P—>P I Q-Q,
PA—=P F Q/\—IQ,

and an interpolant I for any of these must satisfy p(I)=@, which is impossible without constants.
The obvious remedy is to strengthen the premise in the formulation in the Interpolation Theorem by
adding any of the following conclusions:

p(A) N p(B) # J, or
not (A + 1) and not ( F B).

§6. Other fragments, open problems.

In this last section we consider fragments containing <> and ——, and sketch some attempts to
prove interpolation.

6.1. The only fragments based on A, v, — and <> are
(2],
[A,—,] (= [A,>])and

[Av,—,] = [Av,>)),

for

A & (A—B) = A AB,
(AAB) < B = A > B,
A & (AvB) = A—-B,

(A&B) - (AvB) = AAB.

So [«>] is the only new fragment. We conjecture that interpolation holds, but a proof has not been
found. We sketch two approaches.

6.2. The sequent calculus SC(«3) for [«3] is defined as the axioms (P), (T) and (L), plus the
following rules:

T AFB I'BFA
(©R)
' A-B
'rA I'BFC I'B IAFC
(L)
I''A<BFC INA<BFEFC

13



To see that a formula Ae[<>] is derivable in SC(«») if and only if it is derivable in SC
(considering A<>B as an abbreviation of (A—B)A(B—A)), one argues as follows. Define SC*
as the union of SC and SC(«>), show that the cut rule is a derived rule in SC*, observe that

(A—SB)AB—A) +F AB and A&B F (A—-SB)A(B—A)

are derivable in SC* and conclude, for sequents T+ A in [¢3]: T+ A derivable in SC(«)
if and only if '+ A derivable in SC* if and only if T'F A derivable in SC.

It is not immediately clear how to prove interpolation for [«>] with SC(«): the 'interpolation
rules' to be used in Schiitte's method are e.g.

T[;JAFA T[L]BAFC
(ieL1)

r [Il/\Iz] A&BALFC

AMITFA TB[L]AFC g

(ieL2)
[LA©B[I1-hlAEC

so we get interpolants containing A and —.
6.3. Another candidate method to prove interpolation for [<>] , which works in classical logic (see
[Z78)), is: show A(p) F A(A(T)). Unfortunately, this does not hold for all Ae[«>]: to see this,
take A(p) :=(p <> q) & (p © 1), then A(A(T)) = A(geor) = géor, but

(peq & (pe>r1)F géor isnot derivable;
to see this, take p:=1, q:=——r.
Despite these unsuccessful attempts, we state the following conjecture.

interpolation holds for [«3].

6.5. Fragments with ——.

We introduce a new connective ~ for double negation. The sequent calculus SC(~) is based on
sequents '+ A or I' F (think of this last sequent as being equivalentto I'+ 1), and
contains the axioms and rules of SC (possibly with sequents I' ), together with

14



I'r A IAF

(=L) (=R)
I'—-AF I'—-A
T AF I'—-AF
(~L) (~R)
T'F
Wy —
I'rA

The cut rule is a derived rule of SC(~), and it is easy to see that
~AF—A and —AF ~A

are derivable in SC(~). For fragments containing ~ but not —, the rule (—R) can be skipped,
but (—=L) is still needed because of (~R). To extend Schiitte's method; the following
‘interpolation rules' are needed:

TMAFA AT F A
(—L1) (i—L2)
[—AAF I—A[-IAF
T AA F TA[AF
G-L{) —— ALy
T [IA~A F I~A [~ A F

Unfortunately, this extension of Schiitte's method may (by (i—L2)) introduce — in the definition
of an interpolant for A F B with A,B in some fragment containing ~, but not —. Closer
inspection learns that (i—L2) is only needed in fragments containing — or —, so interpolation
holds in the rather trivial fragments [~], [~,A], [~,v] and [~,A,v]. For the other fragments, the
question arises:

which fragments containing ~ and — satisfy interpolation?

6.5. Uniform interpolation.

Finally we state the following open problem: does IpC satisfy uniform interpolation, i.e. are there,
for every formula A and every PCa(A), a uniform right interpolant Ig=IR (A,P) and a uniform
left interpolant Iy =Ij (A,P) such that
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AFIR, I F A,

a(Ig).a(Ip <P,

forall B with A+ B and a(A)na(B)CP we have IR F B, and
forall B with B+ A and a(A)na(B)CP we have BF Iy ?

- In classical logic, the left and right variant are equivalent. Uniform interpolation holds for classical

propositional logic, but not for classical predicate logic (see [H63]), and hence not for intuitionistic
predicate logic.
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