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Abstract
Purpose In this article, we aim to present and defend a contextual approach to math-

ematical explanation.

Method To do this, we introduce an epistemic reading of mathematical explanation.

Results The epistemic reading not only clarifies the link between mathematical expla-

nation and mathematical understanding, but also allows us to explicate some contextual

factors governing explanation. We then show how several accounts of mathematical

explanation can be read in this approach.

Conclusion The contextual approach defended here clears up the notion of explanation

and pushes us (at least for now) towards a pluralist vision on mathematical explanation.

Keywords Mathematical explanation � Mathematical understanding �
Contextualism � Pluralism

Introduction

Mancosu (2008) differentiates between two senses ofmathematical explanation,which

are both investigated in philosophy of mathematics. The first sense concerns

mathematical explanation in the natural or social sciences. Considering the role

mathematics plays in our scientific endeavours, clarifying the connection between
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mathematics and the world is an important philosophical challenge. For example, there

is an unresolved debate about whether mathematics can genuinely explain a physical

phenomenon or merely represent it. Mancosu’s second sense concerns mathematical

explanation inside mathematics. The underlying idea in this topic is that not all

mathematical activity is driven by justificatory aims. For instance, while all proofs show

that a theorem is true, some proofs go further and also show why a theorem is true.

Several mathematicians and philosophers of mathematics have called the latter an

explanatory proof. Philosophical accounts of explanation aim to clarify what it means

for a proof to be explanatory. It is this latter sense which we will focus on in this paper.

In ‘‘A Contextual Approach’’, we will outline our contextual account of

mathematical explanation. Contextualism comes quite natural, we will argue, once

we read explanation as involving a recipient to which it must give understanding (an

epistemic, rather than an ontic reading). Because a proof is only explanatory relative

to the agent’s understanding of it, two contextual factors pertaining to the agent will

be discussed: (1) How well a proof transmits understanding, depending on the

background/skill corpus K of the agent, and (2) whether the proof transmits

understanding within the particular epistemic interests of the agent.

‘‘Accounts of Mathematical Explanation’’ explores those same ideas by applying

them to several accounts of explanation, namely those of Steiner, Cellucci and

Lange. We show an epistemic and contextual reading of each of them and give an

illustration from mathematical practice.

The reasonwe discuss not one but several accounts of explanationwill be argued for in

‘‘Embracing Pluralism’’. No single account of mathematical explanation has, at present,

managed to capture everything that is mathematically valuable about an explanatory

proof. Ergo,we believe it unwise, at present, to limit ourself to anyone of themandwould

rather accept a (heuristic) pluralism about the accounts ofmathematical explanation to be

considered in dubbing a proof as explanatory. Furthermore,we believe the value of a type

of mathematical understanding (and the type of explanation that grants it) may

themselves vary with context, which could be expressed as a third contextual factor.

A Contextual Approach

The Ontic and Epistemic Distinction

Before we explore accounts of explanation, we believe it fruitful to this

phenomenon from the perspective of the ontic/epistemic approaches. This is a

distinction borrowed from Salmon (1984) in the debate about scientific explanation.

Within the literature on mathematical explanation, talk about epistemic or ontic

approaches is absent. Our aim here is to use the epistemic approach in order to

clarify some relevant aspects about the study of mathematical explanation that have

hitherto remained overlooked or neglected. The ontic conception, following

Salmon, sees explanations as ‘exhibitions of the ways in which what is to be

explained fits into natural patterns or regularities’ (1984: p. 293), while ‘the

epistemic conception takes scientific explanations to be arguments’ (ibidem). More

generally, ontic versions of explanation see the locus of explanation as that which
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produces the explanandum, while epistemic versions see the locus of explanation as

that which makes the explanandum intelligible to an inquirer.

In philosophy of science, ontic views take scientific explanation to be fully

objective things in the world, distinguished from the statements or arguments

reporting this actual explanation. For causal accounts of explanation, this means a

given phenomenon is explained by the set of causal facts, and not by the scientific

representation of these facts.1 Epistemic views, on the other hand, believe that

scientific explanation can only take the form of communicative acts, texts or

representations. These views see explanation as a human activity that is deeply

connected with understanding. Rather than being full-blooded things in the world,

explanations have the purpose to increase our knowledge about the world.

A mathematical proof can be seen as an argument by which one convinces

oneself or others that something is true, so it might seem hard to go beyond

epistemic talk about an explanatory proof. However, while the content of any

particular proof is the fruit of a person’s epistemic work, it can be separated as an

object independent of a particular mind. Other people can read this proof and be

convinced by it. This leads us to the question whether showing why a theorem is

true is a feature of the proof itself or a feature of communicative acts, texts or

representations. This can be fleshed out as the difference between ontic and

epistemic approaches:

An account of explanation is ontic if it states:

Proof P of theorem t has explanatory value if and only if P itself is the

explanans of t regardless of whether it gives understanding to any particular

agent.

An account of explanation is epistemic if it states:

Proof P of theorem t has explanatory value if and only if the explanans

consists of arguments (in the broad sense) including P that grants

understanding of t for a particular agent S.

This distinction has consequences for the study of explanatory proofs in

mathematics. While not every agent will be capable of grasping the explanation, this

fact does not change the explanatoriness of the proof for the ontic account. Ontic

accounts have to specify which characteristics a proof has or lacks in order to

distinguish explanatory from non-explanatory proofs. The truth of ‘Proof P is

explanatory’ is independent of a particular recipient’s (epistemic agent) response to

(i.e. understanding of) it. This leads to the following statement:2

An account of explanation is ontic if there can be no statement:

‘Proof P explains theorem t’ is true relative to person S and not true relative to

person S0.

1 See, for example, Craver (2014: p. 40).
2 As inspired by Khalifa (2016).
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This is not the case for epistemic accounts of mathematical explanation. Like the

ontic approach, the characteristics a mathematical proof has (or lacks) can and

should still be taken into consideration in the epistemic approach, but, unlike the

ontic approach, they always have an agent’s response (i.e. understanding) coupled to

them. Since we only speak of explanation if the agent reaches understanding, the

answer to the question whether a proof is explanatory does not proceed in the same

way for the epistemic as it does for the ontic approach. The truth of ‘Proof P is

explanatory’ is relative to the particular recipient’s response to (i.e. understanding

of) it. This leads to the alternate statement:

An account of explanation is epistemic if there can be a statement:

‘Proof P explains theorem t’ is true relative to person S and not true relative to

person S0.

It is important to mention that ontic approaches do not necessarily deny the

relation between explanation and understanding. In fact, ‘virtually every theory of

explanation also places a premium on the power of an explanation to produce

understanding’ (Trout 2005), but the crucial difference is that, for the ontic

approach, that relation does not play the role of identifying something as an

explanation. It may, for example, be the case that there is an explanation, but

nobody understands it. Epistemic views, as we presented them, do start with the idea

that there is a fundamental relation and that it is thus meaningless to speak of an

explanation in that case. In this paper, we will build upon an epistemic approach to

mathematical explanation.

Understanding

In spite of the intimate link between explanation and understanding, philosophers

have had doubts about the philosophical relevance of the notion of understanding. A

major cause of concern is the assimilation of understanding with the subjective ‘aha-

feeling’. This concern has been raised by Hempel (1965) and Trout (2002), who

state that the feeling of understanding is not at all a reliable cue for genuine

understanding. They argue that this feeling of understanding might be an interesting

topic for psychology but has no place in the philosophical analysis of explanation.

The feeling of understanding may be its most familiar and salient aspect, but it is

almost unanimously agreed that it is neither necessary nor sufficient for genuine

understanding (Wilkenfeld 2013).

Waskan (2011) instead argues for a ‘success’ interpretation of (scientific)

understanding which goes beyond merely feeling we understand the world. How we

determine understanding as successful, whether it is in science or mathematics, is a

philosophical and not a psychological topic. Most positive accounts of understand-

ing either explicitly (Avigad 2008; Sierpinska 1994) or implicitly (de Regt and

Dieks 2005) defend a functional ‘success’ interpretation: When an agent S

understands X, we attribute that agent certain abilities concerning X. While a

number of people equate understanding with mental states (or representations)

instead of abilities, abilities are invariably present as part of the account, be it as
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symptom or trait. We do not wish to deny mental states playing a role in

understanding, but, to characterize success, we find more solid ground in the

possession of abilities as opposed to inaccessible, theoretical mental states. In short,

we can attribute understanding to someone with successful abilities without

knowledge of mental states, but not vice versa. This leads to the following definition

of understanding that we shall be working with:

‘Agent3 S understands X’ corresponds to ‘agent S possesses particular abilities

related to X’.

Having defined understanding in such a way entails that we can (in principle) list

all abilities relevant to understanding. Avigad (2008) has listed some (general)

abilities involved in understanding a mathematical proof, such as: responding to

challenges as to the correctness of it, identifying key features, identifying the nature

of the objects and questions, mustering the relevant background knowledge,

exploring the space of possibilities fruitfully and so on. The particular object of

understanding under consideration in this paper is that of a theorem and more

specifically understanding why the theorem is true. This corresponds to what an

explanatory proof grants. Combining this reading of understanding with the

epistemic reading of explanation, we get:

A proof P of theorem t has explanatory value if and only if it grants agent S

abilities appropriate to understanding why t is true.

Since we have said that an explanatory proof P of theorem t is one which gives

understanding of why-t (relative to an agent), it follows that an explanatory proof is

one which grants the agent abilities appropriate to understanding why-t.4 Further

clarifications will follow once we discuss examples of accounts of explanation.

Contextualism

A benefit of adopting the epistemic approach is that it gives a perfect set-up to make

context-dependent claims about explanation. For the ontic approach, the truth value

of ‘Proof P explains theorem t’ is absolute, meaning proof P would explain theorem

t (or not) for all agents. Under the epistemic approach, absolutes are (in principle)

possible, meaning there can exist a P which gives understanding of why theorem t is

true to all agents, but this need not at all be the case. In fact, it clearly is not the case

for a lot of proofs; not every mathematician attains the same abilities from them.

Given this, we are in need of a contextual reading of ‘Proof P explains theorem t’

3 We use ‘agent’ in a broad enough sense to include all entities with non-trivial mathematical intentions

and actions, being they a single human mathematician, a cooperative community or a sophisticated

automated theorem prover.
4 This leads to the following difference between the two: While understanding is the possession of

abilities, explanation is the message that transfers them. This implies that having an explanation leads to

understanding (for agent S), but does not imply the converse. An agent who understands will have the

abilities granted by an explanation, but does not necessarily have an explanation (at least in the message-

ready sense, although the substance is certainly present).
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that allows us to specify when and why abilities are attained. In that spirit, we now

wish to present two contextual factors.

Contextual Factor K (Background/Skill Corpus)

In order to grasp (or develop) the argument of a proof, an agent needs to have a

background/skill corpus fertile for it. The skills and background that the agent

possesses are crucial elements in determining whether a proof will be successful in

providing understanding. In the context of a particular agent S and more specifically

its background/corpus K, the explanatory value of a proof can be high because the

specific features of the proof match his or her specific background and/or skills in

such a way that an understanding why the theorem is true can be attained. For

another agent S0, with another corpus K0 (i.e. another context), the explanatory value
of the same proof might be weaker, if not entirely absent, simply because the agent

S0 misses relevant background knowledge and/or skill to work with the proof. Note

that we are not hereby saying that an explanatory proof must necessarily be the

easiest or the most readily accessible. We do not see background/skill corpus K as

static, thus allowing the possibility for a proof to become explanatory in lieu of

some work. However, not until the work is done and K is fertile, will the proof be

properly explanatory. In short, the explanatory value of a proof needs to be

evaluated in the light of an agent’s background/skill corpus K. This is a sort of

‘success’ criterion for understanding based on an proof/corpus couple (P, K).

What we’ve said so far is that proof P won’t be sufficient for granting

understanding across all agents. However, we have reason to believe a particular

proof P need not be necessary either. Nothing forces us to think the ability/abilities

of understanding why a theorem is true can only be attained by a single proof. The

same ability may be attained by different proofs (for different or even the same

agent). In short, success depends on the agent S, by virtue of the couple (P, K).5

Contextual Factor I (Epistemic Interests)

We have mentioned that explaining why a theorem t is true can be translated to

granting abilities appropriate to understanding why-t. If one would need to list all

the abilities that are appropriate to understanding why-t, this would involve

variations among several domains,6 not all of which are of equal interest to every

agent. If an agent has interests within a particular domain, then we call those

epistemic interests and we denote them with I. I is then a particular perspective of

questions to look at t. Having I as a contextual factor can help specify which

abilities appropriate to understanding why t is under consideration. Generally, we

expect an agent to have epistemic interests which successfully fit with their

background/skill corpus, but this needn’t be so. An agent may have interests outside

5 We call the contextual factor K without mention of P because the sentence under consideration is

‘Proof P explains theorem t’, which holds P constant. If the sentence was ‘Theorem t is explained’, then

the couple (P,K) would be the contextual factor.
6 There are different ways by which domains can be differentiated, e.g. by historically, by school of

thought, by mathematical subdisciplines.
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of their (current) background/skill. Therefore, it seems appropriate to have I as a

separate contextual factor.

Two agents S and S0 may have different epistemic interests I and I0, each of

which specify different abilities that will be sufficient to understanding why theorem

t is true. Whether P explains theorem t for S will depend not only on the success of

the couple (P, K), but on whether the success captures the epistemic interests I.7 A

couple of illustrations are given in ‘‘Accounts of Mathematical Explanation’’. In

short, the domains that are of interest can differ with context I and specify which

abilities involved in understanding why-t are important. We propose, therefore, that

the explanatory value of a proof to be evaluated in the light of epistemic interest I.

Accounts of Mathematical Explanation

In this section, we look at the state of the art in the literature on mathematical

explanation. One of the most influential accounts, leading to a renewed interest in

the topic mathematical explanation during the last few decades, is provided by

Steiner (1978). Cellucci (2008) and Lange (2014) propose two alternative accounts.

These three accounts will be presented in this section. As we will argue, each of

these accounts can be read from the epistemic and contextual approach developed

earlier. In order to display the legitimacy of our contextual approach, we will

present a case for each account highlighting the role of epistemic interest in

explanatory endeavours.

Steiner

Account

To draw a distinction between explanatory and non-explanatory proofs, Steiner

(1978) introduces the notion of a characterizing property: a property unique to a

given entity or structure within a family or domain of such entities or structures. An

explanatory proof is a proof that depends on a characterizing property of an entity or

structure mentioned in the theorem. But merely pointing to this characterizing

property is not enough. One must be able to generate new, related proofs by varying

the property (substituting it with the characterizing property of a related entity)

while holding the proof idea constant. As an example, we present a proof of the

Pythagorean theorem, which Weber and Verhoeven (2002) offer as a case fitting

Steiner’s account.

Theorem For a right triangle with legs a and b and hypotenuse c, a2 ? b2 = c2.

Proof

(1) For every triangle ABC: a2 ? b2 - 2ab cos(a, b) = c2.

7 If epistemic interests can differ, we have an additional reason why different proofs can, contextually, be

of explanatory value—namely that they render abilities belonging to different epistemic interests.
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(2) For every angle h: cos (h) = 0 if h = 90�.
(3) For every right-angled triangle ABC with hypotenuse c: (a, b) = 90�.
(4) Hence, for every right-angled triangle ABC with hypotenuse c: a2 ? b2 = c2.

This is both a valid proof of Pythagorean theorem and fits the criteria provided by

Steiner to count as an explanatory proof. First of all, it makes reference to the

characterizing property of an entity mentioned in the theorem, namely the fact that a

right-angled triangle has an angle that equals 90�. This identifies it uniquely in the

family of triangles. Moreover, the proof depends on this fact in the sense it is used to

deduce the Pythagorean theorem from the law of cosines. Finally, we can generate

new related theorems by holding the proof idea constant and varying it with the

characterizing properties of other entities of the family. For example, we can derive

that for all obtuse triangles c2[ a2 ? b2.

Ontic and Epistemic Reading

Let us take a step back and present both an ontic and an epistemic reading of

Steiner’s account. We stated that an ontic account classifies a proof as having

explanatory value by only looking at features of the proof itself. A proof is

explanatory if it fits certain criteria, meaning that the proof itself is the explanans of

the theorem. For Steiner, this would entail the following two criteria:

• The proof makes reference to, and depends on, a characterizing property of an

entity or structure that is mentioned in the theorem.

• The proof is deformable, meaning that replacement of the characterizing

property with a characterizing property of a related entity or structure leads to a

related theorem.

An epistemic account classifies a proof as having explanatory value if and only if

the explanations are arguments including P that grant understanding of t for a

particular agent. For Steiner, this would entail the following arguments/activities:

• Identifying an entity or structure mentioned in the theorem and a family of

related entities or structures.

• Inspecting the proof and indicating what characterizing property is used in the

proof.

• Seeing how the theorem changes in response to replacing the characterizing

property with characterizing properties of entities or structures from the family.

What gives the explanation, in this view, is not merely the proof, but a family of

related proofs and an argument which highlights a specific aspect of each proof that

makes them related in a particular way. We also stipulated that, under the epistemic

reading, an explanation gives understanding, where understanding was seen as

possessing particular abilities related to the theorem. Our reading of Steiner’s
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account can lead to an agent possessing some abilities out of this (not exhaustive

list8 of):

• The ability to see that the theorem holds for a specific entity or structure within a

family of entities or structures.

• The ability to motivate how a specific property of this entity or structure

contributes to the truth of the theorem.

• The ability to give a similar argument for theorems about related entities or

structures.

The analysis of Steiner’s account through these two approaches reveals a tension

in it. Steiner does not talk about an agent or the contextual factors that are related to

introducing an agent in his account of explanation. Neither are epistemic benefits,

such as understanding, discussed. This seems to suggest, without making this

explicit, that Steiner has an ontic view in mind. Alternatively the requirement for a

characterizing property to be found and a proof to be deformable suggests that

actual activities or arguments from an agent are part of the explanans.

Contextual Factors K and I

The agent’s skills and background knowledge are crucial elements in our epistemic

and contextual framework to mathematical explanation. This can be fleshed out in

our adaptation of Steiner’s account as well. Without knowledge in geometry and

trigonometry, and the skill to manipulate symbolic statements, one would be

incapable of constructing or grasping the explanation of the Pythagorean theorem as

sketched above.

Moreover, a specific epistemic interest gives voice to this explanation. Instead of

searching for the ability to give a similar argument for the Pythagorean theorem and

the related theorem(s) about the relation between squares constructed on the sides of

acute or obtuse triangles, one could be interested in giving similar argument about

areas of the faces of a tetrahedron in three-dimensional Euclidean argument. In that

case, another argument would be given, possibly based on another proof. The fact

that there are multiple ways to characterize a mathematical entity or structure is

something Steiner already recognized:

We have thus a relative notion, since a given entity can be part of a number of

differing domains or families. Even in a single domain, entities may be

characterized multiply (Steiner 1978: p. 143. Emphasis added).

But while Steiner seemingly concludes that all the proofs that fit his criteria are

explanatory, we propose that explanatory value of a proof needs to be evaluated in

the light of the agent’s epistemic interest. We give an example from mathematical

practice in the following section.

8 An exhaustive list, if possible, would include the ability to (re)construct a proof of the theorem, but,

with the following list, we wish to draw focus on the abilities beyond justification.
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Illustration from Practice

As an example, we look at the different approaches from Dedekind and Kronecker,

who both published pathbreaking works on algebraic number theory. Roughly at the

same time, they tackled the same problems, but each within their own characteristic

approach:

What should not pass unnoticed, however, is the very existence of two theories

that developed at the same time as answers to one and the same question, but

which nevertheless display very different perspectives and spirit. Kronecker

and Dedekind were faced with the same body of mathematical knowledge, but

approached it through different systems of well-defined and consistent images

of knowledge; their contributions to the consequent expansion of the body of

knowledge were sensibly different (Corry 2012: p. 120).

It is hard to compare the incommensurable background assumptions of these two

mathematicians. These differences can be located at the metaphysical level, for

example Dedekind’s choice to use axiomatic notions and the infinite as opposed to

Kronecker’s view on mathematics as constructive and finitary. Reck’s (2009)

analysis of Dedekind’s work, as well as its relation to understanding, includes a

comparison between Dedekind and Kronecker on the local level of proofs. Reck

uses Steiner’s account of explanation for this investigation. Moreover, Reck also

sees successful explanation as what improves our understanding, which ties in

nicely with our reading of Steiner. What is most interesting for the scope of this

paper, however, is how Reck illustrates that starting from the same question ‘Why

are certain kinds of algebraic equations solvable by integers while others aren’t?’,

Dedekind and Kronecker differ in the way they would give their explanation:

For Kronecker, the contrast class consists of a tightly circumscribed range of

equations, corresponding to number fields constructed finitistically; and the

presupposed factors are computational ones. For Dedekind, the contrast class

is determined by an enlarged class of number fields, thus consisting of a larger

number of equations; and the relevant explanatory factors involve entities

defined set theoretically and considered structurally. Altogether, the most

radical differences between Dedekind’s and Kronecker’s approaches can be

located at this level, I would suggest. They consist of differences in the general

background assumptions for their respective explanatory enterprises (Reck

2009: p. 165).

Some further clarification is needed. Reck uses the notion of contrast class, a

notion often used in discussions about scientific explanation.9 The goal of

specifying a contrast class is showing why something, rather than an alternative,

is true. This is analogous to Steiner’s idea of a related family of structures and

entities. The contrast class is what differs for Dedekind and Kronecker. The quote

also mentions relevant explanatory factors, which likewise point to different

preferences of where the explanation needs to be searched. Evidently, this has an

9 See, for example, van Fraassen’s (1980) pragmatic theory of explanation.
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effect on which characterizing properties are considered. We argue that these

differences are due to distinct epistemic interests.

Steiner’s account revolves around the questions of what is considered as a family

of related entities or structures and what is considered as a characterizing property.

In our view, this can be filled in different ways depending on the context. Rather

than stating that all proofs that fit certain criteria are explanatory proofs in itself,

some proofs will be explanatory for Dedekind, and other proofs will be explanatory

for Kronecker. Further investigation is needed to get a better grip on specific cases,

and these can be used to adjust Steiner’s account where necessary. But the case of

Dedekind and Kronecker nicely illustrates how descriptive claims about the

explanatory value of a proof should always be accompanied with specification of an

agent’s skill and background knowledge and his/her epistemic aims.

Cellucci

Account

Cellucci (2008) argues that explanatory reasoning, which aims to show why

something is true, is connected with the analytic method. The core of the analytic

method is that one solves a problem by making (plausible) hypotheses, usually

obtained by a mixture of both deductive and inductive inferences. The idea is to find

a hypothesis that is a sufficient condition for the mathematical problem. Hypotheses

are always subject to revision. Cellucci contrasts this kind of reasoning with the

axiomatic method, which consists of obtaining a result from axioms and rules of

inference. In this method, axioms are to be taken as absolutely true. Cellucci claims

that this kind of reasoning only shows that something is the case without showing

why. In terms of the analytic method, Cellucci also argues what an explanation

would then consist of:

A hypothesis provides an explanation of a problem if it plays an essential role

in solving it, in the sense that it reveals an aspect of the problem that is

essential to a solution of the problem. In that sense, an explanatory hypothesis

is strictly connected with the problem (Cellucci 2008: p. 206. Emphasis

added).

An example Cellucci discusses is the problem to demonstrate the Pythagorean

theorem (Cellucci 2008: p. 207). To solve this problem, he proposes, within a wider

argument, to use the hypothesis that the sum of three interior angles of a triangle is

equal to two right angles. What is crucial for Cellucci is that this hypothesis is not

only capable of solving the problem at hand, but plays an essential role in solving

the problem. In this way, it explains why the Pythagorean theorem is the case. This

is not the case for all arguments that lead to the Pythagorean theorem: ‘Thus,

although the Pythagorean theorem can be proved from the axioms of set theory, the

latter do not provide an explanation of the problem posed by the Pythagorean

theorem since they play no essential role in solving the problem [in the sense it

reveals an aspect of the problem essential to its solution]’ (Cellucci 2008: p. 206).
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Epistemic Reading

Cellucci’s account can be interpreted in our epistemic approach as well. This would

go as follows: Firstly, what gives the actual explanation goes beyond proof. A

broader argument is given by:

• Identifying the exact role of premises and/or auxiliary assumptions (instead of

treating them as a given).

• Identifying how a premise or an assumption reveals an aspect that is essential for

producing the theorem.

This can be restated as abilities concerning understanding why the theorem is the

case. Abilities that are central to this account are:

• The ability to motivate which premise or auxiliary assumption is essentially

connected with the theorem.

• The ability to highlight an essential aspect this premise or assumption reveals

that leads to the theorem.

Contextual Factors K and I

Cellucci can also be read in our contextual framework. In order to highlight the

relevance of a step, an agent has to have certain knowledge and skills (contextual factor

K). Moreover, the agent’s epistemic interest (contextual factor I) can have an influence

on what is seen as essential or not. Cellucci seems to acknowledge this possibility:

That the very same thing may have distinct reasons, thus distinct explanations,

depending on the fact that problems have many sides, so they can be seen from

distinct perspectives, each of which suggests a distinct hypothesis, thus a

distinct explanation. Any hypothesis establishes a connection between the

problem and a distinct body of knowledge, thus revealing a new essential

aspect of the problem (Cellucci 2008: p. 206).

Cellucci does not further develop this into a particular aspect of his account, but

we do and believe it is important to do so. To emphasize the importance of

including epistemic interests, we offer an example from mathematical practice

where it makes a difference whether one is rooted in an algebraic or geometrical

way or reasoning.

Illustration from Practice

During the nineteenth century, the majority of mathematicians eschewed the use of

diagrams or graphs and had a clear preference for symbolic manipulation in order to

prove results.10 The downgrading had of course to do with the post-Kantian mistrust

10 For an interesting overview on the status of visualization in historical periods of logic and

mathematics, see Mancosu (2005).
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of geometric intuition that flowed from failing in facilitating comprehension, which

was forcefully illustrated by the conception, e.g. by Weierstrass, of continuous

functions that are nowhere differentiable, hence not allowing for any visual

representation. Visuals were thus deemed unnecessary at best, misleading at worst.

The ideal of formal proof that was developed and embraced from that period was

that of a logical sequence of symbolic sentences.

The approach of Weierstrass to mathematics, which insists on logical purity, can

be seen as a specific epistemic interest. If we would use Cellucci’s notions (of

essential aspects to be revealed) in this case, they would need to be aspects about the

algebraic nature of mathematical problems:

We shall give a purely arithmetical definition of complex magnitudes. The

geometrical representation of the complex magnitudes is regarded by many

mathematicians not as an explanation, but only as a sensorial representation,

while the arithmetical representation is a real explanation of the complex

magnitudes (Weierstrass in a 1874 lecture, quoted from Ferreirós 2007: p. 211.

Emphasis added).

It is with these epistemic interests that Weierstrass presented what is now known

as the Weierstrass function. Weierstrass believed that algebraic truths give a

systematic theoretical foundation for function theory.11 This resulted in a proof of

continuous non-differentiable functions and continued to abandon visual intuition as

a secure guide in the development of mathematics. But not everyone in the

mathematical community wished to follow the same path. Von Koch published a

paper in 1904 in which he concedes that the example of Weierstrass has shown that

continuous and nowhere differentiable functions exist, but he finds an essential

aspect to remain hidden:

It seems to me that his example is not satisfactory from the geometrical point

of view since the function is defined by an analytic12 expression that hides the

geometrical nature of the corresponding curve and so from this point of view

does not see why the curve has no tangent (Quoted from translation Edgar

1993: p. 26. Emphasis added).

Von Koch’s geometrical approach to this problem, which results in his famous

Snowflake as a visual representation of an early fractal, was genuinely geometrical.

Its construction process revealed the geometrical nature of fractals, which remained

hidden in the purely logical proof.

These examples show that there is contextual variation of epistemic interest

which would determine when an essential aspect of a mathematical problem is

revealed.

11 See Weierstrass’ letter to his colleague Schwarz, cited from Bottazzini (2001).
12 Not to be confused with Cellucci’s use of the term analytic.
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Lange

Account

Lange (2014) argues that the distinction between explanatory and non-explanatory

proofs is in the way the proof extracts a theorem from its premises. The theorem

should be seen in terms of a set-up or problem on the one hand and a result on the

other hand. For theorems of the kind All F’s are G’s, the set-up involves F’s

instantiation and the result involves G’s instantiation. Results have a feature that,

once salient, prompts for an explanation. Proofs which exploit this feature in the set-

up are recognized as explaining why the theorem holds.

A first example, based on proofs of a theorem from probability theory, is one

where ‘a mathematical result that exhibits symmetry of a certain kind is explained

by a proof showing how it follows from a similar symmetry in the problem. Each of

these symmetries consists of some sort of invariance under a given transformation’

(Lange 2014: p. 496. Emphasis added). The core idea is that a proof appealing to an

underlying symmetry in the set-up counts as explanatory exactly because the

symmetry in the result struck us in the first place. He gives several examples where

this feature is a puzzling symmetry, and argues that proofs exploiting a symmetry in

the problem are recognized as explaining why the theorem holds. But symmetry is

not necessarily the only feature. Other features such as unity and simplicity of the

result could likewise be salient. This leads to the question whether, for that feature

of the result, a proof can be found which exploits the same kind of feature in the set-

up.

Lange gives the following example for the feature unity. When one takes an

ordinary calculator keyboard, one can see that all numbers belonging to a certain

type of ‘calculator number13’ share a certain property.14 Lange states that a case-by-

case proof treats this as a coincidental result. Obtaining a result that applies to every

single calculator number, on the other hand, proceeds from a property common to

each of these numbers and shows why the unity of the result is not a coincidence at

all.

Epistemic Reading

Lange’s account can, in addition to Steiner’s and Cellucci’s account, be adapted into

our epistemic approach. Firstly, the actual explanation goes beyond the proof. A

broader argument consists of:

• Recognizing a salient feature in both the result and the set-up.

• Showing how this feature is invariant to the transformations of the proof.

13 A calculator number is here a six-digit number that is constructed by taking the three digits on any

row, column or main diagonal of the keyboard in forward and then reverse order. For the detailed

overview of this case, see (Lange 2014: pp. 487–489).
14 The property here is being divisible by 37.
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Secondly, this can be restated as abilities concerning understanding why the

theorem is the case. Abilities that are central to this account are:

• The ability to recognize a salient feature in both the result and the set-up.

• The ability to demonstrate how a noteworthy feature in the theorem is related to

a similar feature in the premises.

Contextual Factors K and I

Lange sees an important contextual aspect in his account. A proof will only be

considered as explanatory in a context where an agent is able to recognize a feature

as being salient:

The distinction between proofs that explain why some theorem holds and

proofs that merely establish that it holds exists only when some feature of the

result being proved is salient. That feature’s salience makes certain proofs

explanatory. A proof is accurately characterized as an explanation (or not)

only in a context where some feature of the result being proved is salient

(Lange 2014: p. 507).

Undoubtedly, the background and skill corpus affects the ability to recognize

such features. As we already mentioned, Lange takes into account that several

features can be seen as salient. One of the possible features, next to symmetry, he

discusses is unity. In the next section, we give an example of how the recognition of

this feature depends on epistemic interests.

Illustration from Practice

The quest for unity is a strong driving force in mathematical work. Mathematicians

strive for theorems that state properties of all the members of classes of interest. A

major unifying concept in mathematics, introduced at the end of the nineteenth and

beginning of the twentieth century, is that of a set. Ever since, alternative routes

have been explored to seek a conceptual framework within which all mathematical

results can be viewed. Take, for example group theory and category theory:

Having proved, using only the group axioms, that group inverses are unique,

we know that this fact will apply to every single example of a group. No

further work is required. If tomorrow you come across a quite new kind of

mathematical structure, and you determine that what you have is a group, you

will know at once that every element of your group has a single inverse. In

fact, you will know that your newly discovered structure possesses every

property that can be established - in abstract form - on the basis of the group

axioms alone (Devlin 2000: p. 193).

Our theory provides general concepts applicable to all branches of

mathematics, and so contributes to the current trend towards uniform

treatment of different mathematical disciplines. In particular it provides
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opportunities for the comparison of constructions and of the isomorphism

occurring in different branches of mathematics (Eilenberg and MacLane 1945:

p. 236).

All of these routes have their own way of tracing unity in mathematical results.

Set theory emphasizes membership, while category theory emphasizes function;

group theory joins groups by group homomorphisms, while topos theory joins

topological spaces by continuous maps. Research in a certain field focuses on a

particular type of unity. Moreover, category theory is affectionately known as

abstract nonsense due to its highly abstract concepts. This high level of abstraction

is shared by other unifying theories, but reference to highly abstract concepts will

not always be telling or preferred. It is clear that Lange’s example of calculator

numbers locates a far more concrete type of unity. Consequently, epistemic interests

cannot be detached from the question which unity is considered to be a striking

feature and will also designate the direction in which a similar unity in the set-up

will be searched.

Embracing Pluralism

We have seen three accounts of explanation and adapted them to our epistemic and

contextual framework. The epistemic account fleshed out types of activities and

arguments that form the explanation of the theorem and specified the type of

abilities involved to understand the theorem. Illustrations from practice conveyed

the importance of including contextual factors such as the epistemic interest.

But this leaves us with an important question. Do we really need all three

accounts, and perhaps even other accounts in the philosophical literature, to say

something about mathematical explanation? Steiner had the idea that his account

could potentially grasp all mathematical explanations: ‘Perhaps all mathematical

explanations, then, may be treated similarly’ (Steiner 1978: p. 148). Lange and

Cellucci distance themselves from Steiner and seem to intend, although they do not

say so explicitly, to take his place as a potential monist account of mathematical

explanation.

At face value, the multiplicity of types of arguments and abilities we explicated

in ‘‘Accounts of Mathematical Explanation’’ are all mathematically valuable.

Moreover, they are not simply reducible to each other, so there is no single account

of explanation that exhausts the arguments or abilities. Some differences are:

• Steiner sees mathematical explanation as being provided within a family of

related proofs, and Lange and Cellucci do not require a relationship with other

proofs.

• Cellucci’s explanatory hypothesis can reveal a connection between entities or

structures in the theorem, and Steiner’s characterizing property has to be about

an entity or structure mentioned in the theorem.

• Lange requires that the striking feature that needs explanation must have a

feature of the same kind in the set-up, and Cellucci’s explanatory feature can

reveal how another feature reveals something essential.
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At this point, we have several accounts of explanation but no clear evidence that

one of them captures all cases of explanatory proofs in mathematics. Rather than

presupposing that there necessarily is a single overarching account for mathematical

explanation, we suggest to follow another path. Instead of restricting ourselves to a

monist view, we propose pluralism (about types of explanation and its correspond-

ing understanding) as a heuristic stance.15 In principle, every account of

mathematical explanation will admit an epistemic, contextual reading with

context-dependent claims. Philosophical reflection and the analysis of specific case

studies16 can be used to further adapt existing accounts of explanation or develop

new accounts. It may be the case that in the end of this investigation only one

account remains, rendering all others superfluous, but at this point we have no

reason to believe that this will be the case. An author who also adopts this kind of

position is Pincock:

I will proceed cautiously and set aside the strong claim that there is only one

kind of explanatory proof. Instead, I will allow that there might be many ways

to arrive at an explanatory proof. My focus, then, is on a restricted class of

explanatory proofs that I will call abstract mathematical explanations (Pincock

2015: p. 2).

Hafner and Mancosu (2005) discuss two alternative approaches to investigate the

nature of mathematical explanation: top down or bottom up. The former approach

consists of starting with a general model of explanation and consequently testing

how well they account for mathematical practice. In the latter approach, one avoids

any prior commitment to a particular model and tries to find recurrent types of

explanation in the practice. They favour the bottom-up approach, because the top

down would often mean ‘forcing the evidence from mathematical practice into a

predefined mould, thereby narrowing the perspective from the outset and probably

leading to distortions’ (Hafner and Mancosu 2005: p. 221). We are sympathetic to

this worry. A top-down monist view would lead to the misunderstanding or

disregard of cases of genuine mathematical explanations that do not fit a particular

account of explanation. The bottom-up approach, on the other hand, looks at cases

from actual mathematical practice without a commitment to a specific account of

explanation. It is our view that an optimal use of this approach requires a pluralistic

stance: Either this case fits an existing account, which can count as evidence for its

value and/or can lead to an adaptation, or this case does not fit an existing account,

which gives rise to the proposal of a new account. Hence, the pluralist stance as a

heuristic guideline does not entail ‘anything goes’, where any arbitrary account of

explanation is beyond criticism or revision. Rather, it encourages the optimal use of

the resources provided by the philosophical literature in order to get a grip on what

mathematical explanation could mean.

15 See Weber et al (2013) for a similar argument about pluralism towards scientific explanation.
16 For a discussion about the value of both an analytical and reflective approach to mathematical

explanation, see Weber and Frans (2016).
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Concluding Remarks

In the first section, we stipulated that agents can have diverging epistemic interests,

but we do not exclude the possibility that they may have diverging understanding

interests as well. These interests will determine which type(s) of explanation (E, E0,
etc) and corresponding understanding (U, U0, etc) are contextually appropriate for

consideration.17 Note that we do not want to make the claim that each agent or

community must have his own particular account of explanation. Instead, each agent

or community may consider one or several types of understanding (U as rendered by

type of explanation E) as valuable. In short, this would mean that the type or types

(plural) of abilities one searches for in understanding (and thus the type of

explanation that grants them) will contextually determine the truth of ‘Proof P

explains t’. This functions as a third contextual factor.

Once we read explanation as involving a recipient to which it must give

understanding (an epistemic, rather than an ontic reading), context-determining

factors were brought to the fore. We have presented two contextual factors:

(i) corpus-dependent success K and (iii) epistemic interests I. This entails that the

statement ‘Theorem t is explained by proof P’ is true (or false) in the light of three

contextual factors:

(1) Corpus-dependent success Proof P fits with the background/skill corpus K of

S such that it leads to S possessing abilities (appropriate to understanding why

the theorem is true).18 This entails that the truth of the above statement varies

contextually with type of background/skill corpus of the agent (K, K0, etc).
(2) Epistemic interests The abilities granted by proof P include those that are of

epistemic interest. The truth of the above statement varies contextually with

the epistemic standards (I, I0, etc).
(3) Explanation/understanding interests Proof P involves type(s) of explanation

E which grants understanding U, the abilities of which are deemed

appropriate to understanding why the theorem is true in this context.

Different contexts of mathematical values may determine which type(s) of

explanation (E, E0, etc) and corresponding understanding (U, U0, etc)

contextually determine the truth of the above statement.

Because no single account of mathematical explanation has, at present, managed

to capture everything that is mathematically valuable about an explanatory proof,

we believe it unwise, at present, to limit ourself to any one of them and accept a

(heuristic) pluralism about the accounts of mathematical explanation to be

considered in dubbing a proof as explanatory.

17 In this paper, we only treated the type of understanding corresponding with a type of explanation,

namely understanding why the theorem is true. However, since epistemic interests are also interests about

a ‘type’ of abilities, they could also be called a type of understanding, but the object of understanding is

different. If required, one could distinguish between explanatory understanding (E/U) and understanding

what is of epistemic interest (I/U). We may find other valuable ways to delineate a kind of understanding,

but those are outside the scope of our exploration here.
18 Furthermore, different proofs (P, P0, etc) may attain the same abilities (U) for different (or even the

same) agents.
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As mentioned in ‘‘Embracing Pluralism’’, we welcome further analysis of plural

accounts of mathematical explanation which can be tested and further developed by

case studies. Furthermore, what is at work in these cases deserves more theoretical

exploration. Since we consider a background/skill corpus as a relevant factor in

determining the context, these considerations are not restricted to a single person,

but to all those who share the relevant background/skill corpus. Community, in that

sense, seems a more apt word than agent. It also stresses the potentially high

intersubjective nature of the contextual factors. The agents of a community thus not

only share a relevant background/skill corpus, but an intersubjective agreement

about which abilities are valuable. What’s more, different communities may overlap

with respect to the contextual factors. We believe these considerations to warrant

further inquiry.

A possible tool, proposed for facilitating philosophically relevant inquiry in

general, is that of ‘style’, e.g. in Hacking’s influential paper (1992). There, Hacking

presents the notion of ‘style’ as an analytic tool for philosophers and historians of

science. He takes differing styles to denote particular ways of scientific reasoning.

Hacking has made quite some inspiring general observations—e.g. style not

necessarily being peculiar to specific man or epoch, or having generalizing versus

mere personal meaning—and has tried to distillate from a variety of historical

examples any necessary conditions for being a ‘style’ as specified. We shall here not

be going into the general discussion. Suffice it to mention that, as for mathematics,

although he does not get into much detail, Hacking points out that it too belongs

among, not above or beyond, the sciences, so style is or should as much be an issue

there. That is, to be more explicit: Several kinds of style can play a potential role

there and not the strictest of mathematical reasonings on the basis of postulation

only.

Browsing for literature on this particular topic, however, it appears that

references are few and come with big intervals as well as with hardly any

connection between them. Only very recently, Mancosu (2010) has undertaken a

preliminary attempt at a systematic treatment of the issue, to find, with a touch of

irony, that indeed it ‘is not one of the canonical areas of investigation in philosophy

of mathematics’. More investigation into this notion of style seems fruitful to get a

grasp on when communities share a background/skill corpus and epistemic interests

and can consequently be interesting for the contextual approach to explanation/

understanding. This can involve, among others, an analysis on the level of persons

(e.g. Bishop-style constructivism, Weierstrassian-style calculus), on the level of

groups or schools (e.g. the Bourbaki, or unification programs such as the Erlangen

or Langlands ones), on the level of nations (e.g. Spengler’s ‘Western’ style or

Bieberbach’s ‘Deutsche Mathematik’) or with a more methodological perspective

(e.g. direct vs. indirect style or synthetic vs. analytical style).
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