Skip to main content
Log in

The biochemical bases of the placebo effect

  • Published:
Science and Engineering Ethics Aims and scope Submit manuscript

Abstract

A great variety of medical conditions are subject to the placebo effect. Although there is mounting evidence to suggest that the placebo effect is related to the expectation of clinical benefit, little is still known about the biochemical bases underlying placebo responses. Positron emission tomography studies have recently shown that the placebo effect in Parkinson’s disease, pain, and depression is related to the activation of the limbic circuitry. The observation that placebo administration induces the release of dopamine in the ventral striatum of patients with Parkinson’s disease suggests a link between the placebo effect and reward mechanisms. In addition to Parkinson’s disease, the placebo-reward model may also apply to other disorders. However, the relative contribution of the different neurotransmitters and neuropeptides that are known to be involved in modulating the activity of the limbic system may be disease-specific. Thus, while the placebo-induced clinical benefit observed in Parkinson’s disease would mostly reflect the release of dopamine in the dorsal striatum, the activation of opioid and serotonin pathways could be particularly implicated in mediating placebo responses encountered in pain and depression, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. de la Fuente-Fernández, R., Schulzer, M. and Stoessl, A.J. (2002) The placebo effect in neurological disorders. Lancet Neurology 1: 85–91.

    Article  Google Scholar 

  2. Stefano, G.B., Fricchione, G.L., Slingsby, B.T. and Benson, H. (2001) The placebo effect and relaxation response: neural processes and their coupling to constitutive nitric oxide. Brain Research Reviews 35: 1–19.

    Article  Google Scholar 

  3. Brody, H. (1980) Placebos and the philosophy of medicine: clinical, conceptual, and ethical issues. University of Chicago Press, Chicago.

    Google Scholar 

  4. Kirsch, I. (1985) Response expectancy as a determinant of experience and behavior. American Psychologist 40: 1189–1202.

    Article  Google Scholar 

  5. de la Fuente-Fernández, R., Ruth, T.J., Sossi, V., Schulzer, M., Calne, D.B. and Stoessl, A.J. (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293: 1164–1166.

    Article  Google Scholar 

  6. de la Fuente-Fernández, R., Phillips, A.G., Zamburlini, M., Sossi, V., Calne, D.B., Ruth, T.J. and Stoessl, A.J. (2002) Dopamine release in human ventral striatum and expectation of reward. Behavioural Brain Research 136: 359–363.

    Article  Google Scholar 

  7. Benedetti, F. (2002) How the doctor’s words affect the patient’s brain. Evaluation & the Health Professions 25: 369–386.

    Article  Google Scholar 

  8. de la Fuente-Fernández, R. and Stoessl, A.J. (2002) The biochemical bases for reward: implication for the placebo effect. Evaluation & the Health Professions 25: 387–398.

    Article  Google Scholar 

  9. Petrovic, P., Kalso, E., Petersson, K.M. and Ingvar, M. (2002) Placebo and opioid analgesia — imaging a shared neuronal network. Science 295: 1737–1740.

    Article  Google Scholar 

  10. Mayberg, H.S., Silva, J.A., Brannan, S.K., Tekell, J.L., Mahurin, R.K., McGinnis, S. and Jerabek, P.A. (2002) The functional neuroanatomy of the placebo effect. American Journal of Psychiatry 159: 728–737.

    Article  Google Scholar 

  11. Levine, J.D., Gordon, N.C. and Fields, H.L. (1978) The mechanism of placebo analgesia. Lancet ii: 654–657.

    Article  Google Scholar 

  12. Benedetti, F. (1996) The opposite effects of the opiate antagonist naloxone and the cholecystokinin antagonist proglumide on placebo analgesia. Pain 64: 535–543.

    Article  Google Scholar 

  13. Benedetti, F., Arduino, C. and Amanzio, M. (1999) Somatotopic activation of opioid systems by target-directed expectations of analgesia. Journal of Neuroscience 19: 3639–3648.

    Google Scholar 

  14. Kalauokalani, D., Cherkin, D.C., Sherman, K.J., Koepsell, T.D. and Deyo, R.A. (2001) Lessons from a trial of acupuncture and massage for low back pain: patient expectations and treatment effects. Spine 26: 1418–1424.

    Article  Google Scholar 

  15. Levine, J.D. and Gordon, N.C. (1984) Influence of the method of drug administration on analgesic response. Nature 312: 755–756.

    Article  Google Scholar 

  16. Altier, N. and Stewart, J. (1999) The role of dopamine in the nucleus accumbens in analgesia. Life Science 65: 2269–2287.

    Article  Google Scholar 

  17. Amanzio, M. and Benedetti, F. (1999) Neuropharmacological dissection of placebo analgesia: expectation-activated opioid systems versus conditioning-activated specific subsystems. Journal of Neuroscience 19: 484–494.

    Google Scholar 

  18. Tanganelli, S., Fuxe, K., Antonelli, T., O’Connor, W.T. and Ferraro, L. (2001) Cholecystokinin/dopamine/GABA interactions in the nucleus accumbens: biochemical and functional correlates. Peptides 22: 1229–1234.

    Article  Google Scholar 

  19. Dauge, V. and Lena, I. (1998) CCK in anxiety and cognitive processes. Neuroscience & Biobehavioral Reviews 22: 815–825.

    Article  Google Scholar 

  20. de la Fuente-Fernández, R. and Stoessl, A.J. (2002) The placebo effect in Parkinson’s disease. Trends in Neuroscience 25: 302–306.

    Article  Google Scholar 

  21. Shetty, N., Friedman, J.H., Kieburtz, K., Marshall, F.J. and Oakes, D. (1999) The placebo response in Parkinson’s disease. Parkinson Study Group. Clinical Neuropharmacology 22: 207–12.

    Google Scholar 

  22. Goetz, C.G., Leurgans, S., Ramman, R. and Stebbins, G.T. (2000) Objective changes in motor function during placebo treatment in PD. Neurology 54: 710–14.

    Google Scholar 

  23. Pollo, A., Torre, E., Lopiano, L., Rizzone, M., Lanotte, M., Cavanna, A., Bergamasco, B. and Benedetti, F. (2002) Expectation modulates the response to subthalamic nucleus stimulation in parkinsonian patients. NeuroReport 13: 1383–1386.

    Article  Google Scholar 

  24. Goetz, C.G., Leurgans, S. and Raman, R. (2002) Placebo-associated improvements in motor function: comparison of subjective and objective sections of the UPDRS in early Parkinson’s disease. Movement Disorders 17: 283–288.

    Article  Google Scholar 

  25. Watts, R.L., Freeman, T.B., Hauser, R.A., Bakay, R.A., Ellias, S.A., Stoessl, A.J., Eidelberg, D. and Fink, J.S. (2001) A double-blind, randomised, controlled, multicenter clinical trial of the safety and efficacy of stereotaxic intrastriatal implantation of fetal porcine ventral mesencephalic tissue (Neurocell™-PD) vs. imitation surgery in patients with Parkinson disease (PD). Parkinsonism & Related Disorders 7: S87.

  26. Enserink, M. (1999) Can the placebo be the cure? Science 284: 238–240.

    Article  Google Scholar 

  27. Kirsch, I. and Sapirstein, G. (1998) Listening to prozac but hearing placebo: a meta-analysis of antidepressant medication. Prevention and Treatment 1: (June 26;http://www.journals.apa.org/prevention/volume1/pre0010002a.html).

  28. Hypericum Depression Trial Study Group. (2002) Effect of Hypericum perforatum (St John’s wort) in major depressive disorder: a randomised controlled trial. Journal of the American Medical Association 287: 1807–1814.

    Article  Google Scholar 

  29. Walsh, B.T., Seidman, S.N., Sysko, R. and Gould, M. (2002) Placebo response in studies of major depression: variable, substantial, and growing. Journal of the American Medical Association 287: 1840–1847.

    Article  Google Scholar 

  30. Moerman, D.E. (2002) The meaning response and the ethics of avoiding placebos. Evaluation & the Health Professions 25: 399–409.

    Article  Google Scholar 

  31. Blum, K., Braverman, E.R., Holder, J.M., Lubar, J.F., Monastra, V.J., Miller, D., Lubar, J.O., Chen, T.J. and Comings, D.E. (2000) Reward deficiency syndrome: a biogenetic model for diagnosis and treatment of impulsive, addictive, and compulsive behaviors. Journal of Psychoactive Drugs 32: 1–112.

    Google Scholar 

  32. Miliaressis, E., Bouchard, A. and Jacobowitz, D.M. (1975) Strong positive reward in median raphe: specific inhibition by para-chlorophenylalanine. Brain Research 98: 194–201.

    Article  Google Scholar 

  33. Olds, J., Milner, P. (1954) Positive reinforcement produced by electrical stimulation of septal area and other regions of the rat brain. Journal of Comparative and Physiological Psychology 47: 419–427.

    Article  Google Scholar 

  34. Bishop, M.P., Elder, S.T. and Heath, R.G. (1963) Intracanial self-stimulation in man. Science 140: 394–396.

    Article  Google Scholar 

  35. Porrino, L.J., Esposito, R.U., Seeger, T.F., Crane, A.M., Pert, A. and Sokoloff, L. (1984) Metabolic mapping of the brain during rewarding self-stimulation. Science 224: 306–309.

    Article  Google Scholar 

  36. Porrino, L.J. (1987) Cerebral metabolic changes associated with activation of reward systems, in: Engel, J. & Oreland, L. eds. Brain reward systems and abuse. Raven Press, New York: 51–60.

    Google Scholar 

  37. Di Chiara, G. and Imperato, A. (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proceedings of the National Academy of Sciences of the United States of America 85: 5274–5278.

    Article  Google Scholar 

  38. Garris, P.A., Kilpatrick, M., Bunin, M.A., Michael, D., Walker, Q.D. and Wightman, R.M. (1999) Dissociation of dopamine release in the nucleus accumbens from intracranial self-stimulation. Nature 398: 67–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raúl de la Fuente-Fernández.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de la Fuente-Fernández, R., Stoessl, A.J. The biochemical bases of the placebo effect. SCI ENG ETHICS 10, 143–150 (2004). https://doi.org/10.1007/s11948-004-0071-z

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11948-004-0071-z

Keywords

Navigation