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Abstract
This paper challenges the negative attitudes towards labelled proof systems, usu-
ally referred to as semantic pollution, by arguing that such critiques overlook
the full potential of labelled calculi. The overarching objective is to develop a
practice-based philosophical analysis of labelled calculi to provide insightful con-
siderations regarding their proof-theoretic and philosophical value. To achieve
this, successful applications of labelled calculi and related results will be show-
cased, and comparisons with other relevant works will be discussed. The paper
ends by advocating for a more practice-based approach towards the philosophical
understanding of proof systems and their role in structural proof theory.
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1 Introduction
Semantic-based or, more commonly, labelled calculi are usually obtained by incorpo-
rating semantic expressions into the syntax of the corresponding non-labelled calculi –
such as sequent, natural deduction and tableau systems. There are at least two specific
types of semantic elements that have been used to develop such frameworks: algebraic
and, mainly, relational. Labelled calculi have been widely used and applied, especially
in structural proof theory, due to their flexible and intuitive characterization. However,
because they incorporate semantic information into the formalism, these calculi have
been criticized for their perceived impurity, which is usually referred to as semantic
pollution – “an epithet attributed [...] to Rajeev Goré in conversation” (Read, 2015,
650). Some major opinions are:
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“Despite their impact, labelled proof systems have been criticized as impure, in contrast
to the more traditional proof systems.”1 (Negri, 2007, 109)

“[...] some objections have recently been raised about the internalisation of the semantics
into the syntax of sequent calculi. The main concerns regard the purity of methods, in
the sense that the internalisation of Kripke semantics contaminates the syntactic purity of
sequent calculi.” (Boretti, 2009, 33)

“The potentially controversial aspects – which are certainly not to the present author’s
taste – of the use of ‘labelled’ sequents appear in a pronounced form in Negri (2005),
where we find not only labels representing the points in Kripke models but also (what
look very much like) explicit accessibility relation statements. This is a clear case of what
Poggiolesi (2010), summarizing desiderata for proof systems from various sources, calls a
failure of ‘semantic purity’. [...] Raj Goré has described such failures (in conversation) as
‘semantic pollution’, though without necessarily endorsing the desideratum in question.”
(Humberstone, 2011, Remark 1.21.8, pp. 111–112)

“[A calculus should] not make any use of semantic parameters beyond the language of
formulas. The labelled method, on the contrary, is a semantic method since it imports in
its language the whole structure of Kripke semantics in an explicit and significant way.”
(Poggiolesi & Restall, 2012, 49)

To provide an initial understanding of labelled calculi (without endorsing any spe-
cific approach, as multiple will be explored in this article), we will introduce a general
categorization of different labelling techniques based on the strength of the semantic
commitment expressed by labels as follows:2

1. Weak labelling: there are deductive systems using multiple types of labels, but
only in a limited way, that is, they play a minor role in the inferential process.
Although the motivation for using labels is primarily semantic, their interpre-
tation is not. As such, the apparatus of labels in these systems is not strong
enough to construct falsifying models, see e.g., Rescher and Urquhart (1971),
Mints (1997).

2. Medium labelling: there are labelled deductive systems that use prefixes to label
formulas. This labelling technique is relatively simple and natural, as it does not
require any special rules for the labels. Whereas this method does not directly
encode a semantics into the syntax, it can still be used to construct falsifying
models relatively easily,3 see e.g., Massacci (1998, 2005), Kashima (2003).

3. Strong labelling: there are labelled proof systems in which labellings preserve the
semantics of the logic as much as possible. In these deductive systems, in addition
to the rules for logical constants, there are rules that govern the behaviour of

1It may appear surprising to associate such a critical statement with S. Negri, a major advocate of
labelled calculi. However, in the mentioned paragraph, which dates back to 2007, she was simply surveying
critical attitudes towards labelled systems (without discussing them any further). We will examine Negri’s
work more closely on pp. 16-18.

2The description can be found in Indrzejczak (2021, 204-206), where one can also find other references
besides the one mentioned throughout the paper. A survey of several labelling techniques can be found in
Poggiolesi (2010, Ch. 4) as well.

3So, “we obtain quite satisfactory results with the help of a relatively modest apparatus” (Indrzejczak,
2021, 205).
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labels, and often some rules that relate both levels. In these systems, counter-
models can be easily extracted from labels, see e.g. Basin, Matthews, and Viganò
(1997, 1998), Viganò (2000), Negri (2007, 2009), Negri and von Plato (2011).

The criticism of semantic pollution has been mainly directed towards strongly labelled
proof systems, which fully internalize a semantics, mainly model-theoretic, within the
syntax of the chosen framework. However, before delving into our analysis, let me
briefly explain the methodology employed and the expected outcomes.

Methodology and aim.
While investigating inferentialism, modal logics and labelled rules, Stephen Read
raised an intriguing question without exploring it further:4

“One may ask how [inference rules] relate to our inferential practice. That is part of a
wider question, how any part of the theoretical systematization of logic relates to practice.”
(Read, 2008, 15)

In this article, I will offer a philosophical analysis of the different attitudes towards the
use of labels in proof systems filtered through considerations arising from what could
be called “proof-theoretic practice”. More precisely, by examining how proof theorists
have responded to the creation and implementation of labelled calculi, I will suggest
a systematization of four types of responses that summarize how the accusation of
semantic pollution has been addressed. My investigation adopts a bottom-up method-
ology, which entails primarily relying on actual case studies from the works of working
proof theorists to assess my conclusions.5 Despite practice-based philosophical anal-
yses on logic not being widely recognized or conducted, there have been some case
studies that support a practice-first perspective, such as those examining formal lan-
guages and formal semantics (see e.g., Dutilh Novaes (2012b) and Maddirala (2014)).6
However, it is important to note that established discussions on semantic pollution,
to which I will soon refer, took a different, mainly top-down approach that disregards
(almost completely) the actual practice – which is the core focus of my investigation.
Along similar lines, C. Dutilh Novaes has argued that:

“[...] the mismatch between philosophical theorizing and actual (recent) practices when it
comes to logic is a reason for us to take seriously the idea of expanding the research agenda
within philosophy of logic.” (Dutilh Novaes, 2012b, 76)

4Proof-theoretic inferentialism is a philosophical perspective that can be traced back to the work of
Gentzen (1969), and, roughly speaking, its main objective is to clarify the meaning of logical operators by
identifying the inference rules that govern their use in derivations. In Section 2.4, I will provide a more
detailed analysis of inferentialism and its relationship to labelled calculi.

5I am relying on B. Martin’s terminology and idea according to which a philosophy of logical practice
“takes a bottom-up approach, beginning with case studies of instances of practice within the field. [...]
In comparison, philosophy of logic traditionally has used a top-down approach, beginning with certain
philosophical presumptions about the subject” (Martin, 2022, 274), (Martin, 2023, 160).

6More than a decade ago, Dutilh Novaes observed that “no such practice-based turn has yet taken place
within the philosophy of logic” (Dutilh Novaes, 2012b, 72). More recently, Martin has ascertained that the
situation hasn’t yet changed: “unlike the philosophy of science and the philosophy of mathematics, the
philosophy of logic has yet to recognise the importance of building its understanding of the field upon
the actual practice of its researchers” (Martin, 2023, 169). More information on the practical turn in the
philosophy of mathematics and science can be found, e.g., in Mancosu (2008), Giardino, Moktefi, Mois, and
van Bendegem (2012) and Soler, Zwart, Lynch, and Israel-Jost (2014).
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In the context of a practice-based analysis, our first step is to determine our research
questions and goals. Tentatively, we can outline the main tasks and objectives as
follows: to consider how logic was and is actually practiced; to take into account
historical and recent developments in the field; to clarify underlying assumptions,
background ideas, motivations and justifications; to compare alternative theories and
methodologies; to draw philosophically significant conclusions from formal results; to
understand logical practices and activities, the tools and methods involved; to relate
the development of logic to to its extra-logical applications (e.g., mathematics, AI,
computer science, philosophy).
The aim of a philosophy of logical practice is, generally said, to clarify and shed
light on what we do when we engage in logical activities and practices, and how
we do it. In this article, we will explore this approach by presenting a case study
on labelled calculi, their methodology, and on how practitioners have responded to
concerns about their alleged impurity. It’s important to note that a practice-based
philosophy of logic doesn’t seek to replace traditional forms of investigation; rather, it
offers an alternative approach that complements traditional methods (Dutilh Novaes,
2012b, 76).7 We believe that a practice-based approach has the potential to provide
new insights into traditional issues, including the analysis of semantic pollution of
proof systems.

2 Analysing semantic pollution: 4 perspectives
In this section, my aim is to provide a philosophical analysis of semantic pollution in
labelled systems by filtering my considerations through the role they have played and
continue to play in structural proof theory. More specifically, we will examine how
the accusation of semantic pollution has influenced the development of the field and
how this charge has interfered with the implementation of labelled proof systems. As
previously mentioned, accusations of semantic pollution have primarily been directed
at strongly labelled systems, but it is important to recognize that such critiques are
not solely limited to them. We have generally characterized labelling techniques by
saying that they embody semantic elements within the syntax of the corresponding
non-labelled framework without further characterizing the notion of semantic element.
This intentional lack of specificity stems from the fact that the various case studies we
will examine later have taken different approaches to determining what constitutes a
semantic element that can be considered as polluting a calculus. The resulting analysis
can be summarized as follows:

7Also Martin wrote: “It is not my aim to argue that philosophy of logic as it is currently practised should
be wholly replaced [...] the philosophy of logical practice [should] sit alongside traditional philosophy of
logic” (Martin, 2023, 152). However, we should be aware that there are limits to this tolerant attitude, and
it is important to constantly question the appropriateness of the chosen method in addressing the specific
question at hand, as explored in the context of the philosophy of mathematical practice by Rittberg (2019).
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Negative Perspectives

Convinced-no answers Strict rejection of labelled systems; no connection to any
semantics is tolerated.

Relaxed-no answers Rejection of calculi internalizing semantic elements explic-
itly within the syntax.

Positive Perspectives

Opportunistic-yes answers Labelled systems are acceptable frameworks, for
methodological/practical reasons.

Enthusiastic-yes answers Labelled calculi are valuable tools for structural proof
theory, as they enable precise and systematic stud-
ies of logics, and have worthwhile applications in
philosophical contexts.

To begin, my research aims to integrate ongoing discussions in the field. The negative
perspectives outlined above are primarily drawn from the reflections presented in
Poggiolesi (2010), whereas my contribution lies in the overall systematization along
with the presentation of what I refer to as positive perspectives. Before proceeding
with the examination, it is important to note that the negative perspectives mainly
use a top-down approach, which evaluates the value of labelled deductive systems
based on pre-theoretical and philosophical ideas about what elements should pertain
to proof systems. In contrast, the positive perspectives are derived from a bottom-up
methodology, that starts from concrete examples of the use, applications, and results
of labelled calculi by working proof theorists and philosophers.

2.1 First perspective: convinced-no answers

Convinced-no answers

Strict rejection of labelled systems.

In Poggiolesi (2010), as well as in following works, such as Martinot (202x), certain
statements made by A. Avron during the 1990s, particularly in Avron (1996), have been
identified (although not agreed on) as encapsulating what we might call a full-blooded
(or strong) syntactic purity principle for sequent calculi.8 This property demands
complete independence of a calculus from any particular semantics and Avron argues
in its favour as follows:

“Because of the proof-theoretical nature and the expected generality, the framework should
be independent of any particular semantics. One should not be able to guess, just from the
form of the structures which are used, the intended semantics of a given proof system.”
(Avron, 1996, 2)

According to this line of reasoning, the form and structure of a proof system should
not reveal any semantic information. More precisely, sequent calculi should not incor-
porate semantic expressions into the syntax of sequents, and the intended semantics of

8To be clear, Poggiolesi presents an analysis of Avron’s idea, but, as we will discuss soon, she views it as
problematic and does not endorse it (Poggiolesi, 2010, 29-31).

5



a given proof system should not be discernible merely from the shape of its structures.
This property has been criticized for having overly strong implications for the practice
of structural proof theory. In Poggiolesi (2010), Gentzen’s sequent calculus for classi-
cal logic LK is considered, and Avron’s ideal is criticized. Poggiolesi argues that, by
endorsing a full-blooded view of syntactic purity, even LK is semantically polluted,
as it can be interpreted simply as a notational variant of semantic tableaux or signed
trees. To illustrate this, let us consider the derivability of ¬¬' ! ' in three differ-
ent frameworks – a model-theoretic semantics argument, a proof employing signed
tableaux, and an LK-derivation:

(a) 2 ¬¬'! ';
(b) ✏ ¬¬' and (c) 2 ';
(d) 2 ¬';
(e) ✏ '.
Contradiction from (c), (e).

 

(a) f : ¬¬'! '
(b) t : ¬¬' (a), f!
(c) f : '
(d) f : ¬' (b), t¬
(e) t : ' (d), f¬
(f) 7 from (c), (e)

 

') '
R¬) ', ¬'
L¬¬¬') '
R!) ¬¬'! '

The criticism raised by Poggiolesi highlights that (i) sequent rules can be interpreted
in terms of the semantic definitions of each logical connective, (ii) the symbols “)”
and “,” resemble the metalinguistic expressions “if . . . then”, “and ”, “or ”, and (iii) the
placement of formulas on the left or right side of the sequent arrow reminds us of truth
values in a semantic setting.9 Therefore, the only possible conclusion is that:

“[...] either we reject the strong syntactic purity property as a too strong property, or we are
forced to admit that even the original Gentzen system [LK] would not be a good sequent
calculus.” (Poggiolesi, 2010, 30)

Finally, it should be noted that, as a consequence of Poggiolesi’s critique, adherence
to a full-blooded principle of syntactic purity would entail deeming all sequent-based
frameworks developed after Gentzen’s LK as semantically impure. Hence, advocates of
convinced-no answers, who firmly oppose labelled systems and argue for their exclusion
from the set of “good” calculi, may inadvertently propose the exclusion of frameworks
that they themselves would not consider semantically polluted. Moreover, by taking
this consideration to its extreme consequences, those who regard semantic pollution
as a detrimental characteristic of proof systems would essentially have to reject an
important part of the past 70 years of advancements in structural proof theory as being
inadequately developed – a perspective at least extremely uncommon to support.

2.2 Second perspective: relaxed-no answers

Relaxed-no answers

Rejection of calculi internalizing semantic elements explicitly within the syntax.

If one finds the principle of full-blooded syntactic purity too stringent, but still wishes
to avoid proof systems that incorporate semantic elements within the syntax, they may
consider adopting a more nuanced and delimited criterion. This approach endorses

9On a similar note, Humberstone critically argues that “one might even say [that] the left/right division of
(sets of) formulas in a sequent, show[s] the desideratum of semantic purity [...] to be potentially problematic,
or at least, in danger of turning into a matter of degree rather than of kind” (Humberstone, 2011, 112).
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what is usually referred to as the weak syntactic purity principle. It roughly stipu-
lates that a sequent calculus should not utilize any semantic elements in an explicit
manner.10 Specifically, this principle does not preclude a connection to a specific
semantics, it only prohibits the explicit use of objects extrapolated from a semantic
structure, usually relational or algebraic. One calculus that adheres to such an ideal
principle, is Gentzen’s LK, which is thus considered to be free of semantic pollution.
However, this principle has spurred the development of alternative frameworks, such
as Poggiolesi and Restall’s proposal to reflect the structure of Kripke semantics at
the proof-theoretic level, but without resorting to the presence of semantic parame-
ters explicitly (see Poggiolesi and Restall (2012), but also Poggiolesi (2009a, 2009b,
2010)). Accordingly, their preferred framework is the tree-hypersequent calculus, which
extends Gentzen’s original framework in a “purely syntactical way” (Poggiolesi &
Restall, 2012, 40).11 Roughly, Poggiolesi and Restall’s relaxed-no-answer approach rec-
ommends using tree-hypersequents instead of labelled deductive systems, as they offer
a simpler vocabulary than labelled calculi. That is, they avoid introducing unneces-
sary tools to proof-theoretic work, such as possible worlds.
More precisely, the tree-hypersequent calculus incorporates specific elements that gen-
eralize the structure of standard sequents. Firstly, a tree-hypersequent can be seen as
a tree where each node is associated with an ordinary sequent, and the edges between
these nodes represent, at the syntactic level, the accessibility relation between possible
worlds in Kripke semantics. However, as said, no semantic expressions, such as labels,
are explicitly introduced. The idea is to reproduce implicitly tree-frames of Kripke
semantics by using the tree-structure of tree-hypersequents to capture the behaviour of
possible worlds and the accessibility relations between them. This is done by extending
the language with two further structural connectives:

• the symbol “/” (i.e., X ) Y/V ) Z denotes that the world-sequent X ) Y is
linked by the accessibility relation R to the world-sequent V ) Z);

• the symbol “;” (i.e., X ) Y/V1 ) Z1;V2 ) Z2 denotes that the world-sequent
X ) Y is linked by the accessibility relation R to both world-sequents, V1 ) Z1

and V2 ) Z2).
For example, rules for ⇤ are given as follows in, among others, Poggiolesi (2010) and
Poggiolesi and Restall (2012):

G[X ) Y/', V ) Z]
L⇤

G[⇤', X ) Y/V ) Z]

G[X ) Y/ ) ';V ]
R⇤

G[X ) Y,⇤'/V ]

The L⇤ and R⇤ rules in the tree-hypersequent calculus are used to move formu-
las between world-sequents. The L⇤ rule moves the formula from one component to
another (root-first) and is seen as mirroring the semantic process of saturation of
already existing (or, sometimes, opened) worlds. The R⇤ rule, on the other hand,

10“The weak notion [of syntactic purity] claims that a sequent calculus should not make any use of explicit
semantic elements” (Poggiolesi, 2010, 29).

11Tree-hypersequent systems are equivalent, despite variations in construction methods and notation, to
frameworks commonly known as nested sequents (first introduced by Bull (1992) and Kashima (1994)),
and deep sequents (first discussed by Brünnler (2006, 2009)). The term “tree-hypersequent”, along with its
specific formalism and suggested interpretation, was introduced in Poggiolesi (2009a). For a comprehensive
source, refer to, e.g, Lellmann and Poggiolesi (202x).
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adds a new component to the premise (root-first) and is seen as encoding the seman-
tic procedure of opening a new world from a given one.
As discussed by Boretti (2009), the rules displayed above and the suggested interpre-
tation highlight that:

“[...] tree-hypersequent calculi [...] and deep sequent systems [...], although absolutely legit-
imated on their formal base, do not seem to be unaffected by [semantic pollution concerns].
Whereas the semantics notions are explicitly internalised into the labelled calculi in the
form of the syntactical counterparts of forcing [...] and accessibility relation [...], tree-
hypersequents and deep sequent systems hide their relational semantics under a more
complex syntax.” (Boretti, 2009, 34-35, emphasis mine)

This position is also upheld in Read (2015), where it is explicitly stated that the
explicit-implicit distinction, as endorsed by Poggiolesi and Restall, is not the correct
way to consider the difference in the use of Kripke semantics between labelled and
tree-hypersequent systems. Read notes that in tree-hypersequent calculi, the semantic
content is still explicitly present, but is indicated by the symbols “/” and “;” instead of
R. Similarly to Boretti, he argues that the tree-hypersequent rules for necessity only
encode the semantic structure of modal formulas in an opaque and disguised manner,
thus simply obscuring the semantic apparatus that is more evident in the notation of
labelled sequents.12 This suggests that although Kripke semantics is not exhibited in
the same way as in labelled calculi, it is still displayed. To illustrate this, we consider
the following labelled rules for ⇤:

y : ', xRy,� ) �
L⇤0

x : ⇤', xRy,� ) �

xRy,� ) �, y : '
(y fresh) R⇤0

� ) �, x : ⇤'
By examining two simple derivations of ⇤(' !  ) ! (⇤' ! ⇤ ), we can compare
the work done by “/” and R, respectively:

) /') ' ) / )  
L !

) /','!  )  
L⇤

⇤') /'!  )  
L⇤

⇤('!  ),⇤') / )  
R⇤

⇤('!  ),⇤') ⇤ 
R !

⇤('!  ) ) ⇤'! ⇤ 
R !

) ⇤('!  ) ! (⇤'! ⇤ )

xRy, y : ') y : ' xRy, y :  ) y :  
L !0

xRy, y : '!  , y : ') y :  
L⇤0

xRy, y : '!  , x : ⇤') y :  
L⇤0

xRy, x : ⇤('!  ), x : ⇤') y :  
(y fresh) R⇤0

x : ⇤('!  ), x : ⇤') x : ⇤ 
R !0

x : ⇤('!  ) ) x : ⇤'! ⇤ 
R !0

) x : ⇤('!  ) ! (⇤'! ⇤ )

In the labelled derivation, the application of R⇤0 (root-first) introduces a fresh (i.e.,
new) state variable y, which is related to the given state variable x by R. Similarly, in
the tree-hypersequent derivation, each root-first application of R⇤ adds a new world-
sequent that is related to the already given one by “/”. On the other hand, the root-first
applications of L⇤0 in the labelled derivation do not necessarily require the introduc-
tion of fresh state variables, meaning that they could have been used before. Likewise,
in the tree-hypersequent derivation, the applications of L⇤ allow for the reuse of an

12“Kripke semantics is not merely implicit in the very notation of tree-hypersequents, rather, it is explicit
but opaquely disguised in the notation of ‘/’ and ‘;’.” (Read, 2015, 659). See also Boretti (2009, 36).
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already given world-sequent.
Given these insights, it might be appropriate to reframe the explicit-implicit dichotomy
advocated by Poggiolesi and Restall in terms of differentiating between the linguistic
and structural embodiment of the semantic apparatus. Indeed, the newly introduced
symbols “/” and “;” explicitly display the semantics at the level of the structure of
tree-hypersequents, rather than incorporating the semantics as an expansion of the
vocabulary of sequents, as it is the case in labelled calculi. Nevertheless, what matters
for the present investigation is that, even though the apparatus of Kripke semantics is
presented differently in tree-hypersequent systems than in labelled calculi, it is still (i)
explicitly displayed (although obscured in an unconventional notation) and (ii) plays
a fundamental role.
In conclusion, I would like to bring to the fore two critical points. Firstly, Boretti’s and
Read’s considerations illuminate the flaw in claiming that tree-hypersequent calculi
can be entirely free from semantic pollution. The structural features of the calcu-
lus inherently embody the pollution, and the functional equivalence of symbols “/”
and R, despite their notational differences, serves as evidence of the presence of the
semantic apparatus in tree-hypersequent calculi just as in labelled systems. Secondly,
Poggiolesi’s and Restall’s analysis takes a top-down approach that emphasizes their
preference for the purity and simplicity of vocabularies of sequent calculi.13 Although
this approach aligns well with their goals, according to my investigation it provides
only a partial perspective, which we believe needs to be supplemented with consider-
ations grounded in practice, and this is the theme of the next perspective.
Let me clarify that my intention is not to propose the adoption of labelled deductive
systems by all proof theorists, as there are also valid circumstances and reasons for
preferring non-labelled frameworks. Indeed, I firmly agree that:

“in dealing with Gentzen systems, no particular variant is to be preferred over all the others;
one should choose a variant suited for the purpose at hand.” (Troelstra & Schwichtenberg,
2000, 51)

In light of this consideration, indeed, the objective of this part of the paper was to
examine the perspectives of proponents of non-labelled calculi who express concerns
about the additional vocabulary introduced by labelled systems. Our analysis is specif-
ically focused on practitioners who prioritize non-labelled frameworks over labelled
ones based on principles of syntactic purity, as opposed to those who simply choose
to use non-labelled calculi for practical reasons.

2.3 Third perspective: opportunistic-yes answers

Opportunistic-yes answers

Labelled deductive systems are acceptable frameworks, but for merely method-
ological/practical reasons.

13“The labelled vocabulary also allows us to introduce sequents significantly beyond what we need in
modal deduction. So, let us continue our search for a simpler vocabulary for the structure of modal deriva-
tions” (Poggiolesi & Restall, 2012, 49). Alternatively: “can we really assert that these calculi [i.e., labelled
ones] are computational instruments for modal logic, a logic where labels or relational atoms do not usually
appear?” (Poggiolesi, 2010, 99).

9



In the domain of structural proof theory, certain types of formalizations and structures
are commonly utilized for their practical utility in achieving specific goals. Labelled
proof systems serve as a starting point for investigating a wide range of logics that can
be characterized by relational and algebraic semantics. Therefore, practitioners have
methodological reasons for employing labelled systems. Our perspective suggests that
labelled calculi are not rejected based on strict syntactic purity criteria but rather
opportunistically tolerated due to their potential to facilitate the development of new
translations of labelled sequents into other frameworks or the creation of entirely new
frameworks to which they can be translated. The term “opportunistic”, used metaphor-
ically here, suggests the idea of seizing opportunities as they present themselves. From
this perspective, the presence of semantic pollution in labelled systems is not neces-
sarily viewed as a drawback but rather as an initial step towards comprehending the
proof theory of specific logics. Essentially, labelled systems can be said to be toler-
ated due to their potential to enable progress in the field by establishing connections
between different frameworks.
To gain a more comprehensive understanding of the concept of “opportunistic-yes”
answers and the notion of semantic pollution through an analysis of how proof theorists
have employed labelled calculi, let us examine three specific examples from practice.
As previously mentioned, proceeding with concrete instances is a natural course of
action for our inquiry.

Bridging labelled and graph-based systems
Restall proposes that, when working with labelled calculi, we consider “the behaviour
of R and the labels as a part of the structural furniture of a sequent rather than its
content” (Restall, 2006, 11). This approach, among others discussed therein, relies on
a translation from labelled to graph-based sequent calculi, where a labelled sequent
of the following shape R, X ) Y 14 can be represented by a directed graph. In this
graph, each node represents a label occurring in the sequent, and an arc from x to y
exists when xRy is in R. We can represent xRy using ) ))) , where, as usual,
the antecedent is on the left and the consequent is on the right. The label on a formula
in X or Y indicates where the formula can occur on the graph, if x : ' 2 X (resp.
y : ' 2 Y ), then the corresponding unlabelled formula will be placed in the antecedent
(resp. consequent) position at the node of the graph identified by x (resp. y). In the
resulting structure, each node in the graph contains traditional Gentzen sequents,
where formulas are positioned on the left and/or right of the ) symbol. To illustrate
this, we provide a simple example of a labelled derivation of ⇤' ! ⇤⇤' and its
graph-based translation. (Note that validating ⇤'! ⇤⇤' requires relational frames
to have a transitive accessibility relation.)

14We recall that R and X,Y are collections (usually, sequences, multisets or sets) of relational atoms
and labelled formulas, respectively.
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xRz, yRz, xRy, z : ') z : '
L⇤0

xRz, yRz, xRy, x : ⇤') z : '
trs

yRz, xRy, x : ⇤') z : '
(z fresh) R⇤0

xRy, x : ⇤') y : ⇤'
(y fresh) R⇤0

x : ⇤') x : ⇤⇤'
R !0

) x : ⇤'! ⇤⇤'

 

) ))) ') '22
++

L⇤g

⇤') )** ) '22
++

trs
g

⇤') )** ) '
++

R⇤g

⇤') ) ⇤'
,,

R⇤g

⇤') ⇤⇤'
R !g

) ⇤'! ⇤⇤'

If a sequent has no arcs at all, then there is no difference between a proof of a sequent in
this framework and a proof in a standard Gentzen sequent calculus, such as LK. In the
context of our discussion, this paper is a good example as it emphasizes the importance
of working with labelled calculi to create frameworks in which the semantics is reflected
in the structure of sequents rather than in their vocabulary:

“This is [...] a new way of representing the labelled sequent structure, pushing the relational
statements and labels into the syntax of the proof theory, leaving the formulas to remain
as the content.” (Restall, 2006, 11)

This approach aligns with the opportunistic-yes respondent, whose practices and goals
recognize and highlight the practical value of using labelled systems to obtain the
desired alternative systems.

Bridging labelled and tree-hypersequent systems, and the “structural refine-
ment” method
In their paper, Goré and Ramanayake (2012) introduce a subset of labelled sequents
known as “labelled tree-sequents” (LTS), which have a tree-like structure without
cycles.15 They prove that LTS and tree-hypersequents (THS) are equivalent and show
that this relationship extends to nested deep sequents. Specifically, they present two
translation functions between LTS and THS that preserve provability, namely LT :
LTS 7! THS and TL : THS 7! LTS. Examples of applications of LT and TL are given
as follows, respectively:

15For further information on the relations between tree-hypersequent and labelled systems (among several
other frameworks), one may also consult the work by Lellmann and Poggiolesi (202x) (esp. Section 5.5).
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The objective of Goré and Ramanayake is to demonstrate that the translations they
propose allow to transfer syntactic results (such as cut-admissibility) between these
two frameworks. They illustrate this through a case study, where they establish the
equivalence between the THS-based calculus CSGL (see Poggiolesi (2009b, 2010))
and the LTS-based calculus G3GL (see Negri (2005)) for provability logic GL16 (see
Goré and Ramanayake (2012, 291–297)). Finally, the authors argue that these results
successfully show:

“[...] that THS and LTS are notational variants, allowing us to transfer proof-theoretic
results including syntactic cut-admissibility between these formalisms, thus alleviating the
need for independent proofs in each system.” (Goré & Ramanayake, 2012, 297)

In a similar vein, Lyon (2021c) has extensively studied and applied what he refers to
as the structural refinement method (see also Lyon and van Berkel (2019) and Lyon
(2021a, 2021b)).17 The strategy involves a procedure in which the inherent external
features of labelled systems – specifically, the explicit representation of semantic
structures – are internalized. This internalization is achieved through the introduction
of alternative yet equivalent rules, i.e., so-called propagation rules. Intuitively, these
rules, when applied root-first, facilitate the propagation of a formula from a label x
to another one y when a certain path of relational atoms between x and y exists.
Examples of propagation rules can be given as follows (see (Lyon, 2021a, 418) and
(Lyon, 2021c, 92)):

R,� ) y : '
P⌃

R,� ) x : ⌃'
R,�, x : ⇤', y : ') z :  

P⇤
R,�, x : ⇤') z :  

16The logic GL is obtained by adding the axiom ⇤(⇤' ! ') ! ⇤' to the normal modal logic K.
Correspondingly, frames for GL are obtained by restricting those for K with additional semantic constraints.
Specifically, the accessibility relation is required to be irreflexive, transitive and Noetherian.

17The approach applied by Lyon to labelled calculi is an adaptation of the method employed by Tiu,
Ianovski, and Goré (2012) (see also Ciabattoni, Lyon, Ramanayake, and Tiu (2021)). For more details on
display calculi one can refer to, e.g., Wansing (2000, 13-17) and Bimbó (2014, 199-216).
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where we use the labelled formula x : ⌃', or x : ⇤', to introduce (root-first) the
labelled formula y : ', with a path between x and y of some length n. Rules like P⌃
and P⇤ serve to constrain and simplify the structure of sequents, resulting in shorter
and more concise proofs. Lyon has successfully proved that such refined labelled calculi
and deep nested systems18 are notational variants by defining translations that enable
one to straightforwardly switch between labelled and nested notations. Furthermore,
these translations have found practical applications, that is they have been used to
develop algorithms that facilitate the translation of proofs between refined labelled
and nested calculi. For instance, the structural refinement method was successfully
applied to bridge nested and labelled sequent systems for intuitionistic modal logics,
grammar logics, first-order intuitionistic logic, and deontic STIT logics, allowing for
the algorithmic translation of labelled proofs into nested proofs.
As highlighted by Lyon:

“[...] it is interesting to wonder if switching from labelled to nested notation possesses any
utility in its own right, that is, does the option of converting notation offer any advantage?
Two reasons come to mind which justify a positive answer. First, switching from labelled to
nested notation ensures that the language of our calculi enjoys a degree of parsimony [...]
Second, switching to a more restrictive notation has practical value as it provides a priori
knowledge about the structure of proofs; e.g. one can be certain that all sequents within
a given proof encode trees prior to observing any proof within the associated system. [...]
Furthermore, translating in the opposite direction – from nested to labelled notation –
appears to be worthwhile as well, [...] [since in some cases] the labelled notation [is] easier
to work with and [allows] for simpler definitions.” (Lyon, 2021c, 112-113)

The approaches discussed so far clearly align with the opportunistic-yes perspective,
as they emphasize the importance of exploring and utilizing labelled proof systems
to facilitate the development and study of their connections with alternative proof
systems, such as tree–hypersequents and nested deep sequents. Thus, the practical
scenarios we have showcased provide clear examples of how labelled calculi are actually
valued and used by practitioners to address broader issues in the advancement of
structural proof theory.

Bridging labelled and hypersequent systems
In their paper, Ciabattoni, Maffezioli, and Spendier (2013) compare hypersequent and
labelled calculi by examining proof systems for various intermediate logics, includ-
ing Bd2 (Bounded depth at most 2).19 A hypersequent is a structure of the form:
�1 ) �1 | · · · | �n ) �n, where each �i ) �i (for i = 1, . . . , n) is a sequent. Here,
�i,�i are multisets of formulas, and the symbol “|” mostly represents a meta-level dis-
junction. In their paper, based on the algorithm for constructing hypersequent rules
from axioms classified according to a hierarchy based on the invertibility of logical
and quantifier rules (see Ciabattoni et al. (2009)), the authors propose a classification
of frame conditions into a hierarchy that intuitively reflects the difficulty of handling

18As remarked in footnote 11, tree-hypersequents and nested deep sequents, despite the different
formalisms employed, are essentially the same.

19Intermediate logics refer to systems that fall between intuitionistic and classical logic and include a
continuum of different systems, such as Gödel-Dummett logic, logics of bounded width/depth, Gödel n-
valued logics, Jankov’s logic, and others. For further details on this, one can refer to Dyckhoff and Negri
(2012) in addition to Ciabattoni, Straßburger, and Terui (2009) and Ciabattoni et al. (2013).
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the corresponding first-order formulas in a proof-theoretic context. The authors begin
with a Hilbert system for Bd2, namely IL � ⇠ _ (⇠ ! (' _ (' !  ))), and con-
struct a hypersequent calculus for it by transforming its characteristic axiom into the
corresponding hypersequent rule:

⇠ _ (⇠ ! (' _ ('!  )))  
G | �0,� ) �0 G | �,')  ,�

G | �0 ) �0 | � ) '!  ,�

Furthermore, the authors examine relational frames for Bd2, specifically FIL �
8x, y, z((x  y ^ y  z) ! (y  x _ z  y)), and transform the aforementioned frame
condition, which is expressed as a first-order formula, into a labelled rule. Following
the methodology developed by Dyckhoff and Negri (2012), the transformation is given
as follows:

8x, y, z((x  y ^ y  z) ! (y  x _ z  y))

 
y  x, x  y, y  z,� ) � z  y, x  y, y  z,� ) �

x  y, y  z,� ) �

The authors’ proposed classifications of axioms and frame conditions offer significant
guidance for future research in logic by providing insights into the development of
more efficient proof procedures for intermediate logics. These classifications are par-
ticularly valuable as they enable comparisons across various frameworks, especially
between those employing vocabularies enriched with semantic parameters, like labelled
sequents, and further generalizations of the sequent calculus typically viewed as free
from semantic pollution concerns, such as hypersequents. As the authors note:

“the methods of turning Hilbert axioms into hypersequent rules and frame conditions into
labelled rules [...] are closely related.” (Ciabattoni et al., 2013, 81)

In conclusion, the authors’ findings not only highlight the potential connections
between various frameworks but also provide insights into advancing the study of the
links between proof theory and the algorithmic implementation of proof systems. Such
an approach clearly aligns with the opportunistic-yes stance.

Our overarching objective is to contribute to a philosophical analysis of semantic
pollution grounded in practice and providing insights into how we engage in logical
activities and practices. The analysis carried out so far suggests that practitioners
in structural proof theory utilize labelled calculi for their practical value in achiev-
ing specific goals. To exemplify our perspective, we have provided three specific case
studies. By examining how proof theorists have employed labelled calculi in these
instances, we hope to have delivered a more comprehensive understanding of the con-
cept of “opportunistic-yes” stance and its relation to the charge of semantic pollution.
The concept of opportunistic-yes answers represents a departure from the traditional
approach of rejecting calculi that explicitly (or, more precisely, linguistically) internal-
ize semantic elements within the syntax. Although seeking “less semantically polluted
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calculi” might still hold validity, the opportunistic-yes approach perceives alleged pol-
lution as a means to advance research rather than a barrier to avoid at all costs.
Our practice-oriented approach underscores the idea that practitioners do not dismiss
calculi based on weak or strong principles of syntactic purity but, rather, embrace
the potential of labelled systems to establish links between different frameworks and
facilitate progress in the field.

2.4 Fourth perspective: enthusiastic-yes answers

Enthusiastic-yes answers

Labelled calculi are valuable tools for structural proof theory, as they enable
precise and systematic studies of logics, and have worthwhile applications in
philosophical contexts.

In the debate regarding the role of semantic elements in proof systems, unsurpris-
ingly, there are proponents who support labelled calculi as suitable proof systems. This
position has gained widespread recognition and has been extensively studied by prac-
titioners over a considerable period of time. Additionally, as previously noted in the
Introduction, the philosophical perspective of proof-theoretic inferentialism suggests
that deductive calculi can provide a definition of the meaning of logical connectives.
Some scholars have extended this view to include labelled systems. It is important to
mention, however, that whereas labelled calculi are widely recognized as suitable proof
systems among practitioners, there is currently little agreement regarding their utility
in supporting inferential views of the meaning of logical operators. In fact, only a lim-
ited number of scholars have endorsed the notion that labelled calculi can be utilized
to defend inferentialist perspectives.
The term “enthusiastic”, used metaphorically, implies that concerns regarding seman-
tic pollution are minimal or non-existent, and the proof-theoretic (and, in some cases,
philosophical) value of labelled calculi is acknowledged. This practical recognition of
the proof-theoretic validity of labelled calculi is particularly noteworthy because it
suggests that labelled frameworks can be used as stand-alone proof systems, without
necessarily relying on other frameworks for validation. This recognition has been fur-
ther strengthened by the endorsement of certain scholars who embrace philosophical
perspectives that regard labelled calculi as valuable tools. This perspective is intriguing
as it suggests that the apparent violation of syntactic purity criteria does not neces-
sarily make the labelled framework void or unfit for practical applications. Rather,
it retains the proof-theoretic significance of labelled calculi per se, which continue to
be the subject of intense interest, applications, and discussions among practitioners.
However, it’s important to note that there is no unique methodology for constructing
labelled proof systems. When it comes to labelling strategies and label choices, var-
ious alternatives are available, including possible worlds, natural numbers, and (sets
of) truth values. Besides the references mentioned at the beginning of Section 1, addi-
tional remarkable examples of labelling methods can be found in various other sources.
For instance, in Anderson and Belnap (1975), rules for relevant implication include
formulas labelled with natural numbers to formally express the relevance condition.
Intuitively, their labelling technique is used to ensure that for a formula  to follow
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from a formula ', the assumption ' must be actually used in proving the conclusion
 . Additionally, Fitting (1983) employs truth values as labels to characterize intuition-
istic and modal systems. The incorporation of information extracted from possible
worlds semantics into labelled calculi has early instances in the work of Giambrone
and Urquhart (1987). Other significant examples discussing procedures for translating
complex relational semantics into labelled proof systems can be found in the works
of Nerode (1991) and Orlowska (1991, 1992). These articles address the proof theory
of various non-classical logics, including modal logics, epistemic logics for represent-
ing partial knowledge in groups of agents, and relevant logics. Furthermore, Simpson
(1994) significantly contributes to the development of a methodology for transforming
so-called geometric implications into well-constructed structural rules, particularly for
intuitionistic modal logics. Similar methodologies have found extensive applications
in Hein (2005) as well as in Negri (2005) and subsequent papers. Moreover, Gabbay
(1996), Viganò (2000), and Basin, D’Agostino, Gabbay, Matthews, and Viganò (2000)
serve as comprehensive sources of methodologies and applications, covering a wide
array of non-classical logics characterized through various labelling methods.
Describing each framework, its benefits, and limitations would be a lengthy task, and
therefore, in line with our practice-based methodology, we present two significant case
studies that we believe offer insightful perspectives on the concept of “enthusiastic-yes”
responses towards the utilization and formal applicability of labelled calculi, and their
relationship to the critique of semantic pollution. The first case study examines and
discusses a group of labelled calculi, extensively employed, which provides a systematic
methodology to investigate the proof theory of a broad range of non-classical logics.
The second case study aims at illustrating the interconnection between proof-theoretic
inferentialism and labelled calculi.

Structural proof analysis
As already mentioned, there are several approaches in proof theory that use labelled
systems. As a case study, we choose a widely used approach that can be traced back
to Negri (2005) and Negri (2007) for modal and several other non-classical logics. The
approach proposed therein involves starting with sequent calculi without primitive
structural rules20 and then adding the machinery of Kripke’s relational semantics in a
specific way. Firstly, the semantic conditions of each connective, including the reference
to possible worlds, are transformed into well-formed right and left rules. Secondly, the
frame conditions, if any, are examined and transformed into corresponding schematic

20The approach of working with sequent calculi lacking primitive structural rules (e.g., weakening and
contraction) is commonly employed in proof-theoretic research. This methodology involves constructing
calculi with logical rules in such a way that they absorb the effects of the structural rules, thus eliminating
the need for primitive structural rules. The tradition of incorporating structural rules into logical rules can be
traced back to Kleene, who is also acknowledged for coining the term “G3” to label these specific calculi, as
well as for introducing the labels “G1” and “G2” for related sequent systems (see Kleene (1952, 440-516), and
also Bimbó (2014, 60-62)). In this context, “G” stands for Gentzen, and the numbers denote the approach
used for constructing the calculus. For example, the labels “G3i” and “G3c” are conventionally used in
practice to denote the structural rules-free sequent calculi (“G3”) for intuitionistic (“i”) and classical (“c”)
logic, respectively. Researchers, including Dragalin (1988), Dyckhoff (1992, 1997) and Dyckhoff and Negri
(2000, 2001), refined and extended Kleene’s methodology in several ways. For more detailed information on
these calculi, one can also refer to Troelstra and Schwichtenberg (2000), Negri and von Plato (2001), and
Indrzejczak (2021).
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sequent-style rules. To illustrate this, we will provide an example of the transformation
of the clause for implication in intuitionistic logic into its corresponding labelled rule:

x ✏ '!  iff for all y such that x  y: if y ✏ ', then y ✏  

 

y : ', x  y,� ) �, y :  
(y fresh) R !I

� ) �, x : '!  

x  y, x : '!  ,� ) �, y : ' y :  , x  y, x : '!  ,� ) �
L !I

x : '!  , x  y,� ) �

The right rule, when applied root-first, requires the usage of a new, fresh label, whereas
the left rule incorporates copies of the conclusion formula x : ' !  in the premises,
absorbing the effects of the contraction rules.
Finally, in the context of Kripke’s relational semantics for intuitionistic logic, frames
are defined by a reflexive and transitive binary accessibility relation denoted by the
symbol “” between two states. By observing that all frame conditions are expressed
as either universal axioms or geometric implications, we transform them into well-
constructed sequent-style rules. First, we convert universal axioms into conjunctive
normal form, i.e., P1^· · ·^Pi ! Q1_· · ·_Qm, and then into suitably formulated rules.
For example, in the case of intuitionistic logic, we apply the following transformations:

Reflexivity: x  x  x  x, � ) �
ref

� ) �

Transitivity: If x  y and y  z, then x  z  x  z, x  y, y  z,� ) �
trs

x  y, y  z,� ) �

Geometric implications, on the other hand, are formulas of the form 8z(↵ ! �),
where ↵ and � are geometric formulas, i.e., they contain neither 8 nor !. They are
converted to conjunctions of formulas according to the following scheme: 8x(P1^ · · ·^
Pi ! 9y1Q1 _ · · · _ 9ymQm), and, subsequently, into the corresponding left rule (see,
e.g., Negri (2003)). For example, the following transformation for the frame property
usually referred to as “directedness”, expressible as a first-order geometric formula, can
be considered (see, e.g., Negri (2007), Dyckhoff and Negri (2012)):21

8x, y, z((x  y ^ x  z) ! 9u(y  u ^ z  u))

 

y  u, z  u, x  y, x  z,� ) �
(u fresh) dir

x  y, x  z,� ) �

Similarly, rules for modal logics are derived by applying the same methodology used for
! to the semantic clause for ⇤. As mentioned earlier, labelled calculi can be regarded
as suitable tools for the development of proof analysis, which aims at investigating the

21The logic obtained by adding directedness to intuitionistic logic frames results in the so-called logic
of weak excluded middle (sometimes referred to as Jankov logic or De Morgan logic as well), which is
axiomatized by adding both axioms ¬' _ ¬¬' and ¬(' ^  ) ! (¬' _ ¬ ) to those of intuitionistic logic.
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structure of proofs through computational tools and formal constructions.22 In the
context of the calculi developed by Negri (2005) and subsequent works, the essential
results that can be obtained can be summarized as follows:

• Height-preserving admissibility of substitution of labels;
• Derivability of generalized initial sequents;
• Height-preserving admissibility of the weakening rules;
• Height-preserving invertibility of logical and relational rules;
• Height-preserving admissibility of the contraction rules;
• Cut-admissibility;
• Soundness;
• Completeness with respect to a semantics;
• Completeness with respect to an axiomatic system.
• Direct extraction of countermodels from failed root-first derivations.

At the heart of this example, we see that labelled calculi constructed according to the
strategy just illustrated are technically just as suitable as any other standard system
within the field of structural proof theory (along with the added benefit of being
adaptable to a wider range of logical systems):

“Our aim is to provide a general approach to the proof theory of non-classical logics through
labelled sequent calculi that obey all the principles of good design usually required of
traditional sequent systems. In particular, the calculi we shall present have all the structural
rules – weakening, contraction, and cut-admissible; they support, whenever possible, proof
search, and have a simple and uniform syntax that allows easy proofs of metatheoretic
results.” (Negri, 2007, 109)

One can find many applications of Negri’s methodology beyond normal (alethic)
modal and intermediate logics, including temporal logics (e.g. Boretti (2009); Boretti
and Negri (2009)) and quantified modal logics (e.g., Orlandelli (2021)), intuitionistic
modal logic (e.g., Marin, Morales, and Straßburger (2021), Girlando, Kuznets, Marin,
Morales, and Straßburger (2023)), as well as intuitionistic multi-modal and epistemic
logics (e.g., Garg, Genovese, and Negri (2012); Maffezioli, Naibo, and Negri (2013)),
non-normal modal logics (e.g. Tesi (2021)), conditional and counterfactual logics (e.g.,
Negri and Sbardolini (2016), Poggiolesi (2016), Girlando (2019), Girlando, Negri, and
Sbardolini (2019)), relevant logics (e.g., Kurokawa and Negri (2020), De Martin Polo
(2023, 202x)), and many others.
Lastly, we wish to remark – echoing Negri’s emphasis – that labelled calculi, due to
their generality, prove valuable not only as deductive systems but also as instruments
for obtaining meta-theoretic results, such as embedding proofs between logics. These
results, previously achieved through complex and non-constructive proofs, become
almost straightforward once the logics in question are equipped with the appropri-
ate labelled calculus. For instance, Dyckhoff and Negri (2012) and Dyckhoff and
Negri (2016) proved the embedding of intermediate logics into their modal compan-
ions, and the embedding of intuitionistic logic into provability logic, respectively.

22In their book Negri and von Plato (2011, xi), the authors trace the origins of the structural proof anal-
ysis research program to their earlier work, i.e., Negri and von Plato (1998). In that work, they presented
a systematic method for incorporating axioms into sequent calculi while preserving the eliminability of cut.
This methodology, based on the idea of representing axioms as rules of inference, has also served as the
theoretical underpinning for the conversion of frame conditions into rules as exemplified above.
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More recently, Tesi and Negri (2023), by using labelled calculi that internalize neigh-
bourhood semantics, have extended the modal embedding to infinitary intuitionistic
logic.

Proof-theoretic inferentialism
In his articles, Read (2008, 2015) advocates the use of labelled systems as an appro-
priate framework to support an inferentialist perspective on the meaning of logical
constants. This philosophical position claims that the meaning of logical constants is
not given by identifying objects as their meaning, but by stating the rules for their
use in inferences. These rules usually state the grounds for asserting propositions (i.e.,
the conditions under which such assertions can be inferred) and the consequences of
the asserted propositions (i.e., what can be inferred from asserting them).23 Read
argues for labelled natural deduction calculi, rather than sequent systems, where for
each connective there is the pair introduction/elimination rules, instead of the pair
left/right rules. Roughly, the meaning of logical operators can be captured through
their introduction rules. Instead, as Gentzen observed, the elimination rules represent
the consequences of the meaning conveyed by the introduction rules. Specifically, the
focus of Read’s research is on defending an inferentialist view of modalities, and the
proposed rules take the following form:

(xRy)
...

y : '
I⇤

x : ⇤'
x : ⇤'

(xRy V y : ')
...

i : ⇠
E⇤

i : ⇠

y : ' xRy
I⌃

x : ⌃' x : ⌃'

(xRy, y : ')
...

i : ⇠
E⌃

i : ⇠

where, in I⇤, x 6= y and y must not appear in any other assumption on which y : '
depends. Additionally, in E⇤ and E⌃, we require also that y 6= i, and that y must not
appear in any other assumption on which i : ⇠ depends. The notation (xRy V y : ')
denotes that we are assuming that ' is true at all worlds y accessible from x.24 Turning
our attention to Read’s defence of inferentialism, we can characterize his argumen-
tation schema as operating on two distinct but interconnected levels, namely, (i) the
endorsement of a non-reifying perspective, and (ii) the use of harmonious and normal-
izable rules.
(i) Read contends that those perspectives which conflate semantic and metaphysical
concerns, specifically those that overlap questions of meaning with denotational and
existential issues, are misguided, and deems the latter concerns as irrelevant for deter-
mining the truth of inferentialism. Accordingly, it would be mistaken to hold the view
that the meaning (semantics) of expressions is solely based on a reference to a realm
of objects as it happens, e.g., in a model theory.25 Instead, he claims that the mean-
ing of an expression is determined by the rules that govern its use in deductions, and

23This idea originated in Gentzen’s doctoral dissertation: “The introductions represent, as it were, the
‘definitions’ of the symbols concerned, and the eliminations are no more, in the final analysis, than the
consequences of these definitions. This fact may be expressed as follows: In eliminating a symbol, we may
use the formula with whose terminal symbol we are dealing only ‘in the sense afforded it by the introduction
of that symbol’” (Gentzen, 1969, 80).

24The details can be checked in Read (2008, 15-18) and Read (2015, 653-654).
25This interpretation of model theory is not novel among philosophers of logic: “Model-theoretic semantics

is often described as being realistic; it establishes a kind of correspondence between linguistic expressions
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that the question of whether the expressions in these rules serve to denote something
is a separate matter, mainly pertaining metaphysics, rather than semantics:

“[Quoting] Leibniz with approval: “There is no need to let mathematical analysis depend on
metaphysical controversies.” But the infinitesimal calculus (to which Leibniz was referring)
is still meaningful whether or not infinitesimal quantities exist. Semantics should not be
identified with model theory.”26 (Read, 2015, 656)

Furthermore, Read advocates the idea that one should avoid being misled by heuristic
or metaphorical interpretations of logical expressions, and supports this argument by
drawing another analogy with mathematical analysis.

“We are setting up a formal system, in which labels and ‘R’ are auxiliary symbols whose
meaning, if any, is conferred by the rules. [...] so the reading of iRj is at best a useful
metaphor. A similar point is often made about such an expression as lim

n 7!1
an, where ‘1’

does not refer to a value of n, but indicates rather that there is no greatest value of n.”
(Read, 2008, 15, notation adapted)

In summary, Read argues that expressions like xRy, which are employed in modal
rules to characterize formulas such as ⇤' and ⌃', lack inherent meaning. Instead, they
function as auxiliary tools based on Leibniz’s metaphor of possible worlds and Kripke’s
idea of relative possibility. Indeed, relational atoms such as xRy are never actually
asserted, but rather serve to limit the range of labels, which are simply syntactic
devices used in constructing proofs. For example, the above rules are sufficient for the
basic modal logic K and to obtain stronger logics, additional relational rules can be
added to allow for a wider range of labels to occur in proofs. For instance, the following
relational rules may be used (Read, 2008, 18), (Read, 2015, 654):

(xRx)
...

i : '
T

i : '

xRy yRz

(xRz)
...

i : '
4

i : '

xRy

(yRx)
...

i : '
B

i : '

xRy xRz

(yRz)
...

i : '
5

i : '

As such, the meaning of modalities is determined solely by the shape of their introduc-
tion and elimination rules, rather than by expressions that may be mistakenly reified
due to the seductive nature of Leibniz’s metaphor.27
(ii) Read maintains that the labelled rules displayed above for⇤ and ⌃ are harmonious,
that is, the introduction rules encapsulate the whole meaning of the modal operators.
Moreover, since “harmony guarantees normalization”, and given that the elimination
rules represent the consequences of the corresponding introduction rules, immediate
normalization results for I⇤ and E⇤ (resp. I⌃ and E⌃) can be obtained. (The nor-
malization procedures can be found in Read (2008, 15-17) and Read (2015, 650-654).)
Overall, Read’s investigation has concluded that labelled deductive systems for modal
logics are wrongly regarded as unsuitable for proof-theoretic and philosophical research

and elements of formal structures which are either thought of as a part of reality or as representing a part
of reality” (Wansing, 2000, 3).

26On a similar note, also Boretti argues that “the risk of a metaphysical commitment is somehow neu-
tralised, [...] since [in labelled calculi] the relational semantics [is] only a helpful formal tool, [...] and not
[...] an ‘interpretation’ in the sense of a metaphysical explanation” (Boretti, 2009, 34).

27See Read (2015, 659-660).
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due to the intrusion of semantic elements into the syntax.28 He instead maintains that
labelled rules for ⇤ and ⌃ are transparent in displaying their meaning by simply spec-
ifying their use in inferences, and this aligns with the perspective of proof-theoretic
inferentialism. Indeed, as suggested by Gentzen, the rules displayed above precisely
articulate the grounds for asserting modal formulas and their justifiable consequences,
and thus, rather than “being semantically polluted, [they] wear their meaning on their
sleeves” (Read, 2015, 660).29

3 Limits of labelled calculi and solution strategies
To conclude the analysis, let me finally consider some of the limitations faced by
labelled frameworks and their relation to the practice of proof theory. Indeed, although
it is true that labelled calculi have an intuitive construction method – involving the
conversion of semantic clauses and frame properties into specific inference rules – and
allow for the proofs of general theorems related to fundamental proof-theoretic proper-
ties, it is also true that there are features that can make labelled frameworks unsuitable
for certain proof-theoretic enterprises. To provide a more comprehensive explanation
of how labelled systems are practically used, I’ll focus on a group of limitations of
labelled calculi – extensively addressed and discussed by working proof theorists30 –
and consider how the possible solution strategies relate to the four perspectives on
labelled proof systems discussed so far.
Concerning terminating proof-search and decidability, labelled calculi are usually
regarded as not ideal, precisely due to the use of extra-logical rules encoding some
relational semantics. This additional complexity in their syntax renders labelled sys-
tems not analytic in a strong sense, which is a fundamental characteristic of proof
systems designed for practical implementation. Roughly, a derivation is considered
analytic if it contains only subformulas of the formulas in the conclusion. Due to the
presence of relational atoms, a labelled derivation might include elements like xRy
that are not subformulas of formulas belonging to some endsequent. Achieving the
subformula property in labelled systems essentially requires adapting the notion of
subformula to include relational atoms and considering weaker formulations of it. Nev-
ertheless, simply having a suitably formulated subformula property is insufficient to
establish decidability results. Indeed, also the presence of relational rules in which
relational atoms vanish from the premise to the conclusion is not an ideal tool in a cal-
culus intended to achieve provable terminating proof search. Intuitively, the problem
with such rules is that the possibility of applying them results in duplications of rela-
tional atoms, significantly increasing the complexity of sequents. For example, systems
including rules with a reflexivity atom xRx give rise to a loop. Furthermore, labelled
rules formulated in such a way that their application in derivations requires the intro-
duction of fresh variables, i.e., ones not previously used, as well as rules including

28“It has been claimed that [...] labelled deductive systems for modal logic are unsuitable on the grounds
that they are semantically polluted and suffer from an untoward intrusion of semantics into syntax. The
charge is shown to be mistaken” (Read, 2015, 649).

29Another approach similar to Read’s, which requires some further machinery and additional explana-
tions, was made in Negri and von Plato (2015). Despite the relevance of this work for our discussion, we
won’t examine it for the sake of brevity.

30See e.g., Lyon (2021c) and Negri and von Plato (2011).
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copies of the end formula in the premises, are sources of non-terminating proof search.
The issues I have introduced have found extensive discussion and formal treatment
in structural proof theory. Therefore, it is instructive for our philosophical analysis to
consider also how proof theorists have approached the limitations of labelled calculi.
To be precise, I will propose a systematization of the various solutions that have been
concretely adopted based on the four-perspectives analysis of attitudes towards the
use of labels in proof systems. Specifically, I will focus on the solution strategies that
are typically employed when addressing the practical limitations of labelled calculi.
Firstly, proof theorists who adopt convinced-no and relaxed-no attitudes can find rein-
forcement for their position not to work with labelled systems. The introduction of an
expanded vocabulary not only violates both strong and weak principles of syntactic
purity but also presents challenges in obtaining fundamental results straightforwardly.
Hence, respondents with convinced-no and relaxed-no attitudes strategically propose
a radical shift towards non-labelled frameworks. This shift allows them to avoid work-
ing with semantically polluted calculi and to overcome the technical limitations of
labelled calculi.
In another sense, the exploration of the limitations of labelled calculi becomes more
subtle and logically interesting when viewing these limits as challenges to overcome,
rather than insurmountable obstacles and reasons for abandoning labelled frameworks.
Practitioners endorsing an opportunistic-yes perspective, by considering semantic pol-
lution as an initial step towards comprehending the proof theory of specific logics and
leveraging the opportunities provided by labelled calculi without being constrained by
strict or weak principles of syntactic purity, are more inclined to advocate for external
solution strategies when facing limitations in the practical use of labelled calculi. In the
case we examined, the use of such external solution strategies is evident through the
various bridges established between labelled calculi and other frameworks. Intuitively,
these external strategies offer solutions to recover results that might be too complex to
be achieved within a labelled system by relying on some non-labelled framework. For
example, since proof search algorithms for labelled sequents, due to the large amount
of data they include, tend to be difficult to prove terminating, employing sequents with
simpler structures (e.g., hypersequents or nested sequents) can result in a system with
smaller-sized proofs.31 This makes proof search more manageable, and decidability
relatively easy to prove. In this case, similar to the negative attitudes, the sugges-
tion is to transition from labelled to non-labelled notation. However, it’s worth noting
that the limitation is often perceived as a more “circumscribed” issue. Hence, the need
to shift to a simpler framework is not seen as a general strategy to address issues
with labelled calculi, but rather it is the strategy to adopt when the limits of labelled
notations become apparent and hinder certain proof-theoretic endeavours. Indeed, as
mentioned earlier, in opportunistic-yes responses the transition between notations is
primarily driven by practical considerations rather than concerns about the impurity
of the labelled notation. In fact, there may be practical scenarios where labelled calculi

31The work by Lyon and Ostropolski-Nalewaja (2023) confirms that nested sequent systems generally
yield shorter proofs with syntactically simpler sequents compared to labelled systems. This result was
established within the framework of so-called abstract sequent calculi – systems consisting of a set of
g-sequents, i.e., binary graphs representing ordinary Gentzen-style sequents, along with a finite set of
operations applied to them.
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provide more suitable frameworks to work with, as discussed, for example, by Lyon
(2021c). Indeed, the strategies falling under the opportunistic-yes responses, such as
those we have showcased in Section 2.3, generally driven by the idea that certain tasks
can be more easily achieved in certain frameworks rather than others, tend to pro-
vide fine-grained translation maps between labelled and non-labelled systems, allowing
proofs to be inter-translatable.
Finally, proof theorists endorsing an enthusiastic-yes attitude towards the use of labels,
by considering labelled calculi as valuable tools for structural proof theory and for
applications in philosophical contexts, might not opt for an external solution that
relies on translation to another non-labelled framework, but rather they may seek for
internal solution strategies. Intuitively, certain works within the context of labelled
calculi have chosen to address issues such as termination while retaining the labelled
framework. They achieve this by refining notions and methods in such a way that,
without changing the framework, solutions to the limitations of labelled calculi can be
found. Naturally, these types of works may entail subtle and mathematically complex
solutions. To provide concrete examples, we will describe some works and how they
have successfully addressed the challenges of termination and decidability through
internal solutions. Concerning the calculi discusses in the case study on pp. 16ff, in
Negri (2005); Negri and von Plato (2011), an internal solution was devised to achieve
terminating proof search and establish decidability proofs for various labelled calculi.
Intuitively, decidability cannot be proven unless a bound is placed on the number of
fresh variables that can occur in a derivation of a given sequent. To establish such a
bound, one needs to consider minimal derivations, i.e., derivations in which shorten-
ings are not possible. This means that a derivation in which a rule instance produces
root-first a duplication of an atom like xRy, should not be allowed to be shortened by
the application of height-preserving admissibility of contraction at the rule instance.
Additionally, to avoid loops generated by atoms like xRx, one must keep track of the
labels used in applications of reflexivity rules, requiring all labels in atoms of the form
xRx added root-first in a minimal derivation of a sequent of the form � ) � to be
labels occurring in � and �. This, in turn, allows one to maintain the subterm prop-
erty, meaning that all terms (labels, worlds) in a derivation are either fresh variables
or terms in the conclusion. Finally, as mentioned earlier, another potential source of
non-terminating proof searches arises from the repetition of the principal formulas in
the premises. To address this, it is essential to ensure that rules of that kind cannot
be applied more than once to the same pair of principal formulas on any branch.
This strategy has proven successful for various labelled frameworks constructed fol-
lowing Negri’s methodology, such as those designed for modal logics. However, in
cases involving more intricate labelled calculi, more nuanced solution strategies must
be employed, and the methods for proving termination and decidability become
mathematically complex. For instance, consider Garg et al. (2012), which explores
termination and decidability in labelled calculi for intuitionistic multi-modal logics.
In their paper, the authors achieve the desired decidability results through a method
that builds a proof-theoretic version of semantic filtration on top of the proof-or-
countermodels methodology. Their method guarantees termination in labelled sequent
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calculi, provides an approach to extract countermodels when the search process ter-
minates, and allows for a proof of the finite model property for the logics under
consideration.
However, besides the several different formal solutions adopted, what’s worth noting
for the present investigation is that advocates of enthusiastic-yes attitudes may still
find ways to address the limitations of labelled frameworks, even if it means dealing
with added complexities.
In summary, although the recognition of limitations in labelled calculi is common
in proof theoretic works, the reactions of practitioners may vary depending on their
preferences for syntactic purity and the practical scenarios they encounter. We have
identified that, based on these factors, practitioners may (i) reject the suitability of
labelled calculi and opt for a radical change in framework, (ii) employ external solu-
tion strategies by considering labels a drawback in certain practical scenarios and
opportunistically relying on non-labelled frameworks, or (iii) utilize internal solution
strategies by enthusiastically continuing to work directly within the labelled framework
to find solutions without abandoning it.

4 Conclusions and further research
We have examined to what degree a proof system is accepted based on the presence of
semantic elements, which are viewed as extraneous and as affecting its pure syntactic
character.
Two negative answers to this question have been proposed in the literature, but both
have questionable or partial readings. The first answer, based on full-blooded (or
strong) syntactic purity, posits that everything is semantically polluted. The second
answer, based on weak syntactic purity, draws an explicit-implicit distinction that can
be problematic based on the considerations expressed above. I would like to highlight
that, in both cases, the notion of semantic element appears too vague in the arguments’
formulations. Specifically, with respect to convinced-no answers, when specifying that
a calculus should not reveal any semantic information, we observed that standard ele-
ments in the vocabulary of sequent calculi, such as the symbols “,” and “)”, or even
the shape of the rules for operators, might be seen as semantically polluted. Embrac-
ing such a position could exclude a wide variety of calculi from developing structural
proof theory, including Gentzen’s original calculi from the 1930s. With respect to the
relaxed-no answer, we observed that the distinction between explicit and implicit inter-
nalization of semantic elements can be problematic. This is because what it mainly
matters is not the explicitness of the additional elements but rather the way they are
included in the formulation of the calculus. We have observed this by following Read’s
argument and by comparing two simple derivations in which R and “/”, although stated
differently, accomplish the same job. All of these answers share a negative attitude
towards labelled systems, and, as I have argued, do not take into account practical
considerations.
By expanding the scope of our investigation to include the actual uses and applications
of labelled systems, I have identified two other responses to concerns about seman-
tic pollution. The primary distinction here is that instead of relying on theoretical
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principles, these responses are grounded in concrete examples of actual practices. The
proposed systematization is intentionally general because practitioners may have used
various specific approaches while still sharing common practical points. Our obser-
vations suggest that practicing proof theorists tend to have a more positive attitude
towards labelled systems and may adopt either an opportunistic-yes or enthusiastic-
yes stance. However, in both cases, acceptance levels vary and depend mainly on goals
and practical applications. When it comes to opportunistic-yes answers, semantic ele-
ments are not regarded as decisive in rejecting frameworks but rather as useful tools
for gaining further insights into the relationships between frameworks. The example
on p. 11 shows that tree-hypersequents, Poggiolesi’s and Restall’s proposed alternative
framework, are more closely connected to labelled calculi than previously assumed.
In sum, the third response assumes methodological connotations, urging a shift in
attitude towards syntactic purity and semantic pollution by focusing on what can be
gained from labelled calculi. On the other hand, when enthusiastic-yes answers are
given, the importance of labelled deductive systems becomes apparent in terms of their
proof-theoretic power as stand-alone systems and philosophical applicability. In such
instances, our case studies, as well as other articles, indicate that labelled calculi are
endorsed without concerns about impurity. Moreover, some argue, based on inferen-
tialist grounds, that the claim that labelled calculi fail to provide a good framework for
determining the meaning of operators in terms of their use in inferences is misguided.
In the case study that was examined, Read proposed that understanding the value
of labelled deductive systems does not require relying on our “reification attitudes”.32
Indeed, by leaving denotational and existential concerns aside, we can comprehend
the enriched formalism of labelled calculi solely in terms of proof-theoretic concepts.
Relational labels, based on their function in labelled deductions, should be seen as
tools (like instructions) for constructing proofs, as they determine which atoms may
or may not occur, thereby determining the provability of different results in systems
with different relational rules.
Overall, our observations highlight the need to adopt a more practical and nuanced
approach in philosophical reflections on labelled proof systems, based on their actual
contributions to achieving goals and objectives of some proof-theoretic or philosoph-
ical enterprise. We have acknowledged that these systems offer more than what is
prima facie apparent. By examining how working proof theorists have implemented
and utilized labelled calculi, we gained insights into the potential value and usefulness
of these systems, and how they have impacted the development of structural proof the-
ory. Our reflection has focused on the issue of semantic pollution, and we have aimed
at analysing such an issue by trying to bridge the gap between philosophical theorizing
and the actual use of labelled calculi in practice. Indeed, as we have observed above:

“One of the significant benefits of [our] bottom-up method, in comparison to traditional
top-down approaches, is that it offers the opportunity of greater progress on established
questions within the philosophy of logic.” (Martin, 2022, 275)

32See also Dutilh Novaes (2012a, 91-94).
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To broaden the scope of our investigation, it would be important to consider also the
role of logical communities33 and the establishment of research programs in proof
theory.34 The field is characterized by collaborative efforts between researchers that
facilitate the development of more sophisticated and effective proof systems, as well
as the dissemination of research findings and the promotion of a broader or alterna-
tive understanding of proof-theoretic concepts. Efforts to build and support logical
communities, along with practical considerations, can be seen as important steps
towards advancing our philosophical understandings of logical research programs –
their establishment, development and potential relationships. A practical approach
to proof theory, informed by considerations on research programs, and which takes
into account collaborative efforts in logical communities, can pave the way towards
more effective and impactful philosophical insights into what we do when we engage
in logical practices and activities.

Declarations: I declare that I do not have any financial interests or other
competing interests to disclose.
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