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Abstract

In this paper we present an overview, with historical and crit-
ical remarks, of two articles by S. Jaśkowski ([20, 21] 1948 and
[22, 23] 1949), which contain the oldest known formulation of a
paraconsistent logic. Jaśkowski has built the logic – he termed dis-
cussive (D2) – by defining two new connectives and by introducing
a modal translation map from D2 systems into Lewis’ modal logic
S5. Discussive systems, for their formal details and their orig-
inal philosophical justification, have attracted discrete attention
among experts. Indeed, in what follows, after having introduced
Jaśkowski’s methodology of building D2 and his main philosophi-
cal motivations for providing such a system, we will explore some
of the main contributions to the development of D2.

1 The Origins of Discussive Logic

Throughout this paper we will consider the following classical connec-
tives, ∼ (negation), ∧ (conjunction), ∨ (disjunction), ⊃ (material im-
plication), plus the modal operators, ✷ (necessary) and ✸ (possible). All
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additions and changes will be explicitly stated and explained.
Γ, ∆, Σ, . . . and A, B, C, . . . denote sets of formulas and formulas, re-
spectively. p, q, r . . . stand for propositional variables..

1.1 The first discussive system

S. Jaśkowski (1906-1965)1 is the author of several important logical and
mathematical studies. To cite some of them, Jaśkowski is usually ac-
knowledged as one of the inventors of the natural deduction calculus
(accomplishing this work almost at the same time of G. Gentzen) and
as the proponent of the first paraconsistent logic known as «discussive»
(or «discursive») logic2. In [21] (which corresponds to the English trans-
lation of Jaśkowski’s original article [20], published in 1948), the logician
proposed a logic which should capture situations where discussants are
in conflict. Jaśkowski’s main idea was to consider a discussant’s state-
ment, p, as inherently consistent, but potentially incoherent with some
other discussant’s proposition. With this in mind, Jaśkowski focused
his attention on a classically valid law, namely ex contradictione quodli-
bet [sequitur] ((ECQ), «from a contradiction everything [follows]») –
p ⊃ (∼p ⊃ q) – claiming that it should not be generally valid. His strat-
egy, in order to invalidate (ECQ), has been that of getting rid of the
classical connective of material implication, i.e., ⊃, in favour of so-called
«discussive implication», i.e., →d. Lewis’ modal logic S5 has played a
fundamental role in the formulation of such discussive systems, so, let’s
recall the definition of S5:

Definition 1.1. S5 is axiomatized is follows:

If A is a theorem of PC, then A is a theorem of S5.

✷(A ⊃ B) ⊃ (✷A ⊃ ✷B) (K)

✷A ⊃ A (T)

✸A ⊃ ✷✸A (5)

and the following rules:
1For biographical informations one can consider [27, 16, 19]. For synthetic intro-

ductions to Jaśkowski’s discussive logic, see, for example, [40, 42].
2Jaśkowski denoted this logic by D2, where the label ‘2’ indicates that we are

dealing with the ‘two-valued discussive sentential calculus’.
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A A ⊃ B
MP

B

A
Nec

✷A

Finally, we say that a modal logic L is of S5-type iff L ⊆ S53.

Thanks to Lewis’ modal system, Jaśkowski established the definition
of discussive implication in the following way: p →d q

def
= ✸p ⊃ q,

validating thus the discussive version of modus ponens:

A A →d B
MPd

B

Additionally, we can get also the definition of «discussive bi-implication»,
p ↔d q

def
= (✸p ⊃ q) ∧ (✸q ⊃ ✸p). Notice that, so defined, both, →d

and ↔d, are asymmetric connectives. One might wonder what the ✸

operator is meant to represent in a discussive framework. According to
Jaśkowski’s own perspective:

To bring out the nature of the theses of such a system it
would be proper to precede each thesis by the reservation:
“in accordance with the opinion of one of the participants
in the discussion” or “for a certain admissible meaning of
the terms used”. Hence the joining of a thesis to a discussive
system has a different intuitive meaning than has assertion in
an ordinary system. Discussive assertion includes an implicit
reservation of the kind specified above, which [...] has its
equivalent in ✸ [21, 43].

In a latest note, [23] (the English translation of the 1949 paper [22]),
Jaśkowski proposed to substitute from the set of connectives also clas-
sical conjunction in favour of “discussive conjunction” and chose the
following definition: p ∧d q

def
= p ∧ ✸q. With this additional connective,

then Jaśkowski defined again discussive bi-implication in the following
manner: p ↔d q

def
= (p →d q)∧d (q →d p). So, in sum, to prove discussive

formulas, i.e., formulas including discussive connectives, Jaśkowski sug-
gested to transform such formulas accordingly to their modal definitions
and to prove the resulting modal formula in S5. In more rigorous terms:

3As known, S5 has several equivalent axiomatization; for instance, one can employ
(4) (✷A ⊃ ✷✷A) and (B) (A ⊃ ✷✸A) instead of axiom (5).
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Definition 1.2. D2 is the system whose language L includes the fol-
lowing set of connectives S = {∼, ∨, ∧d, →d, ↔d}. Take a function
τ : FormD2

7→ FormS5 such that, for any A, B ∈ FormD2
:

τ(p) = p

τ(∼A) = ∼τ(A)

τ(A ∨ B) = τ(A) ∨ τ(B)

τ(A ∧d B) = τ(A) ∧ ✸τ(B)

τ(A →d B) = ✸τ(A) ⊃ τ(B)

τ(A ↔d B) = (✸τ(A) ⊃ τ(B)) ∧ ✸(✸τ(B) ⊃ τ(A))

Let ✸Γ
def
= {✸τ(A1), . . . ,✸τ(An) | A1, . . . , An ∈ Γ}, then for all Γ ⊆

FormD2
and B ∈ FormD2

, we set:

Γ |=D2
B iff ✸Γ |=S5 ✸τ(B).

In other words, a formula B is said to be a discussive consequence of
a set of premises {A1, . . . , An} just in case ✸τ(B) follows from the set
{✸τ(A1), . . . ,✸τ(An)} in S5. Following Jaśkowski:

[...] if a thesis A is recorded in a discussive system, its intu-
itive sense ought to be interpreted so as if it were preceded
by the symbol ✸, that is, the sense: “it is possible that A”.
This is how an impartial arbiter might understand the theses
of the various participants in the discussion [21, 43].

The motivation behind this quote and Definition 1.2 can be intuitively
explained with the following example. If we take formulas including
→d and replace it simply accordingly to τ we will obtain a great num-
ber of S5 invalid formulas. In this case, even the identity, A →d A, if
transformed in ✸A ⊃ A, turns out to be S5-invalid. However, many of
this negative results can be avoided, if we prefix ✸ to every modally
translated formula. For example, A →d A, if translated as follows
✸(✸A ⊃ A), turns out to be S5-valid.

Observation 1. To see the paraconsistent character of D2 consider that
already in [21], the discussive version of (ECQ), A →d (∼A →d B), was
not included as a theorem of D2. To see this, consider always the modal
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translation of (ECQ), i.e., ✸(✸A ⊃ (✸∼A ⊃ B)), which is not valid in
S5. Consequently to the rejection of (ECQ), the existence of contradic-
tory statements, ✸A and ✸∼A, is possible without that their presence
entails the ‘overfilling’ (triviality) of the system. However, the logic is
not paraconsistent with respect to conjuncted contradictions, indeed,
✸(✸(A ∧ ∼A) ⊃ B) is still a theorem of S5 . Moreover, notice that in
this framework ∧ adjunction fails (i.e., A ∧ B cannot be inferred from A
and B) and, for this specific reason, the {∼, ∨, ∧, →d}-fragment of D2

is usually classified among the non-adjunctive approaches to paraconsis-
tent logics:

[...] discussive logic represents an ideology that is, to my
mind, the most appropriate one for paraconsistency. To put
it informally: at the very core of paraconsistency lies not
negation, but conjunction. [...] With respect to inconsis-
tency tolerating calculi, this connective seems to be the most
important one [45, 487].

Nonetheless, in [23], thanks to the presence of discussive conjunction, ad-
junction can be successfully restated in the system. The discussive ver-
sion of the law of non contradiction (LNC), ∼(A∧d ∼A), remains a valid
law. To see this consider always the S5 invalid formula ✸(A ∧ ✸∼A).
Finally, the discussive version of conjunctive (ECQ), (A ∧d ∼A) →d B,
is no longer valid, making, thus, D2 paraconsistent also with respect to
conjuncted contradictions.

Observation 2. Jaśkowski’s definition of ∧d and →d are not the only
ones available and, indeed, experts considered different variants, such
as:

A ∧l
d B

def
= ✸A ∧ B

A ∧s
d B

def
= ✸A ∧ ✸B

A →s
d B

def
= ✸A ⊃ ✸B

As one can easily see, the introduction of these new connectives tries to
recover the asymmetry present in Jasśkowski’s original proposal. Any-
way, notice that the formulas ✸(A ∧✸B), ✸(✸A ∧ B) and ✸(✸A ∧✸B)
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are all equivalent in S5, while ✸(✸A ⊃ B) and ✸(✸A ⊃ ✸B) are al-
ready equivalent in S4 (a subset of S5). Moreover, as known since [21],
D2 is a paraconsistent extension of the {∨, ∧, ⊃}-fragment of classical
logic. In other words, the discussive operators in D2 behave just like
their classical counterparts. Interestingly, however, if we consider also
an enriched language which includes a negation connective, the discus-
sive logics generated by these new operators will no longer coincide with
the {∼, ∨, ∧, ⊃}-fragment of classical logic.

It is not true thus that different translation clauses ‘would
have just the same consequences’ [...]. Different choices of
discussive conjunction and discussive implication would in
fact define logics distinct from D2 [28, 215].

This is a struggling point. Indeed, as we will see in section 2.3, some
notable problems arise in the formulation and comparison of axiomatic
systems including different discussive connectives and negation.

1.2 Jaśkowski’s Philosophical Motivations

In his celebrated Metaphysics, Aristotle claimed that «the most indis-
putable of all beliefs is that contradictory statements are not at the
same time true» ([3, Γ, 1011b13–14]), establishing, thus, – in a crystal
clear way for the first time in the history of philosophy – one of the
most celebrated and debated logical, psychological and ontological laws,
i.e., the so-called law of non-contradiction (LNC). Roughly, Aristotle
was convinced that the principle for which two opposite propositions,
usually, one the negation of the other, cannot both be true at the same
time had a very special status. Indeed, (LNC) corresponds, according to
the Greek philosopher, to the most certain principle, which has a triple
valence: it is a law of human rationality and reasoning (logic), it is a law
governing reality (ontology) and, finally, it is a law concerning human
beliefs (psychology). The discussions continued and, finally, during the
middle ages, the debates on contradictions reached another fundamen-
tal turning point. An unknown author, usually acknowledged under the
pseudonymous of Pseudo-Scotus, defined for the first time the principle
of ex contradictione quodlibet [sequitur] in a commentary to Aristotle’s
Analytica Priora [43]. Importantly, William of Soissons, during the XII
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century, proposed the first known proof of the aforementioned princi-
ple and it is documented that already during the XIV century logicians
knew about its existence and accepted (ECQ) as true4. However, the
birth and the growing interest towards formal logical systems, strictly
matched to philosophical considerations and objectives, has led some
philosophers and logicians to re-consider also the validity and the truth
of (LNC) and (ECQ). Jaśkowski has been among them. Indeed, in the
first paragraphs of his celebrated 1949 article he develops a brief survey
concerning the most important philosophical positions which, according
to his reading, have provided some motivations to accept the presence
of contradictory sentences (especially, Hegel and Marx)5. For instance,
with respect to empirical sciences, Jaśkowski wrote:

[...] it is known that the evolution of the empirical disciplines
is marked by periods in which the theorists are unable to ex-
plain the results of experiments by a homogenous and con-
sistent theory, but use different hypotheses, which are not
always consistent with one another, to explain the various
groups of phenomena. This applies, for instance, to physics
in its present-day stage. Some hypotheses are even termed
working hypotheses when they result in certain correct pre-
dictions, but have no chance to be accepted for good, since
they fail in some other cases [21, 37].

The theoretical solution, according to Jaśkowski, is the following:

we have to take into account the fact that in some cases we
have to do with a system of hypotheses which, if subjected
to a too consistent analysis, would result in a contradiction
between themselves or with a certain accepted law, but which
we use in a way that is restricted so as not to yield a self
evident falsehood [21, 37].

Indeed, in the paragraphs were he begins to elaborate more formally his
ideas, Jaśkowski distinguishes very strictly between «inconsistent» and

4Importantly, the works by William of Soissons have not been preserved, however
a witness of his work is contained in John of Salisbury’s Metalogicon.

5For more philosophical details on the consequences of adopting a paraconsistent
point of view, one might consider [41].
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«trivial» system. The first notion is linked to the presence, within the
logical system under consideration, of two theses, one the negation of the
other (p and ∼p); the second concept, instead, asserts that in a system
it is possible to derive any formula if there is a couple of contradictory
statements. So, as obvious, systems in which every proposition is deriv-
able have no practical significance, since everything can be asserted. So,
finally:

[...] the task is to find a system of the sentential calculus
which: (1) when applied to the inconsistent systems would
not always entail their overfilling, (2) would be rich enough
to enable practical inference, (3) would have an intuitive jus-
tification [21, 38].

Jaśkowski did not further elaborate his philosophical considerations,
but, nowadays, scholars provided – by taking inspiration directly from
Jaśkowski’s brief suggestions – some interesting philosophical applica-
tions of D2 (for example, to the foundations of physical theories, to the
notion of pragmatic (or partial) truth [10, 14], to the formal study of
belief structures and argumentation schemes [17]).

2 The Development of Discussive Logic

Discussive systems have attracted discrete attention and various experts
contributed to their development6. Our aim, in what follows, is to sys-
tematize and explain some of the main works concerning Jaśkowski’s
discussive logic. To keep the presentation as much as possible self-
contained, we will restrict our attention to three distinct, even if con-
nected, paths. More precisely, we will focus our attention on:

§2.1 the connections between discussive logic and modal systems;
§2.2 a family of logics, called “J” systems;
§2.3 the “direct” axiomatizations of D2, i.e., those systems which in-

clude axioms for discussive connectives.
6At the best of our knowledge, one previous attempt in that direction was made

by Ciuciura in [4] from 1999. Nonetheless, in what follows, we wish to consider also
alternative approaches towards discussive systems and enrich our considerations by
commenting more recent works.
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2.1 Connections to Modal Logics

2.1.1 Early developments

The tradition of modal studies connected to D2 started already in 1968
thanks to a paper by N. da Costa [11] and continued uninterrupted
throughout the years. Roughly said:

Besides non-adjunctiveness, another common obsession of
discussivists concerns the alleged ‘modal character’ of D2

[28, 217].

Early remarkable results have been provided by J. Kotas in [24] from
1974. First of all, let’s fix the next definition:

Definition 2.1. Let ♥ ∈ {✷,✸}. A ♥-counterpart of a modal system
M is defined as follows: ♥n(M) = {A | ♥nA ∈ M}, for n ≥ 1.

With respect to Jaśkowski’s D2, Kotas elaborated an axiomatization
having as primitive connectives only ∼, ⊃, ✷. We will denote this
system DK

2 , where ‘K ’ stands for Kotas. The axioms of DK
2 are:

✷(A ⊃ (∼A ⊃ B)) (K1)

✷((A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))) (K2)

✷((∼A ⊃ A) ⊃ A) (K3)

✷(✷(A ⊃ B) ⊃ (✷A ⊃ ✷B)) (K4)

✷(✷A ⊃ A) (K5)

✷(∼✷A ⊃ ✷∼✷A) (K6)

Substitution (Sub)

✷A ✷(A ⊃ B)
✷MP

✷B

✷A
R4

✷✷A

✷A
Den

A

∼✷∼A
Dep✷

A

As usual, if we want to add the possibility operator, we can define it:
✸A

def
= ∼✷∼A. Notice that by having ✸ as a defined connective, Dep✷

may be substituted by:

✸A
Dep

A
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An important achievement of [24] is the presentation of the following
equivalences between S5-type systems and various combinations of ax-
ioms and rules of DK

2 :

K1-K6 (Sub) (✷MP) (R4) (Den) (Dep✷)/(Dep) Equivalent System

✓ ✓ ✓ ✓ - - ✷S5

✓ ✓ ✓ ✓ ✓ - S5

✓ ✓ ✓ ✓ ✓ ✓ ✸S5

Notice that, according to the table above, Kotas proved that DK
2 is

equivalent to ✸S5. This result allowed him, finally, to prove that DK
2

is finitely axiomatizable. To obtain his results, Kotas relied on two
different Jaśkowski- style translation functions. Take τ of Definition 1.2
and substitute the clauses for ∧d and →d with the following ones:

τ∗(A ∧d B) = ∼(∼τ∗(A) ∨ ✷∼τ∗(B))

τ∗(A →d B) = (∼✷∼τ∗(A) ⊃ τ∗(B)

In addition, consider a map τ1 such that Form✸S5 7→ FormDK

2

. For any
A, B ∈ ✸S5:

τ1(p) = p

τ1(∼A) = ∼τ1(A)

τ1(A ⊃ B) = ∼τ1(A) ∨ τ1(B)

τ1(✷A) = ∼((∼p ∨ p) ∧d τ1(A))

First of all, the equivalence between DK
2 and ✸S5 follows also thanks to

the introduction of two additional connectives [24, 197], [46, 37], namely:

A J B
def
= ✷(A ⊃ B) (J)

A ⇀ B
def
= ∼((∼p ∨ p) ∧d ∼(∼A ∨ B)) (⇀)

In particular, Kotas showed that the interpretation τ turns the implica-
tion ⇀ in the strict implication J, and the interpretation τ1 turns the
implication J in ⇀. Collecting all this together, Kotas proved that:

1. The translations maps τ and τ1 establish that DK
2 and ✸S5 are

equivalent. In other words, if |=DK

2

A then |=✸S5 τ(A) and if
|=✸S5 B then |=DK

2

τ1(B), [24, 198-199].
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2. DK
2 is a finitely axiomatizable system [24, 199].

Along these lines of studies, the polish logician T. Furmanowski [18]
published a paper concerning the smallest modal system whose ✸- coun-
terpart coincides with discussive logic. So, by starting from Kotas’ ax-
iomatization K1-K5, Furmanowski defined ✸S4, i.e., the ✸- counterpart
of S4. As usual, by adding axiom K6 to the axiomatization, we get ✸S5.
In particular, in [18], what’s interesting, with respect to these systems, is
the equality between ✸S4 and ✸S5. This result is obtained by showing
that both inclusions, (i) ✸S4 ⊇ ✸S5 and (ii) ✸S5 ⊇ ✸S4, are satis-
fied. The latter inclusion is trivial since it is well-known that S5 ⊇ S4.
For (i), instead, we need to show that the axioms K1-K5 and the rules
of inferences of [24] constitute a complete axiomatization of ✸S4 ([18,
39]) and, secondly, to prove that the characteristic axiom of ✸S5 K6 is
also a formula of ✸S4 ([18, 41]). This equality states that, for any A,
|=✸S4 A just in case |=✸S5 A. So, roughly, the quality of modality in
✸S4 is the same as in ✸S5. From this result and the axiomatizations of
✸S4 and ✸S5, Furmanowski proved that, for any system S such that,
S4 ⊆ S ⊆ S5: |=S ✸A if and only if |=✸S5 ✸A. At this point, with
this background, Furmanowski defined Jaśkowski’s discussive logic by
starting from such a system S:

Definition 2.2. Let D(S) be a discussive system as based on a modal
system S, such that S4 ⊆ S ⊆ S5:

D(S) = {A ∈ FormD(S) | ✸τ(A) ∈ S}

Take Jaśkowski’s translation map τ . Then: |=D(S) A iff |=S ✸τ(A).

Notice that, if S = S5, then D(S5) = D2. From this fact, and by
the previous result for which, for any system S4 ⊆ S ⊆ S5, it holds that
|=S ✸A if and only if |=✸S5 ✸A, we may conclude that, for any such
modal system S: D(S) = D2.

2.1.2 Recent developments

The tradition of modal studies connected to Jaśkowski’s logic continued
and largely increased. Recently, the gigantic work of M. Nasieniewski
and A. Pietruszczak in [35, 36, 37] contributed to the development of
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the weakest regular modal logic7 (denoted by rS5M) that defines D2.
In [35], the authors analyse S5M, i.e., a normal modal logic presented
previously by J. Perzanowski. Let L be any modal logic such that L

defines D2 iff D2 = {A ∈ FormD2
| ✸τ(A) ∈ L}. We denote with ✸NS5

the set of all normal logics from ✸S5. By having this in mind and by
following the authors of [35], let’s introduce the system S5M with the
following axioms:8

✷p ⊃ ✸p (D)

✸✷(✸✷p ⊃ ✷p) (ML5)

✸✷(✷p ⊃ p) (MLT)

and the rule:

✸✸A
RM2

1

✸A

A preliminary result is that S5M is the smallest logic in ✸NS5 [35, 199]
but, also, that S5M is the smallest normal logic defining D2.
Starting from S5M, the authors consider rS5M, which is the smallest
regular logic which contains (MLT) and (RM2

1). As expected, rS5M ∈
✸RS5 and, moreover, it constitutes the smallest logic belonging to
✸RS5. With respect to discussive logic, Nasieniewski and Pietruszczak
aimed at showing that rS5M is the smallest regular (non-normal) modal
logic defining Jaśkowski’s D2. To do this, the author of [36] consider
again the function τ of Definition 1.2 together with the following map,
labelled τ2. Let τ2 be a map such that FormrS5M 7→ FormD2

. For any
formula A, B ∈ rS5M:

τ2(p) = p

τ2(∼A) = ∼τ2(A)

τ2(A ∨ B) = τ2(A) ∨ τ2(B)

7As usual, we define a regular modal logic L as a set of modal formulas satisfying
the following conditions: (i) PC ⊆ L, (ii) ✸p ↔ ∼✷∼p ∈ L and (iii) L is closed under
modus pones for ⊃, under the regularity rule (A ∧ B) ⊃ C/(✷A ∧ ✷B) ⊃ ✷C, and
under uniform substitution A/A′, where A′ is the result of uniform substitution of
propositional variables in A. Moreover, L is said to be normal if K ∈ L and Nec ∈ L.

8Notice that in all normal and regular modal logics axiom (D) can be equivalently
formulated as ✸(p ⊃ p).
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τ2(A ∧ B) = ∼(∼τ2(A) ∨ ∼τ2(B))

τ2(A ⊃ B) = ∼τ2(A) ∨ ∼τ2(B)

τ2(A ↔ B) = ∼(∼(∼τ2(A) ∨ τ2(B)) ∨ ∼(∼τ2(B) ∨ τ2(A)))

τ2(✸A) = (p ∨ ∼p) ∧d τ2(A)

τ2(✷A) = ∼τ2(A) →d ∼(p ∨ ∼p)

With this in mind, we are able to introduce D2 as follows:

Definition 2.3. Let L be any modal logic such that:

D(L)
def
= {A ∈ FormD2

| ✸τ(A) ∈ L}

Then: L defines D2 iff D(L) = D2.

So, for any modal logic L such that, if L ∈ ✸S5 then L defines D2.
Additionally, rS5M ∈ ✸RS5 and S5M ∈ ✸NS5. For ✸RS5 and ✸NS5

being subsets of ✸S5, we get that rS5M ∈ ✸S5 and S5M ∈ ✸S5. So,
rS5M and S5M both define D2 and, hence, D2 = D(rS5M) = D(S5M).
In other words, rS5M is the regular version of the smallest normal modal
logic S5M such that (i) rS5M ⊊ S5M and (ii) every theorem beginning
with ✸ of rS5M is also a theorem of S5M [35, 204]. So, finally, collecting
together all these results, we get the main desiderata of [35]: rS5M is
the smallest regular non-normal modal logic defining D2.
Additionally, in [36], the authors showed that rS5M can be axiomatized
without the rule of inference (RM2

1) and that it is the smallest regular
logic which contains the following theorems:

✷p ⊃ ✸✷✷p (4s)

✷p ⊃ ✸✷p (5c)

In other terms, rS5M = C4s5c. Moreover, (i) if rS5M contains (4s)
and (MLT), we get that rS5M = C4s(MLT). Finally, (ii) rS5M =
C5c(RM2

1) iff it contains (5c) and is closed under the rule (RM2
1) [36,

49].
In [37], Nasieniewski and Pietruszczak gave a Kripke semantics for the
smallest regular modal logic rS5M(= C4s5c). The paper contains spe-
cific frame conditions for rS5M and completeness results. Let’s begin
with the next definition:
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Definition 2.4. A frame for regular modal logic rS5M(= C4s5c) is a
triple FrS5M = 〈W, R, N〉, where W is the set of worlds, N ⊆ W con-
sists of regular worlds and R is the accessibility relation9. Furthermore,
FrS5M = 〈W, R, N〉 satisfies the following conditions:

∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W (uRx ⇒ wRx)) (Fr1)

∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W (∃y ∈ N(uRy ∧ yRx) ⇒ wRx))
(Fr2)

(5c) is valid in frames satisfying (Fr1) [37, 177] and (4s) is valid if
the frame satisfies (Fr2) [37, 178]. Notice that both frame conditions
constitute strengthening of seriality [37, 179]. Finally, as usual:

Definition 2.5. A model MrS5M = 〈W, R, N, v〉 for rS5M(= C4s5c) is
based on a frame FrS5M and on a valuation v : FormrS5M × W → {0, 1}
such that for any A ∈ FormrS5M and w ∈ W :

v(✷A) = 1 iff w ∈ N and ∀x ∈ R(w), v(A, x) = 1

v(✸A) = 0 iff w /∈ N or ∃x ∈ R(w), v(A, x) = 1

where R(w)
def
= {x ∈ W | wRx}.

A formula A is true in a model MrS5M iff v(A, w = 1) for any w ∈ W .
A formula A is valid in a given frame FrS5M iff it is true in all models
MrS5M based on the aforementioned frame.

In sum, the authors of [35, 36, 37] provided both an axiomatic system
and a possible worlds semantics for the regular version of S5 and, con-
sequently, defined discussive logic on that formal basis10. From the per-
spective of Jaśkowski’s D2, the work of Nasieniewski and Pietruszczak
is interesting since it shows, not only that there other normal modal
logics different from S5 defining discussive logic, but that there are also
non-normal regular versions of S5 which define D2.

9If we let W = N , then we get the pair 〈W, R〉, which corresponds to a frame for
normal modal logics.

10Notice, finally, that we have restricted our attention just to some of the papers
that Nasieniewski, Pietruszczak and collaborators devoted to D2. For more on their
work see our conclusive remarks.
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2.2 The ‘J’ Systems

Remarkably,

[t]he year 1967 was a turning point in the development of the
discussive logic. Newton C.A. da Costa and Lech Dubikajtis
met in Paris and gradually commenced the development of
the logic [4, 10].

Indeed, as said above, in a paper from 1968 [11], da Costa and Dubika-
jtis presented the first modal-type axiomatization of D2. The S5-type
system they proposed, known as J, has become famous in the context of
discussive systems. As remarked by the authors, J has several axiom-
atizations11 and, in what follows, we will refer to the axiomatic system
presented in [10] from 1995. Interestingly, J, and in particular some of
its extensions, have been applied to philosophical problems, such as to
the debate on the underlying logic of scientific theories. However, before
turning to the philosophical applications of J and related systems, let’s
introduce them. J is the system composed by the following axioms and
rules [10, 45]:

If A is a theorem of S5, then ✷A is a theorem of J.

✷A ✷(A ⊃ B)
✷MP

✷B

✷A
Den

A

✸A
Dep

A

✷A
R4

✷✷A

J has been introduced in the literature as another ✸-counterpart of S5

and, indeed, |=J A iff |=S5 ✸A. Starting from J, da Costa and Doria
presented a first-order variant of it, denoted J∗, by adding the universal
quantifier ∀ among the connectives. As usual, the existential quantifier
can be defined ∃xA

def
= ∼∀x∼A. Before, defining J∗, it is useful to recall

the axiomatic system for S5Q= (quantified S5 with identity):

If A is a theorem of PC, then A is an theorem of S5Q=.

All axioms of S5 (Definition 1.1), plus :

x = x (Id1)

11For other synthetic reconstructions one can also consider [4, 46].
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x = y ⊃ (A(x) ↔ B(x)) (Id2)

∀xA(x) ⊃ A(t), (∀1)

where t is either a variable free for x in A(x) or an individual constant.
And the following rule:

A ⊃ B(x)
R∀

A ⊃ ∀xB(x)

Now, the language of J∗ coincides the language of S5Q= and, indeed,
J∗ is introduced as follows:

If A is an theorem of S5Q=, then ✷A is a theorem of J∗

The axioms and rules of J, plus:

✷(A ⊃ B(x))
R✷∀

✷(A ⊃ ∀xB(x))

where, in the rule (R✷∀), x is not free in A.
Notice that, differently from Jaśkowski’s papers, da Costa and Doria
considered left-discussive conjunction. Roughly, by adding both, ∧l

d
and

→d, to J and J∗, the paraconsistent character of such systems. Indeed,
the following formulas, governing the ‘explosion’ of logical systems, are
not valid neither in J nor in J∗. Let ∧ be classical conjunction:

A →d (B →d A ∧ B)

((A ∧ B) →d C) →d (A →d (B →d C))

A →d (∼A →d B)

(A →d ∼A) →d B

Furthermore, let Γ
def
= {A | Γ ⊢J∗ A}. As usual, if Γ is the set of all

formulas, then Γ is trivial. If not, Γ is non-trivial; if we have a formula
A such that both Γ ⊢J∗ A and Γ ⊢J∗ ∼A, then Γ is inconsistent. If
not, Γ is consistent. With respect to these definitions, the two authors
– who where interested in modelling situations in which scientists may
reason through inconsistent sets of sentences, considered as “working
hypothesis” [10, 46] – showed that their J-systems allow to deal with
inconsistent and non-trivial sets of premises. In other words, da Costa
and Doria proved that J and J∗ are paraconsistent logics.
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2.2.1 D2, J∗ & the foundations of physics

Recall that Jaśkowski believed that “the evolution of the empirical dis-
ciplines is marked by periods in which [...] the results of experiments
[...] are not always consistent with one another” [21]. Accordingly, the
inconsistent results are to be considered as ‘working hypothesis’, i.e., as
sentences that are taken as if they were true to inspect their respective
consequences and establish which one describes more accurately scien-
tific phenomena. da Costa and Doria tried to make sense of Jaśkowski’s
idea by elaborating a variant of J∗ which can be used as underlying
logic for physical theories. The starting point has been represented by
the (formal) conceptions of physical structure and theory, due to M.L.
Dalla Chiara and G. Toraldo di Francia (see [15, 10, 14]). First of all, a
‘physical structure’ A is a set-theoretic structure of the following form:

A = 〈M, S, < Q0, Q1, . . . , Qn >, ρ〉

where, M represents a set of mathematical structures. Notice, the au-
thors of [15] aimed at modelling physical concepts, such as vector spaces,
as set-theoretic structures, by taking the axioms of ZF set theory. Sec-
ondly, S is a set of «physical situations», i.e., a set of physical states
assumed by a physical system in a certain time interval. In other words,
S is the element of the physical structure that ‘mirrors’ the physical
theory that A is trying to capture. Each Qk (0 ≤ k ≤ n) is an «oper-
ationally defined quantity» whose domain of definition is some S1 ⊆ S.
As a convention, let Q0 denote time. To be clear, if we wish to measure
a quantity Qk of a physical system in a state s ∈ S at a time tk, with
1 ≤ k ≤ n, we get an interval I(k, tk) of the real number line R. So, if we
measure time, i.e., Q0, the result we obtain is a «time interval». t and tk

represent time instants and we express, in L , the «acceptable values» of
Qk at ti as qk(ti). So, in a certain sense, all values in a interval I(k, tk)
are «appropriate values» for the measurement of the quantity Qk of the
physical system in a state s ∈ S. Finally, ρ associates mathematical
structures of M to their physically meaningful quantity.
To see how this framework is supposed to work, as usual, let A(t, qk(tk))
be a formula whose only free variables are those one expressing time
instants, (t and tk). Formally, |=s A(t, qk(tk)) means that a formula A,
in a certain interval of time, is true for a physical state s if there are
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values t0 and q0
k

(of Qk) in the interval I(t, tk), with 1 ≤ k ≤ n, such
that A(t0, q0

k
) is true in s. Now, let |=A A(t, qk(tk)) denote that A is

true in the physical structure A. If we obtain t in It and qk in I(t, tk), so
that ∼A(t, qk(tk)) is also true in A, then the physical theory captured
by A is paraconsistent. In other words, as one might have expected,
with respect to A, we get a paraconsistent physical theory whenever
|=A A(t, qk(tk)) and |=A ∼A(t, qk(tk)).12. At this point, da Costa and
Doria aimed at demonstrating that:

[...] the underlying logic of a physical theory in Dalla Chiara
and di Francia approach is most adequately represented by
Jaśkowski’s discussive logic [10, 57].

and, more precisely, by J∗∗. This system is similar to J∗, but imposes
some more restrictions on bound variables [10, 14]. Take again S5Q=

and let ⊎A
def
= ∀xn A(xn) be denoting a formula A preceded by a se-

quences of universal quantifiers so that all variables in A are bound. J∗∗

is constituted by the following axioms and rules:

If A is an instance of a theorem of S5Q=, then ✷ ⊎ A is a theorem of J∗.

✷ ⊎ (✷(A ⊃ B) ⊃ (✷A ⊃ ✷B)) (J∗∗
1 )

✷ ⊎ (✷A ⊃ A) (J∗∗
2 )

✷ ⊎ (✸A ⊃ ✷✸A) (J∗∗
3 )

✷ ⊎ (∀xA(x) ⊃ A(t)) (J∗∗
4 )

✷ ⊎ (x = x) (J∗∗
5 )

12To be clear, consider the following example due to [14, 849-850]. Take Newton’s
second law: F = m · a. The variables appearing in the equation corresponds to
the physical quantities to be measured: «force» (F ), «mass» (m) and «acceleration»
(a). If we take a state s ∈ S, their values stand in the following three intervals
I(F1, F2) ⊆ R, I(m1, m2) ⊆ R and I(a1, a2) ⊆ R. When we are able to find three real
numbers p1 ∈ I(F1, F2), q1 ∈ I(m1, m2) and r1 ∈ I(a1, a2), such that p1 = q1 · r1,
then it holds that |=s F = m · a. Likewise, if we encounter the opposite situation,
namely we find three real numbers, in their respective intervals, such that p2 6= q2 ·r2,
also these three real numbers can be considered as acceptable values for solving the
equation. So, |=s ∼(F = m · a) and, hence, Newton’s second law, in the very same
physical situation s, is both, true and false. In this case, for the same situation s,
Newton’s law is a proposition C, such that |=s C and |=s ∼C. However, |=s C ∧ ∼C
does not hold, since it would mean to find three real numbers p, q, r, in their respective
intervals, for which the conjunction p = q · r ∧ p 6= q · r holds.
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✷ ⊎ (x = y ⊃ (A(x) ↔ A(y))) (J∗∗
6 )

✷ ⊎ A ✷ ⊎ (A ⊃ B)
⊎✷MP

✷ ⊎ B

✷ ⊎ A
⊎Den

A

✷ ⊎ A
⊎R4

✷ ⊎ ✷A

✸ ⊎ A
⊎Dep

A

✷ ⊎ (A ⊃ B(x))
R⊎✷∀

✷ ⊎ (A ⊃ ∀xB(x))

So: |=J∗∗ A iff |=S5Q= ✸⊎ A. Notice that vacuous quantification can be
introduced/eliminated in any formula.
The only difference between J∗∗ and J∗ concerns the applications: the
first one is more suitable than the second one to handle with, since
there’s no problem on the discussive interpretation of the free variables.
Accordingly, a physical theory, denoted, T , extends the notion of phys-
ical structure and, in sum, it is composed by the following elements:

1. A formal language L .
2. A set of axioms A expressed in L such that A = AL ∪ AM ∪

AP , where AL, AM and AP are, respectively, the set of logical,
mathematical and physical axioms.

3. A language L0 ⊂ L . The logic L0, used to deal with the math-
ematical structures of T , is classical and, hence, AM includes all
classically valid formulas.

4. The axioms of J∗∗ are included in AL to deal with inconsistent
sets of premises.

5. AM must contain all axioms for the structures of M .
6. AP contains all “physically motivated sentences”.

So, finally, for A being a theorem of T , then it holds that: if A is
formulated in L0, then A is closed under classical consequence rela-
tion. Furthermore, from the perspective of inconsistent theories: for all
A ∈ T , A is closed under J∗∗-consequence relation.
Notice that terms of L0 cannot refer to the quantities Qk, but exclu-
sively to mathematical structures of M , which are totally classical. More
precisely, exactly the quantities Qk induce the language to be paracon-
sistent. Indeed, if we are given a formula B such that its terms refer to
some of the Qk, generally, it can result that both, B and ∼B are true
in T . Consequently, both sentences should be included in AP . Here’s
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exactly the paraconsistent character of the definition of truth, i.e., in
a physical theory T , for some state s ∈ S and a formula B, we can
reach both, |=s B and |=s ∼B. As said above, the acceptance of pairs of
contradictory statements, such as B and ∼B, is meant to mirror those
situations in which two inconsistent sentences are taken to be true with
the aim to inspect their respective consequences and chose which one
provides a more accurate description of the scientific phenomena under
consideration. Of course, this does not mean that: |=s B ∧ ∼B.

2.3 Introducing Discussive Connectives

In the previous discussion we have left apart the centrality of discus-
sive connectives in formulating Jaśkowski’s discussive logic in favour of
an analysis principally focused on the development of the connections
between D2 and modal systems. In what follows, we reverse the per-
spective by analysing some of the major attempts to give axioms to
Jaśkowski’s D2, without relying on translations and by considering di-
rectly a language including ∧d, →d instead of ∧, ⊃. The challenge of
providing such an axiomatization, usually known as ‘Jaśkowski’s prob-
lem’ [46, 42], has been stated by N. da Costa already in 1975 [9, 14]:

Is it possible to formulate a natural and simple axiomatiza-
tion for D2 employing →d, ∧d, ∨ and ∼ as the only primitive
connectives?

According to [25], the first non modal axiomatization of D2 has been
proposed by Furmanowski but has never been published before Kotas’
paper from 1975 [46]. It is worth having a look at Furmanowski’s work
not only for its historical importance, but also for the originality of the
proposed axioms. Let A, B, C, . . . be formulas and let ⊥

def
= ∼(A ∨ ∼A).

The discussive logic DF
2 is axiomatized by the following axioms:

∼(A ⊃ (∼A ⊃ B)) →d ⊥ (F1)

(A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) →d ⊥ (F2)

∼((∼A ⊃ B) ⊃ A) →d ⊥ (F3)

∼((∼A ⊃ B) ⊃ A) →d B (F4)

∼((∼(A ⊃ B) →d ⊥) →d ((∼A →d ⊥) ⊃ (∼B →d ⊥))) →d ⊥ (F5)
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∼(∼∼(∼A ⊃ ⊥) ∨ ∼∼(∼A →d ⊥)) →d ⊥ (F6)

(∼(A ⊃ B) →d C) →d ((∼A →d C) →d (∼B →d C)) (F7)

(∼A →d ⊥) →d A (F8)

(A →d B) →d (∼(A →d B) →d B) (F9)

∼(∼∼A →d B) →d A (F10)

Notice that, DF
2 is still ‘impure’ in the sense that, even though, Fur-

manowski did not include the modal operators, he still kept the presence
of two conditionals, including the material one. So, strictly speaking,
accordingly to [9], DF

2 cannot be regarded as a solution to ‘Jaśkowski’s
problem’. In 1977 [12, 13] da Costa and Dubikajtis presented the first
complete axiomatization of discussive logic including directly discussive
connectives in the axiom schemata. In particular, da Costa and Dubika-
jtis [12] presented some axioms including →d and ∧l

d
. From now on, we

will denote the discussive logic so formalized by Dl
2, where ‘l’ indicates

the presence of ∧l
d
, instead of Jaśkowski’s ∧d. So, the discussive logic

Dl
2 is axiomatized as follows

A →d (B →d A) (Ax1)

(A →d (B →d C)) →d ((A →d B) →d (A →d C)) (Ax2)

(A ∧l
d B) →d A (Ax3)

(A ∧l
d B) →d B (Ax4)

A →d (B →d (A ∧l
d B)) (Ax5)

A →d (A ∨ B) (Ax6)

B →d (A ∨ B) (Ax7)

(A →d C) →d ((B →d C) →d (A ∨ B) →d C) (Ax8)

A →d ∼∼A (Ax9)

∼∼A →d A (Ax10)

((A →d B) →d A) →d A (Ax11)

∼(A ∨ ∼A) →d B (Ax12)

∼(A ∨ B) →d ∼(B ∨ A) (Ax13)

∼(A ∨ B) →d (∼B ∧l
d ∼A) (Ax14)

∼(∼∼A ∨ B) →d ∼(A ∨ B) (Ax15)
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(∼(A ∨ B) →d C) →d ((∼A →d B) ∨ C) (Ax16)

∼((A ∨ B) ∨ C) →d ∼(A ∨ (B ∨ C)) (Ax17)

∼((A →d B) ∨ C) →d (A ∧l
d ∼(B ∨ C)) (Ax18)

∼((A ∧l
d B) ∨ C) →d (A →d ∼(B ∨ C)) (Ax19)

∼(∼(A ∨ B) ∨ C) →d (∼(∼A ∨ C) ∨ ∼(∼B ∨ C)) (Ax20)

∼(∼(A →d B) ∨ C) →d (A →d ∼(∼B ∨ C)) (Ax21)

∼(∼(A ∧l
d B) ∨ C) →d (A ∧l

d ∼(∼B ∨ C)) (Ax22)

A A →d B
MPd

B

Remark 2.6. Dl
2 includes the following set of connectives into its lan-

guage {∼, ∨, ∧l
d
, →d}, where the only difference, as said, with D2 is the

presence of left-discussive conjunction. Notice that, even though Dl
2

constitutes a complete axiomatization [12, 54], from the perspective of
[9], it might be still considered only as a ‘partial’ solution to ‘Jaśkowski’s
problem’. Indeed, this time the ‘impurity’ of the axioms is not linked
to the inclusion of other connectives than the discussive ones, plus ∼
and ∨, but to the presence of ∧l

d
. As remarked above (Observation 2),

the interaction of ∼ with different discussive operators defines logics dis-
tinct from Jaśkowki’s D2 . Indeed, strictly speaking, since Jaśkowski’s
D2 included right-discussive conjunction, Dl

2 can be considered only as
a variation of D2.

More recently, J. Alama and H. Omori [44] presented a complete and
sound axiomatization for discussive logic, including Jaśkowski’s right-
discussive conjunction (denoted Dr

2). The starting point of [44] are the
axioms of Dl

2. The only necessary change to get Dr
2, is to drop Ax19

and Ax22 in favour of:

∼((A ∧d B) ∨ C) →d (B →d ∼(A ∨ C)) (Ax19′)

∼(∼(A ∧d B) ∨ C) →d (∼(∼A ∨ C) ∧d B) (Ax22′)

Moreover, in the axioms involving conjunction, one simply needs to re-
place ∧l

d
with ∧d. Of course, Ax19 and Ax22 of Dl

2 mirrored the be-
haviour of negated left-discussive conjunction. Ax19′ and Ax22′ absolve
the same job, but with respect to right-discussive conjunction. Both
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axioms are D2-valid if and only if their modally translated versions are
S5-valid, i.e., just in case the following formulas are valid in S5, accord-
ingly to τ (see 1.2):

✸(✸∼((A ∧ ✸B) ∨ C) ⊃ (✸B ⊃ ∼(A ∨ C)))

✸(✸∼(∼(A ∧ ✸B) ∨ C) ⊃ (∼(∼A ∨ C) ∧ ✸B))

Following the changes proposed in [44], it seems that Dr
2 accomplishes,

at least, the task of finding a correct and complete axioms system for
Jaśkowski’s discussive logic. At this point, it might be naturally asked
if Dr

2 goes even further and gives a positive and definitive answer to
‘Jaśkowski’s problem’. Up to now it seems to be the best candidate.
We wish to strengthen this idea by considering briefly two other axiom-
atizations for D2, both elaborated by J. Ciuciura in [6, 8]. First of all,
consider again a set of connectives including lef-discussive conjunction
and the axiomatic system proposed in [6] (denoted DC

2 ). Take Ax1-Ax8,
plus MPd, of Dl

2, and add the following axioms:

A ∨ (A →d B) (C1)

A →d ∼(∼(A ∨ B) ∧l
d ∼B ∧l

d ∼A) (C2)

∼(∼(A ∨ B) ∧d ∼B ∧l
d ∼A) →d ∼(∼(A ∨ B ∨ C) ∧l

d ∼C ∧l
d ∼B ∧l

d ∼A)
(C3)

∼(∼(A ∨ B ∨ C) ∧l
d ∼C ∧l

d ∼B ∧l
d ∼A) →d

→d ∼(∼(A ∨ B ∨ C) ∧l
d ∼B ∧l

d ∼C ∧l
d ∼A)

(C4)

∼(∼(A ∨ B) ∧l
d ∼B ∧l

d ∼A) →d ((A ∨ ∼B) →d A) (C5)

∼(∼(A ∨ B ∨ C) ∧l
d ∼C ∧l

d ∼B ∧l
d ∼A) →d ((A ∨ B ∨ ∼C) →d (A ∨ B))

(C6)

∼(∼(A ∨ B ∨ C) ∧l
d ∼C ∧l

d ∼B ∧l
d ∼A) →d

→d (∼(∼(A ∨ B ∨ ∼C) ∧l
d ∼∼C ∧l

d ∼B ∧l
d ∼A) →d ∼(∼B ∧l

d ∼A))
(C7)

∼(∼A ∧l
d ∼B) →d (A ∨ B) (C8)

(A ∨ ∼∼B) →d (A ∨ B) (C9)

(A ∨ B) →d (A ∨ ∼∼B) (C10)
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As usual, the consequence relation ⊢DC

2

is determined by the axioms
Ax1-Ax8, C1-C10 and by the rule MPd. Additionally, to prove soundness
and completeness results, Ciuciura proposed a possible world semantics
for DC

2 , in which all elements are identical to those of Definition 2.5,
except that W = N and that we include the following clauses:

v(A ∧l
d B, w) = 1 iff ∃x ∈ R(w), v(A, x) = 1 and v(B, w) = 1

v(A →d B, w) = 1 iff ∀x ∈ R(w), v(A, x) = 0 or v(B, w) = 1

Since DC
2 relies on an equivalence relation between worlds, the accessi-

bility relation may be not explicitly stated in the clauses. In any case,
these changes will not affect their meaning, [6, 239-240.]. Importantly,
Ciuciura aimed at proving soundness and completeness of DC

2 , but, un-
fortunately, in [44, 1171], it was proved that in DC

2 there is (at least)
one unprovable formula. The point is struggling, since the formula in
question, i.e., ∼(A ∨ ∼A) →d B, is valid according to the Jaśkowski-
style translation τ of Definition 1.2. Consequently, one might naturally
doubt whether DC

2 is, in some sense, an axiomatization of Jaśkowski’s
discussive logic in the sense of [9], given also the presence of ∧l

d
instead

of ∧d. However, in an another paper [8], Ciuciura restated the presence
of right-discussive conjunction among the connectives and provided an
axiomatic system for it. We denote Ciuciura’s second axiomatization by
DC∗

2 . Take again Ax1-Ax8 (replacing ∧l
d

with ∧d in Ax3, Ax4, Ax5) and
MPd of Dl

2, plus the following axioms:

A ∨ (A →d B) (C1∗)

∼(∼A ∧d ∼∼A ∧d ∼(A ∨ ∼A)) (C2∗)

∼(∼A ∧d ∼B ∧d ∼(A ∨ B)) →d ∼(∼A ∧d ∼B ∧d ∼C ∧d ∼(A ∨ B ∨ C))
(C3∗)

∼(∼A ∧d ∼B ∧d ∼C ∧d ∼(A ∨ B ∨ C)) →d

→d ∼(∼A ∧d ∼C ∧d ∼B ∧d ∼(A ∨ C ∨ B))
(C4∗)

∼(∼A ∧d ∼B ∧d ∼C ∧d ∼(A ∨ B ∨ C)) →d ((A ∨ B ∨ ∼C) →d (A ∨ B))
(C5∗)

∼(∼A ∧d ∼B) →d (A ∨ B) (C6∗)

(A ∨ (B ∨ ∼B)) →d ∼(∼A ∧d ∼(B ∨ ∼B)) (C7∗)
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As in the case of DC
2 , to prove soundness and completeness, Ciuciura

proposed a possible worlds semantics, but dropping out the clause for
∧l

d
in favour of the following one for ∧d:

v(A ∧d B, w) = 1 iff ∃x ∈ R(w), v(A, w) = 1 and v(B, x) = 1

Some criticism has been moved against Ciuciura’s DC∗
2 . J. Alama [1] no-

ticed that if we take the axioms Ax1-Ax22 of da Costa’s and Dubikajtis’
Dl

2, in comparison to the ones of Ciuciura, we will get a troublesome
situation: the two axiomatizations share some theses (Ax1-Ax8), while
some others are respectively unprovable. Technically, if we encounter
this situation, the two logics under considerations are said to be «or-
thogonal». In this specific case [1, 4-8]:

Proposition 1. DC∗
2 ⊬ Ax9, Ax12, Ax13, Ax14, Ax15, Ax16, Ax17,

Ax18, Ax19, Ax20, Ax21, Ax22.

At this point, consequently, it might be naturally asked whether DC∗
2

corresponds to a restriction of Dl
2. The answer is no, since there is (at

least) one axiom of DC∗
2 which is Dl

2-unprovable [1, 11]:

Proposition 2. Dl
2 ⊬C5∗

In sum, DC∗
2 . and Dl

2, one with respect to the other, are not complete
axiomatizations and, moreover, they ought to be called as orthogonal,
i.e., they overlap and each one has theorems which are not formulas of
the other. Finally, also the addition of new axioms still confirms that
Ciuciura’s axiomatization DC∗

2 is an incomplete system of axioms [44,
1168.].
Notice , finally, that DC∗

2 also fails to be an axiomatization Jaśkowski’s
D2, in the sense that there are D2-valid formulas, that are unprovable
in DC∗

2 [44, 1167-1170], namely13:

A →d ∼∼A

∼(A ∨ ∼A) →d B

∼(A ∨ B) →d ∼(B ∨ A)

∼(∼∼A ∨ B) →d ∼(A ∨ B)
13Notice that those D

C∗

2 unprovable formulas correspond to Ax9, Ax12, Ax13 and
Ax15 of both, D

r

2 and D
l

2.
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Remark 2.7. In conclusion, all these considerations lead us in doubt-
ing that DC

2 and DC∗
2 did provide a solution to ‘Jaśkowksi’s problem’.

Furthermore, given the presence of both, Observation 2 and of Proposi-
tion 2, also Dl

2 seems to be far from providing a solution. Nonetheless,
Dr

2, as elaborated in [44], seems to be an adequate candidate to settle
positively the problem raised in [9].

3 Conclusive remarks

We have selected some of the perspectives under which discussive sys-
tems can be considered and, for the sake of brevity, we have chosen to
explain and discuss just some of the main contributions present in the
literature. For example, we have analysed how ‘Jaśkowski’s problem’
might be solved, given the axiomatic systems we discussed. Nonethe-
less, many other works could have been considered (to cite a few of
them, see [25, 9, 46, 30]). J. Perzanowski, in the critical notes to [23,

59], showed how to define ‘discussive negation’, i.e., ∼dA
def
= ✸∼A. In-

terestingly, the equivalence between ✸∼A and ∼✷A, makes, in fact, ∼d

equal to ‘un-necessity’. However, there are only few articles considering
these kind of extensions of the set of discussive connectives. Remark-
ably, in [7], there’s an axiomatization of discussive logic including also
∼d among the connectives, but, unfortunately, this attempt has some
problems (see, [44, 1178-1179]). Hence, the challenge of developing an
axiomatization for D2, including also ∼d, is still open.
As remarked several times, Jaśkowski’s logic has attracted discrete at-
tention and many other research paths have been inaugurated. For
instance, there has been some interest in developing discussive logic by
getting rid of classical S5, in favour of other non-classical systems (see,
among others [26, 5, 2]). Additionally, the work of connecting D2 to
modal logics (especially, the articles by M. Nasieniewski and colleagues)
increased (for example, [38, 31, 39]). Among their gigantic work, it’s
worth mentioning the proposal of an ‘adaptive’ (inconsistency-tolerant)
version of discussive logic (see [32, 33, 34] and [29]).
From a more philosophical perspective, instead, one might find another
interesting application of discussive logic to the philosophy of sciences
in [10], where, in addition to the applications of J∗∗ to the foundations
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of physical theories, the authors propose also a theory of ‘pragmatic’
(or ‘partial’) truth. The intuition underlying their idea, roughly, is that,
with respect to inconsistent informations, scientists work with such infor-
mations as if they were true, and do not take them to be true simpliciter.
Also in this case, J∗ and J∗∗ show their usefulness in modelling reason-
ing with inconsistent sets of premises. Importantly, in [17], the authors
– by taking inspiration from Jaśkowski’s main motivation to build D2 –
propose a four-valued discussive logic (D4) with the aim of capturing sit-
uations in which discussants put forward inconsistent opinions. Roughly,
this work includes a ‘doxastic’ variant of discussive logic, allows to distin-
guish among different agents, each one with its respective set of beliefs,
and models (through a function) the agents’ capabilities (e.g., percep-
tion, expert-supplied knowledge, communication, discussion). The idea
is that a reasoner, that starts from a lack of informations, can – in the
process of acquiring more data – reach either support or refutation of
such data. However, if there’s an overload of informations, the reasoner
may reach both, truth and falsity, i.e., inconsistent data.

In conclusion, as said, this overview is not exhaustive and, indeed, our
aim was to indicate just some of the most interesting directions that dis-
cussive logic oriented researches have taken, by starting from Jaśkowski’s
papers. We think that thanks to its historical importance as the first
known formulation of a paraconsistent logic and to its subsequent devel-
opments, discussive logic is still an interesting and vital field of investi-
gation.
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