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Abstract

Intuitionism can be seen as a verificationism restricted to mathematical discourse. An
attempt to generalize intuitionism to empirical discourse presents various challenges.
One of those concerns the logical and semantical behavior of what has been called
‘empirical negation’. An extension of intuitionistic logic with empirical negation was
given by Michael De and a labelled tableaux system was there shown sound and
complete. However, a Hilbert-style axiom system that is sound and complete was
missing. In this paper we provide the missing axiom system which is shown sound
and complete with respect to its intended semantics. Along the way we consider some
further applications of empirical negation.

Keywords: Intuitionistic logic, empirical negation, completeness.

1 Introduction

A verificationism along the lines of Michael Dummett and Neil Tennant seeks to
generalize a constructive interpretation of mathematical discourse to empirical
discourse. A simplified strategy along these lines can be thought to be carried
out as follows. First, take the famous Brouwer-Heyting-Kolmogorov (BHK)
interpretation of the base (propositional) logical connectives, where provability
is taken informally:

(i) a conjunction A ∧B is provable iff A and B are;

(ii) a disjunction A ∨B is provable iff either A or B is;
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(iii) a conditional A → B is provable iff there is a method transforming any
proof of A into a proof of B;

(iv) ⊥ isn’t provable.

As usual the negation ¬A of A is defined by A→ ⊥. Second, replace in those
clauses ‘provable’ with ‘verifiable’, where a verification is intended to cover not
only mathematical statements but empirical ones as well. Third and finally,
provide a workable account of what verification amounts to. E.g. one such
account might hold that a statement is verifiable iff it could be warranted,
where warrants are proofs in the mathematical case and some other sort of
evidence in the empirical case, depending on the domain of discourse.

Of course filling in the details of such an account is far from trivial. Besides
meeting the onerous task of giving a plausible account of warrant or evidence,
there are already significant worries concerning the logical language. Will ∧,
∨, and→ and ⊥ suffice as propositional connectives for an empirical language?
There are good reasons to think not, especially concerning negation. Dummett
says:

Negation . . . is highly problematic. In mathematics, given the meaning of
“if . . . then”, it is trivial to explain “Not A” as meaning “If A, then 0 =
1”; by contrast, a satisfactory explanation of “not”, as applied to empirical
statements for which bivalence is not, in general, taken as holding, is very
difficult to arrive at. Given that the sentential operators cannot be thought
of as explained by means of the two-valued truth-tables, the possibility that
the laws of classical logic will fail is evidently open: but it is far from evident
that the correct logical laws will always be the intuitionistic ones. More
generally, it is by no means easy to determine what should serve as the
analogue, for empirical statements, of the notion of proof as it figures in
intuitionist semantics for mathematical statements. [7, p.473]

One problem is that the “arrow-falsum” definition of negation is often too
strong to serve as the negation for empirical statements. Suppose we attempt
to express in our generalized intuitionistic language the fact that Goldbach’s
conjecture is not decided. We obtain the statement that says that any warrant
for ‘Goldbach’s conjecture is decided’ can be transformed into warrant for an
absurdity (say ‘0=1’). Since there could be no proof of an absurdity, this state-
ment says that Goldbach’s conjecture is undecidable! But it might turn out in
the future that someone prove or refute Goldbach’s conjecture. So the fact that
Goldbach’s conjecture is not decided does not imply that it is undecidable, as
our translation gives us. What we rather wished to say was merely that there
is no sufficient evidence at present for the truth of the conjecture.

Couldn’t we translate the original statement in a way that avoids this prob-
lem? For example, couldn’t we translate ‘Goldbach’s conjecture is not decided’
as ‘If Goldbach’s conjecture is decided at present, then 0=1’? Since the conjec-
ture is not decided at present, the idea would be that we can (vacuously) turn
any warrant or evidence for the antecedent of the conditional into evidence for
an absurdity, for there is no evidence for the antecedent! The problem is that
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if there were any evidence at all to a sufficient degree that Goldbach’s conjec-
ture is decided and if that evidence can be fallible (which is likely given that
the statement is empirical), then it is not at all clear that that evidence can be
transformed into a proof of ‘0=1’. Suppose in the future some reliable quantum
computer has returned a very long but flawed proof of the conjecture. How
exactly could that evidence be turned into evidence for ‘0=1’? That would
depend on the nature of the mistake. If the conjecture is true and decidable
and if from the mistake alone (with Peano arithmetic) one cannot infer that
‘0=1’, then it’s hard to see how that evidence could be turned into evidence
for ‘0=1’. If the conjecture is undecidable it’s true, so again having evidence
for or against it won’t likely convert into evidence for an absurdity since the
conjecture and its negation are both consistent with Peano arithmetic. If the
conjecture is false (hence decidable), then there is still no reason to think that
a flawed proof of a false conjecture will convert into evidence for an absurdity. 3

There are cases that are more problematic than the one just mentioned, as
they involve no mathematical content. Consider the purely empirical statement
‘There are ten thousand leaves in my garden’. If that statement is false and
yet after spending the entire day counting the leaves I (mistakenly) arrive at
ten thousand, how precisely will my evidence be converted into evidence that
0=1? One surely cannot use that evidence in a derivation in Peano arithmetic
to ‘0=1’. We could choose a different absurdity since we are in a different
domain of discourse, but exactly what would that absurdity be—one concerning
features of my garden? Could any evidence concerning the wrong number
of leaves in my garden be converted into evidence for this absurdity? This
all seems unlikely. We are best to conclude that the fact that an empirical
statement is false does not imply that any (fallible) evidence for it, whether
that evidence be got now or in the future, can be converted into evidence for
some given absurdity. 4

We need, therefore, a sui generis empirical negation that is not definable
from the standard (generalized) intuitionistic connectives. There have been
some proposals as to how such a negation should behave logically and seman-
tically in a verificationist setting. Two such accounts may be found in [4] and
[6], with some general philosophical difficulties for such a project raised in [21].
In [4], intuitionistic logic is enriched by an empirical negation given the intu-
itive reading ‘It is not the case that there is sufficient evidence at present that’.
A tableaux system for the logic was there shown sound and complete, as no
Hilbert-style axiom formulation could be found. We build on the work of [4] by

3 If the conjecture is false, then its negation is provable, so if we had a “proof” of the
conjecture, could we not turn that into proof of an absurdity? Only if we also had the proof
of the negation of the conjecture! Since we do not, it is not at all obvious that an alleged
proof of the conjecture could at any time be converted into a proof of an absurdity.
4 Interestingly, empirical negation was discussed as far back as [10, p. 18] under the guise
of ‘factual’ negation. Timothy Williamson [21] argues that sentences of the form ‘A will
never be decided’ are in fact inconsistent in a generalized intuitionistic language, even one
with what he considers a plausible empirical negation. We will have more to say about this
argument in section §4.
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providing a Hilbert-style proof system for the logic which is shown sound and
complete with respect to its intended semantics. We conclude by addressing
some of the worries raised in [21].

2 Semantics and proof theory

After setting up the language, we first present the semantics, and then turn to
the proof theory.

Definition 2.1 The language L consists of a finite set {∼,∧,∨,→} of propo-
sitional connectives and a countable set Prop of propositional variables which
we denote by p, q, etc. Furthermore, we denote by Form the set of formulas
defined as usual in L. We denote a formula of L by A, B, C, etc. and a set of
formulas of L by Γ, ∆, Σ, etc.

2.1 Semantics

Definition 2.2 A model for the language is a quadruple 〈W, g,≤, V 〉, where
W is a non-empty set (of states); g ∈ W (the base state); ≤ is a partial order
on W with g being the least element; and V : W×Prop→ {0, 1} an assignment
of truth values to state-variable pairs with the condition that V (w1, p) = 1 and
w1 ≤ w2 only if V (w2, p) = 1 for all p ∈ Prop and all w1, w2 ∈W . 5 Valuations
V are then extended to interpretations I to state-formula pairs by the following
conditions:

• I(w, p) = V (w, p)

• I(w,∼A) = 1 iff I(g,A) = 0

• I(w,A ∧B) = 1 iff I(w,A) = 1 and I(w,B) = 1

• I(w,A ∨B) = 1 iff I(w,A) = 1 or I(w,B) = 1

• I(w,A→ B) = 1 iff for all x ∈W : if w ≤ x and I(x,A) = 1 then I(x,B) = 1.

For a philosophical interpretation of the semantics, the reader is referred to [4].
Semantic consequence is now defined in terms of truth preservation at g:

Σ |= A iff for all models 〈W, g,≤, I〉, I(g,A) = 1 if I(g,B) = 1 for all B ∈ Σ.

2.2 Proof Theory

Definition 2.3 The system IPC∼ consists of the following axiom schemata
and rules of inference:

A→ (B → A) (Ax1)

(A→ (B → C))→ ((A→ B)→ (A→ C)) (Ax2)

(A ∧B)→ A (Ax3)

(A ∧B)→ B (Ax4)

(C → A)→ ((C → B)→ (C → (A ∧B))) (Ax5)

5 Note here that in the semantics presented in [4], it is not assumed that the distinguished
element g is a least element with respect to the partial ordering. This constraint doesn’t
affect the consequence relation but is needed for the completeness proof below.
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A→ (A ∨B) (Ax6)

B → (A ∨B) (Ax7)

(A→ C)→ ((B → C)→ ((A ∨B)→ C)) (Ax8)

A ∨ ∼A (Ax9)

∼A→ (∼∼A→ B) (Ax10)

A A→ B

B
(MP)

A ∨B
∼A→ B

(RP)

Following the usual convention, we define A ↔ B as (A → B) ∧ (B → A).
Finally, we write Γ ` A if there is a sequence of formulas B1, . . . , Bn, A, n ≥ 0,
such that every formula in the sequence B1, . . . , Bn, A either (i) belongs to Γ;
(ii) is an axiom of IPC∼; (iii) is obtained by (MP) or (RP) from formulas
preceding it in sequence.

Remark 2.4 We will refer to the subsystem of IPC∼ which consists of axiom
schemata from (Ax1) to (Ax8) and a rule of inference (MP) as IPC+. Note
that the deduction theorem does not hold with respect to → in this system,
as observed by De. However, we do have a deduction theorem in a slightly
different form, given below as Theorem 2.11.

Our goal now is to prove a variant of the deduction theorem. For this
purpose, we begin with some preparations.

Fact 2.5 The following formulas are provable in IPC+ and thus in IPC∼.

A→ A (1)

(A ∨B)→ (B ∨A) (2)

(A→ (B → C))→ (B → (A→ C)) (3)

(A ∨B)→ ((B → C)→ (A ∨ C)) (4)

(A→ (B → C))→ ((A ∧B)→ C) (5)

(A ∧ (B ∨ C))→ ((A ∧B) ∨ C) (6)

Lemma 2.6 The following formulas are provable in IPC∼.

(A→ ∼A)→ ∼A (7)

(∼A→ A)→ A (8)

∼∼A→ A (9)

(∼A→ B)→ (A ∨B) (10)

(∼∼A→ B)↔ (∼A ∨B) (11)

Proof. (7) can be derived by making use of (Ax8), (1), (3) and (Ax9); and (8)
is similarly derived. (9) is proved by (Ax9), (2) and (RP). (10) is also easy to
derive by combining (4) and (Ax9). For (11), the left-to-right direction is (10).
For the other way around, we only need to apply (Ax8) to (Ax1) and (Ax10).2

Now, we can prove one direction of the deduction theorem.
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Proposition 2.7 For Γ ∪ {A,B} ⊆ Form, if Γ, A ` B then Γ ` ∼∼A→ B.

Proof. By the induction on the length n of the proof of Γ, A ` B. If n = 1,
then we have the following three cases.

• If B is one of the axioms of IPC∼, then we have ` B. Therefore, by (Ax1),
we obtain ` ∼∼A→ B which implies the desired result.

• If B ∈ Γ, then we have Γ ` B, and thus we obtain the desired result by
(Ax1).

• If B = A, then by (9), we have ∼∼A→ B which implies the desired result.

For n > 1, then there are two additional cases to be considered.

• If B is obtained by applying (MP), then we will have Γ, A ` C and Γ, A `
C → B lengths of the proof of which are less than n. Thus, by induction
hypothesis, we have Γ ` ∼∼A → C and Γ ` ∼∼A → (C → B), and by
(Ax2) and (MP), we obtain Γ ` ∼∼A→ B as desired.

• If B is obtained by applying (RP), then B = ∼C → D and we will have
Γ, A ` C ∨D length of the proof of which is less than n. Thus, by induction
hypothesis, we have Γ ` ∼∼A → (C ∨ D). By (11) and (RP), we have
Γ ` ∼C → (∼A ∨ D). Another application of (11) gives us Γ ` ∼C →
(∼∼A → D) and thus by exchange, we obtain Γ ` ∼∼A → (∼C → D), i.e.
Γ ` ∼∼A→ B as desired.

This completes the proof. 2

For the purpose of proving the other direction of the deduction theorem,
we need another lemma.

Lemma 2.8 The following formulas are provable and rules are derivable in
IPC∼.

A→ B

∼B → ∼A
(RC)

∼(A→ A)→ B (12)

∼∼(A→ A) (13)

A

∼∼A
(RD)

Proof. For (RC), assume A → B. Then by making use of (4) and (Ax9), we
have ∼A∨B which is equivalent to B∨∼A by (2). Thus by applying (RP), we
obtain ∼B → ∼A. For (12), note first that ∼B → (A→ A) is derivable by (1)
and (Ax1). Then by (RC), we obtain ∼(A→ A)→ ∼∼B. This together with
(9) implies the desired result. Then, (13) follows by (12), taking ∼∼(A → A)
in place of B, and (7). For (RD), assume A. Then by (Ax1), we obtain
(A → A) → A. By applying (RC) twice, we get ∼∼(A → A) → ∼∼A. The
desired result follows by this and (13). 2

Remark 2.9 Note that A→ ∼∼A, a stronger form of (RD), is not derivable,
although we have the other way around (cf. (9)). In this sense the behavior
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of double empirical negation is dual to the behavior of double intuitionistic
negation. Note also that based on (12), we may define the bottom element
⊥ by ∼(A → A), instead of taking it as primitive. In view of (Ax10) and
(5), ∼A ∧ ∼∼A also serves as a suitable definition of ⊥. We can thus define
intuitionistic negation ¬ by the usual “arrow-falsum” definition: ¬A := A→ ⊥.

Proposition 2.10 For Γ ∪ {A,B} ⊆ Form, if Γ ` ∼∼A→ B then Γ, A ` B.

Proof. By the assumption Γ ` ∼∼A → B, we have Γ,∼∼A ` B by (MP).
Moreover, we have Γ, A ` ∼∼A by (RD). Thus, we obtain the desired result.2

By combining Propositions 2.7 and 2.10, we obtain the following theorem.

Theorem 2.11 For Γ ∪ {A,B} ⊆ Form, Γ, A ` B iff Γ ` ∼∼A→ B.

Corollary 2.12 For Γ ∪ {A,B} ⊆ Form, we have Γ, A ` B iff Γ ` ∼A ∨B.

Proof. Immediate in view of the above result and (11). 2

Remark 2.13 The deduction theorem formulated in terms of ∼ and ∨ is al-
ready discussed by De in [4, p.63] in which he takes the formula ∼A ∨ ∼∼B
instead of ∼A ∨ B. However, these formulas are equivalent in the sense that
both ∼A∨B ` ∼A∨∼∼B and ∼A∨∼∼B ` ∼A∨B hold. 6 Thus, the deduc-
tion theorem discussed in [4] is equivalent to the one presented here although
the version here is slightly simpler.

The following proposition shows that the de Morgan laws with respect to
empirical negation are fully provable in IPC∼.

Proposition 2.14 The following formulas are provable in IPC∼.

∼(A ∨B)→ (∼A ∧ ∼B) (14)

(∼A ∨ ∼B)→ ∼(A ∧B) (15)

∼(A ∧B)→ (∼A ∨ ∼B) (16)

(∼A ∧ ∼B)→ ∼(A ∨B) (17)

Proof. (14) and (15) are essentially by (Ax3), (Ax4) and (Ax6), (Ax7) respec-
tively together with (RC). For (16), it runs as follows.

1 ∼(∼A ∨ ∼B)→ (∼∼A ∧ ∼∼B) [(14)]
2 ∼(∼A ∨ ∼B)→ (A ∧B) [1, (9)]
3 ∼(A ∧B)→ ∼∼(∼A ∨ ∼B) [2, (RC)]
4 ∼(A ∧B)→ (∼A ∨ ∼B) [3, (9)]

Finally, for (17), it suffices to prove ∼∼(A ∨ B) → ∼(∼A ∧ ∼B), and in view
of (11), it suffices to prove ∼(A ∨ B) ∨ ∼(∼A ∧ ∼B). But then by (15) and
(16), the formulas is equivalent to ∼((A ∨ B) ∧ ∼A) ∨ ∼∼B. And in view of
the deduction theorem, it suffices to show (A∨B)∧∼A ` ∼∼B. And this can

6 For the latter, something stronger holds, i.e. (∼A ∨ ∼∼B) → (∼A ∨ B). The former is
derivable in view of (RD) and Proposition 3.4 which is proved later. Note that, semantically,
only ∼A ∨ ∼∼B defines material implication at the base state in the sense that ∼A ∨ ∼∼B
is true at an arbitrary state iff A is false or B is true at the base state.
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be proved as follows. Assume (A ∨ B) ∧ ∼A. Then by applying (RP) to the
first conjunct, we obtain ∼A → B. Since we have ∼A as our second conjunct
of the assumption, we obtain B by (MP). Finally by applying (RD), we obtain
the desired result. This completes the proof. 2

Aside from having proved some important validities, it is helpful to consider
some invalidities. The following proposition provides a list of such notables.

Proposition 2.15 The following formulas are invalid in IPC∼.

(A ∧ ∼B)→ ∼(A→ B) (∼A→ ∼B)→ (B → A)
(A ∧ ∼A)→ B ∼(A→ B)→ (A ∧ ∼B)
¬(A ∧ ∼A) ∼A→ ¬A
(A→ B)→ (∼B → ∼A)

Note, however, that the rule-forms of all formulas in the left-hand-column are
valid.

Proof. To see the invalidity of the above formulas, note that the invalid (A ∧
∼A)→ B follows from the others. The details are left to the interested reader.

As for the validity of the rule-forms, let us briefly sketch their proofs. Since
the last one is (RC) of Lemma 2.8, we deal with the other three rules. For the
second one, assume A and ∼A. Then, by applying (RD) to A, we get ∼∼A.
Therefore, this together with the other assumption ∼A and (Ax10) gives us B
as desired. Proof of third rule is exactly parallel. For the first, assume A∧∼B
and A → B. Then we obtain B and ∼B by (Ax3) and (MP). So, by the
rule we just proved, we can in particular derive ∼(A → B). That is, we have
A ∧ ∼B,A → B ` ∼(A → B). Then, by the variant of deduction theorem
(Theorem 2.11), we get A ∧ ∼B ` ∼∼(A → B) → ∼(A → B). Thus by (8),
we obtain A ∧ ∼B ` ∼(A→ B) as desired. 2

We have seen that the rule (RP) plays an important role. One may wonder
whether this rule is derivable or not. 7 The following proposition shows that
the rule is independent of other axioms and rule (MP).

Proposition 2.16 The rule (RP) is independent of the other axioms and rule
(MP).

Proof. Consider the following truth tables which characterize the logic P1

introduced by Antonio Sette in [18]:

∧ 1 i 0

1 1 1 0
i 1 1 0
0 0 0 0

∨ 1 i 0

1 1 1 1
i 1 1 1
0 1 1 0

→ 1 i 0

1 1 1 0
i 1 1 0
0 1 1 1

∼
1 0
i 1
0 1

Note here that designated values are 1 and i. It is straightforward to verify
that the above truth tables validate all the axiom schemata of IPC∼, and that
(MP) preserves designationhood. However, if we assign the values i and 0 to

7 We thank a referee for asking us to clarify this point.
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A and B of (RP), then we see that designated values are not preserved. Thus,
we obtain the desired result. 2

Remark 2.17 Before turning to further results on IPC∼, let us briefly men-
tion some related systems. There are at least two closely related systems in the
literature. One of them is the TCCω of A. B. Gordienko which is introduced
and studied in [9]. This extends Richard Sylvan’s CCω, studied in detail in
[19] which is motivated by the fact that Cω of Newton da Costa (cf. [3]) lacks
intersubstitutivity of provable equivalents:

A↔ B

D(A)↔ D(B)

where D(A) is some wff containing A and D(B) results from D(A) by replacing
one (derivatively, zero or more) occurrence of A by B. Now, Cω is obtained
by adding (Ax9) and (9) to IPC+. Then, CCω is obtained by adding (RC)
to Cω, and TCCω extends CCω by adding (Ax10). This shows that TCCω

is a subsystem of IPC∼, and since (RP) is not valid in TCCω, it is a strict
subsystem of IPC∼.

The other closely related system is WECQ of Thomas Ferguson considered in
[8]. This extends Graham Priest’s da Costa Logic daC introduced and studied
in [15]. Although the proof theory of daC is given in terms of natural deduc-
tion by Priest, we may easily observe that the subsystem of IPC∼ obtained by
eliminating (Ax10) is weakly complete with respect to the semantics developed
in [15]. 8 Then one of the observations of Ferguson shows that the addition of
(Ax10) in the proof theory corresponds to the addition of the following condi-
tion on R dubbed “backwards convergence”: if tRv and uRv, then there exists
an w such that wRt and wRu. Note here that besides backward convergence,
the relation R satisfies the usual conditions deployed in Kripke semantics for
intuitionistic logic. 9

3 Soundness and completeness

We now proceed to the proof of soundness and completeness. Our proof follows
an idea employed in [16]. Since the system we deal with is not a relevant logic,
the proof is rather simplified compared to that for B+ and its related systems.

3.1 Soundness

Theorem 3.1 For Γ ∪ {A} ⊆ Form, if Γ ` A then Γ |= A.

Proof. By induction on the length of the proof, as usual. 2

3.2 Preliminaries and key notions for completeness

As a preliminary for the completeness proof, we prove some rules that will be
used in the following, and also some rules that emphasize some differences from

8 There is another axiomatization in terms of Hilbert-style calculus in [2], although the
consequence relation is defined in an idiosyncratic way.
9 More on the relation between these systems can be found in [14].
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B+.

Lemma 3.2 The following rules are derivable in IPC∼.

C → D

(A→ C)→ (A→ D)
(Prefixing)

A→ B

(B → C)→ (A→ C)
(Suffixing)

A→ B B → C

A→ C
(Transitivity)

C ∨ (A→ B) C ∨A
C ∨B

(D-MP)

C ∨ (A ∨B)

C ∨ (∼A→ B)
(D-RP)

Proof. We only deal with the last two rules as the others are obvious by the
fact that IPC∼ extends IPC+.
For (D-MP): Assume C ∨ (A → B) and C ∨ A. Then, by applying (RP),
we obtain ∼C → (A → B) and ∼C → A respectively. Combining these with
(Ax2) will give us ∼C → B. Finally, we apply (10) to obtain the desired result.
For (D-RP): Assume C ∨ (A ∨B). Then, by applying (RP), we obtain ∼(C ∨
A)→ B, Therefore, we obtain (∼C∧∼A)→ B by using (17) which is equivalent
to ∼C → (∼A→ B). Finally, we apply (10) to obtain the desired result. 2

Remark 3.3 (D-MP) and (D-RP) show that disjunctive forms of (MP) and
(RP) can be proved in IPC∼, and thus we do not have to assume them as rules
of inference as in B+.

Since we have the deduction theorem, we can prove the following metathe-
orem in a rather simple manner.

Proposition 3.4 If A ` C and B ` C, then A ∨B ` C.

Proof. Assume A ` C and B ` C. Then, by Theorem 2.11, we obtain `
∼∼A→ C and ` ∼∼B → C respectively. By (Ax7), we get ` (∼∼A∨∼∼B)→
C, and therefore ` ∼∼(A ∨ B) → C by (14) and (17). Finally, we obtain the
desired result by another application of Theorem 2.11. 2

We now state some definitions that will play important roles in the proof.

(i) Σ `π A iff Σ ∪Π ` A.

(ii) Σ is a Π-theory iff:
(a) if A,B ∈ Σ then A ∧B ∈ Σ
(b) if `π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) Σ is prime iff (if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ).

(iv) Σ `π ∆ iff for some D1, . . . , Dn ∈ ∆,Σ `π D1 ∨ · · · ∨Dn.

(v) `π Σ→ ∆ iff for some C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dn.
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(vi) Σ is Π-deductively closed iff (if Σ `π A then A ∈ Σ).

(vii) Let Form be the set of formulas. Then, 〈Σ,∆〉 is a Π-partition iff:
(a) Σ ∪∆ = Form
(b) 6`π Σ→ ∆

(viii) Σ is non-trivial iff A 6∈ Σ for some formula A.

In all of the above, if Π is ∅, then the prefix ‘Π-’ will simply be omitted.

Remark 3.5 One point of departure from [16] is that we do not need the
definition of the set Π→ which is defined as the set of all members of Π of the
form A → B where Π is a set of sentences. Moreover, we added a definition
of non-triviality that is not required in the proof of [16] as there is no bottom
element in B+. The definition is necessary for our proof since a bottom element
is available in IPC∼.

We here note the following useful fact which is not the case in B+ as it
relies on (Ax1).

Lemma 3.6 If Γ is Π-theory, then Π ⊆ Γ.

Proof. Take A ∈ Π. Then, we have Π ` A. Now, take any C ∈ Γ. Then, by
(Ax1), we obtain Π ` C → A, i.e. `π C → A. Thus, combining this together
with C ∈ Γ and the assumption that Γ is Π-theory, we conclude that A ∈ Γ.2

3.3 Extension lemmas

We now prove a number of lemmas. The first group concerns extensions of sets
with various properties.

Lemma 3.7 If 〈Σ,∆〉 is a Π-partition then Σ is a prime Π-theory.

Proof. We need to prove the following three facts:

(i) if A,B ∈ Σ then A ∧B ∈ Σ.

(ii) if `π A→ B then (if A ∈ Σ then B ∈ Σ).

(iii) if A ∨B ∈ Σ then A ∈ Σ or B ∈ Σ.

For (1): Assume A,B ∈ Σ and A∧B 6∈ Σ. Then since Σ ∪∆ = Form, we have
A ∧ B ∈ ∆. This immediately implies `π Σ → ∆ which is a contradiction in
view of 6`π Σ→ ∆.
For (2): Assume `π A→ B and A ∈ Σ and B 6∈ Σ. Then since Σ ∪∆ = Form,
we have B ∈ ∆. This means `π Σ → ∆ which is a contradiction in view of
6`π Σ→ ∆.
For (3): AssumeA∨B ∈ Σ andA 6∈ Σ andB 6∈ Σ. Then, since Σ∪∆ = Form, we
have A,B ∈ ∆. This immediately implies `π Σ → ∆ which is a contradiction
in view of 6`π Σ→ ∆. 2

Lemma 3.8 If 6`π Σ → ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that
〈Σ′,∆′〉 is a Π-partition.

Proof. The details are spelled out in the appendix. 2
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Corollary 3.9 Let Σ be a Π-theory, ∆ be closed under disjunction, and Σ ∩
∆ = ∅. Then there is Σ′ ⊇ Σ such that Σ′ ∩∆ = ∅ and Σ′ is a prime Π-theory.

Proof. First, it follows that 6`π Σ → ∆. For otherwise there would be some
C1, . . . , Cn ∈ Σ and D1, . . . , Dm ∈ ∆:

`π C1 ∧ · · · ∧ Cn → D1 ∨ · · · ∨Dn.

Then, since Σ be a Π-theory, Σ is closed under conjunction, so C1∧· · ·∧Cn ∈ Σ.
Moreover, if Σ be a Π-theory and C1 ∧ · · · ∧ Cn ∈ Σ and `π C1 ∧ · · · ∧ Cn →
D1 ∨ · · · ∨Dn, then it follows that D1 ∨ · · · ∨Dn ∈ Σ. On the other hand, ∆ be
closed under disjunction so D1 ∨ · · · ∨Dn ∈ ∆. By combining these, we obtain
D1 ∨ · · · ∨Dn ∈ Σ ∩∆ which is a contradiction in view of Σ ∩∆ = ∅.

Now since we have 6`π Σ→ ∆, we obtain, by the previous lemma, that there
are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉 is a Π-partition. And by Lemma 3.7,
it follows that Σ′ is a prime Π-theory. It also follows that Σ′ ∩ ∆ = ∅, for
otherwise we will have a formula A0 ∈ Σ′∩∆ ⊆ Σ′∩∆′. This will immediately
imply that `π Σ′ → ∆′ which cannot be the case in view of the fact that
〈Σ′,∆′〉 is a Π-partition. 2

Lemma 3.10 If Σ 6` ∆ then there are Σ′ ⊇ Σ and ∆′ ⊇ ∆ such that 〈Σ′,∆′〉
is a partition, and Σ′ is deductively closed.

Proof. Similar to the proof of Lemma 3.8. The details are spelled out in the
appendix. 2

Corollary 3.11 If Σ 6` A then there are Π ⊇ Σ such that A 6∈ Π, Π is a prime
Π-theory and is Π-deductively closed.

Proof. Let ∆ be {A} and Σ′ be Π in Lemma 3.10. Then by the lemma, we
obtain a Π such that Π ⊇ Σ, 〈Π,∆′〉 is a partition, and Π is deductively closed.
By Lemma 3.7, it follows that Π is a prime theory. Furthermore, A 6∈ Π
is obvious by the construction of Π, and Π is Π-deductively closed since if
Π `π A then Π ` A. Since Π is deductively closed, if follows that A ∈ Π, as
desired. It remains to be shown that Π is a Π-theory. Suppose that `π C → D
and C ∈ Π. Then clearly Π ` D, and hence D ∈ Π by deductive closure. 2

3.4 Counter-example lemma

The second lemma establishes that there are certain theories with properties
that are crucial in the recursion case for → in the proof of the main theorem.

Lemma 3.12 If Π is a prime Π-theory that is Π-deductively closed and A →
B 6∈ Π, then there is a prime Π-theory Γ, such that A ∈ Γ and B 6∈ Γ.

Proof. Let Σ = {C : A → C ∈ Π}. Then Σ is a Π-theory. For suppose that
C1, C2 ∈ Σ. Then A → C1, A → C2 ∈ Π. Thus `π A → (C1 ∧ C2) by (Ax5),
so A → (C1 ∧ C2) ∈ Π since Π is Π-deductively closed, and thus C1 ∧ C2 ∈ Σ
by the definition of Σ. Now suppose that `π C → D and C ∈ Σ. Then
A → C ∈ Π and so `π A → C. By (Transitivity) we have `π A → D. Since
Π is Π-deductively closed, we have A→ D ∈ Π, and by the definition of Σ, we
obtain D ∈ Σ as desired.
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Clearly A ∈ Σ and B ∨ · · · ∨ B 6∈ Σ. Based on this, let ∆ be the closure
of {B} under disjunction. Then, Σ ∩ ∆ = ∅. The result then follows from
Corollary 3.9. 2

3.5 Completeness

We are finally ready to prove the completeness.

Theorem 3.13 For Γ ∪ {A} ⊆ Form, if Γ |= A then Γ ` A.

Proof. We prove the contrapositive. Suppose that Γ 6` A. Then, by
the above lemma, there is a Π ⊇ Γ such that Π is a prime theory and
A 6∈ Π. Define the interpretation A = 〈Π, X,≤, I〉, where X = {∆ :
∆ is a non-trivial prime Π-theory}, ∆ ≤ Σ iff ∆ ⊆ Σ and I is defined thus.
For every state Σ and propositional parameter p:

I(Σ, p) = 1 iff p ∈ Σ

We show that this condition holds for any arbitrary formula B:

I(Σ, B) = 1 iff B ∈ Σ (∗)

It then follows that A is a counter-model for the inference, and hence that
Γ 6|= A. The proof of (∗) is by induction on the complexity of B.
Disjunction:

I(Σ, C ∨D) = 1 iff I(Σ, C) = 1 or (I(Σ, D) = 1

iff C ∈ Σ or D ∈ Σ IH

iff C ∨D ∈ Σ Σ is a prime theory

Conjunction:

I(Σ, C ∧D) = 1 iff I(Σ, C) = 1 and (I(Σ, D) = 1

iff C ∈ Σ and D ∈ Σ IH

iff C ∧D ∈ Σ Σ is a theory

Negation:

I(Σ,∼C) = 1 iff I(Π, C) 6= 1

iff C 6∈ Π IH

iff ∼C ∈ Σ

For the last equivalence, assume C 6∈ Π and ∼C 6∈ Σ. Then, by the latter and
Π ⊆ Σ, we obtain ∼C 6∈ Π. This together with C 6∈ Π and the primeness of
Π implies C ∨ ∼C 6∈ Π, and thus Π 6` C ∨ ∼C, which is a contradiction. For
the other way around, assume ∼C ∈ Σ and C ∈ Π. Then, by the latter and
Π ⊆ Σ, we obtain C ∈ Σ. Therefore, together with ∼C ∈ Σ, it follows that
Σ ` C ∧∼C and thus Σ ` B for any B. This contradicts that Σ is non-trivial.



De and Omori 127

Conditional:

I(Σ, C → D) = 1 iff for all ∆ s.t. Σ ⊆ ∆, if I(∆, C) = 1 then I(∆, D) = 1

iff for all ∆ s.t. Σ ⊆ ∆, if C ∈ ∆ then D ∈ ∆ IH

iff C → D ∈ Σ

For the last equivalence, assume C → D ∈ Σ and C ∈ ∆ for any ∆ s.t. Σ ⊆ ∆.
Then by Σ ⊆ ∆ and C → D ∈ Σ, we obtain C → D ∈ ∆. Therefore, we have
∆ ` C → D and ∆ ` C → D, so by (MP), we obtain ∆ ` D, i.e. D ∈ ∆, as
desired. On the other hand, suppose C → D 6∈ Σ. Then by the lemma above,
there is a Σ′ ⊇ Σ such that C ∈ Σ′, D 6∈ Σ′ and Σ′ is a prime Π-theory. And if
Σ′ is a prime Π-theory, then it follows that Π ⊆ Σ′. Furthermore, non-triviality
of Σ′ is obvious by D 6∈ Σ′. Thus, we obtain the desired result. 2

4 Some reflections

We now consider some related issues. First, we deal with a variant of the se-
mantics we presented in §2. Second, we respond to some remarks of Williamson
on empirical negation.

4.1 A “many distinguished states” semantics

Instead of taking a single base state as representing our current state of evi-
dence, we may also think of having a set of base states representing ways our
current state of evidence might be. 10 In practice we can’t always be certain
about what our evidential state is because e.g. whether something counts as
evidence or exactly what the evidence is might in principle be indeterminate.
All we can do is rule out certain states as ours if they make false statements
we know are supported by our current evidence. Since ruling out certain states
as our own won’t always secure a unique state, we might be more cautious to
consider several states that are, for all we know or even could know, our current
evidential state. This leads to the following modification of our semantics as
follows.

Definition 4.1 A model for the language is a quadruple 〈W,D,≤, V 〉, where
W is a non-empty set (of states); D ⊆ W (the distinguished states); ≤ is a
partial order on W such that for all δ ∈ D and all w ∈W \D, δ ≤ w. Moreover,
V (w, p) 7→ {0, 1} an assignment of truth values to state-variable pairs with the
condition that V (w1, p) = 1 and w1 ≤ w2 only if V (w2, p) = 1 for all p ∈ Prop
and all w1, w2 ∈ W . Valuations V are then extended to interpretations I to
state-formula pairs as in Definition 2.2 except for the empirical negation, we
extend it by the following conditions:

I(w,∼A) = 1 iff for some δ ∈ D, I(δ, A) = 0

Finally, semantic consequence is now defined in terms of truth preservation
at all the elements of D.

10We would like to thank Thomas Müller for suggesting that models have a set of base states.
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Definition 4.2 We say that A is true in a model M = 〈W,D,≤, V 〉 iff for all
δ ∈ D, V (δ, A) = 1. Consequence is then defined as truth preservation in a
model: Γ |= A iff for all models M and all B ∈ Γ, if B is true in M then A is
true in M.

It turns out, interestingly, that the “many base states” interpretation of
empirical negation is equivalent to the original interpretation in the sense that
they generate the same consequence relation.

Theorem 4.3 For Γ ∪ {A} ⊆ Form, Γ |=′ A iff Γ ` A.

Proof. The only non-trivial direction concerns soundness, as the completeness
proof is exactly the same. (We only ever need a counter model in which D is
a singleton.) Showing soundness is not hard, which we leave to the interested
reader. 2

Remark 4.4 If we change the truth conditions of ∼ in Definition 4.1 by re-
placing the existential quantifier by a universal one, we obtain a strictly weaker
logic. For every original model is a “universal model”, but universal models
give us additional countermodels. For instance, A∨∼A is no longer valid over
the class of universal models, though it was valid on the original semantics.

4.2 Williamson on empirical negation

Williamson argues in [21] that using empirical negation∼ to block the argument
to the IPL-inconsistency of ‘A will never be decided’ won’t work because ∼A→
¬A ought to be valid. But then the statement that A will never be decided,
∼(KA ∨K¬A), implies ¬(KA ∨K¬A) and we’re back in inconsistency. 11

Why think empirical negation is stronger than intuitionistic negation, i.e.
that ∼A→ ¬A? Williamson says:

For if ∼ is to count intuitionistically as any sort of negation at all, ∼A should
at least be inconsistent with A in the ordinary intuitionistic sense. A warrant
for A ∧ ∼A should be impossible. That is, we should have ¬(A ∧ ∼A). [21,
p. 139]

There is good reason to believe everything he says except for the last line:
A ∧ ∼A may be impossible while ¬(A ∧ ∼A) not be valid. But how?

Suppose that ∼A is read ‘A is not warranted by our current state of evi-
dence’, as we have been interpreting it. Then A ∧ ∼A can only be warranted
by our current evidential state if A is currently warranted and is currently not,
which is a contradiction. So A∧∼A could never be warranted, except in some
merely possible, non-current evidential state. We will never be in such a state,
since we ever only have our current evidence to work with, but there’s no rea-
son to dismiss such states as playing a role in the truth conditions of empirical
discourse; for they represent ways in which the current evidential state might
evolve. There is a good sense, then, in which A ∧ ∼A is impossible—it could

11Williamson gives a standard Fitch argument for the validity of ¬KA → ¬A. With this
¬KA ∧ ¬K¬A, which is equivalent to ¬(KA ∨K¬A), implies ¬A ∧ ¬¬A.
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never be warranted by our current state of evidence—though this does not im-
ply that ¬(A ∧ ∼A) which says that A ∧ ∼A could never be warranted even
by future evidential states. But surely it could! For in some future state, we
may have that A is warranted together with it being warranted that A is not
warranted at our current state. In sum, we may have both A,∼A ` ⊥ and
6` ¬(A ∧ ∼A). 12

Empirical negation therefore provides us with a well-motivated way of block-
ing a Fitch-like argument against the sort of verificationism we have been con-
sidering.

5 Conclusion

Here is a brief summary of the paper. We first discussed the motivation for
empirical negation (§1) in a broadly verificationist setting. We then introduced
the semantics and the proof theory (§2) which was followed by the proof of
strong completeness using techniques from relevant logics (§3). The complete-
ness proof was followed by some reflections on the semantics we presented, and
on some arguments of Williamson against the kind of empirical negation we
have been considering (§4). Before closing, we wish to briefly sketch two future
directions of this research.

Adding empirical negation to Nelson’s logic. We have expanded intu-
itionistic logic by empirical negation, but there is another well-known expansion
of intuitionistic logic by strong negation which results in Nelson’s logic N3. (cf.
[20,13]) The motivation here is to consider not only the verification but also
the falsification of a sentence. While empirical negation allows us to extend our
constructive interpretation from the mathematical to the empirical domain, the
focus is on verification. It is of interest, however, to see how we might further
extend that interpretation by treating verification and falsification separately.

In formulating the semantics of Nelson’s logic, we need cover not only the
truth but also the falsity conditions of sentences. Since we already have the
truth condition for empirical negation, what we need in carrying out our exten-
sion are adequate falsity conditions for empirical negation. We shall, however,
have to leave these details for another occasion.

Empirical negation as classical negation. One way of looking at empirical
negation is as classical negation; in other words, IPC∼ can be seen as an
expansion of intuitionistic logic by classical negation. Some expansions in a
similar vein may be found in [5,11,12]. 13 To see the difference between our
account and others, consider Kripke semantics for intuitionistic logic along with
the most straightforward truth condition for classical negation:

I(w,∼A) = 1 iff I(w,A) = 0. (?)

Validity is defined as truth preservation at all states, not just some distin-
guished state(s). A natural question then is to ask whether extending intu-

12This is part of the result proved in Proposition 2.15.
13See also [1] in which intuitionistic and classical implications are combined.
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itionistic logic this way, in terms of (?), is better or worse compared with
extending it by empirical negation. While this is a question we wish to address
in a more general setting on another occasion, let us quickly point out a fact
that favors the empirical negation approach in an intuitionistic context.

If we define classical negation by (?), the resulting system conservatively
extends classical logic but it is not sound for intuitionistic logic (since truth
is no longer preserved up the order). On the other hand, if we define clas-
sical negation as empirical negation, then the resulting system conservatively
extends the intuitionistic fragment while preserving soundness. Empirical nega-
tion may then be seen as providing a simple way of adding classical negation to
intuitionistic logic or any logic whose semantics makes use of a similar kind of
requirement that truth be preserved up an order, such as a simplified semantics
for relevant logic. Indeed, we may regard the semantics for empirical negation
as a special case of so-called star semantics for relevant logics given by Richard
and Val Routley in [17]. 14 In this case, the star function maps every world to
a single world, namely the base world g. We leave the task of investigating this
connection to relevant logic for another occasion.

Appendix

Proof of Lemma 3.8:

Let A0, A1, . . . be an enumeration of the set of formulas Form. Then we define
Σi and ∆i (i ∈ ω) by induction as follows:

• Σ0 := Σ; ∆0 := ∆.

• For Σi, the definition is as follows:

Σi+1 :=

{
Σi ∪ {Ai} if 6`π Σi ∪ {Ai} → ∆i

Σi otherwise

And for ∆i, the definition is as follows:

∆i+1 :=

{
∆i if 6`π Σi ∪ {Ai} → ∆i

∆i ∪ {Ai} otherwise

Finally, we define Σ′,∆′ as follows:

Σ′ :=
⋃
i<ω

Σi and ∆′ :=
⋃
i<ω

∆i.

We now prove that 〈Σ′,∆′〉 is a Π-partition. For this purpose, we need to prove
the following two facts:

(i) Σ′ ∪∆′ = Form

(ii) 6`π Σ′ → ∆′

14We thank a referee for this interesting remark.
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Since the former is satisfied by the construction, it need only show the latter.
By the compactness of `π, if `π Σ′ → ∆′ then `π Σk → ∆k for some k ∈ ω.
Therefore, it suffices to show that for no i ∈ ω, 6`π Σi → ∆i. This can be proved
by induction on i. For the case when i = 0, it is true by the definition. Suppose
now that it is true for i = j but not i = j+ 1. Then, we have 6`π Σj → ∆j and
`π Σj+1 → ∆j+1.

Now, if `π Σj+1 → ∆j+1 and 6`π Σj ∪ {Aj} → ∆j , then Σj+1 = Σj ∪ {Aj}
and ∆j+1 = ∆j by the latter, and thus by applying this to the former we obtain
`π Σj ∪ {Aj} → ∆j . Therefore, `π Σj+1 → ∆j+1 implies `π Σj ∪ {Aj} → ∆j

by reductio. So, we obtain the following from `π Σj+1 → ∆j+1:

`π Σj ∪ {Aj} → ∆j

On the other hand, if `π Σj+1 → ∆j+1 and `π Σj ∪ {Aj} → ∆j , then
Σj+1 = Σj and ∆j+1 = ∆j ∪ {Aj} by the latter, and thus by applying this to
the former we obtain `π Σj → ∆j ∪ {Aj}. Therefore, by the above result and
`π Σj+1 → ∆j+1, we get the following:

`π Σj → ∆j ∪ {Aj}

So, for some conjunctions C1, C2 of members of Σj and some disjunctions
D1, D2 of members of ∆j , we obtain the following:

C1 ∧Aj → D1 C2 → D2 ∨Aj .

But then, this leads to contradiction. Indeed,
1 C1 ∧Aj → D1 [sup.]
2 C2 → D2 ∨Aj [sup.]
3 C1 ∧ C2 → C2 [(Ax4)]
4 C1 ∧ C2 → D2 ∨Aj [3, 2, (Transitivity)]
5 C1 ∧ C2 → C1 [(Ax3)]
6 C1 ∧ C2 → (D2 ∨Aj) ∧ C1 [4, 5, (Ax5), (MP)]
7 C1 ∧ C2 → D2 ∨ (Aj ∧ C1) [6, (6), (MP)]
8 C1 ∧Aj → D1 ∨D2 [1, (Ax6), (MP)]
9 D2 → D1 ∨D2 [(Ax7)]
10 D2 ∨ (C1 ∧Aj)→ D1 ∨D2 [8, 9, (Ax8), (MP)]
11 C1 ∧ C2 → D1 ∨D2 [7, 10, (Transitivity)]

And this last formula shows that `π Σj → ∆j which is a contradiction in view
of 6`π Σj → ∆j .

Proof of Lemma 3.10:

Let A0, A1, . . . be an enumeration of the set of formulas Form. Then we define
Σi and ∆i (i ∈ ω) by induction as follows:

• Σ0 := Σ; ∆0 := ∆.

• For Σi, the definition is as follows:

Σi+1 :=

{
Σi ∪ {Ai} if Σi ∪ {Ai} 6` ∆i

Σi otherwise
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And for ∆i, the definition is as follows:

∆i+1 :=

{
∆i if Σi ∪ {Ai} 6` ∆i

∆i ∪ {Ai} otherwise

Finally, we define Σ′,∆′ as follows:

Σ′ :=
⋃
i<ω

Σi and ∆′ :=
⋃
i<ω

∆i.

Then, we now prove that 〈Σ′,∆′〉 is a partition. For this purpose, we need to
prove the following two facts:

(i) Σ′ ∪∆′ = Form

(ii) 6` Σ′ → ∆′

Since the former is satisfied by the construction, only the latter remains to be
shown. By the compactness of `, if ` Σ′ → ∆′ then ` Σk → ∆k for some
k ∈ ω. Furthermore, it holds that ` Σ → ∆ implies Σ ` ∆ for any Σ and ∆.
Therefore, it suffices to show that for no i ∈ ω, Σk 6` ∆k. This can be proved
by induction on i. For the case when i = 0, it is true by the definition. Suppose
now that it is true for i = j but not i = j + 1. Then, we have Σj 6` ∆j and
Σj+1 ` ∆j+1.
Case 1. if Σj ∪ {Aj} 6` ∆j , then Σj+1 = Σj ∪ {Aj} and ∆j+1 = ∆j , and
thus by applying this to Σj+1 ` ∆j+1 we obtain Σj ∪ {Aj} ` ∆j . Therefore,
Σj ∪ {Aj} ` ∆j by reductio.
Case 2. if Σj ∪ {Aj} ` ∆j , then Σj+1 = Σj and ∆j+1 = ∆j ∪ {Aj} by the
latter, and thus by applying this to Σj+1 ` ∆j+1 we obtain Σj ` ∆j ∪ {Aj}.
Therefore, by the above result, we get Σj ` ∆j ∪ {Aj}.

So, for some conjunctions C1, C2 of members of Σj and some disjunctions
D1, D2 of members of ∆j , we obtain the following:

C1 ∧Aj ` D1 C2 ` D2 ∨Aj .

But then, this leads to contradiction. Indeed,
1 C1 ∧Aj ` D1 [sup.]
2 C2 ` D2 ∨Aj [sup.]
3 C1 ∧ C2 ` C2 [(Ax4)]
4 C1 ∧ C2 ` D2 ∨Aj [3, 2, (Transitivity)]
5 C1 ∧ C2 ` C1 [(Ax3)]
6 C1 ∧ C2 ` (D2 ∨Aj) ∧ C1 [4, 5, (Ax5), (MP)]
7 C1 ∧ C2 ` D2 ∨ (Aj ∧ C1) [6, (6), (MP)]
8 C1 ∧Aj ` D1 ∨D2 [1, (Ax6), (MP)]
9 D2 ` D1 ∨D2 [(Ax7)]
10 D2 ∨ (C1 ∧Aj) ` D1 ∨D2 [8, 9, Proposition 3.4, (MP)]
11 C1 ∧ C2 ` D1 ∨D2 [7, 10, (Transitivity)]

And this last formula shows that Σj ` ∆j which is a contradiction in view of
Σj 6` ∆j .
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All that remains is to show that Σ′ is deductively closed. Suppose that
Σ′ ` A but A 6∈ Σ′. Since Σ′ ∪∆′ = Form, we have A ∈ ∆′, and thus Σ′ ` ∆′.
But this is a contradiction. 2
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