Skip to main content
Log in

Stability, Complexity and Robustness in Population Dynamics

  • Regular Article
  • Published:
Acta Biotheoretica Aims and scope Submit manuscript

Abstract

The problem of stability in population dynamics concerns many domains of application in demography, biology, mechanics and mathematics. The problem is highly generic and independent of the population considered (human, animals, molecules,…). We give in this paper some examples of population dynamics concerning nucleic acids interacting through direct nucleic binding with small or cyclic RNAs acting on mRNAs or tRNAs as translation factors or through protein complexes expressed by genes and linked to DNA as transcription factors. The networks made of these interactions between nucleic acids (considered respectively as edges and nodes of their interaction graph) are complex, but exhibit simple emergent asymptotic behaviours, when time tends to infinity, called attractors. We show that the quantity called attractor entropy plays a crucial role in the study of the stability and robustness of such genetic networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abbas L, Demongeot J, Glade N (2009) Synchrony in reaction-diffusion models of morphogenesis: applications to curvature-dependent proliferation and zero-diffusion front waves. Phil Trans Royal Soc A 367:4829–4862

    Article  Google Scholar 

  • Adhikary S, Eilers M (2005) Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol 6:635–645

    Article  Google Scholar 

  • Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483:205–208

    Article  Google Scholar 

  • Almanza G, Fernandez A, Volinia S, Cortez-Gonzalez X, Croce CM, Zanetti M (2010) Selected MicroRNAs Define cell fate determination of murine central memory CD8 T cells. PLoS ONE 5:e11243

    Article  Google Scholar 

  • Antonopoulos C, Basios V, Demongeot J, Nardone P, Thomas R (2013) Linear and nonlinear arabesques: a study of closed chains of negative 2-element circuits. Int J Bifurc Chaos 23:30033

    Article  Google Scholar 

  • Aracena J, Demongeot J, Fanchon E, Montalva M (2013) On the number of different dynamics in Boolean networks with deterministic update schedules. Math Biosci 242:188–194

    Article  Google Scholar 

  • Audin M, Babbitt DG (2008) Hamiltonian systems and their integrability. AMS, Providence

  • Baconnier PF, Pachot P, Demongeot J (1993) An attempt to generalize the control coefficient concept. J Biol Syst 1:335–347

    Article  Google Scholar 

  • Bandiera S, Matégot R, Demongeot J, Henrion-Caude A (2013) MitomiRs: delineating the intracellular localization of microRNAs at mitochondria. Free Radic Biol Med 64:12–19

    Article  Google Scholar 

  • Baum TP, Pasqual N, Thuderoz F, Hierle V, Chaume D, Lefranc MP, Jouvin-Marche E, Marche P, Demongeot J (2004) IMGT/GeneInfo: enhancing V(D)J recombination database accessibility. Nucleic Acids Res 32:51–54

    Article  Google Scholar 

  • Ben Amor H, Demongeot J, Elena A, Sené S (2008) Structural sensitivity of neural and genetic networks. L N Comp Sci 5317:973–986

    Google Scholar 

  • Bowen R (1978) On axiom a diffeomorphisms. Reg. Conf Series Math 35, AMS, Providence.

  • Broderick JA, Zamore PD (2014) Competitive endogenous RNAs cannot alter microRNA function in vivo. Mol Cell 54:711–713

    Article  Google Scholar 

  • Cinquin O, Demongeot J (2002a) Positive and negative feedback: striking a balance between necessary antagonists. J Theor Biol 216:229–241

    Article  Google Scholar 

  • Cinquin O, Demongeot J (2002b) Positive and negative feedback: mending the ways of sloppy systems. C R Biol 325:1085–1095

    Article  Google Scholar 

  • Cohen JE, Newman CM (1985) When will a large complex system be stable? J Theor Biol 113:153–156

    Article  Google Scholar 

  • Cosnard M, Demongeot J (1985a) Attracteurs: une approche déterministe. C R Acad Sci Maths Série I 300:551–556

    Google Scholar 

  • Cosnard M, Demongeot J (1985b) On the definitions of attractors. Lect Notes Math 1163:23–31

    Article  Google Scholar 

  • Cosnard M, Goles E (1997) Discrete states neural networks and energies. Neural Netw 10:327–334

    Article  Google Scholar 

  • Cosnard M, Goles E, Moumida D (1988) Bifurcation structure of a discrete neuronal equation. Discret Appl Math 21:21–34

    Article  Google Scholar 

  • Demetrius L (1978) Adaptive value, entropy and survivorship curves. Nature 275:213–214

    Article  Google Scholar 

  • Demetrius L, Ziehe M (2007) Darwinian fitness. Theor Popul Biol 72:323–345

    Article  Google Scholar 

  • Demetrius L, Gundlach M, Ochs G (2004) Complexity & demographic stability in population models. Theor Popul Biol 65:211–225

    Article  Google Scholar 

  • Demongeot J (1985) Random automata and random fields. In: Demongeot J et al (eds) Dynamical systems and cellular automata. Academic Press, New York, pp 99–110

    Google Scholar 

  • Demongeot J (1987) Random automata. In: Soulie Fogelman F (ed) Automata networks in computer science: theory & applications. Princeton University Press, Princeton, pp 47–57

    Google Scholar 

  • Demongeot J (2009) Biological boundaries and biological age. Acta Biotheor 57:397–419

    Article  Google Scholar 

  • Demongeot J, Demetrius L (1989) La dérive démographique et la sélection naturelle. Population 2:231–248

    Google Scholar 

  • Demongeot J, Fricot J (1986) Random fields and renewal potentials. Springer NATO ASI Series in Systems & Computer Science F 20:71–84

  • Demongeot J, Jacob C (1989) Confineurs: une approche stochastique. C R Acad Sci Série I 309:699–702

    Google Scholar 

  • Demongeot J, Jacob C (1990) Confiners, stochastic equivalents of attractors. In: Tautu P (ed) Stochastic modelling in biology. Relevant mathematical concepts and recent applications. World Scientific Publication, Singapore, pp 309–327

    Google Scholar 

  • Demongeot J, Sené S (2008) Asymptotic behaviour and phase transition in regulatory networks. II Simulations. Neural Netw 21:971–979

    Article  Google Scholar 

  • Demongeot J, Sené S (2011) The singular power of the environment on nonlinear Hopfield networks. In: Proceedings CMSB’11. ACM Proceedings, New York, pp 55–64

  • Demongeot J, Sené S (2014) Nonlinear threshold Boolean automata networks and phase transitions. arxiv.org/pdf/1011.4675

  • Demongeot J, Waku J (2012a) Robustness in biological regulatory networks. I Mathematical approach. C R Math 350:221–224

    Article  Google Scholar 

  • Demongeot J, Waku J (2012b) Robustness in biological regulatory networks. II Application to genetic threshold Boolean random regulatory networks (getBren). C R Math 350:225–228

    Article  Google Scholar 

  • Demongeot J, Waku J (2012c) Robustness in biological regulatory networks. III Application to genetic networks controlling the morphogenesis. C R Math 350:289–292

    Article  Google Scholar 

  • Demongeot J, Waku J (2012d) Robustness in biological regulatory networks. IV Application to genetic networks controlling the cell cycle. C R Math 350:293–298

    Article  Google Scholar 

  • Demongeot J, Aracena J, Thuderoz F, Baum TP, Cohen O (2003) Genetic regulation networks: circuits, regulons and attractors. C R Biol 326:171–188

    Article  Google Scholar 

  • Demongeot J, Thellier M, Thomas R (2006a) Storage and recall of environmental signals in a plant: modelling by use of a differential (continuous) formulation. C R Biol 329:971–978

    Article  Google Scholar 

  • Demongeot J, Elena A, Weil G (2006b) Potential-Hamiltonian decomposition of cellular automata. Application to degeneracy of genetic code and cyclic codes III. C R Biol 329:953–962

    Article  Google Scholar 

  • Demongeot J, Glade N, Forest L (2007) Liénard systems and potential-Hamiltonian decomposition. I methodology. C R Math 344:121–126

    Article  Google Scholar 

  • Demongeot J, Elena A, Sené S (2008a) Robustness in neural and genetic networks. Acta Biotheor 56:27–49

    Article  Google Scholar 

  • Demongeot J, Jezequel C, Sené S (2008b) Asymptotic behaviour and phase transition in regulatory networks. I theoretical results. Neural Networks 21:962–970

    Article  Google Scholar 

  • Demongeot J, Ben Amor H, Gillois P, Noual M, Sené S (2009a) Robustness of regulatory networks. A generic approach with applications at different levels: physiologic, metabolic and genetic. Int J Mol Sci 10:4437–4473

    Article  Google Scholar 

  • Demongeot J, Drouet E, Moreira A, Rechoum Y, Sené S (2009b) Micro-RNAs: viral genome and robustness of the genes expression in host. Phil Trans Royal Soc A 367:4941–4965

    Article  Google Scholar 

  • Demongeot J, Goles E, Morvan M, Noual M, Sené S (2010) Attraction basins as gauges of environmental robustness in biological complex systems. PLoS ONE 5:e11793

    Article  Google Scholar 

  • Demongeot J, Elena A, Noual M, Sené S (2011a) Random Boolean networks and attractors of their intersecting circuits. In: Barolli L et al (eds) Proceedings AINA’11. IEEE Press, New York, pp 483–487

    Google Scholar 

  • Demongeot J, Henrion-Caude A, Lontos A, Promayon E (2011b) General architecture of a genetic regulation network. Applications to embryologic and immunologic control. In: Lenaerts T et al (eds) Proceedings ECAL’11. MIT Press, Cambridge, MA, pp 1–8

    Google Scholar 

  • Demongeot J, Elena A, Noual M, Sené S, Thuderoz F (2011c) “Immunetworks”, attractors & intersecting circuits. J Theor Biol 280:19–33

    Article  Google Scholar 

  • Demongeot J, Noual M, Sené S (2012) Combinatorics of Boolean automata circuits dynamics. Discret Appl Math 160:398–415

    Article  Google Scholar 

  • Demongeot J, Cohen O, Doncescu A, Henrion-Caude A (2013a) MitomiRrs and energetic regulation. Proceedings AINA’13. IEEE Press, New York, pp 1501–1508

    Google Scholar 

  • Demongeot J, Hazgui H, Vuillerme N (2013b) MicroRNAs: unspecific inhibitory regulation in immunologic control and in mitochondrial respiration. In: Barolli L et al (eds) Proceedings AINA’13. IEEE Press, New York, pp 1509–1516

    Google Scholar 

  • Demongeot J, Vallejos R, Barria M, Taramasco C (2013c) Information design of biological networks: application to genetic, immunologic, metabolic and social network. In: Barolli L et al (eds) Proceedings AINA’13. IEEE Press, New York, pp 1533–1540

    Google Scholar 

  • Demongeot J, Hazgui H, Bandiera S, Cohen O, Henrion-Caude A (2013d) MitomiRs, ChloromiRs and general modelling of the microRNA inhibition. Acta Biotheor 61:367–383

    Article  Google Scholar 

  • Demongeot J, Cohen O, Henrion-caude A (2013e) MicroRNAs and robustness in biological regulatory networks. A generic approach with applications at different levels: physiologic, metabolic, and genetic. Springer Series in Biophysics, vol 16. pp 63–114

  • Demongeot J, Hazgui H, Escoffier J, Arnoult C (2014) Inhibitory regulation by microRNAs and circular RNAs. In: Romero R et al (eds) Medicon’13 IFBME Proceedings 41. Springer, New York, pp 722–725

    Google Scholar 

  • Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M (2014) Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. Mol Cell 54:766–776

    Article  Google Scholar 

  • Dimova DK, Dyson NJ (2005) The E2F transcriptional network: old acquaintances with new faces. Oncogene 24:2810–2826

    Article  Google Scholar 

  • Donsker MD, Varadhan SRS (1975) Asymptotic evaluation of certain Markov process expectations for large time. Commun Pure Appl Math 28:1–47

    Article  Google Scholar 

  • Elena A, Demongeot J (2008) Interaction motifs in regulatory networks and structural robustness. In: Barolli L et al (eds) Proceedings ARES-CISIS’08. IEEE Press, New York, pp 682–686

    Google Scholar 

  • Fogelman-Soulié F, Goles E, Weisbuch G (1982) Specific roles of the different Boolean mappings in random networks. Bull Math Biol 44:715–730

    Google Scholar 

  • Freidlin MI, Wentzell AD (1984) Random perturbations of dynamical systems. Springer, New York

    Book  Google Scholar 

  • Glade N, Elena A, Fanchon E, Demongeot J, Ben Amor H (2011) Determination, optimization and taxonomy of regulatory networks. The example of A thaliana flower morphogenesis. In: Barolli L et al (eds) Proceedings AINA’11. IEEE Press, New York, pp 488–494

    Google Scholar 

  • Goldstein S (1981) Entropy increase in dynamical systems. Israel J Math 38:241–256

    Article  Google Scholar 

  • Goldstein S, Penrose O (1981) A nonequilibrium entropy for dynamical systems. J Stat Phys 24:325–343

    Article  Google Scholar 

  • Goles E (1981). Sequential iteration of threshold functions. Springer Series in Synergetics 9:64–70

  • Goles E (1985) Dynamics of positive automata networks. Theoretical Comp Sci 41:19–32

    Article  Google Scholar 

  • Goles E (1986) Antisymmetric neural networks. Discret Appl Math 13:97–100

    Article  Google Scholar 

  • Goles E, Olivos J (1980) Comportement itératif des fonctions à multiseuil. Inf Control 45:300–313

    Article  Google Scholar 

  • Goles E, Fogelman-Soulie F, Pellegrin D (1985) Decreasing energy functions as a tool for studying threshold networks. Discret Appl Math 12:261–277

    Article  Google Scholar 

  • Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK, Kjems J (2013) Natural RNA circles function as efficient microRNA sponges. Nature 495:384–388

    Article  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW (1999) From molecular to modular cell biology. Nature 402:47–52

    Article  Google Scholar 

  • Hastings HM (1982) The May-Wigner stability theorem for connected matrices. Bull Am Math Soc 7:387–388

    Article  Google Scholar 

  • He L, He X, Lim LP, de Stanchina E, Xuan Z, Liang Y, Xue W, Zender L, Magnus J, Ridzon D, Jackson AL, Linsley PS, Chen C, Lowe SW, Cleary MA, Hannon GJ (2007) A microRNA component of the p53 tumour suppressor network. Nature 447:1130–1134

    Article  Google Scholar 

  • Hermeking H, Eick D (1994) Mediation of c-Myc-induced apoptosis by p53. Science 265:2091–2093

    Article  Google Scholar 

  • Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Natl Acad Sci 79:2554–2558

    Article  Google Scholar 

  • Ivanov VN, Hei TK (2005) Combined treatment with EGFR inhibitors and arsenite upregulated apoptosis in human EGFR-positive melanomas: a role of suppression of the PI3 K-AKT pathway. Oncogene 24:616–626

    Article  Google Scholar 

  • Jensen JH, Ellis DPW, Christensen MG, Jensen SH (2007) Evaluation of Distance Measures Between Gaussian Mixture Models of MFCCs. In: Dixon S et al (eds) Proceedings ISMIR’07. Austrian Computer Society, Wien, pp 107–108

    Google Scholar 

  • Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10:2703–2734

    Article  Google Scholar 

  • Krasnoselski MA (1968) Translation along trajectories of differential equations. AMS, Providence

    Google Scholar 

  • Lesne A (2008) Robustness: confronting lessons from physics and biology. Biol Rev Camb Philos Soc 83:509–532

    Google Scholar 

  • Liapunov AM (1992) The general problem of the stability of motion. Taylor & Francis, London

    Google Scholar 

  • Liu M, Wang K (2011) Global stability of a nonlinear stochastic predator–prey system with Beddington–DeAngelis functional response. Commun Nonlinear Sci Numer Simul 16:1114–1121

    Article  Google Scholar 

  • Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495:333–338

    Article  Google Scholar 

  • Meyn SP (2008) Control techniques for complex networks. Cambridge University Press, New York

    Google Scholar 

  • Moriya H, Shimizu-Yoshida Y, Kitano H (2006) In Vivo Robustness Analysis of Cell Division Cycle Genes in Saccharomyces cerevisiae. PLoS Genet 2:1034–1045

    Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10:111–122

    Google Scholar 

  • Pelengaris S, Khan M, Evan G (2002) c-MYC: more than just a matter of life and death. Nat Rev Cancer 2:764–776

    Article  Google Scholar 

  • Reder C (1988) Metabolic control theory: a structural approach. J Theor Biol 135:175–201

    Article  Google Scholar 

  • Ribeiro CS, Rosseti L, Vallejos R (2009) On the use of run time distributions to evaluate and compare stochastic local search algorithms. Lect Notes Comput Sci 5752:16–30

    Article  Google Scholar 

  • Ribeiro CS, Rosseti L, Vallejos R (2012) Exploiting run time distributions to compare sequential and parallel stochastic local search algorithms. J Glob Optim 54:405–429

    Article  Google Scholar 

  • Schey HM (1992) Div, Grad, Curl, and All That. Norton, New York

    Google Scholar 

  • Sheaff RJ, Groudine M, Gordon M, Roberts JM, Clurman BE (1997) Cyclin E-CDK2 is a regulator of p27Kip1. Genes & Dev 11:1464–1478

    Article  Google Scholar 

  • Shieh SF (2011) Eigenvalue estimates using the Kolmogorov-Sinaï entropy. Entropy 13:2036–2048

  • Suzuki HI, Miyazono K (2010) Dynamics of microRNA biogenesis: crosstalk between p53 network and microRNA processing pathway. J Mol Med 88:1085–1094

    Article  Google Scholar 

  • Thébault E, Fontaine C (2010) Stability of ecological communities the architecture of mutualistic & trophic networks. Science 329:853–856

    Article  Google Scholar 

  • Thom R (1975) Structural stability and morphogenesis. Benjamin, Reading

    Google Scholar 

  • Tonnelier A, Meignen S, Bosch H, Demongeot J (1999) Synchronization and desynchronization of neural oscillators: comparison of two models. Neural Netw 12:1213–1228

    Article  Google Scholar 

  • Tuljapurkar S (1993) Entropy and convergence in dynamics and demography. J Math Biol 31:253–271

    Article  Google Scholar 

  • Waddington CH (1942) Canalization of development and the inheritance of acquired characters. Nature 150:563–565

    Article  Google Scholar 

  • Wainrib G, Touboul J (2013) Topological and dynamical complexity of random neural networks. Phys Rev Lett 110:118101

    Article  Google Scholar 

  • Weaver DC, Workman CT, Stormo GD (1999) Modeling regulatory networks with weight matrices. Pac Symp Biocomp 4:112–123

    Google Scholar 

  • Wentzell AD, Freidlin MI (1970) On small random perturbations of dynamical systems. Rus Math Surv 25:1–55

    Google Scholar 

  • Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131:146–159

    Article  Google Scholar 

Download references

Acknowledgments

We thank VHP NoE (EC) and MEC Grant from CONICYT (Chile) for financially aiding our research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Demongeot.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demongeot, J., Hazgui, H., Ben Amor, H. et al. Stability, Complexity and Robustness in Population Dynamics. Acta Biotheor 62, 243–284 (2014). https://doi.org/10.1007/s10441-014-9229-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10441-014-9229-5

Keywords

Navigation