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Summary (English)

Chapter 1 constitutes an introduction to Gentzen calculi from two perspectives,
logical and philosophical. It introduces the notion of generalisations of Gentzen
sequent calculus and the discussion on properties that characterize good inferen-
tial systems. Among the variety of Gentzen-style sequent calculi, I divide them
in two groups: syntactic and semantic generalisations. In the context of such
a discussion, the inferentialist philosophy of the meaning of logical constants is
introduced, and some potential objections – mainly concerning the choice of
working with semantic generalizations – are addressed. Finally, I’ll introduce
the case studies that I’ll be dealing with in part II.
Chapter 2 is concernedwith the origins and development of Jaśkowski’s discus-
sive logic. The main idea of this chapter is to systematize the various stages of
the development of discussive logic related researches from twodifferent angles,
i.e., its connections to modal logics and its proof theory, by highlighting virtues
and vices.
Chapter 3 focuses on the Gentzen-style proof theory of discussive logic, by pro-
viding a characterization of it in terms of labelled sequent calculi.
Chapter 4 deals with the Gentzen-style proof theory of relevant logics, again
by employing the methodology of labelled sequent calculi. This time, instead
of working with a single logic, I’ll deal with a whole family of them. More
precisely, I’ll study in terms of proof systems those relevant logics that can
be characterised, at the semantic level, by reduced Routley-Meyer models, i.e.,
relational structures with a ternary relation between states and a unique base
element.
Chapter 5 investigates the proof theory of a modal expansion of intuitionistic
propositional logic obtained by adding an ‘actuality’ operator to the connec-
tives. This logic was introduced also using Gentzen sequents. Unfortunately,
the original proof system is not cut-free. This chapter shows how to solve this
problem by moving to hypersequents.
Chapter 6 concludes the investigations and discusses the future of the research
presented throughout the dissertation.
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Zusammenfassung (Deutsch)

Kapitel 1 stellt eine Einführung in die Gentzen-Kalküle aus logischer und
philosophischer Sicht dar. Zudem führt es indenBegriffderGeneralisierungdes
Gentzen’schen Sequenzkalküls und in die Diskussion über Eigenschaften ein,
die gute Inferenzsystemekennzeichnen. Unter derVielzahl vonGentzen-artigen
Sequenzialkalkülen unterteile ich diese in zwei Gruppen: die syntaktische und
die semantische Generalisierung. Im Kontext dieser Erörterung wird die infer-
entialistische Philosophie der Bedeutung logischer Konstanten eingeführt und
mögliche Widersprüche - vor allem die Entscheidung zur Arbeit mit semantis-
chen Generalisierungen betreffend- werden aufgezeigt. Schließlich stelle ich die
Fallstudien vor, mit denen ich mich in Teil II genauer auseinandersetzen werde.
Kapitel 2 befasst sich mit den Ursprüngen und der Entwicklung von Jaśkowskis
diskursiver Logik. Der Hauptgedanke dieses Kapitels ist es, die verschiedenen
EntwicklungsstufenderdiskursivenLogik aus zwei verschiedenenBlickwinkeln
zu systematisieren, nämlich ihren Verbindungen zur Modallogik und ihrer Be-
weistheorie, wobei Vorteile und Schwächen aufgezeigt werden.
Kapitel 3 konzentriert sich auf die Beweistheorie der diskursiven Logik im
Gentzen-Stil, indem es eineCharakterisierung dieser Theorie in Formvon etiket-
tierten Sequentenkalkülen anbietet.
Kapitel 4 befasst sich mit der Gentzen’schen Beweistheorie der relevanten
Logiken unter Anwendung der Methodologie der gelabelten Sequenzkalküle.
In diesem Fall arbeite ich jedoch nicht mit einer einzelnen Logik, sondern mit
einer Familie logischer Systeme. Ich werde jene relevanten Logiken auf ihre Be-
weistheorie untersuchen, die auf semantischer Ebene durch reduzierte Routley-
Meyer Modelle charakterisiert werden können, d.h. relationale Strukturen mit
einer ternären Beziehung zwischen Zuständen und einem eindeutigen Basise-
lement aufweisen.
In Kapitel 5 wird die Beweistheorie einer modalen Erweiterung der intuitionis-
tischen Aussagenlogik erforscht, die durch das Hinzufügen eines “Aktualitäts”-
Operators zu den Konnektiven entsteht. Diese Logik wurde ebenfalls unter
Verwendung von Gentzen-Sequenzen eingeleitet. Leider ist ein solches Beweis-
system nicht schnittfrei. Daher wird in diesem Kapitel aufgezeigt, wie dieses
Problem gelöst werden kann.
Kapitel 6 schließt die Untersuchungen ab und stellt Überlegungen über die
Zukunft der in meiner Dissertation vorgestellten Forschung an.
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List of published parts

The published parts of the dissertation are the following ones:

1. Chapters 2 and 3 are based on my paper: “Discussive Logic. A Short
History of the First Paraconsistent Logic”.1

2. Chapter 4 is based on my article: “Modular labelled calculi for relevant
logics”.2

3. Chapter 5 is based on my papers: “A Cut-free Hypersequent Calculus
for Intuitionistic Modal Logic IS5”3 and “A note on Cut-elimination for
intuitionistic logic with ‘actuality”’.4

I am the only author of all aforementioned papers.

1In: Ingolf Max and Jens Lemanski (eds.), Historia Logicae, vol. 1, College Publications,
London (Forthcoming), pp. 267–296. Accepted Nov. 2021.

2In: The Australasian Journal of Logic Vol. 20, No. 1 (2023): 47–87.
3In: Butler, A. (ed.), Proceedings of the 18th International Workshop of Logic and Engineering of

Natural Language Semantics 18 (LENLS18), JSAI-isAI2021 (2021) pp. 217–230.
4Currently under review for The Logic Journal of the IGPL. Special issue on Non-classical Modal

and Predicate Logics.
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Chapter 0

Foreword

In the last few decades, many generalizations of sequent calculi have been pro-
posed in order to copewith the flourishing of non-classical logics. This tradition,
which finds its roots in Gentzen’s doctoral dissertation, has paved the way to a
huge literature and various results. Nonetheless, there still are problems and is-
sues concerning philosophical and logical aspects of generalizations of sequent
calculi that need to be further developed and tackled:

“There are many logical systems that logicians have studied through
the years. Most of them were obtained by constructing a set of ax-
ioms for Hilbert-type systems, and even more, by tinkering with
the axioms of such systems. It is our strong belief that those logi-
cal systems that might really be useful (in Artificial Intelligence or
elsewhere) should meet, first of all, two intrinsically logical criteria.
One of them is the existence of a simple semantics. The other is the
possibility of developing a corresponding good proof theory, in particular,
Gentzen-type systems with an appropriate version of the cut-elimination
theorem.” [Avr91a, pp. 244–245, Emphasis mine]

In order to supportively discuss the idea expressed by A. Avron, I’ll propose an
investigationwithin the proof theory of some non-classical logics, i.e., discussive
(Chapter 3), relevant (Chapter 4) and modal intuitionistic ones (Chapter 5). The
conceptual and philosophical side of such applications are discussed at length
in Chapter 1.
Before entering the discussion, it is good to recall the words stated by A. S.
Troelstra and H. Schwichtenberg:

“in dealing with Gentzen systems, no particular variant is to be
preferred over all the others; one should choose a variant suited
for the purpose at hand.” [TS00, p. 51]

Taking these words as inspiration, throughout my investigation, I’ll proceed
according to the following two methodological leitmotivs:

1. Practice-first view. Anyphilosophical understandingof proof theory should
be practice-oriented, i.e., the concrete applications of proof theoretic struc-
tures should be the primary source for philosophical reflections on proof
theory.
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CHAPTER 0. FOREWORD

2. Non-absolutistic approach. There’s no such thing as the correct inferential
system: different purposes and logics motivate the choice of different
sequent systems.
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Part I

Logical, philosophical and historical

preliminaries
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Chapter 1

Proof theory as logical and

philosophical subject

Layout of the chapter. This chapter is meant to introduce and delimit the field
of inquiry of the dissertation. After having introduced Gentzen’s work, I’ll
specifically discuss the notion of generalisations of the sequent calculus. The
discussion will be mainly focused on determining those properties that char-
acterize good inferential systems. To be precise, I’ll divide generalizations of
Gentzen-style sequent calculi in two groups: syntactic and semantic generalisa-
tions. Moreover, the inferentialist philosophy of the meaning of logical constants
will be introduced, and some potential objections will be addressed. In the last
part of the chapter, I’ll describe the case studies that I’ll be dealing with in part
II.

1.1 Gentzen’s calculi in a nutshell

Proofs, especially mathematical and logical ones, have occupied the mind of
philosophers since ever. Nonetheless, the creation of the subject nowadays
known under the label proof theory is a rather modern achievement. Its founda-
tion is usually tracked back to theworks of theGermanmathematicianD.Hilbert
and his research program for the foundations of mathematics, i.e., Hilbert’s pro-
gram. Famously, he wrote:

“[...] we must make the proofs as such the object of our investiga-
tion; we are thus compelled to a sort of proof theory which studies
operations with the proofs themselves. [...] proof itself is something
concrete and displayable; the contentual reflections follow the proofs
themselves. Just as the physicist investigates his apparatus and the
astronomer investigates his location; just as the philosopher practises
the critique of reason; so, in my opinion, the mathematician has to
secure his theorems by a critique of his proofs, and for this he needs
proof theory.” [Hil05, pp. 1127–1128]

Hilbert viewed the axiomatic method as the crucial tool to develop an adequate
analysis of logical and mathematical proofs. The central idea of Hilbert’s pro-
gram was to ground all existing theories in a recursive, complete set of axioms,
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CHAPTER 1. PROOF THEORY: LOGIC AND PHILOSOPHY

andprovide a consistencyproof for all such sets. However, as it iswell-known, the
program failed and its failure is due to Kurt Gödel’s incompleteness theorems
(1931), which, roughly, showed that any consistent theory that is sufficiently
strong to express some arithmetic truths, cannot prove its own consistency.
However, the failure of Hilbert’s program did not discourage logicians from
engaging in proof theory: modified versions of Hilbert’s program emerged and
research on related topics has been carried out. Indeed, in parallel to the rise
and fall of Hilbert’s program, S. Jaśkowski1 and G. Gentzen2, independently,
laid the basis of so-called structural and ordinal proof theory.3 Their central idea
was to use systems including specific inference rules, rather than relying on the
axiomatic method advocated by Hilbert’s program.
For the purposes of my work, it suffices to gently introduce Gentzen’s logical
work, its philosophical meaning, and move to the contemporary approaches
towards proof theory, always keeping in mind both aspects, logical and philo-
sophical.

Natural deduction. Gentzen, motivated by the aim of proving the consistency
of arithmetic, elaborated a system in which logical reasoning is expressed by
inference rules closely related to the “natural” way of reasoning. Specifically,
it was noticed that reasoning from assumptions in mathematical logic occupies an
important place and that it, therefore, plays a central role in our understanding
of the mechanism of proofs:

“The inference ruleswere designed tomodel the patterns of ordinary
reasoning that mathematicians carry out in proving results, such as
hypothetical proofs or reasoning by cases.” [MGZ21, p. 8]

Roughly, to formalize such an intuition, logical constants (propositional opera-
tors, quantifiers) are no longer characterised in terms of axioms, but in terms of
inferential rules that permit to either introduce or eliminate them. For example,
some of the introduction rules for classical (propositional) logic are the following
ones4:

A1
...
⊥

1 I¬
¬A

A B
I∧

A ∧ B
A

I∨1
A ∨ B

B
I∨2

A ∨ B

A1
...

B
1 I⊃

A ⊃ B

whereas the elimination rules are:
1See Jaśkowski’s paper [Jaś34], as well as the remarks in [PH23].
2See [Gen35a; Gen35b], as well as their English translation, namely, Investigations into logical

deduction [Gen69b] (the version included the Collected Papers of G. Gentzen edited by M. E. Szabo
[Gen69a]). A comparison between Jaśkowski’s and Gentzen’s approaches can be found in
[PH14].

3“Gentzen’s work contains the beginnings of what we call structural proof theory [...], as well
as ordinal proof theory.” [MGZ21, p. 10]

4If not stated differently, ¬,∧,∨, ⊃ represent negation, conjunction, disjunction and material
implication, respectively.
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CHAPTER 1. PROOF THEORY: LOGIC AND PHILOSOPHY

¬A A
E¬⊥

A ∧ B
E∧1

A
A ∧ B

E∧2
B A ∨ B

A1
...

C

B2
...

C
1,2 E∨

C

A ⊃ B A
E⊃

B

Notice that I¬, I⊃ and E∨ deal with the notion of hypothetical derivation. In the
case of I⊃, the intuition standing behind is: if there’s a way of obtaining B from
the presence of A, then a statement of the form “if A, then B” can be concluded.
More formally, if there’s a derivation that concludes B from an assumption A,
thenA ⊃ B can be derived (I¬ is just a special case of the rule I⊃, as¬A � A ⊃ ⊥).
Similarly for E∨: C is derivable from A ∨ B, if there are derivations of C from
A and C from B. Additionally, let me remark that in both rules, I⊃ and E∨,
we need to discharge the assumption(s) in order to apply the rule under scope.5
As a concrete example, to see how derivations look like in a natural deduction
system consider the following proof of A ⊃ (B ⊃ (A ∧ B)):

A1 B2
I∧

A ∧ B
2 I⊃

B ⊃ (A ∧ B)
1 I⊃

A ⊃ (B ⊃ (A ∧ B))
where the discharge of assumptions A and B is denoted by numbers 1 and 2,
respectively.
Importantly, when constructing proofs one can easily make some inferences
which are unnecessary to obtain the desired conclusion. Aware of this possi-
bility, Gentzen was not only interested in elaborating an adequate system of
inference rules, but also in showing that everything which may be proved in it,
may be proved in the most straightforward and direct way. In Gentzen’s own
words:

“No concepts enter into the proof other than those contained in its
final result, and their use was therefore essential to the achievement
of the result.” [Gen69b, p. 69]

In particular, unnecessarymoves, which are often called detours, occur in deriva-
tions when, both, an introduction rule for some logical constant is used, and
when the conclusion of such an introduction is in turn used as a premise for
the application of the corresponding elimination rule. Nevertheless, unneces-
sary moves are dispensable and it is possible to transform derivations including
detours into derivations without detours. This follows by observing that, in
derivations with detours, the final conclusion is either already somewhere in
the proof or may be directly deduced from premises of the introduction rule.
As an example, consider the following transformation:

5We point out that Gentzen’s approach is not the only one and that the notion of discharge
just mentioned was criticized, for example, in [NvP01, p. 11] and [TS00, pp. 43-44]. For surveys
on other approaches one can see, e.g., [PH12; PH23].
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CHAPTER 1. PROOF THEORY: LOGIC AND PHILOSOPHY

A1
...

B
1 I⊃

A ⊃ B

...
A

E⊃
B

converts into

...
A...
B

The explanation can be given as follows: if one deduces A ⊃ B on the basis
of I⊃ and then, by E⊃, deduces B from A ⊃ B and A, then it is simpler to
derive B directly from A. Notice that the existence of such a derivation is
guaranteed because it is a subproof of the proof of A ⊃ B. More precisely, such
a proof without detours is called normal. As a consequence, a natural deduction
systems is said to be normalizable just in case a procedure that transforms all
derivations into normal form can be actually given.
Finally, onmore philosophical notes, onemightwonder, why the rules displayed
above possess a certain shape and what’s the idea that they’re communicating.
To answer this question, it’s worth reading Gentzen’s own opinion:

“The introductions represent, as it were, the ‘definitions’ of the sym-
bols concerned, and the eliminations are no more, in the final anal-
ysis, than the consequences of these definitions. This fact may be
expressed as follows: In eliminating a symbol, we may use the for-
mula with whose terminal symbol we are dealing only ‘in the sense
afforded it by the introduction of that symbol’.” [Gen69b, p. 80]

These words greatly influenced an important part of the philosophical under-
standing of proof theory and, indeed, have paved the way to so-called logical
inferentialism6, that is, a philosophical position claiming that the meaning of log-
ical constants is given, not by identifying some objects as their meaning, but by
stating the rules for their use in inferences7. Accordingly, rules usually state:

1. the grounds for asserting propositions – the conditions under which such
assertions can be inferred.

2. the consequences of the asserted propositions – what can be inferred from
asserting them.

As remarked byGentzen himself, indeed, the grounds for a constant to be derived
are spelled out in its introduction rule, while the consequences thereof are given
by the corresponding elimination rule. I’ll come back to logical inferentialism
in the next few pages.
Although the idea of a normal proof is rather simple to grasp it is not so simple
to prove that all derivations can be converted into normal proof. In fact for
many natural deduction systems such a result is not available yet. Therefore,

6To be precise, I’ll discuss only proof theoretic logical inferentialism. For other approaches,
one might consult [Gar13].

7TheMeaning is Use perspective is sometimes referred to as an anti-realistic conception of the
meaning of logical constants (as opposed to a realistic – usually, model-theoretic – conception
of meaning): “Gentzen-style proof theory is usually associated with a certain ‘anti-realistic’
philosophy of meaning” [Wan98, p. 7]. For an interesting reconstruction consider [NvP15, pp.
261-268].
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CHAPTER 1. PROOF THEORY: LOGIC AND PHILOSOPHY

Gentzen, well aware of the limitations of natural deduction systems, always
motivated by the desire to establish the consistency of arithmetic, introduced a
second system, called sequent calculus, and proved for it the famous Hauptsatz
(the cut-elimination theorem).

Sequent calculus. Before dealing with some philosophical aspects of sequent
systems, letme introduce their formalism. A sequent is an object of the following
form:

Γ⇒ ∆
where, ⇒ is referred to as sequent arrow and left- and right-hand sides of se-
quents are usually referred to as antecedents and succedents (or consequents),
respectively. Finally, Γ,∆ are used to denote collections of formulas – usually,
sets, multisets or lists. The differences between such structures can be given as
follows:

1. In lists both the multiplicity and the order of elements counts.
2. In multisets the multiplicity of elements matters, but not their order.
3. In sets neither the multiplicity nor the order of elements matters.

If Γ,∆ are treated as either multisets or sets, it was proposed to understand a
sequent Γ⇒ ∆ as the following object-language formula:

∧Γ ⊃ ∨∆

where, ∧Γ and ∨∆ stand for conjunctions and disjunctions of formulas, respec-
tively. In this case, writing A, Γ can be understood as shorthand for {A} ∪ Γ.
Instead, if Γ is treated as list, the comma in the notation A, Γ is interpreted as
concatenation between a formula A and Γ. Accordingly, if ∆ is a list as well,
then writing Γ,∆ denotes a concatenation between two lists of formulas. Nev-
ertheless, their significance can be understood also in terms of model-theoretic
validity. Without disentangling all details, it might be said:

� Γ⇒ ∆ iff either, for some A ∈ Γ, 2 A, or, for some A ∈ ∆, � A.

In other words, a sequent is valid just in case either some formula in the an-
tecedent is false, or some formula in the succedent is true.
Working with sequent-style structures offers an alternative way of keeping track
of assumptions and discharges thereof. To be clear, in a sequent Γ ⇒ C, the
conclusion C is dependent from the assumptions contained in Γ, which are
listed on the same line. Moreover, in sequent calculi, we no longer work with
elimination rules, but instead we deal with two kinds of introduction rules, i.e.,
those introducing a constant on the right and those introducing it on the left.
As an example, let’s consider the right rules of Gentzen’s system for classical
propositional logic first:

A, Γ⇒ ∆
R¬

Γ⇒ ∆,¬A
Γ⇒ ∆,A Γ⇒ ∆, B

R∧
Γ⇒ ∆,A ∧ B

Γ⇒ ∆,A
R∨1

Γ⇒ ∆,A ∨ B
Γ⇒ ∆, B

R∨2
Γ⇒ ∆,A ∨ B

A, Γ⇒ ∆, B
R⊃

Γ⇒ ∆,A ⊃ B
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CHAPTER 1. PROOF THEORY: LOGIC AND PHILOSOPHY

And the left rules correspond to the following ones:

Γ⇒ ∆,A
L¬

¬A, Γ⇒ ∆
A, Γ⇒ ∆

L∧1
A ∧ B, Γ⇒ ∆

B, Γ⇒ ∆
L∧2

A ∧ B, Γ⇒ ∆

A, Γ⇒ ∆ B, Γ⇒ ∆
L∨

A ∨ B, Γ⇒ ∆
Γ⇒ ∆,A B,Σ⇒ Π

L⊃
A ⊃ B, Γ,Σ⇒ ∆,Π

where, Γ,Σ,∆,Π stand for lists of formulas. L⊃ is stated in a context-free form,
whereas all other rules are called context-sharing8. In sequent calculi, in addition
to rules allowing one to introduce a connective, there’s a group of rules, called
structural, acting directly on the structure of derivations. For a complete presen-
tation of Gentzen’s calculus, in addition to the left and right rules mentioned
above, one needs to include the following structural rules as well:

Γ⇒ ∆
rw

Γ⇒ ∆,A
Γ⇒ ∆

lw
A, Γ⇒ ∆

Γ⇒ ∆,A,A
rc

Γ⇒ ∆,A
A,A, Γ⇒ ∆

lc
A, Γ⇒ ∆

Γ⇒ ∆,A, B
rp

Γ⇒ ∆, B,A
A, B, Γ⇒ ∆

lp
B,A, Γ⇒ ∆

Γ⇒ ∆,A A,Σ⇒ Π
cut

Γ,Σ⇒ ∆,Π
Plus, the following axiom or initial sequent: A ⇒ A. The resulting system was
termed LK, where K identifies classical logic (from the German word klassische).
Derivations in sequent calculi are constructed backwards. Such process is often
referred to as root-first proof search. Intuitively, by starting from the conclusion,
we decompose each sequent, through application of logical and structural rules,
until we reach initial sequents. At this point, the derivation terminates and,
the resulting construction corresponds to a proof of the decomposed sequent.
Intuitively, this gives us back so-called analytic proofs, i.e., structures in which
complex formulas are reduced to simpler ones in a logically significant way,
no matter how long the inferential process may be. In more logical terms, the
analytic decomposition process can be described by a rooted tree graph. The
roots of such trees contain the sequents wewish to prove; leaves consist of initial
sequents only. For example, a backwards derivation of A ⊃ (B ⊃ (A ∧ B)) is
given as follows:

A⇒ A
lw

B,A⇒ A
lp

A, B⇒ A
B⇒ B

lw
A, B⇒ B

R∧
A, B⇒ A ∧ B

R⊃
A⇒ B ⊃ (A ∧ B)

R⊃
⇒ A ⊃ (B ⊃ (A ∧ B))

where the application of the two-premise rule R∧ results in a branched tree,
and the presence of two initial sequents, one in each branch, allows us to stop
the proof search procedure. Hence, the resulting tree corresponds to an analytic
proof of the endsequent.

8The former rules are sometimes also called multiplicative, and the latter ones additive.
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Remark 1. To be precise, the choice of our sequent system is not arbitrary. Indeed,
the choice of a set of structural rules is sensitive to both the logic under scope and
the definition of sequents. Let’s pick up as an example intuitionistic logic. The
dispute between a classicist and an intuitionist can be put as follows. Consider
the law of exclude middle (lem), i.e.,:

A ∨ ¬A

In classical logic, lem is a theorem, and it, intuitively, says that every statement
A is either true or false. In more philosophical terms, it could be said that a
classicist endorses a position for which we know that A ∨ ¬A is true, no matter
whether we are able to establish that either A or its negation, ¬A, is true. With a
suggestive terminology, classical logic is said to allow for verification-transcendent
propositions.

“For the classicist, all propositionshave truthvalues, includingpropo-
sitionswhose truth valueswe are not in a position to ascertain. These
so-called verification-transcendent propositions must be either true
or false, even though there are no means of determining which.”
[AR09, p. 644]

Intuitionists, instead, led by the philosophical considerations of L. E. J. Brouwer9,
reject the idea that there are verification-transcendent propositions: to say that
A, or ¬A, is true, one must exhibit a construction showing its truth:

“This [conception] makes asserting the existence of mathematical
objects illegitimate unless there are proofs of the existence of specific
examples of each such object, that is to say a means of constructing
the object in finitely many steps.” [AR09, p. 642]

Anyway, by turning our attention back to proof theory, if we consider another
time the sequent-style rules for classical logic displayed above, we derive lem as
follows:

A⇒ A
R¬

⇒ A,¬A
R∨1⇒ A ∨ ¬A,¬A

R∨2⇒ A ∨ ¬A,A ∨ ¬A
rc

⇒ A ∨ ¬A

Gentzen [Gen69b] (see also [NvP01; Pao02; MGZ21]) noticed that a way to build
a successful sequent calculus for intuitionistic logic, was to impose a restriction
on the number of formulas that can appear in succedents. More precisely,
by considering single-conclusion sequents, i.e., structures where no more than
one formula is allowed to appear on the right, it is possible to get a calculus for
intuitionistic logic. The idea is simple: take the rules displayed above for classical

9Formore on Brouwer’s intuitionism see [Att20, §§3-4]. For a more general orientation on the
mathematical and logical developments of intuitionism after Brouwer, see [Iem20] and [Pos20].
Finally, an interesting philosophical introduction to intuitionistic logic, as opposed to classical
logic, can be found in [AR09, §2.1].
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logic, and delete anymultiple occurrence of formulas from the right of sequents.
Of course, the choice of handling with only single-succedent sequents affects
the presence or absence of certain structural rules as well. Gentzen’s calculus
for intuitionistic logic, for example, included the following single-succedent
structural rules:

Γ⇒
rw

Γ⇒ A
Γ⇒ C

lw
A, Γ⇒ C

A,A, Γ⇒ C
lc

A, Γ⇒ C

A, B, Γ⇒ C
lp

B,A, Γ⇒ C
Γ⇒ A A,Σ⇒ C

cut
Γ,Σ⇒ C

The resulting systems is usually acknowledged under the label LJ. To see that
lem is not a theorem in our single-succedent sequent calculus LJ, consider the
following two failed derivations:

...
⇒ A

R∨1⇒ A ∨ ¬A

...
A⇒

R¬
⇒ ¬A

R∨2⇒ A ∨ ¬A

Notice that although further structural rules may be applied, we will never be
able to reach initial sequents and conclude the derivations. The single-succedent
restriction is exactly the tool that blocks the derivability of intuitionistically
undesirable formulas, such as lem.
An additional remark, concerning the choice of structural rules, is needed. At the
beginning of this paragraph (see p. 13), I’ve specified that elements like Γ,∆, . . .
are collections of formulas, such as lists, sets or multisets. Gentzen [Gen69b]
defined calculi for both, classical and intuitionistic logic, by using finite lists of
formulas. According to such a formulation, sequents such as A, B, C ⇒ D and
C,A, B ⇒ D, are not the same sequent. Indeed, Gentzen’s choice of working
with lists, and the consequent need to permute the order of formulas, is what
motivates the presence of lp (and, for classical logic, also of rp) among the
structural rules. Differently, if one wishes to work without considering the
order of elements, but only taking into account their multiplicity, the natural
choice is to opt for multisets. In such a context lp (and, for classical logic, also
rp), can be excluded from the group of structural rules, exactly because sequents,
such as A, B, C⇒ D and C,A, B⇒ D, are the same.

Before moving ahead, let me spend some final words on a fundamental trait
of sequent systems. Consider a derivation of the following form:

...
B⇒ C,A

...
A,D ⇒ E

cut
B,D ⇒ C, E

Notice that, among all rules stated so far, cut is the only one allowing us to
get rid of formulas from derivations (A in our example above). Although its
presence simplifies significantly the length and complexity of derivations, some
considerations are needed. First of all, recall that we have to take care that
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“no concepts enter into the proof other than those contained in its final result”
[Gen69b, p. 69]. According to what cut allows us to do, then it seems that, in
sequent-style derivations, further formulas than those included in the conclu-
sion, might enter and even play a central role in the construction of tree proofs.
This is, for example, the case for the formula A displayed in the derivation
above. To avoid the possibility of constructing trees by using more formulas
than those included in the conclusion, Gentzen had the ingenious idea of show-
ing that, roughly, applications of cut can be eliminated from derivations. The
proof given by Gentzen himself in his dissertation is famously acknowledged
under the label Hauptsatz. As a consequence of his proof, Gentzen was able to
regain a system in which formulas, belonging to some endsequent, are already
to be found in some previous step of the derivation. Usually, such feature is
known as subformula property, and, along with cut-freeness, it tells us something
fundamental – both philosophically and logically speaking – of sequent-style
derivations: they’re effectively analytic.
Philosophically speaking, let me highlight the epistemic side of eliminating
cut. Usually, cut is interpreted as formally encoding reasoning by lemmas or by
subsidiary assumptions:

“Viewed as a transformation of mathematical proofs, cut- elimina-
tion corresponds to the removal of intermediate statements (lemmas)
from a proof. The mathematical interest in this transformation lies
in the fact that frequently these lemmas may contain mathematical
concepts which do not occur in the theorem that is shown. Remov-
ing these lemmas also removes these concepts therefore allowing the
computation of an elementary proof from a more abstract one. [...]
Therefore, on the mathematical level, the abstract concepts – up to
a certain degree – determine the form of the elementary argument.”
[Het10, pp. 1–2]10

So, the elimination of abstract concepts not occurring in the conclusion of a proof,
via cut, results in a more elementary construction where fewer elements are used
within the proof. Epistemologically said, in deductions, there’s no need to rely
on external information, because we can make sure that whatever is to be proved
may be derived only by relying on its internal information, i.e., by using the ele-
ments contained in it. So, in elementary derivations, nothing must be guessed,
and, whatever is needed to conclude an argument, is already given. Notice
that the terminology elementary proofs only refers to those derivations where
applications of cut have been eliminated and it does not refer to their length.
Indeed, what wemight call the epistemic gain11 of cut eliminability results, is not
related to the length of proofs, (especially given that usually cut-free deriva-
tions increase in their size), but, once again, to their analyticity. Therefore, not

10To strengthen this idea, let’s consider that, aside from mathematics, “[...] in our reasoning,
we often employ proofs in which we use subsidiary conclusions that help us to shorten the
process of demonstration. The cut-rule is nothing but the formal equivalent of this exploitation
of subsidiary conclusions” [Pog09a, p. 24].

11Although I am borrowing the terminology from N. Tennant’s book [Ten17, Ch. 7], I am
using it within a rather different logical context.
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only analytic derivations are desirable from a technical perspective, as already
recognized by Gentzen himself, but also from an epistemological point of view:
once we get rid of subsidiary assumptions, we’re in a position to know that each
conclusion can be deconstructed, and that its subelements are the only objects
occurring in the proof search process, no matter how long the resulting tree is.
Summing up: elementary proofs, for their being more direct than their abstract
counterparts, are epistemologically informative, although they might be much
longer.
Remark 2. I have introduced Gentzen’s LK and LJ, however, they are not the only
possible formulations of sequent calculi:

“Gentzen systems [...] have many variants. There is no reason for
the reader to get confused by this fact. Firstly, we wish to stress that
in dealing with Gentzen systems, no particular variant is to be preferred
over all the others; one should choose a variant suited for the purpose at
hand. Secondly, there is some method in the apparent confusion.”
[TS00, p. 51, Emphasis mine]

Given the purposes of my work, let’s consider a family of sequent systems,
usually called logical sequent calculi. Such systems are characterised by having
only logical rules as primitive. Differently, structural rules are shown to be
admissible. As the notion of admissibility will be discussed in several parts of
this work, let’s introduce it properly. A sequent-style rule:

P1 . . .Pn
r

C
is admissible in a sequent calculusL, if `L P1, . . . , `L Pn , together imply `L C. We
remark that admissibility results are often proved by induction and admissible
rules can be used in derivations like normal rules.
Among logical calculi one finds, for example, the famous systems known as G3c

(for classical logic) and G3i (for intuitionistic logic). The former is formulated
by including atomic initial sequents of the form p , Γ ⇒ ∆, p (which can be
generalized to compound formulas A, as explained below). Moreover, R∨i , L∧i
(i � 1, 2) and L⊃ are included in their additive forms:

Γ⇒ ∆,A, B
R∨

Γ⇒ ∆,A ∨ B
A, B, Γ⇒ ∆

L∧
A ∧ B, Γ⇒ ∆

Γ⇒ ∆,A B, Γ⇒ ∆
L⊃

A ⊃ B, Γ⇒ ∆
G3i is, similarly to LJ, obtained by restricting the consequent of sequents in G3c

rules to contain at most one formula on the right. So, atomic initial sequents
have the form: p , Γ⇒ p and R∨ is splitted again into two rules. Moreover, notice
that the single-succedent condition might cause some troubles in showing that
the contraction rule is (height-preserving) admissible. For the formal definitions
of height and height-preserving admissibility, consider Definitions 3.3.2 and 3.3.3,
respectively. However, intuitively, we can say that a sequent-style rule r is height-
preserving admissible in a sequent calculusL, if r is admissible (see above), along
with the additional condition that the number of steps needed to derive C is
at most n, where n is the maximal numbers of steps in the derivation(s) of the
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premise(s) of r. In order to avoid troubles with such a proof, the idea (due to
Dragalin [Dra88]12) is to include the following version of L⊃:

A ⊃ B, Γ⇒ A B, Γ⇒ C
L⊃

A ⊃ B, Γ⇒ C

where the left-premise is said to be contraction-absorbing. This terminology is
used to indicate that L⊃ already contains the effects of applying contraction
in its left-premise. Similarly, the presence of Γ,∆ in the formulation of initial
sequentsmakes themweakening-absorbing. More generally said, the admissibility
of structural rules tells us that their effects are completely absorbed by the logical
rules.

For the purposes of my work, no other remarks on Gentzen’s sequent calculi
are needed, as in the next chapters we will mainly deal with generalizations
thereof and the specific details will be given case by case.

1.2 Towards generalizations of sequent systems

Thediscoveryof so-called paradoxes ofmaterial implication and the crisis in founda-
tions of mathematics highlighted some technical and philosophical limitations
of classical logic. This series of events brought scholars in trying to identify and
formalize other systems of logic to escape the problematic features of classical
logic. Among such alternative systems, one finds intuitionistic logic, which I
briefly mentioned above. Besides intuitionistic logic, however, there is a variety
of logics, which deviate, in some way or another, from classical logic, and we
will work with some of them in the following chapters. For the time being, we
should notice that, unfortunately, not all interesting non-classical logics can be
given a cut-free sequent calculus. Nonetheless, the lack of such a characterisa-
tion was shown to be far from being an insurmountable obstacle, and, indeed,
logicians came up with many so-called generalizations of sequents, capable of
dealing with the flourishing of non-classical logics. First of all, let’s try to fix
how to understand the word “generalization”:13

GSC Extension of the standard sequent calculus, obtained by introducing a
more abstract version of the notion of sequent, and flexible enough to
generate calculi for at least the logic(s) under scope.

To understand what the words “more abstract version” are referring to, let’s
consider some concrete proposals of generalizations of sequent systems:

1. Firstly, one can modify the structure of the standard sequent calculus in a
purely syntactic fashion. The systems constructed by modifying, in some
way or another, the structure of Gentzen’s sequents will be referred to as
Syntactic generalizations. Among such calculi one finds, for example:

12R. Dyckhoff’s papers [Dyc92; Dyc97] are also fundamental to the understanding of logical
systems. Moreover, among others, one can see also: Troelstra and Schwichtenberg [TS00], Negri
and von Plato [NvP01], as well as Indrzejczak [Ind21].

13See especially [Pog09a, pp. 51–52].
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(a) multiple sequent calculi: allowing more than just one sequent arrow;
(b) higher-arity sequent calculi: we allow more than just one antecedent

and one succedent;
(c) hypersequent calculi: treating n different sequents at the same time;
(d) display calculi: dealing with different ways of combining formulas;

2. Secondly, one can enrich a standard sequent calculus by adding seman-
tic expressions in its language. At least two specific kinds of semantic
elements were used to develop such generalizations: algebraic andmodel-
theoretic. Wewill refer to such calculi as Semantic based – or, simply, labelled
– generalizations.

All such different calculi have been proposed within specific and sometimes
very different research programmes. Their importance is not only related to
their specific usefulness as logical tools, but also to their philosophical value. As
said above, logical inferentialists believe that the inferential use of logical constants
determines theirmeaning, as encapsulated in introduction and elimination rules
of natural deduction systems. Nonetheless, I believe sequent-style systems to be
more appropriate reference calculi for inferentialism. In other terms, insteadof the
pair introduction-elimination rules, I consider the left and the right introduction
rules of the sequent calculus as those rules providing us with the meaning of
the constant they’re concerned with. Indeed, in agreement with Paoli’s idea:

“[C]ut-free sequent calculi are evenmore apt than natural deduction
systems for a molecularistic semantics of logical constants: not only
dowehave separate rules for each connective, butwe are also guaran-
teed that larger fragments conservatively extend smaller fragments
containing fewer connectives.” [Pao03, p. 536]

The idea that rules, left and right, of a sequent system determine the meaning
of the constant, by specifying its use, can (and should) be extended to the gen-
eralizations of sequent calculi as well. To this extent, in the last decades, several
logical, methodological and philosophical desiderata that proof systems should
be required to enjoy, have been put forward. In the literature, generalizations
satisfying a certain amount of desiderata are sometimes said to provide good
proof systems. A list of such desiderata is as follows:14

1. Separation: Each constant is introduced independently from any other
constant. More formally, a rule for a logical constant • should not exhibit
any other constants in antecedent and succedent than •.

2a. Weak symmetry: each constant • has at least one pair of rules for intro-
ducing it into an antecedent and a succedent of a conclusion-sequent. 2b.
Symmetry: each constant • has exactly one pair of rules for introducing it
into an antecedent and a succedent of a conclusion-sequent.

14The idea of defining criteria to identify good generalizations of sequent systems has attracted
some attention. See, for example, Avron [Avr91c; Avr96], Wansing [Wan92; Wan94; Wan98;
Wan00; Wan02], Indrzejczak [Ind97; Ind21], Paoli [Pao02], Negri [Neg07; NvP15], Poggiolesi
[Pog08b; Pog09a; Pog09b; Pog12], Parisi [Par22].
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3a. Weak explicitness: rules for constants exhibit • only in conclusion sequents,
but never in premises. 3b. Explicitness: rules are weakly explicit and
exhibit only one occurrence of •.

4. Uniqueness: Each connective should be uniquely characterized by its rules
in a given system.15

5. Invertibility: not only the conclusion of a rule follows from its premise(s),
but also viceversa, i.e. rules are doubly sound.

6. Conservativeness: a calculus C′, obtained by adding to the calculus C one
ormore constants, and rules concerning these newly introduced constants,
should prove exactly those sequents (including only constants of C) which
were already provable in C.

7. Modularity: adding or deleting one or more axioms from the Hilbert-style
presentation of a logic L corresponds to add or delete one or more rules
from a sequent calculus for L. Each combination of rules is meant to be
sound and complete for the corresponding logic.

8a. Došen’s principle16: in modular extensions of a calculus, rules for logical
constants stay unaltered, and different systems can be obtained exclusively
by modifying the structural rules. 8b. Poggiolesi’s principle: in modular
extensions of a calculus, different systems can be obtained by modifying
both logical and structural rules.

Observation 1. One might wonder what’s the difference between item 7. and
items 8a, 8b. To answer this question, let’s firstly consider Poggiolesi’s analysis
[Pog09a, p. 34]:

“In the literature, Došen’s principle is sometimes also referred to as
the “modularity property”. We find this second name a possible
source of misunderstanding. Došen’s principle describes the rela-
tionships between different sequent calculi, while the modularity
property requires the link betweenHilbert systems andGentzen sys-
tems to be straightforward. Therefore the two properties are related
but not the same.”

Hence, modularity expresses the idea that, if a Hilbert systemH ′ is obtained by
adding, let’s say, a new axiom toH , then, according to modularity, the calculus
should systematically reflect such an addition by adjoining rules. If modularity
is accepted, then one might reasonably ask what kind of rules – logical and/or
structural – are we supposed to work with to get modular extensions of a given
calculus. This is exactly the point raised by both Došen’s and Poggiolesi’s
principles:

15For discussions on uniqueness one can consult, among others, [Wan92; Wan94; Par22].
16For more on the origins of such a concept, and discussions thereof, see [Wan92; Wan94;

Wan98], but also [Pog08b; Pog09a].
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Došen’s principle All “rules for the logical operations are never changed:
all changes are made in the structural rules” [Doš88,
p. 353].17

Poggiolesi’s principle A “general variant of a sequent calculus G can be ob-
tained from it by both varying its logical and structural
parts” [Pog09a, p. 34].

So, item 7. is directly concerned with the description of a desirable property of
proof systems, modularity, useful in laying down the core meaning of logical
constants. The latter twoprinciples, 8a.,8b., instead, describe twoways to achieve
modular formulations of proof systems.18

9. Identity theorem: we show that from an assumption A, we can always prove
the same statement A, formally A⇒ A.

10. cut-elimination/admissibility: the cut rule is dispensable.

11. Subformula property: each formula displayed in the premise(s) is present
as a subformula of the final formula in the conclusion.

Observation 2. There are some main points that should be raised in connection
with the last three items listed above. First of all, as Belnap wrote:

“I take the Identity theorem to constitute half of what is required to
show that [...] formulas “mean the same” in both antecedent and
consequent position. (The [cut-]Elimination Theorem is the other
half of what is required for this purpose.)”. [Bel82, p. 383]

In other words, to claim that rules determine the meaning of constants, by
specifying their use in inferences, one needs to show that there’s no asymmetry
between what one can prove in both sides of a sequent. However, dependently
on the choice of the calculus, identity and cut-elimination/admissibility results may
be formulated differently. Generally speaking, let’s summarize them as follows:

(a) Identity theorem. As remarked above, the identity theorem tells us that all
sequents of the form A⇒ A can be shown to be admissible (A being either
compound or atomic). To give you an example, suppose one opts for a
logical system, i.e., a calculus with (height-preserving) admissible, instead
of primitive, structural rules. This requires one to deal with atomic initial
sequents. Let’s consider the case for the system G3i mentioned above,
which is usually formulated by including initial sequents of the following

17Although I am viewing Došen’s principle as indicating a way to achieve modular formu-
lations of sequent calculi, it must be pointed out that Došen’s emphasis was rather on the role
played by structural rules in determining the core meaning of logical constants. Roughly, fol-
lowing Došen’s idea, the meaning of a logical operator is laid down by the logical rules, which
stay unaltered across different sequent systems – these latter, obtained by addition or deletion
of one or more structural rules. This allows one to think of, for example, ∧ as conjunction in
different logical systems.

18Poggiolesi’s proposal was introduced as an emendation of the weaknesses surrounding
Došen’s principle. Her detailed examination can be found in [Pog08b], as well as in [Pog09a,
pp. 31–34].
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form: p , Γ ⇒ p. Notice that the presence of Γ is crucial, given that G3i

contains no structural rule. To generalize p , Γ⇒ p to compound formulas
A, one usually needs to perform an induction on the structure of A. For
instance, if A � B ⊃ C, then the desired result can be obtained by means
of formal derivations as follows:

B,

Γ︷︸︸︷
B ⊃ C⇒ B C,

Γ︷︸︸︷
B ⇒ C

L⊃
B ⊃ C, B⇒ C

R⊃
B ⊃ C⇒ B ⊃ C

where the premises are derivable by the inductive hypothesis, and there’s
no need to apply any of the weakening rules, exactly because of the pres-
ence of Γ. These types of initial sequents are said to beweakening-absorbing,
in the sense that the effect of weakening is already included within their
formulation, and this is why in logical systems, such as G3i, one is allowed
to work with primitive logical rules only (recall the notion of admissibility
stated on p. 18).

(b) cut-elimination/admissibility. Its pretty common, in the literature on proof
theory, to consider at least two formsofcut-rules and twowaysof obtaining
cut-free calculi. First of all, cut is either additive (context-sharing) or
multiplicative (context-free):

Γ⇒ ∆,A A, Γ⇒ ∆
cutA

Γ⇒ ∆
Γ⇒ ∆,A A,Σ⇒ Π

cutM
Γ,Σ⇒ ∆,Π

For what concerns the eliminability strategies of cut, it’s common practice
to distinguish the two following results. Let C + cut be a sequent calculus
with cut and C be its cut-free version:

? cut-elimination: If `C+cut Γ⇒ ∆, then `C Γ⇒ ∆.
♥ cut-admissibility: If `C Γ ⇒ ∆,A and `C A,Σ ⇒ Π, then `C Γ,Σ ⇒
∆,Π.19

Again, the choices are not arbitrary and depend on both the formulation
of the calculus as a whole and the peculiarities of the logic(s) under scope.
Nonetheless, the two eliminability results are related: cut is eliminable in
C + cut iff cut is admissible in C. Once an eliminability result is given,
as remarked by Kremer [Kre88, pp. 62–66], and endorsed by Poggiolesi in
[Pog08b, p. 138], we are granted that:

“[...] logical rules do not prove anything except that which con-
cerns the symbol they introduce (and, therefore, they do not
give anything more than the meaning of the constant they intro-
duce).”

19Similarly, cut-admissibility may be formulated so to deal with additive cuts.
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(c) Subformula property. A decisive feature of cut-free sequent calculi is the
property forwhich all formulas appearing in a derivation, are subformulas
of formulas in the conclusion. Such derivations are usually referred to as
analytic.20 It is important to remark that, analyticity is not only a desirable
logical property of proof systems, but also one of their philosophically rel-
evant features: “Support for the analytic method has a long and venerable
history in philosophy” [Pog09a, p. 12]21, which can be tracked back to an-
cient Greece, as well as to modern philosophers (Descartes, Arnauld, Pas-
cal), scientists and mathematicians (Galileo, Newton, Bolzano). In logic,
analyticity follows from cut-freeness and the subformula property, and it
is usually strictly correlated with two other fundamental features of a cal-
culus: consistency and decidability. For the former, the argument is fairly
simple. Suppose that some calculus C allows to derive the empty sequent
with applications of cut, i.e., ` � ⇒ �, and that it enjoys an eliminability
result. Accordingly, ` � ⇒ � can be derived without applications of cut
and derivations enjoy the subformula property. However, from a closer
inspection, we see that no rule allows us to obtain a derivation concluding
with the empty sequent, and, therefore, 0 � ⇒ �. For decidability, instead,
we can reason as follows: given a cut-free system, enjoying the subformula
property, for each sequent S, it can be established (in a finite number of
steps) whether S is derivable or not. Notice, that we are guaranteed that
the proof search procedure will effectively discriminate between derivable
and underivable sequents, exactly because:

“we know that it is not possible to lose any formula during the
derivationprocess, and thatwe canonlypass from logicallymore
complex formulas to logically simpler ones (reading derivation
process bottom-up).” [Pog09a, p. 14]

I have discussed some philosophical features that can serve as heuristics to pro-
duce and evaluate the goodness of generalizations of sequent calculi in a rather
general way. Nevertheless, a specific case analysis will be developed in the
second part of this work, by considering how to deal with two generalizations,
namely labelled calculi and hypersequent systems, when applied to certain
non-classical logics. Before moving ahead, let me, finally, engage in a discus-
sion concerning some potential worries and objections that might be raised in
connection with my choice of working with systems taken from the group of
semantic-based generalizations.

1.3 Addressing some potential objections

Semantic-based generalizations are sometimes seen as improperGentzen sequent
systems as their formalism is polluted22 with semantic information. Usually,

20See, for example, [Ind21, pp. 16–17] for an alternative definition.
21One should also consider the investigation on analyticity performed in [Pog12].
22Semantic pollution is an “epithet attributed [...] to Rajeev Goré in conversation” [Rea15,

p. 650]. The debate on semantic pollution was briefly reconstructed also by L. Humberstone in
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arguments against semantic based systems include the following criticism:

“Despite their impact, labelled proof systems have been criticized
as impure, in contrast to the more traditional proof systems, and
difficult to use in practice” [Neg07, p. 109].

“The labelled method [...] is a semantic method [in that] it imports
in its language the whole structure of Kripke semantics in an explicit
and significant way” [PR12, p. 49].

Accordingly, the literature seems to suggest that an another desideratum might
be added to the list stated above. Let’s call the requirement, for which in the
formulation of generalizations of sequent systems, we should “not make any
use of semantic parameters beyond the language of formulas” [PR12, p. 49],
Syntactic purity principle.
At this point, naturally, one can ask whether inferentialism can make use of labelled
rules to characterise the meaning of logical constants. I’ll try to argue that negative
answers to that question are misguided and, ultimately, that in semantic based
generalizations there’s no such thing as semantic pollution.23
First of all, inferentialism seeks for an anti-realistic conception of meaning of
logical constants by capturing, via rules, their inferential behaviour. On the
other hand:

“Model-theoretic semantics is often described as being realistic; it
establishes a kind of correspondence between linguistic expressions
and elements of formal structures which are either thought of as a
part reality or as representingpart of reality.” [Wan00, p. 3, Emphasis
mine]

It is clear that proof-theoretic and model-theoretic philosophies of meaning are
radically different one from the other. According to the former, the meaning of
logical constants is encoded in their actual use, while, in the latter, the mean-
ing of each constant is spelled out, usually, through a function from the logical
vocabulary to a domain of objects. Among the most notorious model-theoretic
structures, and modifications thereof, used to characterize non-classical logics,
one can certainly think of so-called Kripke relational semantics (or possible worlds
semantics). Such structures are also the starting point for the construction of a
variety of labelled calculi. These type of sequent systems raise a first possible
worry, that is, to loose the anti-realistic flavour of an inferentialist characteriza-
tion of logical constants in virtue of expressions usually interpreted in a reified
manner. The word reification has a very long tradition in the history of phi-
losophy, and, in this context, I’ll use it in a rather common and general way.
More specifically, reified indicates all formal expressions that are interpreted as
referring to some extra-logical object, no matter whether abstract or concrete.
Transferring the reified interpretation of model-theoretic expressions (as some

Remark 1.21.8, [Hum11, pp. 111–112].
23My reflections are, especially, inspired by the different works on semantic pollution and

syntactic purity by Poggiolesi (andRestall) [Pog09a; PR12], Negri and von Plato [NvP11; NvP15],
Read [Rea15] and Martinot [Mar2x].
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kind of extra-logical objects), to their proof-theoretic counterparts is one of the
moves that motivates the rejection of labelled systems as good tools for infer-
entialism. The point that I would like to raise is that the presence of auxiliary
expressions is not a threat to an anti-realistic conception of meaning. Indeed,
we’re considering the value of labelled deductive systems as proper proof the-
oretic frameworks, allowing us to grasp the correct inferential use of constants,
and not the ontology surrounding their formalism:

“Whether they serve to denote something is a separate matter, [...] a
matter of metaphysics, not of semantics.” [Rea15, p. 656]

So, the questions, do labels and relational atoms serve to the scope of finding meaning-
defining rules? and do labels and relational atoms exist, denote,. . . ?, should be kept
separate.24 As the overlap between the two issues engenders confusion, to see
the value of labelled generalizations, indeed, it might be a better choice to refrain
from our reification attitudes:

“The claim that signs and expressions of a [labelled proof system]
depict (and thus refer to) something may quite rapidly lead to a
reification of entities one may not be prepared to reify, resulting in
various forms of realism or Platonism.” [Dut12, p. 92]

More importantly, we should inspect whether the transfer of reified interpreta-
tions – typical of model-theoretic expressions – really fits the objects we find in a
labelled proof system. To answer this question, consider the following example
due to Read:

“Leibniz [believed that:] ‘There is no need to let mathematical anal-
ysis depend on metaphysical controversies.’ But the infinitesimal
calculus (to which Leibniz was referring) is still meaningful whether
or not infinitesimal quantities exist.” [Rea15, p. 656]

Accordingly, for labelled calculi, there’s no need to let their proof theoretic legit-
imacy depend on the metaphysical interpretation of the auxiliary expressions.
Indeed, by getting closer to the practice, labels and relational atoms are no more
and no less than technical devices supporting proof-construction (as it will be
shown at length in the first, as well as in second, case study of part II). As the
transfer of reified interpretations, usually ascribed to model-theoretic expres-
sions, to proof theoretic elements is rejected, semantic based generalizations
satisfy the syntactic purity requirement. The question of whether logical expres-
sions (such as labels and relational atoms) denote, and of what they denote, is
therefore a separate and independent concern. Moreover, if these reflections
against the transfer of metaphysical interpretations (usually of model-theoretic ex-
pressions in terms of reified entities), in considerations on the proof theoretic
legitimacy of semantic based generalizations, is or seems convincing, then the
anti-realistic spirit of inferentialism is preserved:

24Accordingly, it seems to me that such notion of pollution can be reasonably referred to as
metaphysical pollution.
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“The charge [of semantic pollution] is shown to be mistaken. It is
argued on inferentialist grounds that labelled deductive systems are
as syntactically pure as any formal system in which the rules define
the meanings of the logical constants.” [Rea15, p. 649]

“The lesson from the [...] correspondence between syntax and se-
mantics is that one direction of a semantical clause corresponds to
an introduction rule, the other direction to an elimination rule. In
perfect analogy to the proof terms of typed lambda-calculus [...], we
can make the semantics of possible worlds [...] formal, by including
these worlds and the forcing relation as parts of a system of rules.”
[NvP15, p. 270]

It is suggested that, in analogy to typed systems (see our example below), also
in labelled calculi, rules governing the additional expressions are genuine proof-
formation rules (albeit obtained by conversion of semantic clauses and frame
conditions), allowing one to construct more “detailed” derivations. Following
this suggestion, “a : A, [can be read as] a is a proof-object for A” [NvP01, p. 13,
Emphasis mine], and elements like a ≤ b or aRb (often included in labelled cal-
culi), can be seen as expressing interactions between such proof-objects. Indeed,
in labelled generalizations, for each logic, the derivability of formulas is subject,
not only to rules for logical constants, but also to rules stating which labels can
occur and how they interact with each other. Informally speaking, rules encod-
ing interactions between labels are no more, no less than those “instructions”
we need to construct bottom-top proof-searches.
Example 1. Let→ be denoting intuitionistic implication and take again the se-
quent⇒ A→ (B→ (A ∧ B)). Let’s consider a term-annotated system (see, e.g.,
[TS00]), where initial sequents are as follows x : p , Γ ⇒ x : p25 and right rules
for→ and ∧ have the following shape:

x : A, Γ⇒ y : B
R→λ

Γ⇒ λx.y : A→ B

Γ⇒ x : A Γ⇒ y : B
R∧λ

Γ⇒ 〈x , y〉 : A ∧ B

Accordingly, the derivation of A→ (B→ (A ∧ B)) can be displayed as follows:

x : A, y : B⇒ x : A x : A, y : B⇒ y : B
R∧λ

x : A, y : B⇒ 〈x , y〉 : A ∧ B
R→λ

x : A⇒ (λy.〈x , y〉) : B→ (A ∧ B)
R→λ

⇒ (λx.λy.〈x , y〉) : A→ (B→ (A ∧ B))

The idea behind the formulation of R∧λ and R→λ can be understood by relying
on the so-called BHK-interpretation26, that:

25We specify that Γ is a multiset (and not a list). Initial sequents are weakening-absorbing,
and their generalized version for arbitrary formulas is admissible.

26See [TS00, p. 23 & p. 55] and [Bim14, pp. 7–8]
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“[...] explainswhat itmeans to prove a logically compound statement
in terms of what is means to prove its components; the explanations
use the notions of construction and constructive proof as unexplained
primitive notions.” [TS00, p. 55]

For example, the clauses for ∧ and→ are stated as follows:

(∧) z is a proof of A ∧ B iff z is a pair 〈x , y〉 and x is a proof of A and y is a
proof of B.

(→) x is a proof of A→ B iff x is a construction transforming any proof y of
A into a proof x(y) of B.

More closely, the explanation of∧ and→ furnished by the BHK-clauses, is made
explicit also within in the rules R∧λ and R→λ. For example, the latter one tells
us that, if, starting from a proof x of A, we can find a proof, say y, of B, then
we have in fact given a proof of A→ B, which we denote as λx.y. Similarly, for
R∧λ.
However, as remarked, in [NvP15, p. 269]:

“Thirty years after Gentzen, and well before the computational se-
mantics was understood in detail, Saul Kripke gave another seman-
tics for intuitionistic logic in terms of possible worlds.”

Intuitively, Kripke’s idea was to define truth relative to the discovery process
of an idealized mathematician (or, community of mathematicians). At each
point in such development, a body of mathematical results has been provided.
Knowledge of past results is presumed, and the body of known results grows
as time proceeds. Formally, we have a set of worlds, states or situations (denoted
as x , y , v , z , . . . ), connected to each other by a reflexive and transitive relation
(denoted ≤). Truth conditions for ∧ and→ are formulated as follows:

A ∧ B is true at x iff A is true at x and B is true at x.
A→ B is true at x iff for all y, if x ≤ y and A is true at y, then B is true at

y.

Also in this case, the clauses just displayed can be used to lay down sequent-style
rules. Initial sequents x ≤ y , x : p , Γ⇒ ∆, y : p, whereas rules for→ and ∧ are
as follows:

x ≤ y , y : A, Γ⇒ ∆, y : B
(y fresh) R→L

Γ⇒ ∆, x : A→ B
Γ⇒ ∆, x : A Γ⇒ ∆, x : B

R∧L

Γ⇒ ∆, x : A ∧ B

Moreover, notice that we add rules for relational atoms x ≤ y which reflect,
at the calculus level, the conditions of reflexivity and transitivity previously
mentioned:

x ≤ x , Γ⇒ ∆
Ref

Γ⇒ ∆
x ≤ z , x ≤ y , y ≤ z , Γ⇒ ∆

Trs
x ≤ y , y ≤ z , Γ⇒ ∆

Accordingly,⇒ A→ (B→ (A ∧ B)) is derived as follows.
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y ≤ z , x ≤ y , y : A, y : B⇒ z : A

z ≤ z , y ≤ z , x ≤ y , y : A, z : B⇒ z : B
Ref

y ≤ z , x ≤ y , y : A, z : B⇒ z : B
R∧L

y ≤ z , x ≤ y , y : A, z : B⇒ z : A ∧ B
(z fresh) R→L

x ≤ y , y : A⇒ y : B→ (A ∧ B)
(y fresh) R→L

⇒ x : A→ (B→ (A ∧ B))
This example is meant to simply illustrate that there’s (at least) a certain concep-
tual vicinity between labelled and term-annotated proof systems. In the cases
briefly analysed, we always started from semantic explanations to provide in-
ference rules. More precisely, we enriched the syntax of sequents by adding
specific symbols to represent either proofs or possible worlds. Nevertheless,
conceptually speaking, terms interpreted as denoting proofs or constructions,
differently from labels and relational atoms, are not seen as polluting the syntax
of term-annotated sequents. However, suppose that one relies on a reified inter-
pretation of the syntax of term-annotated calculi, for example, by claiming that
terms denote real proofs. A question naturally arises: an (intuitive, pre-theoretic)
interpretation, maybe fully denotational, of the elements enriching the syntax of
term-annotated sequents, should encourage us in leaving aside such frameworks
while doing proof theory, despite their usefulness? Can an answer to the pre-
vious question be negative for term-annotated systems and be positive if asked
with respect to labelled calculi? Also in this case, I believe, the point is whether
denotational questions should enter considerations concerning the legitimacy
of proof systems. Additionally, I believe that the questions stated above can
be further understood and addressed when some (formal) result, concerning a
possible correspondence between labelled and term-annotated calculi, will be
properly given.

The practical use of labelled generalizations seems to suggest that there’s
neither room, nor any need to rely on our reification attitudes in the under-
standing of the value of labelled deductive systems, and, ultimately, that, by
leaving denotational questions aside, we can perfectly make sense of their en-
riched formalism in purely proof theoretic terms.
These few philosophical considerations, along with our technical case studies
(see Chapters 3–4), (should) allow us to glimpse that there’s more to semantic based
generalizations, than semantic pollution!

1.4 What’s included in this thesis?

As I have remarked several times, instead of keeping the discussion only at the
theoretical level, I’ll attempt to characterise some non classical logics through
two generalizations of sequent systems, namely labelled sequent calculi and
hypersequent systems. More specifically, benefits of such characterisations will
be explicitly mentioned and discussed case by case.
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1.4.1 Case study 1. Discussive logic

Stanisław Jaśkowski is acknowledged as one of the founders of paraconsistent
logics inasmuch as he proposed one of the first inconsistency-tolerant and non-
trivial systems known under the label of discussive (or, sometimes, discursive)
logic (abbreviated, D2). In order to present his idea, Jaśkowski questioned
so-called explosion laws, i.e, those logical principles according to which any state-
ment can be proven from a contradiction. To motivate his criticism, Jaśkowski
suggested to consider discussions as contexts where inconsistent theses may
be expressed, without leading discussants to infer every meaningful expression
from them. More precisely, to formalize his paraconsistent representation of dis-
cussions, Jaśkowski’s suggested to replace, firstly, material implication ⊃ and,
secondly, also classical conjunction ∧ in favour of more fine-grained connectives
defined through the modal operator of possibility ^. Roughly:

p →d q � ^p ⊃ q

p ∧d q � p ∧ ^q

We remark that→d denotes discussive implication, whereas ∧d is discussive con-
junction. Intuitively, the former one can be read as “if someone states p, then
q”, and the latter can be understood as “p and someone states q”. Now, let
p1, . . . , pn be representing some opinions uttered in a discussion and take q as
a possible conclusion. The idea is that q discussively follows from p1, . . . , pn just
in case ^q follows from ^p1, . . . ,^pn in S5. This characterization, according
to Jaśkowski, “[...] is how an impartial arbiter might understand the theses of
the various participants in the discussion.” Indeed, according to the perspective
of an external observer (i.e. someone who is not involved in a discussion) all
that is uttered in a discussion is only possible. It seems a reasonable observation,
as people not involved in discussions can disbelief, disagree or dissociate from
discussants’ statements. For the same reason, also conclusions following from
discussants’ statements in a discussion are only possible. In this setting, discus-
sions consist of both statements uttered by some discussant and the conclusions
that can be inferred from them.
Example 2. For instance, informally, one might think of certain legal situations as
those settings in which discussants can put forward contradictory statements
without making the whole situation “meaningless”. For example, during trials
it is common for lawyers involved to either support a certain perspective on
certain facts or to refute it. One might think of those trials in which there’s
a prosecutor, usually trying to argue in favour of the guilt of someone, and
defence attorneys, usually trying to argue in favour of the innocence of their
defendant(s). All statements uttered in order to advocate for the validity of
their respective positions, and the consequences thereof, are understood as self-
consistent and coherent with the role each expert is called to fulfil within the
courtroom. Nonetheless, it often happens that lawyers argue by putting forward
statements in contradiction with other lawyers’ argumentations. Importantly,
the presence of some inconsistencies, does not make the situation, i.e., the trial,
trivial, insignificant. Rather, it seems part of the internal structure of trials
to allow each of the involved parts to argue in favour of or against a certain
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these, even at the cost of reaching two completely opposite points of view.
Moreover, according to the court – the impartial arbiter in Jaśkowski’s words
– each of the positions expressed by the parts involved in the trial is merely
possible, exactly in the sense that all of them are understood as equally possible
descriptions of the facts under consideration during the trial. The final decision,
then, ascribes different degrees of plausibility to the thesis advocated by the
parts, by considering other data, such as material evidences, legal procedures,
judiciary precedents, and so on.

Jaśkowski provided neither a deductive system nor a semantic characteri-
zation of D2. Nevertheless, discussive systems have attracted some attention
amongst logicians and several formal structures have been employed to offer
detailed and systematic assessments of Jaśkowski’s logic. In what follows, we
wish to address two distinct, but strictly related, issues concerning discussive
logic.
First of all, we will present an overview, with historical and critical remarks, of
two articles by S. Jaśkowski, which contain the formulation of his paraconsistent
logic. Roughly, after having introduced Jaśkowski’s methodology of building
D2 and his main philosophical motivations for providing such a system, we will
explore some of the main contributions to the development of D2.
As it will be examined and highlighted in part of the historical survey on discus-
sive logic, the task of finding axiomatic systems for D2 has not only occupied a
privileged place, but has also marked a troublesome path in the field of discus-
sive logic-related researches. As an alternative to the Hilbert-style proof theory,
in Chapter 3, I wish to propose another proof theoretic characterization of dis-
cussive logic in terms of labelled sequents. These latter structures, as sketched
above, will be used to provide a rule-based calculus for D2. Labelled calculi
are well-known sequent systems that internalize, at the syntactic level, semantic
informations taken, in our specific case, from relational models for D2. The plan
is to introduce the semantics, present our intended labelled calculus, and show
that it enjoys a variety of proof-theoretic properties. We will conclude with
some methodological observations, by highlighting virtues and benefits of our
approach, and by pointing out some topics for future research.

1.4.2 Case Study 2. Relevant logics

Relevant logics are a well-known family of non-classical logics introduced to
cope with so-called paradoxes of material and strict implication. According to
relevantists, a connective standing for implication is intended to express a more
fine-grained and philosophically motivated notion of conditional. Part of the
philosophical intuition of relevant logics, at least in the early development by
Anderson and Belnap [AB75], was that the antecedent and consequent of a valid
conditional must be relevant to each other, in the sense that, in expressions of
the form “if A, then B” there must be a strong connection between antecedent A
and consequent B.
Relevant logics have attracted a lot of attention among logicians and many
formal structureswere applied to offerdetailed and systematic characterizations.
Proof theoretic studies on relevant logics have a long and troubled history.
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Gentzen-style sequents were proposed, among others, in [AB75; Pao02]. For
what concerns generalizations of sequents, instead, there are different trends in
the literature. To cite a few of them: cognate sequents ([Kri59]), hypersequents
([Avr87; Avr91b]), Dunn-Mints calculi ([Dun73]), consecution calculi ([Bim14]),
display sequents [Res98; Res00; Bim14]. From the perspective of labelled proof
systems, instead, there is a variety of approaches. Among the early significant
contributions, one finds A. Urquhart and S. Giambrone’s U- and G-systems for
some positive fragments of a family of relevant logics (called semilattice logics)
in [GU87]. Urquhart and Giambrone’s systems correspond to a weakly labelled
calculus in the sense of [Ind21, p. 204], that is, labels are limited technical devices
supporting proof construction. Indeed, no special rules operating on labels are
introduced. More precisely, the behaviour of labels in derivations is subject only
to some specific restrictions, established directly on the application of rules.
Moreover, the labelling of formulas in the rules for → refers to a different
treatment of the ternary relation Rabc at the semantic level, that is, by putting
c � a ∪ b. An analogous work was conducted by R. Kashima in [Kas01; Kas03]
always in the context of semilattice relevant logics. L. Viganò [Vig00] pursued a
characterization of some relevant logics by using a calculus enriched with rules
acting on labels and which restates the presence of the third element c, rather
than a ∪ b. Similarly in [KN20], H. Kurokawa and S. Negri introduced a wide
range of labelled calculi constructedwith reference to the original (or non reduced)
ternary relational semantics proposed by Routley and Meyer.
For the purposes of this chapter, however, we will introduce relevant logics in
terms of reduced Routley-Meyer models, i.e., by means of relational structures
employing a ternary relation between states (see, e.g., [RM73; Rou+82]), along
with a distinct element interpreted as the real (or actual) world. Intuitively, in
Routley-Meyermodels, a relevant implication “if A, then B” is true at world a just
in case, for all worlds b , c, related to a, if A is true at b, then B is true at c. The aim
of this chapter is to define modular proof systems for a variety of relevant logics
on the basis of these models. More specifically, we will introduce a family of
modular labelled sequent calculi for relevant logic B and its extensions, namely,
DW, DJ, TW, T, RW, R and RM. The calculi are based on Routley-Meyer
semantics, in the sense that, by following the well-established methodology
proposed by [Neg05], sequents internalize, bymeans of syntactic tools, semantic
information taken exactly from reduced Routley-Meyer models. I’ll present the
rules of the labelled calculi and some related preliminary results, along with
a comparison with other related works. Central results include a proof of
soundness, as well as proofs of completeness (both, semantic and syntactic).
Finally, we will proceed towards the proof analysis of the systems and conclude
with a proof of cut-admissibility. In the conclusions, I’ll highlight the benefit
of such an approach by addressing how the methodology adopted could be
expanded to cover further topics within the proof theory of relevant logics.

1.4.3 Case Study 3. Modal expansions of intuitionistic logic

In this chapter, the idea is to pick up a syntactic generalization of Gentzen
sequents, i.e., hypersequents, and deal with a modal expansion of intuitionistic
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logic. To be more specific, a hypserquent is a structure of the following form:

Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 | · · · | Γn−1 ⇒ ∆n−1 | Γn ⇒ ∆n

where each Γi ⇒ ∆i is a Gentzen sequent, interpreted in the usual manner, and
the symbol | is interpreted as an object language disjunction, i.e.:

(∧Γ1 → ∨∆1) ∨ (∧Γ2 → ∨∆2) ∨ · · · ∨ (∧Γn−1 → ∨∆n−1) ∨ (∧Γn → ∨∆n)

The investigation in this chapter continues the research initiated in [DMP21],
where the modal intuitionistic logic IS5 was under scope. It was noticed that by
elaborating a single-conclusion version of the hypersequent calculus in [Pog08a],
along with all necessary additions andmodifications, one can build a successful
cut-free system for IS5. The positive results in [DMP21] seem to be in contrast
with the following negative remark:

“the hypersequent structure [...] is amultiset of sequents, called com-
ponents, separated by a symbol denoting disjunction, in the sense
that it is a multi-contextual structure. [It] does not really enrich the
sequent structure in this case and it appears [as not] appropriate to
deal with intuitionistic and modal operators.” [GS10, §3.1]

To strengthen our idea that hypersequent systems are appropriate to deal also
with intuitionistic and modal operators, I’ll propose an additional case study.
More closely, I’ll study intuitionistic logic expanded via the addition of a so-
called actuality operator, denoted ‘@’ (see, [NO20]). Roughly, formulas like @A
can be read as ‘A is actual’. I’ll prove a cut-elimination result and discuss the
consequences thereof. This provides more positive evidence of the appropriate-
ness of using hypersequent structures to deal with modal intuitionistic logics.
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Chapter 2

A little prelude. Origins and

development of discussive logic

Layout of the chapter. In this chapter, I’ll propose a philosophical and his-
torical systematization of the various stages of the development of Jaśkowski’s
discussive logic. Such an investigation will be carried out by considering two
different – albeit related – perspectives: the connections between D2 and modal
logics, as well as the proof theoretic approaches to D2.

2.1 The Origins of Discussive Logic

Throughout this chapter we will consider the following classical connectives, ¬ (nega-
tion), ∧ (conjunction), ∨ (disjunction), ⊃ (material implication), plus the modal opera-
tors, � (necessary) and ^ (possible). All additions and changes will be explicitly stated
and explained. Γ,∆,Σ, . . . and A, B, C, . . . denote sets of formulas and formulas,
respectively. p , q , r . . . stand for propositional variables..

2.1.1 The first discussive system

S. Jaśkowski (1906-1965)1 is the author of several important logical and math-
ematical studies. To cite some of them, Jaśkowski is usually acknowledged as
one of the inventors of the natural deduction calculus (accomplishing this work
almost at the same time of G. Gentzen) and as the proponent of the first paracon-
sistent logic known as “discussive” (or “discursive”) logic2. In [Jaś99a] (which
corresponds to the English translation of Jaśkowski’s original article [Jaś48],
published in 1948), the logician proposed a logic which should capture situa-
tions where discussants are in conflict. Jaśkowski’s main idea was to consider
a discussant’s statement, p, as inherently consistent, but potentially incoherent
with some other discussant’s proposition. With this in mind, Jaśkowski focused
his attention on a classically valid law, namely ex contradictione quodlibet [sequitur]

1For biographical informations one can consider [KP67; Dub75; Ind18]. For synthetic intro-
ductions to Jaśkowski’s discussive logic, see, for example, [Pri84; PTW22].

2Jaśkowski denoted this logic by D2, where the label ‘2’ indicates that we are dealing with
the ‘two-valued discussive sentential calculus’.
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((ECQ), “from a contradiction everything [follows]”) – p ⊃ (¬p ⊃ q) – claiming
that it should not be generally valid. His strategy, in order to invalidate (ECQ),
has been that of getting rid of the classical connective of material implication,
i.e., ⊃, in favour of so-called “discussive implication”, i.e., →d. Lewis’ modal
logic S5 has played a fundamental role in the formulation of such discussive
systems, so, let’s recall the definition of S5:
Definition 2.1.1. S5 is axiomatized is follows:

If A is a theorem of PC, then A is a theorem of S5.
�(A ⊃ B) ⊃ (�A ⊃ �B) (K)
�A ⊃ A (T)
^A ⊃ �^A (5)

and the following rules:
A A ⊃ B

MP
B

A
Nec

�A
Finally, we say that a modal logic L is of S5-type iff L ⊆ S5

3.
Thanks to Lewis’ modal system, Jaśkowski established the definition of dis-

cussive implication in the following way: p →d q � ^p ⊃ q, validating thus the
discussive version of modus ponens:

A A→d B
MPd

B
Additionally, we can get also the definition of “discussive bi-implication”, p ↔d
q � (^p ⊃ q) ∧ (^q ⊃ ^p). Notice that, so defined, both, →d and ↔d, are
asymmetric connectives. One might wonder what the ^ operator is meant to
represent in a discussive framework. According to Jaśkowski’s own perspective:

“To bring out the nature of the theses of such a system it would
be proper to precede each thesis by the reservation: “in accordance
with the opinion of one of the participants in the discussion” or “for a
certain admissible meaning of the terms used”. Hence the joining of
a thesis to a discussive system has a different intuitive meaning than
has assertion in an ordinary system. Discussive assertion includes an
implicit reservation of the kind specified above, which [...] has its
equivalent in ^ [Jaś99a, p. 43].”

In a latest note, [Jaś99b] (the English translation of the 1949 paper [Jaś49]),
Jaśkowski proposed to substitute from the set of connectives also classical con-
junction in favour of “discussive conjunction” and chose the followingdefinition:
p ∧d q � p ∧ ^q. With this additional connective, then Jaśkowski defined again
discussive bi-implication in the following manner: p ↔d q � (p →d q) ∧d (q →d
p). So, in sum, to prove discussive formulas, i.e., formulas including discus-
sive connectives, Jaśkowski suggested to transform such formulas accordingly
to their modal definitions and to prove the resulting modal formula in S5. In
more rigorous terms:

3As known, S5 has several equivalent axiomatization; for instance, one can employ (4)
(�A ⊃ ��A) and (B) (A ⊃ �^A) instead of axiom (5).
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Definition 2.1.2. D2 is the system whose language L includes the following set
of connectives S � {¬,∨,∧d,→d,↔d}. Take a function τ : FormD2 7→ FormS5

such that, for any A, B ∈ FormD2 :

τ(p) � p
τ(¬A) � ¬τ(A)
τ(A ∨ B) � τ(A) ∨ τ(B)
τ(A ∧d B) � τ(A) ∧ ^τ(B)
τ(A→d B) � ^τ(A) ⊃ τ(B)
τ(A↔d B) � (^τ(A) ⊃ τ(B)) ∧ ^(^τ(B) ⊃ τ(A))

Let ^Γ � {^τ(A1), . . . ,^τ(An) | A1, . . . ,An ∈ Γ}, then for all Γ ⊆ FormD2 and
B ∈ FormD2 , we set:

Γ |�D2 B iff ^Γ |�S5 ^τ(B).
In other words, a formula B is said to be a discussive consequence of a set
of premises {A1, . . . ,An} just in case ^τ(B) follows from the set {^τ(A1),
. . . ,^τ(An)} in S5. Following Jaśkowski:

“[...] if a thesis A is recorded in a discussive system, its intuitive sense
ought to be interpreted so as if it were preceded by the symbol ^,
that is, the sense: “it is possible that A”. This is how an impartial
arbiter might understand the theses of the various participants in the
discussion.” [Jaś99a, p. 43]

The motivation behind this quote and Definition 2.1.2 can be intuitively ex-
plained with the following example. If we take formulas including →d and
replace it simply accordingly to τ we will obtain a great number of S5 invalid
formulas. In this case, even the identity, A →d A, if transformed in ^A ⊃ A,
turns out tobeS5-invalid. However,manyof this negative results canbe avoided,
if we prefix ^ to every modally translated formula. For example, A →d A, if
translated as follows ^(^A ⊃ A), turns out to be S5-valid.
Observation 3. To see the paraconsistent character of D2 consider that already
in [Jaś99a], the discussive version of (ECQ), A→d (¬A→d B), was not included
as a theorem of D2. To see this, consider always the modal translation of (ECQ),
i.e., ^(^A ⊃ (^¬A ⊃ B)), which is not valid in S5. Consequently to the
rejection of (ECQ), the existence of contradictory statements, ^A and ^¬A, is
possible without that their presence entails the ‘overfilling’ (triviality) of the
system. However, the logic is not paraconsistent with respect to conjuncted
contradictions, indeed, ^(^(A ∧ ¬A) ⊃ B) is still a theorem of S5 . Moreover,
notice that in this framework ∧ adjunction fails (i.e., A ∧ B cannot be inferred
from A and B) and, for this specific reason, the {¬,∨,∧,→d}-fragment of D2 is
usually classified among the non-adjunctive approaches to paraconsistent logics:

“...] discussive logic represents an ideology that is, to my mind, the
most appropriate one for paraconsistency. To put it informally: at
the very core of paraconsistency lies not negation, but conjunction.
[...] With respect to inconsistency tolerating calculi, this connective
seems to be the most important one.” [Urc02, p. 487]
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Nonetheless, in [Jaś99b], thanks to the presence of discussive conjunction, ad-
junction can be successfully restated in the system. The discussive version of
the law of non contradiction (LNC), ¬(A ∧d ¬A), remains a valid law. To see
this consider always the S5 invalid formula ^(A∧^¬A). Finally, the discussive
version of conjunctive (ECQ), (A ∧d ¬A) →d B, is no longer valid, making, thus,
D2 paraconsistent also with respect to conjuncted contradictions.

Observation 4. Jaśkowski’s definition of ∧d and→d are not the only ones avail-
able and, indeed, experts considered different variants, such as:

A ∧l
d B � ^A ∧ B

A ∧s
d B � ^A ∧ ^B

A→s
d B � ^A ⊃ ^B

As one can easily see, the introduction of these new connectives tries to recover
the asymmetry present in Jaśkowski’s original proposal. Anyway, notice that
the formulas ^(A ∧ ^B), ^(^A ∧ B) and ^(^A ∧ ^B) are all equivalent in S5,
while ^(^A ⊃ B) and ^(^A ⊃ ^B) are already equivalent in S4 (a subset of
S5). Moreover, as known since [Jaś99a], D2 is a paraconsistent extension of the
{∨,∧, ⊃}-fragment of classical logic. In other words, the discussive operators
in D2 behave just like their classical counterparts. Interestingly, however, if we
consider also an enriched language which includes a negation connective, the
discussive logics generated by these new operators will no longer coincide with
the {¬,∨,∧, ⊃}-fragment of classical logic.

“It is not true thus that different translation clauses ‘would have just
the same consequences’ [...]. Different choices of discussive conjunc-
tion and discussive implication would in fact define logics distinct
from D2.” [Joa05, p. 215]

This is a struggling point. Indeed, as we will see in section 2.2.3, some no-
table problems arise in the formulation and comparison of axiomatic systems
including different discussive connectives and negation.

2.1.2 Jaśkowski’s Philosophical Motivations

In his celebrated Metaphysics, Aristotle claimed that “the most indisputable of
all beliefs is that contradictory statements are not at the same time true” ([Ari01,
Γ, 1011b13–14]), establishing, thus, – in a crystal clear way for the first time
in the history of philosophy – one of the most celebrated and debated logical,
psychological and ontological laws, i.e., the so-called law of non-contradiction
(LNC). Roughly, Aristotle was convinced that the principle for which two oppo-
site propositions, usually, one the negation of the other, cannot both be true at the
same time had a very special status. Indeed, (LNC) corresponds, according to
the Greek philosopher, to the most certain principle, which has a triple valence:
it is a law of human rationality and reasoning (logic), it is a law governing reality
(ontology) and, finally, it is a law concerning human beliefs (psychology). The
discussions continued and, finally, during the middle ages, the debates on con-
tradictions reached another fundamental turning point. An unknown author,
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usually acknowledged under the pseudonymous of Pseudo-Scotus, defined for
the first time the principle of ex contradictione quodlibet [sequitur] in a commentary
to Aristotle’s Analytica Priora [Pse01]. Importantly, William of Soissons, during
the XII century, proposed the first known proof of the aforementioned principle
and it is documented that already during the XIV century logicians knew about
its existence and accepted (ECQ) as true4. However, the birth and the grow-
ing interest towards formal logical systems, strictly matched to philosophical
considerations and objectives, has led some philosophers and logicians to re-
consider also the validity and the truth of (LNC) and (ECQ). Jaśkowski has been
among them. Indeed, in the first paragraphs of his celebrated 1949 article he
develops a brief survey concerning the most important philosophical positions
which, according to his reading, have provided some motivations to accept the
presence of contradictory sentences (especially, Hegel andMarx)5. For instance,
with respect to empirical sciences, Jaśkowski wrote:

“[...] it is known that the evolution of the empirical disciplines is
marked by periods in which the theorists are unable to explain the
results of experiments by a homogenous and consistent theory, but
use different hypotheses, which are not always consistent with one
another, to explain the various groups of phenomena. This applies,
for instance, to physics in its present-day stage. Some hypotheses
are even termed “working” hypotheses when they result in certain
correct predictions, but have no chance to be accepted for good, since
they fail in some other cases.” [Jaś99a, p. 37]

The theoretical solution, according to Jaśkowski, is the following:

“we have to take into account the fact that in some cases we have to
dowith a system of hypotheses which, if subjected to a too consistent
analysis, would result in a contradiction between themselves or with
a certain accepted law, but which we use in a way that is restricted so
as not to yield a self evident falsehood.” [Jaś99a, p. 37]

Indeed, in the paragraphs were he begins to elaborate more formally his ideas,
Jaśkowski distinguishes very strictly between “inconsistent” and “trivial” sys-
tem. The first notion is linked to the presence, within the logical system under
consideration, of two theses, one the negation of the other (p and¬p); the second
concept, instead, asserts that in a system it is possible to derive any formula if
there is a couple of contradictory statements. So, as obvious, systems in which
every proposition is derivable have no practical significance, since everything
can be asserted. So, finally:

“[...] the task is to find a system of the sentential calculus which:
(1) when applied to the inconsistent systems would not always en-
tail their overfilling, (2) would be rich enough to enable practical
inference, (3) would have an intuitive justification.” [Jaś99a, p. 38]

4Importantly, the works by William of Soissons have not been preserved, however a witness
of his work is contained in John of Salisbury’s Metalogicon.

5For more philosophical details on the consequences of adopting a paraconsistent point of
view, one might consider [Pri08].
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Jaśkowski did not further elaborate his philosophical considerations, but, nowa-
days, scholars provided – by taking inspiration directly from Jaśkowski’s brief
suggestions – some interesting philosophical applications of D2 (for example,
to the foundations of physical theories, to the notion of pragmatic (or partial)
truth [CD95; CKB07], to the formal study of belief structures and argumentation
schemes [DPS18]).

2.2 The Development of Discussive Logic

Discussive systems have attracted discrete attention and various experts con-
tributed to their development6. Our aim, in what follows, is to systematize and
explain some of the main works concerning Jaśkowski’s discussive logic. To
keep the presentation as much as possible self-contained, we will restrict our
attention to three distinct, even if connected, paths. More precisely, we will
focus our attention on:

§2.1 the connections between discussive logic and modal systems;
§2.2 a family of logics, called “J” systems;
§2.3 the “direct” axiomatizations of D2, i.e., those systems which include ax-

ioms for discussive connectives.

2.2.1 Connections to Modal Logics

Early developments

The tradition of modal studies connected to D2 started already in 1968 thanks
to a paper by N. da Costa [CD68] and continued uninterrupted throughout the
years. Roughly said:

“Besides non-adjunctiveness, another common obsession of discus-
sivists concerns the alleged ‘modal character’ of D2.” [Joa05, p. 217]

Early remarkable results have been provided by J. Kotas in [Kot74] from 1974.
First of all, let’s fix the next definition:

Definition 2.2.1. Let ♥ ∈ {�,^}. A ♥-counterpart of a modal system M is
defined as follows: ♥n(M) � {A | ♥nA ∈M}, for n ≥ 1.

With respect to Jaśkowski’s D2, Kotas elaborated an axiomatization having
as primitive connectives only ¬, ⊃, �. We will denote this system D

K
2 , where

6At the best of our knowledge, one previous attempt in that directionwasmade byCiuciura in
[Ciu99] from1999. Nonetheless, inwhat follows,wewish to consider also alternative approaches
towards discussive systems and enrich our considerations by commenting more recent works.
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‘K’ stands for Kotas. The axioms of D
K
2 are:

�(A ⊃ (¬A ⊃ B)) (K1)
�((A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C))) (K2)
�((¬A ⊃ A) ⊃ A) (K3)
�(�(A ⊃ B) ⊃ (�A ⊃ �B)) (K4)
�(�A ⊃ A) (K5)
�(¬�A ⊃ �¬�A) (K6)
Substitution (Sub)

�A �(A ⊃ B)
�MP

�B
�A

R4
��A

�A
Den

A
¬�¬A

Dep�
A

As usual, if we want to add the possibility operator, we can define it: ^A �

¬�¬A. Notice that by having ^ as a defined connective, Dep� may be substi-
tuted by:

^A
Dep

A
An important achievement of [Kot74] is the presentation of the following equiv-
alences between S5-type systems and various combinations of axioms and rules
of D

K
2 :

K1-K6 (Sub) (�MP) (R4) (Den) (Dep�)/(Dep) Equivalent System
X X X X - - �S5

X X X X X - S5

X X X X X X ^S5

Notice that, according to the table above, Kotas proved that D
K
2 is equivalent to

^S5. This result allowed him, finally, to prove that D
K
2 is finitely axiomatizable.

To obtain his results, Kotas relied on two different Jaśkowski- style translation
functions. Take τ of Definition 2.1.2 and substitute the clauses for ∧d and→d
with the following ones:

τ∗(A ∧d B) � ¬(¬τ∗(A) ∨ �¬τ∗(B))
τ∗(A→d B) � (¬�¬τ∗(A) ⊃ τ∗(B)

In addition, consider a map τ1 such that Form^S5 7→ Form
D

K
2
. For any A, B ∈

^S5:

τ1(p) � p
τ1(¬A) � ¬τ1(A)
τ1(A ⊃ B) � ¬τ1(A) ∨ τ1(B)
τ1(�A) � ¬((¬p ∨ p) ∧d τ1(A))

First of all, the equivalence between D
K
2 and ^S5 follows also thanks to the

introduction of two additional connectives [Kot74, p. 197], [Vas01, p. 37], namely:

A J B � �(A ⊃ B) (J)
A ⇀ B � ¬((¬p ∨ p) ∧d ¬(¬A ∨ B)) (⇀)
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In particular, Kotas showed that the interpretation τ turns the implication⇀ in
the strict implication J, and the interpretation τ1 turns the implication J in⇀.
Collecting all this together, Kotas proved that:

1. The translations maps τ and τ1 establish that D
K
2 and ^S5 are equivalent.

In other words, if |�
D

K
2

A then |�^S5 τ(A) and if |�^S5 B then |�
D

K
2
τ1(B),

[Kot74, pp. 198–199].

2. D
K
2 is a finitely axiomatizable system [Kot74, p. 199].

Along these lines of studies, the polish logician T. Furmanowski [Fur75] pub-
lished a paper concerning the smallest modal system whose ^- counterpart
coincides with discussive logic. So, by starting from Kotas’ axiomatization K1-
K5, Furmanowski defined ^S4, i.e., the ^- counterpart of S4. As usual, by
adding axiom K6 to the axiomatization, we get ^S5. In particular, in [Fur75],
what’s interesting, with respect to these systems, is the equality between ^S4

and^S5. This result is obtained by showing that both inclusions, (i)^S4 ⊇ ^S5

and (ii) ^S5 ⊇ ^S4, are satisfied. The latter inclusion is trivial since it is well-
known that S5 ⊇ S4. For (i), instead, we need to show that the axioms K1-K5
and the rules of inferences of [Kot74] constitute a complete axiomatization of
^S4 ([Fur75, p. 39]) and, secondly, to prove that the characteristic axiom of ^S5

K6 is also a formula of ^S4 ([Fur75, p. 41]). This equality states that, for any
A, |�^S4 A just in case |�^S5 A. So, roughly, the quality of modality in ^S4 is
the same as in ^S5. From this result and the axiomatizations of ^S4 and ^S5,
Furmanowski proved that, for any system S such that, S4 ⊆ S ⊆ S5: |�S ^A
if and only if |�^S5 ^A. At this point, with this background, Furmanowski
defined Jaśkowski’s discussive logic by starting from such a system S:

Definition 2.2.2. Let D(S) be a discussive system as based on a modal system S,
such that S4 ⊆ S ⊆ S5:

D(S) � {A ∈ Form
D(S) | ^τ(A) ∈ S}

Take Jaśkowski’s translation map τ. Then: |�
D(S) A iff |�S ^τ(A).

Notice that, if S � S5, then D(S5) � D2. From this fact, and by the previous
result for which, for any system S4 ⊆ S ⊆ S5, it holds that |�S ^A if and only if
|�^S5 ^A, we may conclude that, for any such modal system S: D(S) � D2.

Recent developments

The tradition of modal studies connected to Jaśkowski’s logic continued and
largely increased. Recently, the gigantic work of M. Nasieniewski and A.
Pietruszczak in [NP08; NP09a; NP09b] contributed to the development of the
weakest regular modal logic7 (denoted by rS5

M) that defines D2. In [NP08],
7As usual, we define a regular modal logic L as a set of modal formulas satisfying the

following conditions: (i) PC ⊆ L, (ii) ^p ↔ ¬�¬p ∈ L and (iii) L is closed under modus pones
for ⊃, under the regularity rule (A ∧ B) ⊃ C/(�A ∧ �B) ⊃ �C, and under uniform substitution
A/A′, where A′ is the result of uniform substitution of propositional variables in A. Moreover,
L is said to be normal if K ∈ L and Nec ∈ L.
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the authors analyse S5
M, i.e., a normal modal logic presented previously by J.

Perzanowski. Let L be any modal logic such that L defines D2 iff D2 � {A ∈
FormD2 | ^τ(A) ∈ L}. We denote with ^NS5 the set of all normal logics from
^S5. By having this in mind and by following the authors of [NP08], let’s
introduce the system S5

M with the following axioms:8

�p ⊃ ^p (D)
^�(^�p ⊃ �p) (ML5)
^�(�p ⊃ p) (MLT)

and the rule:
^^A

RM2
1

^A

A preliminary result is that S5
M is the smallest logic in ^NS5 [NP08, p. 199]

but, also, that S5
M is the smallest normal logic defining D2.

Starting from S5
M, the authors consider rS5

M, which is the smallest regular logic
which contains (MLT) and (RM2

1). As expected, rS5
M ∈ ^RS5 and, moreover,

it constitutes the smallest logic belonging to ^RS5. With respect to discussive
logic, Nasieniewski and Pietruszczak aimed at showing that rS5

M is the smallest
regular (non-normal)modal logic defining Jaśkowski’sD2. To do this, the author
of [NP09a] consider again the function τ of Definition 2.1.2 together with the
following map, labelled τ2. Let τ2 be a map such that Form

rS5
M 7→ FormD2 . For

any formula A, B ∈ rS5
M:

τ2(p) � p
τ2(¬A) � ¬τ2(A)
τ2(A ∨ B) � τ2(A) ∨ τ2(B)
τ2(A ∧ B) � ¬(¬τ2(A) ∨ ¬τ2(B))
τ2(A ⊃ B) � ¬τ2(A) ∨ ¬τ2(B)
τ2(A↔ B) � ¬(¬(¬τ2(A) ∨ τ2(B)) ∨ ¬(¬τ2(B) ∨ τ2(A)))
τ2(^A) � (p ∨ ¬p) ∧d τ2(A)
τ2(�A) � ¬τ2(A) →d ¬(p ∨ ¬p)

With this in mind, we are able to introduce D2 as follows:

Definition 2.2.3. Let L be any modal logic such that:

D(L) � {A ∈ FormD2 | ^τ(A) ∈ L}

Then: L defines D2 iff D(L) � D2.

So, for any modal logic L such that, if L ∈ ^S5 then L defines D2. Addition-
ally, rS5

M ∈ ^RS5 and S5
M ∈ ^NS5. For ^RS5 and ^NS5 being subsets of

^S5, we get that rS5
M ∈ ^S5 and S5

M ∈ ^S5. So, rS5
M and S5

M both define
8Notice that in all normal and regular modal logics axiom (D) can be equivalently formulated

as ^(p ⊃ p).
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D2 and, hence, D2 � D(rS5
M) � D(S5

M). In other words, rS5
M is the regular

version of the smallest normal modal logic S5
M such that (i) rS5

M ( S5
M and

(ii) every theorem beginning with ^ of rS5
M is also a theorem of S5

M [NP08,
p. 204]. So, finally, collecting together all these results, we get the main desiderata
of [NP08]: rS5

M is the smallest regular non-normal modal logic defining D2.
Additionally, in [NP09a], the authors showed that rS5

M can be axiomatized
without the rule of inference (RM2

1) and that it is the smallest regular logic
which contains the following theorems:

�p ⊃ ^��p (4s)
�p ⊃ ^�p (5c)

In other terms, rS5
M

� C4s5c. Moreover, (i) if rS5
M contains (4s) and (MLT), we

get that rS5
M

� C4s(MLT). Finally, (ii) rS5
M

� C5c(RM
2

1
) iff it contains (5c) and

is closed under the rule (RM2
1) [NP09a, p. 49].

In [NP09b], Nasieniewski and Pietruszczak gave a Kripke semantics for the
smallest regular modal logic rS5

M(� C4s5c). The paper contains specific frame
conditions for rS5

M and completeness results. Let’s begin with the next defini-
tion:
Definition 2.2.4. A frame for regular modal logic rS5

M(� C4s5c) is a triple
F

rS5
M � 〈W,R ,N〉, where W is the set of worlds, N ⊆ W consists of regular worlds

and R is the accessibility relation9. Furthermore, F
rS5

M � 〈W,R ,N〉 satisfies the
following conditions:

∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W(uRx ⇒ wRx)) (Fr1)
∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W(∃y ∈ N(uRy ∧ yRx) ⇒ wRx)) (Fr2)

(5c) is valid in frames satisfying (Fr1) [NP09b, p. 177] and (4s) is valid if the
frame satisfies (Fr2) [NP09b, p. 178]. Notice that both frame conditions constitute
strengthening of seriality [NP09b, p. 179]. Finally, as usual:
Definition 2.2.5. A modelM

rS5
M � 〈W,R ,N, v〉 for rS5

M(� C4s5c) is based on
a frame F

rS5
M and on a valuation v : Form

rS5
M ×W → {0, 1} such that for any

A ∈ Form
rS5

M and w ∈ W :

v(�A) � 1 iff w ∈ N and ∀x ∈ R(w), v(A, x) � 1
v(^A) � 0 iff w < N or ∃x ∈ R(w), v(A, x) � 1

where R(w) � {x ∈ W | wRx}.
A formula A is true in a modelM

rS5
M iff v(A, w � 1) for any w ∈ W .

A formula A is valid in a given frame F
rS5

M iff it is true in all models M
rS5

M

based on the aforementioned frame.
In sum, the authors of [NP08; NP09a; NP09b] provided both an axiomatic

system and a possible worlds semantics for the regular version of S5 and, conse-
quently, defined discussive logic on that formal basis10. From the perspective of

9If we let W � N , then we get the pair 〈W,R〉, which corresponds to a frame for normal
modal logics.

10Notice, finally, that we have restricted our attention just to some of the papers that Nasie-
niewski, Pietruszczak and collaboratorsdevoted toD2. Formoreon theirwork see our conclusive
remarks.
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Jaśkowski’s D2, the work of Nasieniewski and Pietruszczak is interesting since it
shows, not only that there other normal modal logics different from S5 defining
discussive logic, but that there are also non-normal regular versions of S5 which
define D2.

2.2.2 The ‘J’ Systems

Remarkably,

“[t]he year 1967was a turning point in the development of the discus-
sive logic. Newton C.A. da Costa and Lech Dubikajtis met in Paris
and gradually commenced the development of the logic.” [Ciu99,
p. 10]

Indeed, as said above, in a paper from 1968 [CD68], da Costa and Dubikajtis
presented the first modal-type axiomatization of D2. The S5-type system they
proposed, known as J, has become famous in the context of discussive sys-
tems. As remarked by the authors, J has several axiomatizations11 and, in what
follows, we will refer to the axiomatic system presented in [CD95] from 1995.
Interestingly, J, and in particular some of its extensions, have been applied to
philosophical problems, such as to the debate on the underlying logic of scien-
tific theories. However, before turning to the philosophical applications of J and
related systems, let’s introduce them. J is the system composed by the following
axioms and rules [CD95, p. 45]:

If A is a theorem of S5, then �A is a theorem of J.

�A �(A ⊃ B)
�MP

�B
�A

Den
A

^A
Dep

A
�A

R4
��A

J has been introduced in the literature as another ^-counterpart of S5 and,
indeed, |�J A iff |�S5 ^A. Starting from J, da Costa and Doria presented a first-
order variant of it, denoted J

∗, by adding the universal quantifier ∀ among the
connectives. As usual, the existential quantifier can be defined ∃xA � ¬∀x¬A.
Before, defining J

∗, it is useful to recall the axiomatic system forS5Q
� (quantified

S5 with identity):

If A is a theorem of PC, then A is an theorem of S5Q
�.

All axioms of S5 (Definition 2.1.1), plus :
x � x (Id1)
x � y ⊃ (A(x) ↔ B(x)) (Id2)
∀xA(x) ⊃ A(t), (∀1)

where t is either a variable free for x in A(x) or an individual constant. And the
following rule:

11For other synthetic reconstructions one can also consider [Ciu99; Vas01].
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A ⊃ B(x)
R∀

A ⊃ ∀xB(x)
Now, the language of J

∗ coincides the language of S5Q
� and, indeed, J

∗ is
introduced as follows:

If A is an theorem of S5Q
�, then �A is a theorem of J

∗

The axioms and rules of J, plus:

�(A ⊃ B(x))
R�∀

�(A ⊃ ∀xB(x))
where, in the rule (R�∀), x is not free in A.
Notice that, differently from Jaśkowski’s papers, da Costa and Doria considered
left-discussive conjunction. Roughly, by adding both, ∧l

d and →d, to J and J
∗,

the paraconsistent character of such systems. Indeed, the following formulas,
governing the ‘explosion’ of logical systems, are not valid neither in J nor in J

∗.
Let ∧ be classical conjunction:

A→d (B→d A ∧ B)
((A ∧ B) →d C) →d (A→d (B→d C))
A→d (¬A→d B)
(A→d ¬A) →d B

Furthermore, let Γ � {A | Γ `J∗ A}. As usual, if Γ is the set of all formulas, then
Γ is trivial. If not, Γ is non-trivial; if we have a formula A such that both Γ `J∗ A
and Γ `J∗ ¬A, then Γ is inconsistent. If not, Γ is consistent. With respect to these
definitions, the two authors – who where interested in modelling situations in
which scientists may reason through inconsistent sets of sentences, considered
as “working hypothesis” [CD95, p. 46] – showed that their J-systems allow to
deal with inconsistent and non-trivial sets of premises. In other words, da Costa
and Doria proved that J and J

∗ are paraconsistent logics.

D2, J
∗
& the foundations of physics

Recall that Jaśkowski believed that “the evolution of the empirical disciplines is
marked by periods in which [...] the results of experiments [...] are not always
consistent with one another” [Jaś99a]. Accordingly, the inconsistent results are
to be considered as ‘working hypothesis’, i.e., as sentences that are taken as if
they were true to inspect their respective consequences and establish which one
describes more accurately scientific phenomena. da Costa and Doria tried to
make sense of Jaśkowski’s idea by elaborating a variant of J

∗ which can be used
as underlying logic for physical theories. The startingpoint has been represented
by the (formal) conceptions of physical structure and theory, due to M.L. Dalla
Chiara and G. Toraldo di Francia (see [DT81; CD95; CKB07]). First of all, a
‘physical structure’A is a set-theoretic structure of the following form:

A � 〈M, S, < Q0,Q1, . . . ,Qn >, ρ〉
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where, M represents a set of mathematical structures. Notice, the authors of
[DT81] aimed at modelling physical concepts, such as vector spaces, as set-
theoretic structures, by taking the axioms of ZF set theory. Secondly, S is a
set of “physical situations”, i.e., a set of physical states assumed by a physical
system in a certain time interval. In other words, S is the element of the physical
structure that ‘mirrors’ the physical theory thatA is trying to capture. Each Qk
(0 ≤ k ≤ n) is an “operationally defined quantity” whose domain of definition
is some S1 ⊆ S. As a convention, let Q0 denote time. To be clear, if we wish to
measure a quantity Qk of a physical system in a state s ∈ S at a time tk , with
1 ≤ k ≤ n, we get an interval I(k , tk) of the real number line R. So, if wemeasure
time, i.e., Q0, the result we obtain is a “time interval”. t and tk represent time
instants and we express, in L, the “acceptable values” of Qk at ti as qk(ti). So,
in a certain sense, all values in a interval I(k , tk) are “appropriate values” for the
measurement of the quantity Qk of the physical system in a state s ∈ S. Finally, ρ
associatesmathematical structures of M to their physicallymeaningful quantity.
To see how this framework is supposed to work, as usual, let A(t , qk(tk)) be a
formula whose only free variables are those one expressing time instants, (t
and tk). Formally, |�s A(t , qk(tk)) means that a formula A, in a certain interval
of time, is true for a physical state s if there are values t0 and q0

k (of Qk) in
the interval I(t , tk), with 1 ≤ k ≤ n, such that A(t0, q0

k) is true in s. Now, let
|�A A(t , qk(tk)) denote that A is true in the physical structure A. If we obtain
t in It and qk in I(t , tk), so that ¬A(t , qk(tk)) is also true in A, then the physical
theory captured by A is paraconsistent. In other words, as one might have
expected, with respect to A, we get a paraconsistent physical theory whenever
|�A A(t , qk(tk)) and |�A ¬A(t , qk(tk)).12. At this point, da Costa andDoria aimed
at demonstrating that:

“[...] the underlying logic of a physical theory in Dalla Chiara and
di Francia approach is most adequately represented by Jaśkowski’s
discussive logic.” [CD95, p. 57]

and, more precisely, by J
∗∗. This system is similar to J

∗, but imposes some
more restrictions on bound variables [CD95; CKB07]. Take again S5Q

� and let
]A � ∀xn A(xn) be denoting a formula A preceded by a sequences of universal
quantifiers so that all variables in A are bound. J

∗∗ is constituted by the following
axioms and rules:

If A is an instance of a theorem of S5Q
�, then � ] A is a theorem of J

∗.

12To be clear, consider the following example due to [CKB07, pp. 849–850]. Take Newton’s
second law: F � m · a. The variables appearing in the equation corresponds to the physical
quantities to bemeasured: “force” (F), “mass” (m) and “acceleration” (a). If we take a state s ∈ S,
their values stand in the following three intervals I(F1 , F2) ⊆ R, I(m1 ,m2) ⊆ R and I(a1 , a2) ⊆ R.
When we are able to find three real numbers p1 ∈ I(F1 , F2), q1 ∈ I(m1 ,m2) and r1 ∈ I(a1 , a2),
such that p1 � q1 · r1, then it holds that |�s F � m · a. Likewise, if we encounter the opposite
situation, namely we find three real numbers, in their respective intervals, such that p2 , q2 · r2,
also these three real numbers can be considered as acceptable values for solving the equation.
So, |�s ¬(F � m · a) and, hence, Newton’s second law, in the very same physical situation s, is
both, true and false. In this case, for the same situation s, Newton’s law is a proposition C, such
that |�s C and |�s ¬C. However, |�s C∧¬C does not hold, since it would mean to find three real
numbers p , q , r, in their respective intervals, for which the conjunction p � q · r ∧ p , q · r holds.
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� ] (�(A ⊃ B) ⊃ (�A ⊃ �B)) (J∗∗1 )
� ] (�A ⊃ A) (J∗∗2 )
� ] (^A ⊃ �^A) (J∗∗3 )
� ] (∀xA(x) ⊃ A(t)) (J∗∗4 )
� ] (x � x) (J∗∗5 )
� ] (x � y ⊃ (A(x) ↔ A(y))) (J∗∗6 )

� ] A � ] (A ⊃ B)
]�MP

� ] B
� ] A

]Den
A

� ] A
]R4

� ] �A

^ ] A
]Dep

A

� ] (A ⊃ B(x))
R]�∀

� ] (A ⊃ ∀xB(x))

So: |�J
∗∗ A iff |�S5Q

� ^ ] A. Notice that vacuous quantification can be intro-
duced/eliminated in any formula.
The only difference between J

∗∗ and J
∗ concerns the applications: the first one

is more suitable than the second one to handle with, since there’s no problem
on the discussive interpretation of the free variables. Accordingly, a physical
theory, denoted, T , extends the notion of physical structure and, in sum, it is
composed by the following elements:

1. A formal language L.
2. A set of axiomsA expressed inL such thatA � AL∪AM∪AP , whereAL ,AM

and AP are, respectively, the set of logical, mathematical and physical
axioms.

3. A language L0 ⊂ L. The logic L0, used to deal with the mathematical
structures of T , is classical and, hence, AM includes all classically valid
formulas.

4. The axioms of J
∗∗ are included in AL to deal with inconsistent sets of

premises.
5. AM must contain all axioms for the structures of M.
6. AP contains all “physically motivated sentences”.

So, finally, for A being a theorem of T , then it holds that: if A is formulated in
L0, then A is closed under classical consequence relation. Furthermore, from
the perspective of inconsistent theories: for all A ∈ T , A is closed under J

∗∗-
consequence relation.
Notice that terms of L0 cannot refer to the quantities Qk , but exclusively to
mathematical structures of M, which are totally classical. More precisely, exactly
the quantities Qk induce the language to be paraconsistent. Indeed, if we are
given a formula B such that its terms refer to some of the Qk , generally, it can
result that both, B and ¬B are true in T . Consequently, both sentences should
be included in AP . Here’s exactly the paraconsistent character of the definition
of truth, i.e., in a physical theory T , for some state s ∈ S and a formula B, we
can reach both, |�s B and |�s ¬B. As said above, the acceptance of pairs of
contradictory statements, such as B and ¬B, is meant to mirror those situations
in which two inconsistent sentences are taken to be true with the aim to inspect
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their respective consequences and chose which one provides a more accurate
description of the scientific phenomena under consideration. Of course, this
does not mean that: |�s B ∧ ¬B.

2.2.3 Introducing Discussive Connectives

In the previous discussion we have left apart the centrality of discussive connec-
tives in formulating Jaśkowski’s discussive logic in favour of an analysis prin-
cipally focused on the development of the connections between D2 and modal
systems. In what follows, we reverse the perspective by analysing some of the
major attempts to give axioms to Jaśkowski’s D2, without relying on translations
and by considering directly a language including ∧d, →d instead of ∧, ⊃. The
challenge of providing such an axiomatization, usually known as ‘Jaśkowski’s
problem’ [Vas01, p. 42], has been stated by N. da Costa already in 1975 [Cos75,
p. 14]:

“Is it possible to formulate a natural and simple axiomatization for
D2 employing→d,∧d,∨ and ¬ as the only primitive connectives?”

According to [Kot75], the first non modal axiomatization of D2 has been pro-
posed by Furmanowski but has never been published before Kotas’ paper from
1975 [Vas01]. It is worth having a look at Furmanowski’s work not only for
its historical importance, but also for the originality of the proposed axioms.
Let A, B, C, . . . be formulas and let ⊥ � ¬(A ∨ ¬A). The discussive logic D

F
2 is

axiomatized by the following axioms:

¬(A ⊃ (¬A ⊃ B)) →d ⊥ (F1)
(A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)) →d ⊥ (F2)
¬((¬A ⊃ B) ⊃ A) →d ⊥ (F3)
¬((¬A ⊃ B) ⊃ A) →d B (F4)
¬((¬(A ⊃ B) →d ⊥) →d ((¬A→d ⊥) ⊃ (¬B→d ⊥))) →d ⊥ (F5)
¬(¬¬(¬A ⊃ ⊥) ∨ ¬¬(¬A→d ⊥)) →d ⊥ (F6)
(¬(A ⊃ B) →d C) →d ((¬A→d C) →d (¬B→d C)) (F7)
(¬A→d ⊥) →d A (F8)
(A→d B) →d (¬(A→d B) →d B) (F9)
¬(¬¬A→d B) →d A (F10)

Notice that, D
F
2 is still ‘impure’ in the sense that, even though, Furmanowski did

not include the modal operators, he still kept the presence of two conditionals,
including the material one. So, strictly speaking, accordingly to [Cos75], D

F
2

cannot be regarded as a solution to ‘Jaśkowski’s problem’. In 1977 [CD77;
CK77] da Costa and Dubikajtis presented the first complete axiomatization of
discussive logic including directly discussive connectives in the axiom schemata.
In particular, da Costa and Dubikajtis [CD77] presented some axioms including
→d and ∧l

d. From now on, we will denote the discussive logic so formalized
by D

l
2, where ‘l’ indicates the presence of ∧l

d, instead of Jaśkowski’s ∧d. So, the
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discussive logic D
l
2 is axiomatized as follows

A→d (B→d A) (Ax1)
(A→d (B→d C)) →d ((A→d B) →d (A→d C)) (Ax2)
(A ∧l

d B) →d A (Ax3)
(A ∧l

d B) →d B (Ax4)
A→d (B→d (A ∧l

d B)) (Ax5)
A→d (A ∨ B) (Ax6)
B→d (A ∨ B) (Ax7)
(A→d C) →d ((B→d C) →d (A ∨ B) →d C) (Ax8)
A→d ¬¬A (Ax9)
¬¬A→d A (Ax10)
((A→d B) →d A) →d A (Ax11)
¬(A ∨ ¬A) →d B (Ax12)
¬(A ∨ B) →d ¬(B ∨ A) (Ax13)
¬(A ∨ B) →d (¬B ∧l

d ¬A) (Ax14)
¬(¬¬A ∨ B) →d ¬(A ∨ B) (Ax15)
(¬(A ∨ B) →d C) →d ((¬A→d B) ∨ C) (Ax16)
¬((A ∨ B) ∨ C) →d ¬(A ∨ (B ∨ C)) (Ax17)
¬((A→d B) ∨ C) →d (A ∧l

d ¬(B ∨ C)) (Ax18)
¬((A ∧l

d B) ∨ C) →d (A→d ¬(B ∨ C)) (Ax19)
¬(¬(A ∨ B) ∨ C) →d (¬(¬A ∨ C) ∨ ¬(¬B ∨ C)) (Ax20)
¬(¬(A→d B) ∨ C) →d (A→d ¬(¬B ∨ C)) (Ax21)
¬(¬(A ∧l

d B) ∨ C) →d (A ∧l
d ¬(¬B ∨ C)) (Ax22)

A A→d B
MPd

B

Remark 3. D
l
2 includes the following set of connectives into its language {¬,∨,∧l

d,→d
}, where the only difference, as said, with D2 is the presence of left-discussive
conjunction. Notice that, even though D

l
2 constitutes a complete axiomatization

[CD77, p. 54], from the perspective of [Cos75], it might be still considered only as
a ‘partial’ solution to ‘Jaśkowski’s problem’. Indeed, this time the ‘impurity’ of
the axioms is not linked to the inclusion of other connectives than the discussive
ones, plus ¬ and ∨, but to the presence of ∧l

d. As remarked above (Observation
4), the interaction of ¬with different discussive operators defines logics distinct
from Jaśkowki’s D2 . Indeed, strictly speaking, since Jaśkowski’s D2 included
right-discussive conjunction, D

l
2 can be considered only as a variation of D2.

More recently, J. Alama and H. Omori [AO18] presented a complete and sound
axiomatization for discussive logic, including Jaśkowski’s right-discussive con-
junction (denoted D

r
2). The starting point of [AO18] are the axioms of D

l
2. The
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only necessary change to get D
r
2, is to drop Ax19 and Ax22 in favour of:

¬((A ∧d B) ∨ C) →d (B→d ¬(A ∨ C)) (Ax19′)
¬(¬(A ∧d B) ∨ C) →d (¬(¬A ∨ C) ∧d B) (Ax22′)

Moreover, in the axioms involving conjunction, one simply needs to replace ∧l
d

with ∧d. Of course, Ax19 and Ax22 of D
l
2 mirrored the behaviour of negated

left-discussive conjunction. Ax19′ and Ax22′ absolve the same job, but with
respect to right-discussive conjunction. Both axioms are D2-valid if and only
if their modally translated versions are S5-valid, i.e., just in case the following
formulas are valid in S5, accordingly to τ (see 2.1.2):

^(^¬((A ∧ ^B) ∨ C) ⊃ (^B ⊃ ¬(A ∨ C)))
^(^¬(¬(A ∧ ^B) ∨ C) ⊃ (¬(¬A ∨ C) ∧ ^B))

Following the changes proposed in [AO18], it seems that D
r
2 accomplishes, at

least, the task of finding a correct and complete axioms system for Jaśkowski’s
discussive logic. At this point, it might be naturally asked ifD

r
2 goes even further

and gives a positive and definitive answer to ‘Jaśkowski’s problem’. Up to now
it seems to be the best candidate.
Wewish to strengthen this idea by considering briefly two other axiomatizations
for D2, both elaborated by J. Ciuciura in [Ciu05; Ciu08]. First of all, consider
again a set of connectives including lef-discussive conjunction and the axiomatic
system proposed in [Ciu05] (denoted D

C
2 ). Take Ax1-Ax8, plus MPd , of D

l
2, and

add the following axioms:

A ∨ (A→d B) (C1)
A→d ¬(¬(A ∨ B) ∧l

d ¬B ∧l
d ¬A) (C2)

¬(¬(A ∨ B) ∧d ¬B ∧l
d ¬A) →d

→d ¬(¬(A ∨ B ∨ C) ∧l
d ¬C ∧l

d ¬B ∧l
d ¬A) (C3)

¬(¬(A ∨ B ∨ C) ∧l
d ¬C ∧l

d ¬B ∧l
d ¬A) →d

→d ¬(¬(A ∨ B ∨ C) ∧l
d ¬B ∧l

d ¬C ∧l
d ¬A) (C4)

¬(¬(A ∨ B) ∧l
d ¬B ∧l

d ¬A) →d ((A ∨ ¬B) →d A) (C5)
¬(¬(A ∨ B ∨ C) ∧l

d ¬C ∧l
d ¬B ∧l

d ¬A) →d

→d ((A ∨ B ∨ ¬C) →d (A ∨ B)) (C6)
¬(¬(A ∨ B ∨ C) ∧l

d ¬C ∧l
d ¬B ∧l

d ¬A) →d

→d (¬(¬(A ∨ B ∨ ¬C) ∧l
d ¬¬C ∧l

d ¬B ∧l
d ¬A) →d ¬(¬B ∧l

d ¬A)) (C7)
¬(¬A ∧l

d ¬B) →d (A ∨ B) (C8)
(A ∨ ¬¬B) →d (A ∨ B) (C9)
(A ∨ B) →d (A ∨ ¬¬B) (C10)

As usual, the consequence relation `
D

C
2
is determined by the axioms Ax1-Ax8,

C1-C10 andby the ruleMPd . Additionally, to prove soundness and completeness
results, Ciuciura proposed a possible world semantics for D

C
2 , in which all
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elements are identical to those of Definition 2.2.5, except that W � N and that
we include the following clauses:

v(A ∧l
d B, w) � 1 iff ∃x ∈ R(w), v(A, x) � 1 and v(B, w) � 1

v(A→d B, w) � 1 iff ∀x ∈ R(w), v(A, x) � 0 or v(B, w) � 1

Since D
C
2 relies on an equivalence relation between worlds, the accessibility

relation may be not explicitly stated in the clauses. In any case, these changes
will not affect their meaning, [Ciu05, pp. 239–240.]. Importantly, Ciuciura aimed
at proving soundness and completeness of D

C
2 , but, unfortunately, in [AO18,

p. 1171], it was proved that in D
C
2 there is (at least) one unprovable formula. The

point is struggling, since the formula in question, i.e., ¬(A ∨ ¬A) →d B, is valid
according to the Jaśkowski-style translation τ of Definition 2.1.2. Consequently,
one might naturally doubt whether D

C
2 is, in some sense, an axiomatization of

Jaśkowski’s discussive logic in the sense of [Cos75], given also the presence of
∧l
d instead of ∧d. However, in an another paper [Ciu08], Ciuciura restated the

presence of right-discussive conjunction among the connectives and provided
an axiomatic system for it. We denote Ciuciura’s second axiomatization by D

C∗
2 .

Take again Ax1-Ax8 (replacing ∧l
d with ∧d in Ax3, Ax4, Ax5) and MPd of D

l
2,

plus the following axioms:

A ∨ (A→d B) (C1∗)
¬(¬A ∧d ¬¬A ∧d ¬(A ∨ ¬A)) (C2∗)
¬(¬A ∧d ¬B ∧d ¬(A ∨ B)) →d

→d ¬(¬A ∧d ¬B ∧d ¬C ∧d ¬(A ∨ B ∨ C)) (C3∗)
¬(¬A ∧d ¬B ∧d ¬C ∧d ¬(A ∨ B ∨ C)) →d

→d ¬(¬A ∧d ¬C ∧d ¬B ∧d ¬(A ∨ C ∨ B)) (C4∗)
¬(¬A ∧d ¬B ∧d ¬C ∧d ¬(A ∨ B ∨ C)) →d

→d ((A ∨ B ∨ ¬C) →d (A ∨ B)) (C5∗)
¬(¬A ∧d ¬B) →d (A ∨ B) (C6∗)
(A ∨ (B ∨ ¬B)) →d ¬(¬A ∧d ¬(B ∨ ¬B)) (C7∗)

As in the case of D
C
2 , to prove soundness and completeness, Ciuciura proposed

a possible worlds semantics, but dropping out the clause for ∧l
d in favour of the

following one for ∧d:

v(A ∧d B, w) � 1 iff ∃x ∈ R(w), v(A, w) � 1 and v(B, x) � 1

Some criticism has been moved against Ciuciura’s D
C∗
2 . J. Alama [Ala06] no-

ticed that if we take the axioms Ax1-Ax22 of da Costa’s and Dubikajtis’ D
l
2, in

comparison to the ones of Ciuciura, we will get a troublesome situation: the
two axiomatizations share some theses (Ax1-Ax8), while some others are re-
spectively unprovable. Technically, if we encounter this situation, the two logics
under considerations are said to be “orthogonal”. In this specific case [Ala06,
pp. 4–8]:
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Proposition 2.2.1. D
C∗
2 0Ax9, Ax12, Ax13, Ax14, Ax15, Ax16, Ax17, Ax18, Ax19,

Ax20, Ax21, Ax22.

At this point, consequently, it might be naturally asked whether D
C∗
2 corre-

sponds to a restriction of D
l
2. The answer is no, since there is (at least) one axiom

of D
C∗
2 which is D

l
2-unprovable [Ala06, p. 11]:

Proposition 2.2.2. D
l
2 0C5

∗

In sum, D
C∗
2 . and D

l
2, one with respect to the other, are not complete axioma-

tizations and, moreover, they ought to be called as orthogonal, i.e., they overlap
and each one has theorems which are not formulas of the other. Finally, also the
addition of new axioms still confirms that Ciuciura’s axiomatization D

C∗
2 is an

incomplete system of axioms [AO18, p. 1168.].
Notice , finally, that D

C∗
2 also fails to be an axiomatization Jaśkowski’s D2, in

the sense that there are D2-valid formulas, that are unprovable in D
C∗
2 [AO18,

pp. 1167–1170], namely13:

A→d ¬¬A
¬(A ∨ ¬A) →d B
¬(A ∨ B) →d ¬(B ∨ A)
¬(¬¬A ∨ B) →d ¬(A ∨ B)

Remark 4. In conclusion, all these considerations lead us in doubting that D
C
2

and D
C∗
2 did provide a solution to ‘Jaśkowksi’s problem’. Furthermore, given

the presence of both, Observation 4 and of Proposition 2.2.2, also D
l
2 seems to be

far from providing a solution. Nonetheless, D
r
2, as elaborated in [AO18], seems

to be an adequate candidate to settle positively the problem raised in [Cos75].

2.3 Conclusive remarks

We have selected some of the perspectives under which discussive systems can
be considered and, for the sake of brevity, we have chosen to explain and discuss
just some of the main contributions present in the literature. For example, we
have analysed how ‘Jaśkowski’s problem’ might be solved, given the axiomatic
systems we discussed. Nonetheless, many other works could have been consid-
ered (to cite a few of them, see [Kot75; Cos75; Vas01; MN19]). J. Perzanowski, in
the critical notes to [Jaś99b, p. 59], showed how to define ‘discussive negation’,
i.e., ¬dA � ^¬A. Interestingly, the equivalence between ^¬A and ¬�A, makes,
in fact, ¬d equal to ‘un-necessity’. However, there are only few articles consider-
ing these kind of extensions of the set of discussive connectives. Remarkably, in
[Ciu06], there’s an axiomatization of discussive logic including also ¬d among
the connectives, but, unfortunately, this attempt has some problems (see, [AO18,
pp. 1178–1179]). Hence, the challenge of developing an axiomatization for D2,

13Notice that those D
C∗
2 unprovable formulas correspond to Ax9, Ax12, Ax13 and Ax15 of

both, D
r
2 and D

l
2.
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including also ¬d , is still open.
As remarked several times, Jaśkowski’s logic has attracted discrete attention
and many other research paths have been inaugurated. For instance, there
has been some interest in developing discussive logic by getting rid of classical
S5, in favour of other non-classical systems (see, among others [KC79; Ciu00;
AAN11]). Additionally, the work of connecting D2 to modal logics (especially,
the articles by M. Nasieniewski and colleagues) increased (for example, [NP11;
MNP19; NP14]). Among their giganticwork, it’s worthmentioning the proposal
of an ‘adaptive’ (inconsistency-tolerant) version of discussive logic (see [Nas01;
Nas03; Nas04] and [Meh06]).
From a more philosophical perspective, instead, one might find another inter-
esting application of discussive logic to the philosophy of sciences in [CD95],
where, in addition to the applications of J

∗∗ to the foundations of physical the-
ories, the authors propose also a theory of ‘pragmatic’ (or ‘partial’) truth. The
intuition underlying their idea, roughly, is that, with respect to inconsistent in-
formations, scientists work with such informations as if they were true, and do
not take them to be true simpliciter. Also in this case, J

∗ and J
∗∗ show their useful-

ness in modelling reasoning with inconsistent sets of premises. Importantly, in
[DPS18], the authors – by taking inspiration from Jaśkowski’s main motivation
to build D2 – propose a four-valued discussive logic (D4) with the aim of captur-
ing situations in which discussants put forward inconsistent opinions. Roughly,
this work includes a ‘doxastic’ variant of discussive logic, allows to distinguish
among different agents, each one with its respective set of beliefs, and models
(through a function) the agents’ capabilities (e.g., perception, expert-supplied
knowledge, communication, discussion). The idea is that a reasoner, that starts
from a lack of informations, can – in the process of acquiring more data – reach
either support or refutation of such data. However, if there’s an overload of in-
formations, the reasonermay reach both, truth and falsity, i.e., inconsistent data.

In conclusion, as said, this overview is not exhaustive and, indeed, our aim
was to indicate just some of the most interesting directions that discussive logic
oriented researches have taken, by starting from Jaśkowski’s papers. We think
that thanks to its historical importance as the first known formulation of a para-
consistent logic and to its subsequent developments, discussive logic is still an
interesting and vital field of investigation.
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Chapter 3

Jaśkowski’s discussive logic meets

Gentzen-style calculi

Layout of the chapter. In this chapter, we investigate the proof theory of
Jaśkowski’s D2 by using labelled sequent calculi. Central topics include proofs
of soundness and completeness as well as a complete proof analysis of the sys-
tems under scope. I’ll conclude the chapter with several remarks highlighting
the virtues of my investigation by pointing out some topics for further research
on discussive logic related issues.

3.1 Semantic preliminaries

In this section, we introduce the formal language and Kripke’s relational seman-
tics for D2.

Definition 3.1.1. Let L be the language of D2. We denote by At a set of atoms
p , q , . . . . The set of D2 formulas, denoted Form, is defined recursively for all A
as follows:

A ::� p | ¬A | A ∨ A | A ∧d A | A→d A

Definition 3.1.2. A relational frame for D2, denoted F , is a structure of the
following shape 〈W, R〉, where W is a set of points (worlds, states) and R ⊆ W2,
satisfying the following conditions: (1) wRw, (2) wRv �⇒ vRw and (3)
vRw ∧ wRz �⇒ vRz.

Definition 3.1.3. A relational model for D2, denotedM, is a pair 〈F , v〉, where
F is a relational frame and v : At 7→ P(W) is a valuation function on atomic
formulas. The valuation is then extended to thewhole language in the following
way:

M , w  p iff w ∈ v(p) (1)
M , w  ¬A iffM , w 1 A (2)
M , w  A ∨ B iffM , w  A orM , w  B (3)
M , w  A ∧d B iffM , w  A and ∃v ∈ W :M , v  B (4)
M , w  A→d B iff ∃v ∈ W : wRv andM , v  A, implyM , w  B (5)
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Finally, A is satisfied in a modelM � 〈F , v〉, that is, w  A iff there is a v ∈ W
such that wRv and v � A. A formula A is valid in a frame F iff, for all valuations
v, the formula A is satisfied inM.

3.2 Labelled Sequent System for D2

Over the years, labelled proof systems have been widely studied and applied
to the vast realm of non-classical logics. Specifically with respect to discussive
logic, for example, J. Ciuciura [Ciu04] has developed a labelled tableau system.
Inspired by this work and by starting from the semantics that we have just
sketched, in what follows, we introduce a labelled sequent calculus for D2 and
start considering its major proof-theoretic properties.

Definition 3.2.1. The notation w : A is used to denote labelled formulas. Objects
of the form wRv are called relational atoms. Given two multisets Γ,∆ of both,
labelled formulas and relational atoms, a labelled sequent is an object of the
following form: Γ⇒ ∆.

The labelled rules of our sequent system are subject to the following closure
condition. Consider a rule R of the following form:

A, B1 , . . . , Bn , Bn+1 , Bn+1 , Γ⇒ ∆ (R)
B1 , . . . , Bn , Γ⇒ ∆

Applying the closure condition on R means to substitute the multiple occurrence
Bn+1, Bn+1 with a single one to obtain a rule R∗ of the following shape:

A, B1 , . . . , Bn , Bn+1 , Γ⇒ ∆ (R∗)
B1 , . . . , Bn , Γ⇒ ∆

Axiomatic sequents

w : p , Γ⇒ ∆, w : p

where p is an atomic formula.
Propositional rules

Γ⇒ ∆, w : A
(L¬)

w : ¬A, Γ⇒ ∆
w : A, Γ⇒ ∆

(R¬)
Γ⇒ ∆, w : ¬A

w : A, Γ⇒ ∆ w : B, Γ⇒ ∆
(L∨)

w : A ∨ B, Γ⇒ ∆
Γ⇒ ∆, w : A, w : B

(R∨)
Γ⇒ ∆, w : A ∨ B

Discussive rules

wRv , w : A, v : B, Γ⇒ ∆
(L∧+d )w : A ∧d B, Γ⇒ ∆

wRv , Γ⇒ ∆, w : A ∧d B, w : A wRv , Γ⇒ ∆, w : A ∧d B, v : B
(R∧d)

wRv , Γ⇒ ∆, w : A ∧d B
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wRv , w : A→d B, Γ⇒ ∆, v : A wRv , w : B, w : A→d B, Γ⇒ ∆
(L→d)

wRv , w : A→d B, Γ⇒ ∆

wRv , v : A, Γ⇒ ∆, w : B
(R→+

d )
Γ⇒ ∆, w : A→d B

where the symbol + denotes that v is an eigenvariable.
Relational rules

wRw , Γ⇒ ∆
(Ref )

Γ⇒ ∆
vRw , wRv , Γ⇒ ∆

(Sym)
wRv , Γ⇒ ∆

zRv , zRw , wRv , Γ⇒ ∆
(Trs)

zRw , wRvΓ⇒ ∆
The propositional rules displayed above are the usual ones for ¬ and ∨; the

rules for ∧d and→d have been constructed out of the semantic clauses of Def-
inition 3.1.3 by following the methodology presented, among other, in [Neg05;
NvP11; Pog09a]. As relational atoms are never active in the right-hand side of
sequents, we do not include axioms of the form wRv , Γ⇒ ∆, wRv.

3.3 Proof Analysis and Cut-admissibility

Definition 3.3.1. Let A be any labelled formula of the form v : A. We de-
note by l(A) the label of a formula A, and by p(A) the pure part of the
formula, that is, the part of the formula without the label. The weight (or
complexity) of a labelled formula is defined as a lexicographically ordered pair:
〈w(p(A)),w(l(A))〉, where:

1. for all state labels v ∈ W , w(v) � 1;
2. for all p ∈ At, w(p) � 1;
3. w(¬A) � w(A) + 1;
4. w(A ∧ B) � w(A) + w(B) + 1, for ∧ ∈ {∨,∧d,→d}.

Definition 3.3.2. We denote by h(δ) the natural number indicating the height
of a derivation. We associate the height with the longest branch in a proof-tree
δ−1. The height of a derivation h(δ) is defined by induction on the construction
of δ:

δ ≡ { Γ⇒ ∆ h(δ) � 0

δ ≡


.... }δ1

Γ′⇒ ∆′
R

Γ⇒ ∆

h(δ) � h(δ1) + 1
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δ ≡


.... }δ1

R′
Γ′⇒ ∆′

.... }δ2

R′′
Γ′′⇒ ∆′′

R
Γ⇒ ∆

h(δ) � h(δ1) + 1, h(δ2) + 1

Finally, letS bea sequent. Thenotation ‘δ ` S’ stands for ‘δ is aproof/derivation
of S’ with h(δ) ≤ n and ‘ `nS ’ stands for ‘S has a derivation δ of height n’.

Proposition 3.3.1. `G3D2
w : A, Γ⇒ ∆, w : A.

Proof. By induction on the complexity of A. Let A � B ∧d C:
...

wRv , w : B, v : C, Γ⇒ ∆, w : B

...
wRv , w : B, v : C, Γ⇒ ∆, v : C

(R∧d)
wRv , w : B, v : C, Γ⇒ ∆, w : B ∧d C

(L∧d)
w : B ∧d C, Γ⇒ ∆, w : B ∧d C

Now, let A � B→d C:
...

wRv , v : B, w : B→d C, Γ⇒ ∆, v : B, w : C

...
wRv , w : C, v : B, w : B→d C, Γ⇒ ∆, w : C

(L→d)
wRv , w : B→d C, v : B, Γ⇒ ∆, w : C

(R→d)
w : B→d C, Γ⇒ ∆, w : B→d C

In both cases, the premises are derivable by the induction hypothesis. �

Definition 3.3.3. A rule R of G3D2 is height-preserving admissible just in case:
if there is a derivation of the premise(s) of R, then there is a derivation of the
conclusion of R that contains no application of R (with the height at most n,
where n is the maximal height of the derivation of the premise(s)).

Definition 3.3.4. We define substitution as follows:

• wRv(z/x) ≡ wRv, if x , w and x , v.
• wRv(z/w) ≡ zRv, if w , v.
• wRv(z/v) ≡ wRz, if w , v.
• wRw(z/w) ≡ zRz.
• w : A(z/v) ≡ w : A, if v , w.
• w : A(z/w) ≡ z : A.

Next we extend this definition to multisets:

Lemma 3.3.2 (Substitution). If `n
G3D2

Γ⇒ ∆ and, provided v is free for w in Γ,∆,
then `n

G3D2

Γ(v/w) ⇒ ∆(v/w).
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Proof. If n � 0 and (z/w) is not a vacuous substitution, then it can be an axiomatic
sequent of the form w : p , Γ⇒ ∆, w : p or of the form wRv , Γ⇒ ∆, wRv. In both
cases, also the substitution Γ(z/w) ⇒ ∆(z/w) is an axiomatic sequent. Let n > 0.
If we are considering a propositional rule, we apply the inductive hypothesis
to the premise(s) of the rule, and then the rule again. We proceed similarly if
the last rule is a discussive rule without a variable condition, namely R∧d and
L →d. Finally, let’s consider a discussive rule with the eigenvariable condition,
such as R →+

d . (i) Let w : A→d B be principal and let z be a fresh variable. Let
∆ � w : A→d B,∆′:

...
`n

wRz , z : A, Γ⇒ ∆′, w : B
(R→+

d )`n+1
Γ⇒ ∆′, w : A→d B

Notice that z , w and that z < Γ,∆′. By the application of the inductive hy-
pothesis we obtain the following application of R→+

d with the same derivation
height:

...
`n

vRz , z : A, Γ(v/w) ⇒ ∆′(v/w), v : B
(R→+

d )`n+1
Γ(v/w) ⇒ ∆′(v/w), v : A→d B

(ii) Assume again w : A→d B as the principal formula, but with v not being
a fresh variable. So, our derivation ends as follows:

...
`n

wRv , v : A, Γ⇒ ∆′, w : B
(R→+

d )`n+1
Γ⇒ ∆′, w : A→d B

First, we replace v by a fresh variable z. By the variable condition the
substitution does not affect Γ,∆′. Indeed, we get the following premise of height
n: wRz , z : A, Γ⇒ ∆′, w : B. So, by applying inductivehypothesis, we substitute
the label w with v to conclude:

...
`n

vRz , z : A, Γ(v/w) ⇒ ∆′(v/w), v : B
(R→+

d )`n+1
Γ(v/w) ⇒ ∆′(v/w), v : A→d B

(iii) Ifw is not the label of theprincipal formulaA→d B in thederivation, then
the proof proceeds analogously. A similar reasoning applies if the derivation
ends with an application of L∧+d . �

Lemma 3.3.3. The rules of weakening:
Γ⇒ ∆ (Lw)

w : A, Γ⇒ ∆
Γ⇒ ∆ (Rw)

Γ⇒ ∆, w : A
Γ⇒ ∆ (LwR)

wRv , Γ⇒ ∆

are height-preserving admissible in G3D2.
Proof. By induction on the height of the derivation. For n � 0, the case is trivial.
For n > 0, we simultaneously display the transformed derivations for Lw and
Rw on the left and on the right, respectively. As an example we will deal with
R→d

+. (i) Let∆ � ∆′, w : A→d B. Suppose w : A→d B is the principal formula
and the label v in a fresh variable:
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...
`n

wRv , v : A, Γ⇒ ∆′, w : B
(R→d

+)
`n+1
Γ⇒ ∆′, w : A→d B

By applying the inductive hypothesis (on the left and on the right) to the
premise and, finally, also the rule, we obtain the requested derivations:

...
`n

w : A, wRv , v : A, Γ⇒ ∆′, w : B
(R→+

d )`n+1
w : A, Γ⇒ ∆′, w : A→d B

...
`n

wRv , v : A, Γ⇒ ∆′, w : B, w : A
(R→+

d )`n+1
Γ⇒ ∆′, w : A→d B, w : A

(ii) If the label v in the premise is not a fresh label, we need to avoid clashes
of variables. So, we apply the substitution lemma to the premise of the rule
to replace v with a fresh variable, say z, and obtain the following premise:
wRz , z : A, Γ ⇒ ∆′, w : B. Finally, we apply the inductive hypothesis and the
rule to get:

...
`n

w : A, wRz , z : A, Γ⇒ ∆′, w : B
(R→+

d )`n+1
w : A, Γ⇒ ∆′, w : A→d B

...
`n

wRz , z : A, Γ⇒ ∆′, w : B, w : A
(R→+

d )`n+1
Γ⇒ ∆′, w : A→d B, w : A

as desired. The same reasoning applies if the last rule applied is L∧+d . �

Definition 3.3.5. A rule R of G3D2 is height-preserving invertible just in case:
if there is a derivation of the conclusion of R, then there is a dedrivation of
premise(s) of R (with the height at most n, where n is the maximal height of the
derivation of the conclusion).

Lemma 3.3.4 (Inversion). All rules of G3D2 are height-preserving invertible.

Proof. For each rule R, we have to show that if there is a derivation δ of the
conclusion, then there is a derivation δ′ of the premise(s), of the same height.
For L¬, R¬, L∨, R∨, R∧d and L →d we use a standard induction on the height
of δ. For L∧d and R→d as well, but we need to be sure that in the transformed
derivation we make use of a fresh label by applying the substitution lemma
inside δ′, if needed. �

Lemma 3.3.5. The rules of contraction:
w : A, w : A, Γ⇒ ∆

(Lc)
w : A, Γ⇒ ∆

Γ⇒ ∆, w : A, w : A
(Rc)

Γ⇒ ∆, w : A

wRv , wRv , Γ⇒ ∆
(LcR)

wRv , Γ⇒ ∆

are height-preserving admissible in G3D2.

Proof. By induction on the height of derivation. As usual, if n � 0, then the
premise is an axiomatic sequent and so also the contracted sequent is an ax-
iomatic one. If n > 0, we consider the last rule applied to the premise of
contraction. If the contraction formula is not principal in the premise of some
R, then both occurrences are found in the premises of the rule and they have
a smaller derivation height. By applying the induction hypothesis, we contract
them and apply R to obtain a derivation of the conclusion with the same deriva-
tion height. As an example, consider a rule where the principal formula and the
relational atoms are both active, for instance:

60



CHAPTER 3. JAŚKOWSKI’S D2 MEETS GENTZEN-STYLE CALCULI

`n
wRv , v : A, Γ⇒ ∆, w : A→d B, w : B

(R→+

d )`n+1
Γ⇒ ∆, w : A→d B, w : A→d B

By height-preserving invertibility applied to the premise, we obtain the follow-
ing derivation:

`n
wRv , v : A, wRv , v : A, Γ⇒ ∆, w : B, w : B

i.h.
`n

wRv , v : A, Γ⇒ ∆, w : B
(R→+

d )`n+1
Γ⇒ ∆, w : A→d B

as requested. Notice that if both contraction formulas are principal in (R →+

d ),
we apply the closure condition.
Finally, consider a rule in which only the labelled formula is principal:

`n
wRv , w : A→d B, w : A→d B, Γ⇒ ∆, v : A `n

wRv , w : B, w : A→d B, w : A→d B, Γ⇒ ∆
(L→d)

`n+1
wRv , w : A→d B, w : A→d B, Γ⇒ ∆

By inductive hypothesis, we obtain the following derivation:
`n

wRv , w : A→d B, Γ⇒ ∆, v : A `n
wRv , w : B, w : A→d B, Γ⇒ ∆

(L→d)
`n+1

wRv , w : A→d B, Γ⇒ ∆
The cases for L∧d and R∧d can be treated analogously. �

So, finally, we can show that cut is an admissible rules of G3D2:

Theorem 3.3.6. The rule of cut:

Γ⇒ ∆, w : A w : A, Γ′⇒ ∆′
(cut)

Γ, Γ′⇒ ∆,∆′

is admissible in G3D2.

Proof. The proof is by a lexicographic induction on the complexity of the cut-
formula w : A and the sum of the heights h(δ1) + h(δ2). We perform a case
analysis on the last rule used in the derivation above the cut and whether
it applies to the cut-formula or not. We show that each application of cut
can either be eliminated, or be replaced by one or more applications of cut of
smaller complexity. The proof proceeds similarly to the cut-elimination proof
formodal and intermediate logics, see [Neg05; NvP11]. Intuitively, we eliminate
the topmost cut first, and proceed by repeating the procedure until we reach
a cut-free derivation. We start by showing that cut can be eliminated if one
of the cut premises is an axiom (case 1). Then we show that the cut-height
can be reduced in all cases in which the cut-formula is not principal in at least
one of the cut-premises (case 2). Finally, we show that if the cut-formula is
principal in both cut-premises, then the cut is reduced to one or more cuts on
less complex formulas or on shorter derivations (case 3). The complete case
analysis is performed in Appendix A1.
Here, we present two interesting cases where the cut-formula A is principal in
both premises. Let w : A � w : B ∧d C and consider the following derivation:
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wRv , Γ′⇒ ∆′, w : B ∧d C, w : B wRv , Γ′⇒ ∆′, w : B ∧d C, v : C
(R∧d)

wRv , Γ′⇒ ∆′, w : B ∧d C

wRz , w : B, z : C, Γ⇒ ∆
(L∧d)

w : B ∧d C, Γ⇒ ∆
(cut)

wRv , Γ, Γ′⇒ ∆,∆′

It is transformed into:
..... δ1

wRv , Γ, Γ′⇒ ∆,∆′, v : C

..... δ2

wRv , v : C, Γ, Γ′⇒ ∆,∆′ (cut)
wRv , wRv , Γ, Γ, Γ′, Γ′⇒ ∆,∆,∆′,∆′

(Lem. 3.3.5) (Lc + Rc + LcR)
wRv , Γ, Γ′⇒ ∆,∆′

where δ1 is concluded by:
wRv , Γ′⇒ ∆′, w : B ∧d C, v : C w : B ∧d C, Γ⇒ ∆ (cut)

wRv , Γ, Γ′⇒ ∆,∆′, v : C
and δ2 is obtained by:
wRv , Γ′⇒ ∆′, w : B ∧d C, w : B w : B ∧d C, Γ⇒ ∆

(cut)
wRv , Γ, Γ′⇒ ∆,∆′, w : B

wRz , w : B, z : C, Γ⇒ ∆
[v/z]

wRv , w : B, v : C, Γ⇒ ∆
(cut)

wRv , wRv , v : C, Γ, Γ, Γ′⇒ ∆,∆,∆′
(Lem. 3.3.5) (Lc + Rc + LcR)

wRv , v : C, Γ, Γ′⇒ ∆,∆′

Notice that the two topmost cuts, those on w : B ∧d C, are derived with a
shorter derivation height, while the other two are applied on formulas of smaller
complexity, i.e., w : B and v : C..
Assume that the premises of cut are derived by R →d and L →d, respectively.
Let A � B→d C:

wRv , v : B, Γ⇒ ∆, w : C
(R→d)

Γ⇒ ∆, w : B→d C

wRz , w : B→d C, Γ′⇒ ∆′, z : B wRz , w : C, w : B→d C, Γ′⇒ ∆′
(L→d)

wRz , w : B→d C, Γ′⇒ ∆′
(cut)

wRz , Γ, Γ′⇒ ∆,∆′

It is transformed into the following derivation:
..... δ1

wRz , Γ, Γ′⇒ ∆,∆′, w : C

..... δ2

wRz , w : C, Γ, Γ′⇒ ∆,∆′
(cut)

wRz , wRz , Γ, Γ, Γ′, Γ′⇒ ∆,∆,∆′,∆′
(Lem. 3.3.5) (Lc + Rc + LcR)

wRz , Γ, Γ′⇒ ∆,∆′
where the conclusion of δ1 is derived by:

Γ⇒ ∆, w : B→d C wRzw : B→d C, Γ′⇒ ∆′, z : B
cut

wRz , Γ, Γ′⇒ ∆,∆′z : B

wRv , v : B, Γ⇒ ∆, w : C
(Lem. 3.3.2) [z/v]

wRz , z : B, Γ⇒ ∆, w : C
(cut)

wRz , wRz , Γ, Γ, Γ′⇒ ∆,∆,∆′, w : C
(Lem.3.3.5) Lc+Rc+LcR

wRz , Γ, Γ′⇒ ∆,∆′, w : C

while the conclusion of δ2 is derived by:
Γ⇒ ∆, w : B→d C wRz , w : C, w : B→d C, Γ′⇒ ∆′ (cut)

wRz , w : C, Γ, Γ′⇒ ∆,∆′
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Notice that the two topmost cuts, those on w : B →d C, are derived with
a shorter derivation height, while the other two are applied on formulas of
smaller complexity, i.e., z : B and w : C. �

Remark 5. Jaśkowski argued that a fundamental feature of discussive systems is
the possibility of having a detachable→d:

“In every discussive system two theses, one of the form: P →d Q,
and the other of the form: P, entail the thesis Q [...]. Thus the rule
of modus ponens may be applied to discussive theses if discussive
implication is used instead of ordinary implication.”

In light of the cut-admissibility result just presented, we can show that in our
newly introduced G3D2, it is possible to simulate the detachability of→d by the
following result.

Proposition 3.3.7. The rule of modus ponens:

A→d B A
B

is admissible in G3D2.

Proof. We show that, in G3D2, given⇒ w : A →d B and⇒ w : A, we derive
⇒ w : B:

⇒ w : A
⇒ w : A→d B

wRw , w : A, w : A→d B⇒ w : A wRw , w : B, w : A→d B⇒ w : B
(L→d)

wRw , w : A→d B, w : A⇒ w : B
(cut)

wRw , w : A⇒ w : B
(cut)

wRw ⇒ w : B
(Ref )

⇒ w : B

where the rightmost premises are derivable by Proposition 3.3.1 and the appli-
cations of cut are admissible by Theorem 3.3.6. �

3.3.1 Derivations, syntactic completeness and paraconsistency

Before delving into the proof of syntactic completeness, it is essential to highlight
the consideration of additional structural-like rules.
As per the relational semantics previously introduced, the modal aspect of the
consequence relation of D2 is expressed by including the following proviso:
w  A holds if and only if there exists a state v ∈ W such that wRv and
v  A. Given that our calculus fully internalizes the relational semantics for D2,
we need to introduce additional machinery to correctly express the discussive
consequence relation within G3D2. In his paper on labelled tableau system for
discussive logic, Ciuciura remarks that:

“Jaśkowski suggested treating a discussion as a set of opinions given
by participants. There follows an idea to precede each opinion by the
provision: for a certain admissible meaning of the terms used. [...]
The idea is reflected in an additional rule.
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Special rule:
% :: FP

(S)
τ :: FP
where % is a root label and τ is a label that has been already used
in the branch. The application of the rule is always limited to root
labels.” [Ciu04, p. 228]

Similarly, we incorporate the following two rules to mirror Ciuciura’s special
rule at the calculus level:

wRv , Γ⇒ ∆, w : p , v : p
(w root label) AtJ

wRv , Γ⇒ ∆, w : p
wRv , Γ⇒ ∆, w : A, v : A

(w root label) GenJ
wRv , Γ⇒ ∆, w : A

Since these rules correspond to forms of contraction, it is preferable to have
a system in which these rules are height-preserving admissible rather than
primitive. There’s no eigenvariable requirement; however, it is necessary to
ensure that whenever we encounter a sequent of the following form wRv ⇒ w :
A, before applying bottom-up the GenJ rule, we need to verify that w is a root
label to obtain wRv ⇒ w : A, v : A. By root label, we mean a label that labels a
formula in the most bottom sequent of a derivation.

Lemma 3.3.8. The following rules:

wRv , Γ⇒ ∆, w : p , v : p
(w root label) AtJ

wRv , Γ⇒ ∆, w : p
wRv , Γ⇒ ∆, w : A, v : A

(w root label) GenJ
wRv , Γ⇒ ∆, w : A

are height-preserving admissible.

Proof. By induction on the height n of the derivation.
(a) We start by considering AtJ. If n � 0, then:

`0 wRv , x : p , Γ⇒ ∆, x : p , w : p , v : p
i.h.
 `0 wRv , x : p , Γ⇒ ∆, x : p , w : p

The remaining base cases consist of relational rules. As an example consider
Ref :
`n

xRx , wRv , Γ⇒ ∆, w : p , v : p
Ref

`n+1
wRv , Γ⇒ ∆, w : p , v : p

i.h.
 

`n
xRx , wRv , Γ⇒ ∆, w : p

Ref
`n+1

wRv , Γ⇒ ∆, w : p

The other relational rules are dealt with analogously. The inductive step is
performed by permutation of the rules.
(b) For GenJ. Let n � 0 and take initial sequents:

`0 wRv , x : p , Γ⇒ ∆, x : p , w : A, v : A
i.h.
 `0 wRv , x : p , Γ⇒ ∆, x : p , w : A

For n > 0, we proceed as follows. Suppose the last rule applied are L∧d and
R∧d, respectively. We have the following transformations. For L∧d:

`n
xRy , x : B, y : C, wRv , Γ⇒ ∆, w : A, v : A

L∧d
`n+1

x : B ∧d C, wRv , Γ⇒ ∆, w : A, v : A

i.h.
 

`n
xRy , x : B, y : C, wRv , Γ⇒ ∆, w : A

L∧d
`n+1

x : B ∧d C, wRv , Γ⇒ ∆, w : A
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For R∧d:

`n
xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C, x : B, v : A `n

xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C, y : C, v : A
R∧d

`n+1
xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C, v : A

i.h. 

`n
xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C, x : B `n

xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C, y : C
R∧d

`n+1
xRy , wRv , Γ⇒ ∆, w : A, x : B ∧d C

Wenowdisplay the transformations for L→d and R→d, respectively. For L→d:

`n
xRy , x : B→d C, wRv , Γ⇒ ∆, w : A, v : A, y : B `n

x : C, xRy , x : B→d C, wRv , Γ⇒ ∆, w : A, v : A
L→d

`n+1
xRy , x : B→d C, wRv , Γ⇒ ∆, w : A, v : A

i.h. 

`n
xRy , x : B→d C, wRv , Γ⇒ ∆, w : A, y : B `n

x : C, xRy , x : B→d C, wRv , Γ⇒ ∆, w : A
L→d

`n+1
xRy , x : B→d C, wRv , Γ⇒ ∆, w : A

For R→d:
`n

xRy , y : B, wRv , Γ⇒ ∆, w : A, v : A, x : C
R→d

`n+1
wRv , Γ⇒ ∆, w : A, v : A, x : B→d C

i.h.
 

`n
xRy , y : B, wRv , Γ⇒ ∆, w : A, x : C

R→d
`n+1

wRv , Γ⇒ ∆, w : A, x : B→d C

The cases for the other connectives are dealt with analogously. �

To illustrate the practical usefulness of the At/GenJ rules, we will now pro-
ceedwith the derivation of the axioms and rules for discussive logic, as stated in
[AO18, p. 1172] (denoted D2

∗). More precisely, we relate the notion of derivabil-
ity inD2

∗ andderivability inG3D2, that iswewill prove a syntactic completeness
result:

Theorem 3.3.9. If `
D2

∗ A, then `G3D2+cut⇒ w : A.

Proof. By root first search. I showcase the derivations of some salient examples.
`G3D2

⇒ w : A→d (B→d A).
wRx , wRv , v : A, x : B,⇒ w : A, v : A

(Lem. 3.3.8) GenJ
wRx , wRv , v : A, x : B,⇒ w : A

(x fresh) R→d
wRv , v : A⇒ w : B→d A

(v fresh) R→d⇒ w : A→d (B→d A)
`G3D2

⇒ w : ((A→d B) →d A) →d A.

65



CHAPTER 3. JAŚKOWSKI’S D2 MEETS GENTZEN-STYLE CALCULI

wRx , x : A, vRw , wRv ,S ⇒ w : A, w : B, x : A GenJ
(Lem. 3.3.8)

wRx , x : A, vRw , wRv ,S ⇒ w : A, w : B
(x fresh) R→d

vRw , wRv ,S ⇒ w : A, w : A→d B

v : A, vRw , wRv ,S ⇒ w : A, v : A GenJ
(Lem. 3.3.8)

v : A, vRw , wRv ,S ⇒ w : A
L→d

vRw , wRv , v : (A→d B) →d A⇒ w : A
Sym

wRv , v : (A→d B) →d A⇒ w : A
(v fresh) R→d⇒ w : ((A→d B) →d A) →d A

where S abbreviates v : (A→d B) →d A.
`G3D2

⇒ w : ¬¬A→d A and `G3D2
⇒ w : A→d ¬¬A.

wRv , v : A⇒ w : A, v : A
(Lem. 3.3.8) GenJ

wRv , v : A⇒ w : A
R¬

wRv ⇒ w : A, v : ¬A
L¬

wRv , v : ¬¬A⇒ w : A
(v fresh) R→d⇒ w : ¬¬A→d A

wRv , v : A⇒ w : A, v : A
(Lem. 3.3.8) GenJ

wRv , v : A⇒ w : A
L¬

wRv , w : ¬A, v : A⇒
R¬

wRv , v : A⇒ w : ¬¬A
(v fresh) R→d⇒ w : A→d ¬¬A

`G3D2
⇒ w : ¬(A ∨ ¬A) →d B.

wRv , v : A⇒ w : B, v : A
R¬

wRv ⇒ w : B, v : A, v : ¬A
R∨

wRv ⇒ w : B, v : A ∨ ¬A
L¬

wRv , v : ¬(A ∨ ¬A) ⇒ w : B
(v fresh) R→d⇒ w : ¬(A ∨ ¬A) →d B

`G3D2
⇒ w : ¬(A ∨ B) →d (¬A ∧d ¬B).

vRv , wRv , v : A⇒ S , v : A, v : B
R¬

vRv , wRv ⇒ S , v : A, v : B, v : ¬A
vRv , wRv , v : B⇒ S , v : A, v : B

R¬
vRv , wRv ⇒ S , v : A, v : B, v : ¬B

R∧d
vRv , wRv ⇒ w : ¬A ∧d ¬B, v : A, v : B, v : ¬A ∧d ¬B

Ref
wRv ⇒ w : ¬A ∧d ¬B, v : A, v : B, v : ¬A ∧d ¬B

(Lem. 3.3.8) GenJ
wRv ⇒ w : ¬A ∧d ¬B, v : A, v : B

R∨
wRv ⇒ w : ¬A ∧d ¬B, v : A ∨ B

L¬
wRv , v : ¬(A ∨ B) ⇒ w : ¬A ∧d ¬B

(v fresh) R→d⇒ w : ¬(A ∨ B) →d (¬A ∧d ¬B)
where S � w : ¬A ∧d ¬B, v : ¬A ∧d ¬B.
The admissibility of the modus ponens rule for →d is shown in Prop. 3.3.7
above. �

Let me conclude with an observation. As discussed in Chapter 2, Jaśkowski
made a deliberate choice to define the D2 consequence relation by relying on
the S5 possibility operator ^. He recognized that this approach was necessary
even for proving very simple theses, which can be considered as not counter-
intuitive in discussive logic. Indeed, to establish A →d A as a theorem of D2,
a straightforward translation like ^A ⊃ A in S5 is insufficient. Instead, an S5

valid translation requires the prefixing of an additional ^ before the translated
formula, i.e., ^(^A ⊃ A):
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“The system defined in this way is discussive, i.e., its theses are pro-
videdwith discussive assertionwhich implicitly includes the functor
^. This is an essential fact, since even such a simple law as p ⊃ p, on
the replacement of ⊃ by→d, becomes p →d p (D21), which is not a
theorem in S5, and becomes such only when preceded by the symbol
^: ^(p →d p) (M24).” [Jaś99a, 45, Notation adapted]

In relational semantics, this idea is expressed – as mentioned earlier – by the
following proviso: w  A holds if and only if there exists a state v ∈ W such that
wRv and v  A. This is precisely what AtJ and GenJ are designed to express
in G3D2. Indeed, Jaśkowski’s suggestion of having A →d A as a discussive
theorem is preserved in G3D2:

wRv , v : A⇒ w : A, v : A
(Lem. 3.3.8) GenJ

wRv , v : A⇒ w : A
(v fresh) R→d⇒ w : A→d A

Moreover, to further demonstrate that G3D2 adequately represents Jaśkowski’s
discussive logic, let’s examine the paraconsistent nature of D2 and how it is
incorporated into our calculus. Specifically, while D2 is inconsistency-tolerant,
it is not explosive. As previously mentioned (see Chapter 2), Jaśkowski argued
against explosion principles in relation to discussive connectives, and we can
observe that G3D2 also fulfils this requirement.
First of all, 0G3D2

⇒ w : A→d (¬A→d B) [Jaś99a, p. 49].
...

wRx , wRv , v : A⇒ w : B, x : A
L¬

wRx , wRv , v : A, x : ¬A⇒ w : B
(x fresh) R→d

wRv , v : A⇒ w : ¬A→d B
(v fresh) R→d⇒ w : A→d (¬A→d B)

In the displayed proof search, there is no way to reach an initial sequent and
terminate the procedure. This is because there is no possibility to obtain a
formula of the form w : A on the right-hand side of the sequent, which would
be labeled by the root label w, and would enable us to apply GenJ and derive
v : A on the right-hand side of the sequent, thus terminating the proof search.
The only possible application of GenJ is restricted to w : B, and this would lead
to x : B (resp. v : B) on the right-hand side, given wRx (resp. wRv), and this is
unhelpful for reaching an initial sequent as well.
Likewise, 0G3D2

⇒ w : (A ∧d ¬A) →d B [Jaś99b, p. 58].

...
vRx , wRv , v : A⇒ w : B, x : A

L¬
vRx , wRv , v : A, x : ¬A⇒ w : B

(x fresh) L∧d
wRv , v : A ∧d ¬A⇒ w : B

(v fresh) R→d⇒ w : (A ∧d ¬A) →d B
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3.4 Soundness and Semantic Completeness

This section is devoted to the proofs of the soundness and completeness for
our systems. We will show that rules of G3D2 preserve validity over Kripke
frames obeying the conditions appropriate for D2. In order to do that, we start
by extending semantic notions to sequents as follows:

Definition 3.4.1. LetM � 〈W, R, v〉 be a model and let S be the sequent Γ⇒ ∆.
We define a S-interpretation inM is a mapping J·K from the labels in S to the set
W of states inM, such that, if wRv is in Γ, then JwKRJvK inM. Now we can
define:

M , J·K  S iff if for all w : A ∈ Γ, we haveM , JwK  A, then there exists
v : B ∈ ∆, such thatM , JvK  B.

Definition3.4.2. AsequentS is satisfied inM � 〈W, R, v〉 if for allS-interpretations
J·K we haveM , J·K  S. A sequent S is valid in a frame F � 〈W, R〉, if for all
valuations v, the sequent S is satisfied inM � 〈W, R, v〉.

Finally, we can prove the soundness theorem:

Theorem 3.4.1. If a sequent S is provable in G3D2, then it is valid in frame F .

Proof. We proceed by induction on the height of the derivation of S. We show
that for each rule R of the form P1, . . . ,Pn/C, if the premises P1, . . . ,Pn are
valid in all frames F , then so is C. It follows from a case analysis on R:

Ax. By way of contradiction, assume that w : p , Γ ⇒ ∆, w : p is not valid in
all frames F . This means that there is a modelM and an interpretation
J·K, such thatM , J·K 1 w : p , Γ ⇒ ∆, w : p, i.e.,M , w  p, butM , w 1 p.
Contradiction.

L∧d. By way of contradiction, assume that wRv , w : A, v : B, Γ⇒ ∆ is valid in
all frames F , but w : A ∧d B, Γ ⇒ ∆ is not, where v is a fresh variable.
The latter means that there is a modelM and an interpretation J·K, such
thatM , J·K 1 w : A ∧d B, Γ ⇒ ∆. In particular, there is a world v′ such
that JwKRv′ andM , w  A ∧d B, butM , z 1 C, for all z : C ∈ ∆. It follows
thatM , w  A andM , v′  B. By defining an extension J·K′ of J·K such
that JvK′ � v′ and J·K′ � J·K, we obtainM , J·K′ 1 wRv , w : A, v : B, Γ⇒ ∆.
Contradiction.

R∧d. By way of contradiction, assume that wRv , Γ ⇒ ∆, w : A and wRv , Γ ⇒
∆, v : B are valid in frames F , but wRv , Γ ⇒ ∆, w : A ∧d B is not. The
latter means that there is a modelM and an interpretation J·K, such that
M , J·K 1 wRv , Γ⇒ ∆, w : A ∧d B, i.e., JwKRJvK andM , w 1 A ∧d B. Then,
M , w 1 A or M , v 1 B. Consequently, M , J·K 1 wRv , Γ ⇒ ∆, w : A or
M , J·K 1 wRv , Γ⇒ ∆, v : B. Contradiction.

L→d. By way of contradiction, assume that wRv , w : A →d B, Γ ⇒ ∆, v : A
and wRv , w : A →d B, w : B, Γ ⇒ ∆ are valid in frames F , but wRv , w :
A →d B, Γ ⇒ ∆ is not. The latter means that there is a model M and
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an interpretation J·K, such that M , J·K 1 wRv , w : A →d B, Γ ⇒ ∆, i.e.,
JwKRJvK andM , w  A →d B, butM , z 1 C, for all z : C ∈ ∆. It follows
thatM , v 1 A orM , w  B. Consequently,M , J·K 1 wRv , Γ⇒ ∆, v : A or
M , J·K 1 wRv , w : B, Γ⇒ ∆. Contradiction.

R→d. By way of contradiction, assume that wRv , v : A, Γ⇒ ∆, w : B is valid in
all frames F , but Γ ⇒ ∆, w : A →d B is not, where v < Γ,∆, w : A →d B.
The latter means that there is a modelM and an interpretation J·K, such
that M , J·K 1 Γ ⇒ ∆, w : A →d B. In particular, we know that there
is a world v′ such that JwKRv′ and M , v′  A, but M , w 1 B. Let J·K′
be an extension of J·K, such that JvK′ � v′ and J·K′ � J·K. It follows that
M , J·K′ 1 wRv , v : A, Γ⇒ ∆, w : B. Contradiction.

The other cases are similar and simpler. In particular, note that the cases for
relational rules are trivial, as all frames F have to obey the corresponding
conditions. �

Theorem 3.4.2. Let Γ ⇒ ∆ be a sequent of G3D2. Then either the sequent
is derivable in G3D2 or it has a countermodel with the frame properties of
reflexivity, symmetry and transitivity.

Proof. We follow the pattern of the completeness proof in [ne; Neg09; NvP11].
We proceed with the construction of a derivation tree for Γ⇒ ∆ by applying the
rules of G3D2 root-first (see Appendix A2). If the reduction tree is finite, i.e.,
all leaves are axiomatic sequents, we have a proof in G3D2. Assume that the
derivation tree is infinite. ByKönig’s lemma, it has an infinite branch that is used
to build the needed counterexample. Suppose that Γ ⇒ ∆ ≡ Γ0 ⇒ ∆0, Γ1 ⇒
∆1, . . . , Γi ⇒ ∆i . . . is one of such branches. Consider the sets Γ ≡ ⋃

Γi and
∆ ≡ ⋃

∆i , for i ≥ 0. We now construct a countermodel, i.e. a model that makes
all labelled formulas and relational atoms in Γ true and all labelled formulas in
∆ false. Let F be a frame, whose elements are all the labels occurring in Γ. F is
defined as follows:

• for all w : p in Γ it holds that w  p in F .
• for all wRv in Γ it holds that wRv in F .
• for all w : p in ∆ it holds that w 1 p in F .

We show that for any formula A, w  A if w : A is in Γ and w 1 A if w : A is in
∆, where w is any arbitrary label.

• If p is atomic, the claim holds by definition of the model.
• The cases for ¬ and ∨ do not pose special difficulties.
• If w : A ∧d B is in Γ, then w : A ∧d B appears in some Γi and, therefore, at

some successive step of the reduction tree, for some n > 0, one finds that
wRv, w : A and v : B are in Γm+n . By the inductive hypothesis we have
that, wRv, w  A and v  B. It follows that w  A ∧d B in the model.
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• If w : A ∧d B is in ∆, then we consider all relational atoms of the form
wRv that are in Γ. If there’s no relational atoms, the condition is vacuously
satisfied and w 1 A ∧d B in the model. For any occurrence of wRv in Γ,
by construction of the tree, either w : A or v : B in ∆. So, by inductive
hypothesis either w 1 A or v 1 B and, therefore, w 1 A ∧d B.

• If w : A→d B is in Γ, we consider all the relational atoms wRv that occur
in Γ. If there’s no relational atom, the accessibility condition is vacuously
satisfied and, therefore, w  A →d B is in the model. For any occurrence
of wRv in Γ, by construction of the tree v : A is in ∆ or w : B is in Γ. By
the inductive hypothesis v 1 A or w  B, and, given wRv, it follows that
w  A→d B.

• If w : A →d B is in ∆, at the successive step of the reduction tree we find
that wRv and v : A in Γ, whereas w : B is in ∆. By the inductive hypothesis
we obtain wRv and v  A but w 1 B, that is, w 1 A→d B in the model.

�

Finally, as a consequence, we obtain our desired result:

Corollary 3.4.2.1. If a sequent Γ ⇒ ∆ is valid in every D2 frame F , then it is
derivable in the system G3D2.

3.5 Final remarks

• Throughout this chapter, we relied on the same set of connectives that
Jaśkowski originally considered in his 1948 and 1949 articles. However,
over the years, variants of Jaśkowski’s discussive connectives have been
introduced. For example, some of them are defined as follows:

1. discussive negation, i.e., ¬dA � ^¬A.
2. left-discussive conjunction, i.e., A ∧l

d B � ^A ∧ B.
3. symmetric-discussive conjunction, i.e., A ∧s

d B � ^A ∧ ^B.
4. symmetric-discussive implication, i.e., A→s

d B � ^A ⊃ ^B.

First of all, notice that, as pointed out by J. Marcos, “different choices
of discussive conjunction and discussive implication would in fact define
logics distinct from D2”. Here, we haven’t considered alternative formu-
lations of discussive logic, but rather we have furnished a proof system
for Jaśkowski’s discussive logic including right-discussive conjunction and
left-discussive implication. However, we observe that, if equippedwith ap-
propriate semantic clauses defined in terms of relational models, all other
discussive connectives listed above can be, in line of principle, treated
according to the methodology we have adopted so far.

• In G3D2, we do not translate discussive formulas into modal ones, but we
reflect the diamond effect of the definitions of ∧d and→d by using different
related worlds. More precisely, by following Jaśkowski’s suggestion, we
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have defined D2 with the appeal to relational models whose accessibility
relation is defined as in the models for S5. This choice is reflected, at the
calculus level, by the presence of specific relational rules.
However, despite Jaśkowski’s preference, a wide research program on
discussive logic aims at the formulation of modal systems, different from
S5, allowing to define D2. The literature on this specific topic is vast and,
for the sake of our purpose, we will only sketch two examples of how the
strategy used in this chapter can be adapted to define labelled calculi for
discussive logic defined through alternative modal logics.

Example 3. In [NP13], it was shown that another possibility to define D2 is given
by the normalmodal logicKD45 (See Corollary 9.2 and Theorem 9.1). Relational
models for discussive logic, in this case, will have the accessibility relation
defined as inmodels for KD45: serial (∀w∃v(wRv)), transitive (vRw∧wRz �⇒
vRz) and euclidean (wRv ∧ wRz �⇒ vRz). The semantic conditions for all
operators, including those for→d and ∧d, are exactly as in Def. By moving to
the construction of the calculus, we observe that the rules for propositional and
discussive operators will preserve the shape of those belonging to G3D2. At the
level of the relational rules, instead, we have to perform a little change. We keep
(Trs), but replace (Ref ) and (Sym), with the following two rules:

wRv , Γ⇒ ∆
(v fresh) (Ser)

Γ⇒ ∆
vRz , wRv , wRz , Γ⇒ ∆

(Euc)
wRv , wRz , Γ⇒ ∆

Example 4. As discussed in the previous chapter, one can employ also certain
non-normalmodal logics to define discussive logic. For example, the logic called
rS5

M was proved to be the smallest regular non-normal modal logics1 defining
D2. At the semantic level, is characterized by so-called neighbourhood frames,
namely relational structures of the form 〈W,N, R〉, where N is a subset of W ,
whose elements are referred to as normal worlds. For R, the accessibility relation,
one has the following two frame conditions:

∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W(uRx �⇒ wRx)) (×)
∀w ∈ N, ∃u ∈ N(wRu ∧ ∀x ∈ W(∃y ∈ N(uRy ∧ yRx) �⇒ wRx)) (?)

where N � {v ∈ N | R(v) ⊆ N} and R(v) � {z ∈ N | vRz}. A neighbourhood
model is the following structure 〈W,N, R, v〉, where the truth conditions for
classical operators are preserved, whereas those for the modalities have to be
modified. Consider, as an example, the clause for ^:

M , w � ^A iff w < N or ∃v ∈ W (wRv and v � A)

In, e.g., [NS16; GNS19], it was shown that is possible to deal with labelled calculi
also in the case of non-normal modal logics characterised by neighbourhood
structures. Nevertheless, given the complications in the semantics, also the
development of the calculus might involve some subtleties. Roughly, in order
to develop a proof system for D2 by employing rS5

M models as starting point,
1See [NP09a; NP09b], as well as the previous chapter.
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one needs firstly to define→d and ∧d in terms of neighbourhood models and,
secondly, convert the resulting clauses into schematic labelled rules. Relational
rules, obtained by converting (×), (?) and possibly other fundamental features
of the semantics, shall be added as well.
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Chapter 4

Modular labelled calculi for relevant

logics

Layout of the chapter. In Section 4.1, relevant logics are introduced in terms
of both, reduced Routley-Meyer models and axiomatic systems. Sections 4.2
and 4.3 present the rules of the labelled calculi for a variety of relevant logics
and some related preliminary results, as well as a comparison with Kurokawa
and Negri’s approach [KN20]. Section 4.4 includes a proof of soundness, while
Section 4.5 contains proofs of completeness. Finally, in Section 4.6, we will
proceed towards the proof of cut-admissibility.

4.1 Preliminaries

4.1.1 Semantics and axioms for relevant logic B

In this section, we will introduce Routley-Meyer relational semantics and an
axiomatic system for relevant logic B (standing for basic). The former structures,
employing a ternary relation between states, can be considered as generaliza-
tions of Kripke models for intuitionistic and modal logics. Notice that the
interpretation of ternary relations is a controversial topic and there are different
orientations in the literature.1 Some possible readings are (notations adapted):

“Well, to say that x determines A→ B is to say that whenever we can
conclude A on the basis of a piece of information y, we can conclude
B on the basis of x and y jointly, that is, on the basis of x∪ y.” [Urq72,
p. 160]

“Consider a natural English rendering of Kripke’s binary R. xRy
‘says’ that ‘world’ y is possible relative to world x. An interesting
ternary generalization is to read xRyz to say that ‘worlds’ y and z are
compossible (better, maybe, compatible) relative to x. (The reading
is suggested by Dunn.)” [RM73, p. 200]

1A detailed overview can be found in [Bea+12].
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“Rabc iff b and c are pairwise accessible from a, or, to take a more
revealing modal analogue, iff a and b are compatible relative to c, or
conversely iff c is compatible with a and b.” [Rou+82, pp. 299–300]

“[...] we may read Rx yz as meaning that z contains all the informa-
tion obtainable by pooling the information x and y. [Alternatively,]
Rx yz is [...] interpreted as saying that the information in y is carried
to z by x.” [Pri08, p. 207]

Let’s turn to the formal details.

Definition 4.1.1. Let L be the language of B. We denote by At a set of atomic
formulas p , q , . . . . The set of B formulas, denoted Form, is defined recursively
for all A as follows:

A ::� p | ∼A | A ∧ A | A ∨ A | A→ A

Definition 4.1.2. A reduced Routley-Meyer frame for relevant logic B, denoted
F , is a quadruple 〈W, 0, ∗, R〉, where W is a set of points, with 0 denoting its
base element, ∗ is a unary function W 7→ W . Finally, R ⊆ W3 and satisfies the
following conditions:

a∗∗ � a (F1)
R0aa (F2)
R0ab ∧ R0bc �⇒ R0ac (F3)
R0da ∧ Rabc �⇒ Rdbc (F4)
R0ab �⇒ R0b∗a∗ (F5)

Notice that relations of the form R0ab and R0ab ∧ R0ba can be abbreviated
by writing a ≤ b and a � b, respectively. However, given that both symbols, ≤
and �, are precisely defined in terms of the ternary accessibility relation, we can
employ only R to characterize relevant logics.

Definition 4.1.3. A reduced Routley-Meyer model for B, denoted M, is a pair
〈F , v〉, where F is a reduced Routley-Meyer frame and v : At 7→ ℘(W) is a
valuation function on atomic formulas, such that, if R0ab and a ∈ v(p), then
b ∈ v(p), for all p ∈ At. The valuation is then extended to the whole language in
the following way:

M , a  p iff a ∈ v(p) (1)
M , a  ∼A iffM , a∗ 1 A (2)
M , a  A ∧ B iffM , a  A andM , a  B (3)
M , a  A ∨ B iffM , a  A orM , a  B (4)
M , a  A→ B iff ∀b , c ∈ W, if Rabc andM , b  A, thenM , c  B (5)

Finally, we say that a formula A is satisfied in a modelM � 〈F , v〉 iffM , 0  A
and that ‘A entails B inM’ iff, for all a ∈ W , if a  A, then a  B. A formula A is
valid in a frame F � 〈W, 0, ∗, R〉 iff, for all valuations v, the formula A is satisfied
inM.
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Observation 5. In the previous definitions we have introduced a so-called re-
duced model for relevant logics (see e.g., [Sla87; Gia92]). These models were
introduced as alternative structures to what might be called non reducedmodels,
see e.g., [RM73; Rou+82].2 There are some main differences to consider. Let F ′
and M′ be denoting non reduced frames and models, respectively. F ′ is the
following structure 〈W, 0, T, ∗, R〉, where, 0 is taken to be a subset of W , rather
than a singleton, and T is a distinct element T ∈ 0, called designated situation.
The members of 0 are referred to as regular situations. A modelM′ is the struc-
ture 〈F ′, v〉. Finally, satisfaction in a model is defined with respect to regular
situations, i.e., A is satisfied in a modelM′ iffM′, x  A, for all x ∈ 0. Validity
on F ′ is defined as before.

An important, standard lemma is that preservation of truth along the hered-
ity ordering holds for arbitrary formulas:

Lemma 4.1.1 ([Rea88; Res00; DR02]). If R0ab andM , a  A, thenM , b  A.

Furthermore, we state a result showing the equivalence between the satisfac-
tion of an implication in a model and the notion of entailment in that model. This
results is often referred to as verification lemma (see [DR02]).

Lemma 4.1.2 ([Rea88; Res00; DR02]). A entails B in a given modelM iff A→ B
is satisfied in that model, i.e., for all a ∈ W , (M , a  A �⇒ M , a  B) iff
M , 0  A→ B.

From the perspective of axiomatic systems, B is the least set of formulas
containing all instances of the following axioms and closed under the following
rules. (We employ V as a rule-forming operator, distinct from both, the meta-
level symbol �⇒ and the sequent arrow⇒.)

(A1) A→ A
(A2) A1 ∧ A2 → Ai
(A3) (A→ B) ∧ (A→ C) → (A→ (B ∧ C))
(A4) Ai → (A1 ∨ A2)
(A5) (A→ C) ∧ (B→ C) → ((A ∨ B) → C)
(A6) A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
(A7) ∼∼A→ A

(R1) A,A→ B V B
(R2) A, B V A ∧ B
(R3) A→ B V (C→ A) → (C→ B)
(R4) A→ B V (B→ C) → (A→ C)
(R5) A→ B V ∼B→ ∼A

2According to [Gia92, p. 442], “reduced models are technically and practically important for
the practicing logician. They are simpler and hence easier to use”.
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4.1.2 Stronger relevant logics

In this subsection, we will present some Hilbert systems for some common
stronger relevant logics, which can be obtained by the addition of axioms to the
system for B. Likewise, frames for B, FB, can be extended to capture stronger
relevant logics by adding some further constraints on R. Inwhat follows, we dis-
play a list of axioms and the frame conditions imposed on Routley-Meyer frames
to validate them. Some of these conditions appeal to the standard definitions,
Rabcd ::� ∃x(Rabx ∧ Rxcd) and Ra(bc)d ::� ∃x(Raxd ∧ Rbcx):

(A8) (A→ B) → (∼B→ ∼A) (F6) Rabc �⇒ Rac∗b∗

(A9) (A→ B) ∧ (B→ C) → (A→ C) (F7) Rabc �⇒ Ra(ab)c
(A10) (A→ B) → ((B→ C) → (A→ C)) (F8) Rabcd �⇒ Rb(ac)d
(A11) (A→ B) → ((C→ A) → (C→ B)) (F9) Rabcd �⇒ Ra(bc)d
(A12) (A→ (A→ B)) → (A→ B) (F10) Rabc �⇒ Rabbc
(A13) (A ∧ (A→ B)) → B (F11) Raaa
(A14) (A→ ∼A) → ∼A (F12) Raa∗a
(A15) (A→ (B→ C)) → (B→ (A→ C)) (F13) Rabcd �⇒ Racbd
(A16) A→ ((A→ B) → B) (F14) Rabc �⇒ Rbac
(A17) A ∨ ∼A (F15) R00∗0
(A18) ((A→ A) → B) → B (F16) Ra0a
(A19) A→ (A→ A) (F17) Rabc �⇒ (R0ac ∨ R0bc)

The following well known relevant logics can be obtained by combinations of
the indicated axioms and frame conditions.

B � (A1) + ... + (A7) + (R1) + ... + (R5) FB � (F1) + ... + (F5)
DW � B + (A8) FDW � FB + (F6)
DJ � DW + (A9) FDJ � FDW + (F7)
TW � DJ + (A10) + (A11) FTW � FDJ + (F8) + (F9)
T � TW + (A12) + (A13) + (A14) + (A17) FT � FTW + (F10) + (F11) + (F12) + (F15)
RW � TW + (A15) + (A16) FRW � FTW + (F13) + (F14)
R � B + (A8) + ... + (A18) FR � FB + (F6) + ... + (F16)
RM � R + (A19) FRM � FR + (F17)

Let X � {B,DW,DJ,TW,T,RW,R,RM}.

Theorem 4.1.3 ([Rea88; Res00; DR02]). A formula A is a theorem of X if and only
if A is valid in all Routley-Meyer frames, FX.

Let us nowproceed towards the construction of our intended labelled calculi.

4.2 Proof System

In this section,we shall define a family ofmodular calculi for relevant logics. First
of all, we enrich our language with labels (a , b , c , . . . , x , y , z , ...) denoting states
in Routley-Meyer models and an expression to formalize the forcing relation.
Formally:
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Axioms For p atomic:

R0ab , a : p , Γ⇒ ∆, b : p

(possibly, a∗, b∗)
Logical rules

Γ⇒ ∆, a∗ : A
L∼

a : ∼A, Γ⇒ ∆
a∗ : A, Γ⇒ ∆

R∼
Γ⇒ ∆, a : ∼A

a : A, a : B, Γ⇒ ∆
L∧

a : A ∧ B, Γ⇒ ∆
Γ⇒ ∆, a : A Γ⇒ ∆, a : B

R∧
Γ⇒ ∆, a : A ∧ B

a : A, Γ⇒ ∆ a : B, Γ⇒ ∆
L∨

a : A ∨ B, Γ⇒ ∆
Γ⇒ ∆, a : A, a : B

R∨
Γ⇒ ∆, a : A ∨ B

Rabc , a : A→ B, Γ⇒ ∆, b : A Rabc , a : A→ B, c : B, Γ⇒ ∆
L→

Rabc , a : A→ B, Γ⇒ ∆
Rabc , b : A, Γ⇒ ∆, c : B

(b , c fresh) R→
Γ⇒ ∆, a : A→ B

Relational rules for R

R0a∗∗a , R0aa∗∗, Γ⇒ ∆
R1

Γ⇒ ∆

R0aa , Γ⇒ ∆
R2

Γ⇒ ∆
R0ac , R0ab , R0bc , Γ⇒ ∆

R3
R0ab , R0bc , Γ⇒ ∆

Rdbc , R0da , Rabc , Γ⇒ ∆
R4

R0da , Rabc , Γ⇒ ∆
R0b∗a∗, R0ab , Γ⇒ ∆

R5
R0ab , Γ⇒ ∆

Figure 4.1: G3rB

Definition 4.2.1. LetW be a set of labels, including a distinguished label denoted
0, and L be the language of B. To express the forcing relation a  A via sequents
we use the notation a : A, for A ∈ Form and a ∈ W . The set of well-formed
formulas consists of (1) labelled formulas a : A and (2) relational atoms Rabc,
for all A ∈ Form and a , b , c ∈ W . Finally, given two multisets Γ,∆ of labelled
formulas and relational atoms, a labelled sequent is an object of the following
form: Γ⇒ ∆.

Furthermore, the labelled rules of our sequent system are subject to the
following closure condition. Consider a rule R of the following form:

A, B1, . . . , Bn , Bn1, Bn1, Γ⇒ ∆ R
B1, . . . , Bn , Γ⇒ ∆
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Rac∗b∗, Rabc , Γ⇒ ∆
R6

Rabc , Γ⇒ ∆
Rabx , Raxc , Rabc , Γ⇒ ∆

(x fresh) R7
Rabc , Γ⇒ ∆

Rb yd , Rac y , Rabx , Rxcd , Γ⇒ ∆
(y fresh) R8

Rabx , Rxcd , Γ⇒ ∆

Ra yd , Rbc y , Rabx , Rxcd , Γ⇒ ∆
(y fresh) R9

Rabx , Rxcd , Γ⇒ ∆

Rabx , Rxbc , Rabc , Γ⇒ ∆
(x fresh) R10

Rabc , Γ⇒ ∆

Raaa , Γ⇒ ∆
R11

Γ⇒ ∆
Raa∗a , Γ⇒ ∆

R12
Γ⇒ ∆

Rac y , Rybd , Rabx , Rxcd , Γ⇒ ∆
(y fresh) R13

Rabx , Rxcd , Γ⇒ ∆
Rbac , Rabc , Γ⇒ ∆

R14
Rabc , Γ⇒ ∆

R00∗0, Γ⇒ ∆
R15

Γ⇒ ∆
Ra0a , Γ⇒ ∆

R16
Γ⇒ ∆

R0ac , Rabc , Γ⇒ ∆ R0bc , Rabc , Γ⇒ ∆
R17

Rabc , Γ⇒ ∆

Figure 4.2: Further mathematical rules for R

Applying the closure condition onRmeans to substitute themultiple occurrences
Bn1, Bn1 with a single one to obtain a rule R∗ of the following shape:

A, B1, . . . , Bn , Bn1, Γ⇒ ∆ R∗
B1, . . . , Bn , Γ⇒ ∆

We remark that the rules of G3rB are defined by analysing the semantic con-
ditions of Definition 4.1.3 of the corresponding operators. More precisely, the
sequent system is obtained by formulating the rules according to the method-
ology introduced for modal and intermediate logics in [Neg05; Neg07]. We
remark that axiomatic sequents are stated in their weakening-absorbing ver-
sion, while the premises of L → are contraction-absorbing. Importantly, R →
has the eigenvariable condition, that is, each root-first application of the rule
requires the introduction of fresh (i.e., not previously used) labels.
In addition to the newly introduced rules for →, there are also rules for R
constructed through the method of conversion of frame conditions into se-
quent calculus rules. More precisely, we first have observed that all frame
conditions are formulated either as universal axioms or geometric implications and,
then, by following the methodology described in [Neg05] (but previously also
in [Neg03; Neg14; NvP19]), we have transformed them into well-constructed
sequent-style rules. Universal axioms are first turned into conjunctive normal
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form, namely, P1 ∧ · · · ∧ Pi → Q1 ∨ · · · ∨ Q j and, then, into suitably formulated
rules. Geometric implications, instead, are formulas of the following shape
∀z(A → B), where A and B are geometric formulas, i.e., they do not contain
neither ∀ nor→. As before, we first turn them into conjunctive normal form,
namely, ∀x(P1 ∧ · · · ∧ Pi → ∃y1M1 ∨ · · · ∨ ∃y j M j) and, then, convert them into
the corresponding rule-schemes. Notice that according to this strategy, we are
allowed to obtain modular extensions of G3rB (Figure 4.1) by transforming fur-
ther frame conditions (see list on p. 76) into sequent-style rules (Figure 4.2).
Such extensions can be characterised as follows:

G3rDW � G3rB + R6 G3rDJ � G3rDW + R7
G3rTW � G3rDJ + R8 + R9 G3rT � G3rTW + R10 + R11 + R12+

+R15
G3rRW � G3rTW + R14 + R13 G3rR � G3rRW + G3rT + R16
G3rRM � G3rR + R17

Observation 6. Kurokawa and Negri [KN20] developed a family of labelled
calculi for a wide range of relevant logics by using non reduced Routley-Meyer
models as starting point. We recall that in these latter (i) 0 is taken to be a subset
of W , rather than a singleton, and (ii) there is an element T ∈ 0. Although we
followed the same methodology to obtain our intended systems, there are some
substantial differences.

1. The notion of validity is not defined at the base element T, but it refers
to all regular situations (see Observation 5 and [KN20, §3.2]) and this is
reflected at the calculus level as follows (see [KN20, §6]). For all x ∈ 0, if
x  A, then 0x ⇒ x : A.

2. The formulations of the rules for relevant implication involves an auxiliary
unary operator, i.e., the indexed modality �a . The index a gives a ternary
relation, denoted bRa c, which is taken as an assignment of a binary rela-
tion to an index, rather than expressing a compossibility relation between
situations. However, as the authors themselves remark, this “choice is not
mandatory, i.e., the ternary relation for implication could be directly han-
dledwithout using the indexedmodality. But via the indexedmodalitywe
can obtain a uniformity with [...] works on conditional logics” [KN20, §1],
i.e., with labelled systems proposed for conditional logics, for example, in
[NS16; GNS19].

3. The semantic condition for indexed modalities is:

b  �aA iff ∀c(bRa c �⇒ a  A) (�a)

It is, in turn, used to formulate the clause for→ as follows:

a  A→ B iff ∀b(b  A �⇒ b  �aB) (→′)

Accordingly, the rules for both operators, �a and→, are of the following
shape:

a : A→ B, Γ⇒ ∆, b : A b : �aB, a : A→ B, Γ⇒ ∆
L′→

a : A→ B, Γ⇒ ∆
b : A, Γ⇒ ∆, b : �aB

(b fresh) R′→
Γ⇒ ∆, a : A→ B
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c : A, bRa c , b : �aA, Γ⇒ ∆, b : �aB
L�a

bRa c , b : �aA, Γ⇒ ∆
bRa c , Γ⇒ ∆, c : A

(c fresh) R�a
Γ⇒ ∆, b : �aA

4. Axiomatic sequents are only of the form a : p , Γ ⇒ ∆, a : p and, in order
to preserve the heredity property at the calculus level, the following rule
is included:

b : p , a ≤ b , a : p , Γ⇒ ∆
AtHer

a ≤ b , a : p , Γ⇒ ∆

Since this rule is a form of contraction, it is preferable to have a system in
which this rule is height-preserving admissible (proved in Lemma 4.3.3).
This is the reason why we have heredity incorporated in axioms. More-
over, in the presence of Proposition 4.3.2 (below) the generalized version of
AtHer can be derived using (admissible) cut and contraction (see Propo-
sition 4.3.4).

Although the non reduced Routley-Meyer semantics allows for a characteriza-
tion of a wider range of relevant logics, the labelled systems constructed out
of it can be shown to be semantically complete only indirectly (at least for the
moment), and this is mainly due to the definition of validity on regular situa-
tions (elements of 0), see [KN20, §6]. Nonetheless, Kurokawa andNegri observe
that the lack of a direct proof seems to be far from being an insurmountable
problem and argue that such “a proof of completeness by proof-search must be
possible, since labelled sequent calculi are in general suitable for proof-search
and invertible rules preserve countermodels” [KN20, §8]. Instead, notice that if
validity is defined w.r.t. the distinct element 0 ∈ W (considered as a singleton),
we can lay out a direct completeness proof without encountering the difficulties
connected to the presence of regular situations. Indeed, in [NvP15, p. 276], it
was noticed:

“The labelled approach allows for a fine distinction between various
notions of logical consequence that can be adopted: actualistic logi-
cal consequence is logical consequence relative to the actual world,
whereas universal (or strong) consequence is relative to an arbitrary
world.”

By keeping this distinction in mind, we will provide an actualistic completeness
proof, i.e., we will show that if a formula A is valid at the actual world 0, then
the sequent⇒ 0 : A is derivable (see Section 4.5).
Before going ahead, let us summarize the central results contained in the fol-
lowing sections.

1. A is a theorem of X.
2. A is provable in G3rX + cut, and cut has the following shape:

Γ⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

Γ, Γ′⇒ ∆,∆′
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3. A is provable in G3rX.
4. A is valid in every Routley-Meyer frame for X.

The equivalence between 1 and 4 is stated in Theorem 4.1.3. 1 �⇒ 2 and
4 �⇒ 3 are both proved in Section 4.5 (Theorems 4.5.2 and 4.5.3); 2 �⇒ 3 is
proved in Section 4.6 (Theorem 4.6.4), 3 �⇒ 4 is proved in Section 4.4 (Theorem
4.4.1).

4.3 Preliminary results

In this section, we show some preliminary results. Let us start by introducing
the notions of weight of formulas and height of derivations in the standard way.
(Let X � {B,DW,DJ,TW,T,RW,R,RM}.)

Definition 4.3.1. Let A be any labelled formula of the form a : A. We de-
note by l(A) the label of a formula A, and by p(A) the pure part of the
formula, that is, the part of the formula without the label. The weight (or
complexity) of a labelled formula is defined as a lexicographically ordered pair:
〈w(p(A)),w(l(A))〉, where:

1. for all state labels a ∈ W , w(a) � 1;
2. for all p ∈ At, w(p) � 1;
3. w(∼A) � w(A) + 1;
4. w(A ∧ B) � w(A) + w(B) + 1, for ∧ ∈ {∧,∨,→}.

The height of derivations is measured as stated in Definition 3.3.2.

Definition 4.3.2. A rule R is height-preserving admissible just in case: if there is a
derivation of the premise(s) of R, then there is a derivation of the conclusion of
R that contains no application of R (with the height at most n, where n is the
maximal height of the derivation of the premise(s)).

Definition 4.3.3. We define substitution as follows:

• Rabc(d/e) ≡ Rabc, if e , a, e , b and e , c.
• Rabc(d/a) ≡ Rdbc, if a , b and a , c.
• Rabc(d/b) ≡ Radc, if b , a and b , c.
• Rabc(d/c) ≡ Rabd, if c , a and c , b.
• Raac(d/a) ≡ Rddc, if a � b and a , c.
• Rabb(d/b) ≡ Radd, if b � c and b , a.
• Rcbc(d/c) ≡ Rdbd, if c � a and c , b.
• Raaa(d/a) ≡ Rddd, if a � b and a � c.
• a : A(d/b) ≡ a : A, if b , a.
• a : A(d/a) ≡ d : A.
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Nextwe extend this definition tomultisets. Similar proofs for labelled calculi
for logics characterised by ternary relations are included, e.g., in [NS16; HGT18;
KN20].

Lemma 4.3.1. Let the variable e stand for either a, b or c. If G3rX `n Γ ⇒ ∆
and, provided d is free for e in Γ,∆, then G3rX `n Γ(d/e) ⇒ ∆(d/e) (allowing
∗-variables to be substituted to variables as well).

Proof. Let n � 0. If Γ ⇒ ∆ is an axiom and (d/e) is not a vacuous substitution,
then the substitution Γ(d/e) ⇒ ∆(d/e) is also an axiom. Let n > 0. If we
are considering a propositional rule, we apply the inductive hypothesis to the
premise(s) of the rule, and then the rule again. For example, let Γ � e : ∼A, Γ′

and e � a , b , c:
`n
Γ′⇒ ∆, e∗ : A

L∼
`n1

e : ∼A, Γ′⇒ ∆
In this case, in order to apply L∼, we substitute d∗/e∗ by the inductive hypothesis,
and get the following derivation of the same height:

`n
Γ′(d∗/e∗) ⇒ ∆(d∗/e∗), d∗ : A

L∼
`n1

d : ∼A, Γ′(d∗/e∗) ⇒ ∆(d∗/e∗)
We proceed similarly if the last rule is L→ (without the variable condition).

Finally, let’s consider the only rule with the eigenvariable condition, namely
R→.
(1) If the substitution is vacuous (e , a , b , c), then there’s nothing to do.
(2) Assume the substitution d/e is not vacuous and d is not a fresh variable. We
have to consider the case where d is substituted for a. Let ∆ � a : A→ B,∆′:

`n
Razx , z : A, Γ⇒ ∆′, x : B

R→
`n1
Γ⇒ ∆′, a : A→ B

By the application of the inductive hypothesis (d/a)we obtain the following
application of R→with the same derivation height:

`n
Rdzx , z : A, Γ(d/a) ⇒ ∆′(d/a), x : B

R→
`n1
Γ(d/a) ⇒ ∆′(d/a), d : A→ B

(3) The substitution is non-vacuous, and d is an eigenvariable. So, our
derivation ends as follows:

`n
Radc , d : A, Γ⇒ ∆′, c : B

R→
`n1
Γ⇒ ∆′, a : A→ B

`n
Rabd , b : A, Γ⇒ ∆′, d : B

R→
`n1
Γ⇒ ∆′, a : A→ B

First, we rename the fresh variables d , c and b , d with z , x and x , z, respec-
tively. By the variable condition the substitution does not affect Γ,∆′. Indeed,
we get the following premise of height n:

Raxz , x : A, Γ⇒ ∆′, z : B and Razx , z : A, Γ⇒ ∆′, x : B

. So, by applying inductive hypothesis, we substitute the labels d/b and d/c,
respectively, to conclude:
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`n
Razx , z : A, Γ(d/b) ⇒ ∆′(d/b), x : B

R→
`n1
Γ(d/b) ⇒ ∆′(d/b), a : A→ B

`n
Raxz , x : A, Γ(d/c) ⇒ ∆′(d/c), z : B

R→
`n1
Γ(d/c) ⇒ ∆′(d/c), a : A→ B

Analogous results follow also for relational rules. Some of them subject to
the eigenvariable condition and, as usual, more care is needed. Roughly, the
cases for such relational rules follow the pattern of case 3 above: to avoid clashes
of variables, we apply height-preserving substitution before the inductive hy-
pothesis and conclude the argument by finally applying the rule. �

As in the case of other labelled calculi for intermediate logics (e.g., [DN12;
MMS21]), the heredity property of the forcing relation (Lemma 4.1.1) can be
expressed by means of formal derivations in the calculus:

Proposition4.3.2. Sequents of the following formarederivable inG3rX: R0ab , a :
A, Γ⇒ ∆, b : A.

Proof. By induction on A. Let A � ∼B and consider the following derivation:
R0b∗a∗, R0ab , b∗ : B, Γ⇒ ∆, a∗ : B

R5
R0ab , b∗ : B, Γ⇒ ∆, a∗ : B

L∼
R0ab , b∗ : B, a : ∼B, Γ⇒ ∆

R∼
R0ab , a : ∼B, Γ⇒ ∆, b : ∼B

where the premises are derivable by inductive hypothesis.
If A � B→ C, then we obtain the following derivation:

R0cc , Racd ,S , c : B, Γ⇒ ∆, d : C, c : B
R2

Racd ,S , c : B, Γ⇒ ∆, d : C, c : B
R0dd , Racd ,S , d : C, c : B, Γ⇒ ∆, d : C

R2
Racd ,S , d : C, c : B, Γ⇒ ∆, d : C

L→
Racd , R0ab , Rbcd , a : B→ C, c : B, Γ⇒ ∆, d : C

R4
R0ab , Rbcd , a : B→ C, c : B, Γ⇒ ∆, d : C

(c , d fresh) R→
R0ab , a : B→ C, Γ⇒ ∆, b : B→ C

where S abbreviates R0ab , Rbcd , a : B → C. The cases for A being B ∧ C or
B ∨ C are straightforward. �

Lemma 4.3.3. The following rules:

b : p , R0ab , a : p , Γ⇒ ∆
AtHer-l

R0ab , a : p , Γ⇒ ∆
R0ab , Γ⇒ ∆, b : p , a : p

AtHer-r
R0ab , Γ⇒ ∆, b : p

are height-preserving admissible.

Proof. We display the details for AtHer-l, but the argument is the same for
AtHer-r. By induction on the height of δ, we prove that for any proof of
b : p , R0ab , a : p , Γ ⇒ ∆, there exists a proof of R0ab , a : p , Γ ⇒ ∆ of the same
(or smaller) height. The base cases are obtained as follows:

`n
b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 `n

R0ab , a : p , Γ⇒ ∆, b : p

`n
R0aa∗∗, R0a∗∗a , b : p , R0ab , a : p , Γ⇒ ∆, b : p

R1
`n1

b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 

`n
R0aa∗∗, R0a∗∗a , R0ab , a : p , Γ⇒ ∆, b : p

R1
`n1

R0ab , a : p , Γ⇒ ∆, b : p

83



CHAPTER 4. LABELLED CALCULI FOR RELEVANT LOGICS

`n
R0aa , b : p , R0ab , a : p , Γ⇒ ∆, b : p

R2
`n1

b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 

`n
R0aa , R0ab , a : p , Γ⇒ ∆, b : p

R2
`n1

R0ab , a : p , Γ⇒ ∆, b : p

`n
R0ac , R0bc , b : p , R0ab , a : p , Γ⇒ ∆, b : p

R3
`n1

R0bc , b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 

`n
R0ac , R0bc , R0ab , a : p , Γ⇒ ∆, b : p

R3
`n1

R0bc , R0ab , a : p , Γ⇒ ∆, b : p

`n
Racd , Rbcd , b : p , R0ab , a : p , Γ⇒ ∆, b : p

R4
`n1

Rbcd , b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 

`n
Racd , Rbcd , R0ab , a : p , Γ⇒ ∆, b : p

R4
`n1

Rbcd , R0ab , a : p , Γ⇒ ∆, b : p

`n
R0b∗a∗, b : p , R0ab , a : p , Γ⇒ ∆, b : p

R5
`n1

b : p , R0ab , a : p , Γ⇒ ∆, b : p

i.h.
 

`n
R0b∗a∗, R0ab , a : p , Γ⇒ ∆, b : p

R5
`n1

R0ab , a : p , Γ⇒ ∆, b : p

The remaining cases are dealt with analogously. The inductive step is completed
by permutation of the rules. �

Proposition 4.3.4. The following rules:

b : A, R0ab , a : A, Γ⇒ ∆
GenHer-l

R0ab , a : A, Γ⇒ ∆
R0ab , Γ⇒ ∆, b : A, a : A

GenHer-r
R0ab , Γ⇒ ∆, b : A

corresponding to the heredity rules for compound formulas, are admissible.

Proof. GenHer-l can be derived as follows:
R0ab , a : A, Γ⇒ ∆, b : A b : A, R0ab , a : A, Γ⇒ ∆

cut+lc+rc+lcL
R0ab , a : A, Γ⇒ ∆

For GenHer-r we have the following derivation:
R0ab , Γ⇒ ∆, b : A, a : A R0ab , a : A, Γ⇒ ∆, b : A

cut+lc+ rc+lcL
R0ab , Γ⇒ ∆, b : A

where the leftmost (resp., rightmost) premise is derivable by Proposition 4.3.2,
while the applications of contraction and cut are admissible by Lemma 4.6.3
and Theorem 4.6.4.3 �

4.4 Soundness

This section is devoted to the proof of the soundness theorem for our systems
(3 �⇒ 4, p. 80). We will show that the rules of each labelled calculus G3rX

preserve validity over Routley-Meyer frames obeying the conditions appropriate
for each relevant logic X. In order to do that, we start by extending semantic
notions to sequents as follows:

3We observe that this proposition can be proved in the same way as we proved admissibility
of AtHer-l and AtHer-r, i.e., by induction on the height of the derivation. This, in fact would
provide us with a stronger result, namely that GenHer-l and GenHer-r are height-preserving
admissible in G3rX. However, here we omit the details of such a proof as we do not need this
result throughout the chapter.
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Definition 4.4.1. LetM � 〈W, 0, ∗, RM , v〉 be a model and let S be the sequent
Γ ⇒ ∆. We define a S-interpretation inM is a mapping J·K from the labels in
S to the set W of states inM, such that (i) 0 � J0K and (ii) if Rabc is in Γ, then
RMJaKJbKJcK. Now we can define:

M , J·K  S iff if for all a : A ∈ Γ, we have M , JaK  A, then there exists
b : B ∈ ∆, such thatM , JbK  B.

Definition 4.4.2. A sequent S is satisfied in M � 〈W, 0, ∗, R, v〉 if for all S-
interpretations J·K we have M , J·K  S. A sequent S is valid in a frame F �

〈W, 0, ∗, R〉, if for all valuations v, the sequentS is satisfied inM � 〈W, 0, ∗, R, v〉.

Finally, we can prove the soundness theorem:

Theorem 4.4.1. If a sequent S is provable in G3rX, then it is valid in every
Routley-Meyer frame for X.

Proof. We proceed by induction on the height of the derivation of S. We show
that for each rule R of the form P1, . . . ,Pn/C, if the premises P1, . . . ,Pn are
valid in all Routley-Meyer frames, then so is C. It follows from a case analysis
on R:

Ax. By way of contradiction, assume that R0ab , a : p , Γ⇒ ∆, b : p is not valid
in all Routley-Meyer frames. This means that there is a model M and
an interpretation J·K, such that M , J·K 1 R0ab , a : p , Γ ⇒ ∆, b : p, i.e.,
RMJ0KJaKJbK andM , a  p, butM , b 1 p. However, this is not possible
given heredity (lemma 4.1.1).

L∼. By way of contradiction, assume that Γ⇒ ∆, a∗ : A is valid in all Routley-
Meyer frames, but a : ∼A, Γ ⇒ ∆ is not. The latter means that there is
a modelM and an interpretation J·K, such thatM , J·K 1 a : ∼A, Γ ⇒ ∆,
i.e.,M , a  ∼A, butM , d 1 C for all d : C ∈ ∆. However, by the forcing
clause (2), we also haveM , a∗ 1 A. Consequently,M , J·K 1 Γ⇒ ∆, a∗ : A.
Contradiction.

R∼. By way of contradiction, assume that a∗ : A, Γ⇒ ∆ is valid in all Routley-
Meyer frames, but Γ ⇒ ∆, a : ∼A is not. The latter means that there is a
modelM and an interpretation J·K, such thatM , J·K 1 Γ⇒ ∆, a : ∼A, i.e.,
M , d  C, for all d : C ∈ Γ butM , a 1 ∼A. However, by the forcing clause
(2), we also haveM , a∗  A. Then,M , J·K 1 a∗ : A, Γ⇒ ∆. Contradiction.

L→. By way of contradiction, assume that Rabc , Γ ⇒ ∆, b : A and Rabc , c :
B, Γ⇒ ∆ are valid in all Routley-Meyer frames, but Rabc , a : A→ B, Γ⇒
∆ is not. The latter means that there is a modelM and an interpretation
J·K, such that M , J·K 1 Rabc , a : A → B, Γ ⇒ ∆, i.e., RMJaKJbKJcK and
M , a  A → B, but M , d 1 C for all d : C ∈ ∆. However, by the
forcing clause (5), we also have M , b 1 A or M , c  B. Consequently,
M , J·K 1 Rabc , Γ⇒ ∆, b : A orM , J·K 1 Rabc , c : B, Γ⇒ ∆. Contradiction.
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R→. By way of contradiction, assume that Rabc , b : A, Γ ⇒ ∆, c : B is valid in
all Routley-Meyer frames, but Γ⇒ ∆, a : A → B is not, where b , c < Γ,∆.
The latter means that there is a modelM and an interpretation J·K, such
that M , J·K 1 Γ ⇒ ∆, a : A → B. In particular, we know that there are
worlds b′ and c′ such that RMJaKb′c′ andM , b′  A, butM , c′ 1 B. Now
we define an extension J·K′ of J·K such that JbK′ � b′, JcK′ � c′ and J·K′ � J·K.
Then,M , J·K′ 1 Rabc , b : A, Γ⇒ ∆, c : B. Contradiction.

The other cases are similar and simpler. In particular, note that the cases for
the mathematical rules are trivial, as all Routley-Meyer frames have to obey the
corresponding conditions. �

4.5 Completeness

In this section, we will show the completeness of G3rB, and its extensions, by
deriving the axioms of the corresponding logics (1 �⇒ 2, p. 80).
Let X � {B,DW,DJ,TW,T,RW,R,RM}.
Before turning to the proof the theorem, we show a syntactic version of Lemma
4.1.2 within our labelled calculi:

Lemma 4.5.1. G3rX + cut ` a : A⇒ a : B iff G3rX + cut `⇒ 0 : A→ B.

Proof. (�⇒)
a : A⇒ a : B R0ab , a : B⇒ b : B

cut
R0ab , a : A⇒ b : B

R→
⇒ 0 : A→ B

(⇐�)

⇒ 0 : A→ B
R0aa , 0 : A→ B, a : A⇒ a : A, a : B R0aa , 0 : A→ B, a : A, a : B⇒ a : B

L→
R0aa , 0 : A→ B, a : A⇒ a : B

cut
R0aa , a : A⇒ a : B

R2
a : A⇒ a : B

where, in both derivations, the rightmost premise(s) is (are) derivable by Propo-
sition 4.3.2. �

Theorem 4.5.2. If a formula A is provable in an axiomatic system X, then the
sequent⇒ 0 : A is derivable in the corresponding labelled system G3rX + cut.

Proof. The proof proceeds by deriving root-first the axioms of each relevant logic
X in the corresponding labelled system G3rX + cut. As the derivations occupy
much space, we display them in Appendix B1. �

Alternatively, one might be interested in proving a theorem of semantic
completeness, that is, for every sequent S, the proof search either terminates
in a proof or fails, and the failed proof tree is used to obtain a countermodel
for S. Intuitively, to see whether A is derivable, we check if it is valid at the
actual world 0 ∈ W , i.e., 0  A. This, indeed, will amount to have the sequent
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⇒ 0 : A in our calculus. As said above, this correspond to reflect, at the
calculus level, the actualistic notion of validity employed in reduced Routley-
Meyer models. Finally, notice that the countermodel construction argument,
allows us to show completeness directly (although non-constructively, as the
proof relies onKönig’s lemma), for any labelled sequent and not only specifically
for formulas.

Theorem 4.5.3. Let Γ ⇒ ∆ be a sequent of G3rX. Then either the sequent is
derivable in G3rX or it has a countermodel with the frame properties peculiar
for X.

Proof. We follow the pattern of the completeness proof in [Neg09; NvP11]. We
proceed with the construction of a derivation tree for Γ ⇒ ∆ by applying the
rules of G3rX root-first (see Appendix B2). If the reduction tree is finite, i.e.,
all leaves are axiomatic sequents, we have a proof in G3rX. Assume that the
derivation tree is infinite. ByKönig’s lemma, it has an infinite branch that is used
to build the needed counterexample. Suppose that Γ ⇒ ∆ ≡ Γ0 ⇒ ∆0, Γ1 ⇒
∆1, . . . , Γi ⇒ ∆i . . . is one of such branches. Consider the sets Γ ≡ ⋃

Γi and
∆ ≡ ⋃

∆i , for i ≥ 0. We now construct a countermodel, i.e. a model that makes
all labelled formulas and relational atoms in Γ true and all labelled formulas in
∆ false. Let FX be a frame, whose elements are all the labels occurring in Γ. FX

is defined as follows:

• for all a : p in Γ it holds that a  p in FX.
• for all Rabc in Γ it holds that RMabc in FX.
• for all a : p in ∆ it holds that a 1 p in FX.

It can then be shown that A is forced in the model at 0 if 0 : A is in Γ and A
is not forced at 0 if 0 : A is in ∆. We will end up with a countermodel to the
endsequent.

1. If p is atomic, the claim holds by definition of the model.
2. If 0 : ∼A is in Γ, then 0∗ : A is in ∆. By the inductive hypothesis 0∗ 1 A, i.e.,

0  ∼A.
3. If 0 : ∼A is in ∆, then 0∗ : A is in Γ. By the inductive hypothesis 0∗  A, i.e.,

0 1 ∼A.
4. If 0 : A ∧ B is in Γ, then there exists i such that 0 : A ∧ B appears first in
Γi , and, therefore, for some j ≥ 0, we have 0 : A and 0 : B in Γi+ j . By the
inductive hypothesis 0  A and 0  B and, consequently, 0  A ∧ B. (The
case for 0 : A ∨ B in ∆ is analogous.)

5. If 0 : A∧B is in∆, then either 0 : A or 0 : B in∆. By the inductive hypothesis
either 0 1 A or 0 1 B and, therefore, 0 1 A ∧ B. (The case for 0 : A ∨ B in Γ

is analogous.)
6. If 0 : A → B is in Γ, we consider all the relational atoms R0ab that occur

in Γ. If there’s no relational atom, the accessibility condition is vacuously
satisfied and, therefore, 0  A → B is in the model. For any occurrence
of R0ab in Γ, by construction of the tree a : A is in ∆ or b : A is in Γ.
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By the inductive hypothesis a 1 A or b  B, and since RM0ab, we obtain
0  A→ B in the model.

7. If 0 : A→ B is in ∆, at the successive step of the reduction tree we find that
R0ab and a : A in Γ, whereas b : B is in ∆. By the inductive hypothesis we
obtain RM0ab and a  A but b 1 B, that is, 0 1 A→ B in the model.

�

This result directly implies the implication 4 �⇒ 3 stated on p. 80.

Corollary 4.5.3.1. If a sequent Γ⇒ ∆ is valid in every Routley-Meyer frame for
X, then it is derivable in the system G3rX.

4.6 Proof analysis and Cut-admissibility

In this section we prove the cut-admissibility theorem for our labelled sequent
calculi. The general proof presented here is similar to the proof for labelled
systems for modal and intermediate logics (see, e.g., [Neg05; NvP11; DN12;
HGT18; KN20; MMS21]). More precisely, we proceed with the proofs of weak-
ening and contraction admissibility. In conclusion, we show the central theorem
of the section, i.e., cut-admissibility. As there are many cases to be analysed in
these proofs, we only outline the important parts here.

Lemma 4.6.1. The rules of weakening:

Γ⇒ ∆ lw
d : C, Γ⇒ ∆

Γ⇒ ∆ rw
Γ⇒ ∆, d : C

Γ⇒ ∆ lwL
Rabc , Γ⇒ ∆

are height-preserving admissible in G3rX.

Proof. By induction on the height of the derivation. (1) For n � 0, the case is
trivial. For n > 0, we simultaneously display the transformed derivations for lw
and rw. (Analogous results hold for lwL)
(2) For rules without variable condition, the lower sequent of the transformed
derivation is the same as the lower one of the original derivation, obtained by
applying several times weakening. This is also the case for L→.
(3) Consider the rules with the variable condition, e.g., R→. The derivations
end as follows:

`n
Radc , d : A, Γ⇒ ∆′, c : B

R→
`n+1
Γ⇒ ∆′, a : A→ B

`n
Rabd , b : A, Γ⇒ ∆′, d : B

R→
`n+1
Γ⇒ ∆′, a : A→ B

To avoid clashes of variables we apply height-preserving substitution (x/d)
to obtain:

Raxc , x : A, Γ(x/d) ⇒ ∆′(x/d), c : B and Rabx , b : A, Γ(x/d) ⇒ ∆′(x/d), x : B

Finally, by applying the inductive hypothesis (on the left and on the right) to the
premise and, finally, also the rule, we obtain the requested derivations:
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`n
d : C, Raxc , x : A, Γ⇒ ∆′, c : B

R→
`n+1

d : C, Γ⇒ ∆′, a : A→ B

`n
Raxc , x : A, Γ⇒ ∆′, c : B, d : C

R→
`n+1
Γ⇒ ∆′, a : A→ B, d : C

and
`n

d : C, Rabx , b : A, Γ⇒ ∆′, x : B
R→

`n+1
d : C, Γ⇒ ∆′, a : A→ B

`n
Rabx , b : A, Γ⇒ ∆′, x : B, d : C

R→
`n+1
Γ⇒ ∆′, a : A→ B, d : C

where, in all cases, the lower derivations are the result of applyingweakening
(on the left and on the right) to the premises of the derivations displayed above.
If we consider relational rules without variable condition, the proof follows
straightforwardly by applications of the inductive hypothesis.
For relational rules with eigenvariable conditions, we always are in need to
consider possible clashes of variables. As an example, suppose that the rule
applied is R7:

`n
Rabx , Raxc , Rabc , Γ⇒ ∆

R7
`n+1

Rabc , Γ⇒ ∆
If d , x, that is, the variable condition is not violated, then desired derivations
follow by the inductive hypothesis and an application of the rule:

`n
d : C, Rabx , Raxc , Rabc , Γ⇒ ∆

R7
`n+1

d : C, Rabc , Γ⇒ ∆

`n
Rabx , Raxc , Rabc , Γ⇒ ∆, d : C

R7
`n+1

Rabc , Γ⇒ ∆, d : C

If the fresh variable condition is violated, we substitute the clashing variable
with a fresh one, apply the inductive hypothesis and then the rule. If the
application of the rule looks like:

`n
Rabd , Radc , Rabc , Γ⇒ ∆

R7
`n+1

Rabc , Γ⇒ ∆
we substitute d with a fresh one, say y, to obtain the following premise

`n
Rab y , Ra yc , Rabc , Γ(y/d) ⇒ ∆(y/d)

By applying the inductive hypothesis and the rule, we obtain the desired deriva-
tions:

`n
d : C, Rab y , Ra yc , Rabc , Γ⇒ ∆

R7
`n+1

d : C, Rabc , Γ⇒ ∆

`n
Rab y , Ra yc , Rabc , Γ⇒ ∆, d : C

R7
`n+1

Rabc , Γ⇒ ∆, d : C

where, as before, the lower derivations are the results of applying weakening
(on the left and on the right) to the premise of the rule displayed above. �

Definition 4.6.1. A rule R is height-preserving invertible just in case: if there is a
derivation of the conclusion of R, then there is a dedrivation of premise(s) of R
(with the height at most n, where n is the maximal height of the derivation of
the conclusion).

Lemma 4.6.2. All rules of G3rX are height-preserving invertible.
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Proof. For each rule R, we have to show that if there is a derivation δ of the
conclusion, then there is a derivation δ′ of the premise(s), of the same height.
For L∼, R∼, L∨, R∨, R∧, L∧ and L→we use a standard induction on the height
of δ. For R→ as well, but we need to be sure that in the transformed derivation
we make use of a fresh label by applying the substitution lemma inside δ′, if
needed. The same procedures apply to all relational rules (R1-R17).
As an interesting example, we show height-preserving invertibility of R→. It is
proved by induction on the height n of the derivation of Γ⇒ ∆, a : A→ B. We
distinguish threemain cases. (1) If n � 0, Γ⇒ ∆, a : A→ B is an axiom, and then
also Rabc , b : A, Γ⇒ ∆, c : B is an axiom. Let n > 0. (2) If `n+1 Γ⇒ ∆, a : A→ B
is concluded by any ruleR other than R→, we apply the inductive hypothesis to
the premise(s) Γ′⇒ ∆′, a : A→ B (Γ′′⇒ ∆′′, a : A→ B) to obtain derivation(s)
of height n of Rabc , b : A, Γ′ ⇒ ∆′, c : B (Rabc , b : A, Γ′′ ⇒ ∆′′, c : B). By
applying R we obtain a derivation of height n + 1 of Rabc , b : A, Γ ⇒ ∆, c :
B, as desired. (3) If `n+1 Γ ⇒ ∆, a : A → B is concluded by R →, then
Rabc , b : A, Γ ⇒ ∆, c : B is the requested conclusion of height n, possibly
with different eigenvariables, but the desired ones can be obtained by height-
preserving substitutions (Lemma 4.3.1). As an example for relational rules, we
only deal with R7, i.e., a rule with eigenvariable. (1) If n � 0, Rabc , Γ⇒ ∆ is an
axiom, and then also Rabx , Raxc , Rabc , Γ⇒ ∆ is an axiom. If `n+1 Rabc , Γ⇒ ∆
is concluded by any rule R other than R7, we apply the inductive hypothesis to
the premise(s) Rabc , Γ′ ⇒ ∆′ (Rabc , Γ′′ ⇒ ∆′′) to obtain derivation(s) of height
n of Rabx , Raxc , Rabc , Γ′ ⇒ ∆′ (Rabx , Raxc , Rabc , Γ′′ ⇒ ∆′′). By applying R
we obtain a derivation of height n + 1 of Rabx , Raxc , Rabc , Γ ⇒ ∆, as desired.
(3) If `n+1 Rabc , Γ⇒ ∆ is concluded by R7, then Rabx , Raxc , Rabc , Γ⇒ ∆ is the
requested conclusion of height n (possibly by applying Lemma 4.3.1). �

Lemma 4.6.3. The rules of contraction:

a : C, a : C, Γ⇒ ∆
lc

a : C, Γ⇒ ∆
Γ⇒ ∆, a : C, a : C

rc
Γ⇒ ∆, a : C

Rabc , Rabc , Γ⇒ ∆
lcL

Rabc , Γ⇒ ∆

are height-preserving admissible in G3rX.

Proof. By induction on the height of derivation. As usual, if n � 0, then the
premise is an axiomatic sequent and so also the contracted sequent is an ax-
iomatic one. If n > 0, we consider the last rule applied to the premise of
contraction. If the contraction formula is not principal in the premise of some
R, then both occurrences are found in the premises of the rule and they have
a smaller derivation height. By applying the induction hypothesis, we contract
them and apply R to obtain a derivation of the conclusion with the same deriva-
tion height. If the contraction formula is principal, we distinguish three cases:
(1) R is a rule where active formulas are proper subformulas of the principal
formula (all rules for ∼,∧,∨); (2) R is a rule where both, labels Rabc and proper
subformulas of the principal formula, are active formulas (R→); (3) R is a rule
in which the principal formula is repeated also in the premises of the rule (L→).
(1) In the cases for ∼,∧,∨ the contraction is reduced to contraction on formulas
of smaller complexity (as in the cases for modal and intermediate logics, see,
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e.g., [Neg05; Neg07; DN12]).
(2)We consider a rule where the principal formula and relational atoms are both
active, for instance:

`n
Rabc , b : A, Γ⇒ ∆, a : A→ B, c : B

R→
`n+1
Γ⇒ ∆, a : A→ B, a : A→ B

By height-preserving invertibility (Lemma 4.6.2) applied to the premise, we
obtain the following derivation:

`n
Rabc , b : A, Rabc , b : A, Γ⇒ ∆, c : B, c : B

i.h.
`n

Rabc , b : A, Γ⇒ ∆, c : B
R→

`n+1
Γ⇒ ∆, a : A→ B

as requested. Notice that if both contraction formulas are principal in R →, we
apply the closure condition.
(3) Finally, we consider a rule in which only the labelled formula is principal,
namely L→:

`n
Rabc , a : A→ B, a : A→ B, Γ⇒ ∆, b : A `n

Rabc , c : B, a : A→ B, a : A→ B, Γ⇒ ∆
L→

`n+1
Rabc , a : A→ B, a : A→ B, Γ⇒ ∆

Again, by applying the inductive hypothesis to the premises, we obtain the
desired derivation:

`n
Rabc , a : A→ B, Γ⇒ ∆, b : A `n

Rabc , c : B, a : A→ B, Γ⇒ ∆
L→

`n+1
Rabc , a : A→ B, Γ⇒ ∆

�

Finally, we can prove that cut is an admissible rule. This theorem directly
entails the implication 2 �⇒ 3 stated on p. 80:

Theorem 4.6.4. The rule of cut:
Γ⇒ ∆, a : A a : A, Γ′⇒ ∆′

cut
Γ, Γ′⇒ ∆,∆′

is admissible in G3rX.

Proof. The proof is by a lexicographic induction on the complexity of the cut-
formula a : A and the sum of the heights h(δ1) + h(δ2). We perform a case
analysis on the last rule used in the derivation above the cut and whether
it applies to the cut-formula or not. We show that each application of cut can
either be eliminated, or be replaced by one ormore applications of cut of smaller
complexity. The proof proceeds similarly to the cut-elimination proofs for
several logics, e.g., [Neg05; NvP11; HGT18; MMS21]. Intuitively, we eliminate
the left- and topmost cut first, and proceed by repeating the procedure until we
reach a cut-free derivation. We start by showing that cut can be eliminated if
one of the cut premises is an axiom (case 1). Then we show that the cut-height
can be reduced in all cases in which the cut-formula is not principal in at least
one of the cut-premises (case 2). Finally, we show that if the cut-formula is
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principal in both cut-premises, then the cut is reduced to one or more cuts on
less complex formulas or on shorter derivations (case 3). The complete case
analysis is performed in Appendix B3.
Here, we present two interesting cases where the cut-formula A is principal in
both premises. We start by considering a derivation where the last rules applied
to obtain the cut-premises are R∼ and L∼, respectively. Let A � ∼B:

a∗ : B, Γ⇒ ∆
R∼

Γ⇒ ∆, a : ∼B
Γ′⇒ ∆′, a∗ : B

L∼
a : ∼B, Γ′⇒ ∆′

cut
Γ, Γ′⇒ ∆,∆′

It is transformed into the following derivation:
Γ′⇒ ∆′, a∗ : B a∗ : B, Γ⇒ ∆

cut
Γ, Γ′⇒ ∆,∆′

where cut is applied on a formula of smaller complexity.
Assume that the premises of cut are derived by R→ and L→, respectively. Let
A � B→ C:

Rabc , b : B, Γ⇒ ∆, c : C
(b , c fresh) R→

Γ⇒ ∆, a : B→ C
Rade , a : B→ C, Γ′⇒ ∆′, d : B Rade , e : C, a : B→ C, Γ′⇒ ∆′

L→
Rade , a : B→ C, Γ′⇒ ∆′

cut
Rade , Γ, Γ′⇒ ∆,∆′

It is transformed into the following derivation:
..... δ1

Rade , Γ, Γ′⇒ ∆,∆′, e : C

..... δ2

Rade , e : C, Γ, Γ′⇒ ∆,∆′
cut

Rade , Rade , Γ, Γ, Γ′, Γ′⇒ ∆,∆,∆′,∆′
(Lemma 4.6.3) lc+ rc+ lcL

Rade , Γ, Γ′⇒ ∆,∆′
where the conclusion of δ1 is derived by:

Γ⇒ ∆, a : B→ C Rade , a : B→ C, Γ′⇒ ∆′, d : B
cut

Rade , Γ, Γ′⇒ ∆,∆′d : B

Rabc , b : B, Γ⇒ ∆, c : C
(Lemma 4.3.1) sub(e/c)

Rabe , b : B, Γ⇒ ∆, e : C
(Lemma 4.3.1) sub(d/b)

Rade , d : B, Γ⇒ ∆, e : C
cut

Rade , Rade , Γ, Γ, Γ′⇒ ∆,∆,∆′, e : C
(Lemma 4.6.3) lc+ rc+lcL

Rade , Γ, Γ′⇒ ∆,∆′, e : C

while the conclusion of δ2 is derived by:
Γ⇒ ∆, a : B→ C Rade , e : C, a : B→ C, Γ′⇒ ∆′

cut
Rade , e : C, Γ, Γ′⇒ ∆,∆′

Notice that the two topmost cuts, those on a : B → C, are derived with a
shorter derivation height, while the other two are applied on formulas of smaller
complexity, i.e., d : B and e : C. �
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4.7 Conclusions

In this chapter, we have presented labelled sequent calculi for awide range of rel-
evant logics by reflecting at the syntactic level semantic informations taken from
reduced Routley-Meyer models, and have proved soundness and (syntactic and
semantic) completeness. Least but not last, we have shown height-preserving
invertibility of the rules, height-preserving admissibility of structural rules, and
cut-admissibility.
To conclude, we would like to point out some further topics of research, directly
connected to the work developed so far:

• Along with labelled calculi, many generalizations of sequent systems have
been proposed over the years. This flourishing of systems has also paved
the way to investigations concerning the relations between them. In this
context, an interesting task for future work is represented by establish-
ing correspondences between the calculi presented in this work with other
characterizations obtainedby application of different proof-theoretic struc-
tures, e.g., hypersequents and display sequents.

• Notice that relevant logics face some troubles when it comes to establish
decidability results and, indeed, many of them are undecidable. Given the
subtleties that such a discussion might involve, we leave (un)decidability
issues out from this investigation and we limit ourselves to some obser-
vations. One of the main consequences that can be drawn from cut-
elimination proofs is a fundamental trait of sequent systems, namely the
so-called subformula property. This ensures that all formulas in a derivation
are subformulas of formulas in the endsequent. Unfortunately, labelled
sequent calculi, given the presence of geometrical rules in which relational
atoms disappear from premise to conclusion, do not have a full subfor-
mula property. Nonetheless, by following the considerations expressed in
[Neg05], we observe that all of our calculi enjoy aweak version of the prop-
erty, namely: All formulas in a derivation are either subformulas of formulas in
the endsequent or formulas of the form Rabc. This property alone, however,
is not enough to prove syntactic decidability. Firstly, in order to provide
such a proof, one needs to find a bound on the number of eigenvariables
(fresh labels) in a derivation of a given sequent. Secondly, since the repe-
tition of the principal formula in the premises of L→ is another source of
potentially non-terminating proof search, there’s also the need of finding
a bound on applications of L →. This amounts to binding the number
of applications of L → with principal formula a : A → B to the number
of relational atoms of the form Rabc that appear on the left-hand side
of sequents in the derivation. This number, in turn, will be bounded by
the number of existing relational atoms of that form and relational atoms
that can be introduced by applications of R → with principal formula
a : A→ B.

• Throughout our chapter, we have considered labelled rules for the fol-
lowing connectives ∼, ∧, ∨ and→. However, occasionally (see, amongst
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others, [Rou+82, Ch. 5]), relevant logics are presented also with further
connectives, such as for example, ‘fusion’ (also known as ‘intensional con-
junction’) and ‘fission’ (also known as ‘intensional disjunction’). Some
other relevantists would also welcome the addition of the so-called ‘Acker-
man truth constant’ (often denote as t). Nonetheless, given our intentions
in this chapter, we have preferred to omit the consideration of wider sets
of connectives and have decided to leave this topic for further research.
We only notice that all connectives mentioned above can be, in line of
principle, treated according to the methodology we have adopted so far.
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Chapter 5

A proof theoretic investigation of

actuality in intuitionistic logic

Layout of the chapter. After having introducedboth, the context and the aimof
this chapter, in Section 5.1.1, we’ll focus on the formal details of IPC

@ following
the presentation proposed by S. Niki and H. Omori. In Sections 5.2 and 5.3,
we’ll define an analytic hypersequent calculus, called HI

@, and provide proofs
of soundness and completeness, respectively. Finally, Section 5.4 contains aproof
of the cut-elimination theorem for HI

@ and of some related consequences.

5.1 Introduction

S. Niki andH. Omori [NO20] –motivated by both, a philosophical project whose
roots canbe found in theworkofM.Dummett (e.g., [Dum75]) andby some recent
papers by M. De (e.g., [De13]) – took up the challenge of extending intuitionism
from mathematical discourse to empirical discourse. In their joint contribution,
Niki and Omori proposed a system of intuitionistic propositional logic modally
expanded via the addition of a so-called actuality operator, denoted ‘@A’.1 Their
logic, namely IPC

@, is firstly introduced in terms of possible words semantics
andaxiomatic system. In addition, the authors introduced another proof system,
namely a sequent calculus, called LGJ@, by modifying the characteristic rules of
the sequent calculus of Titani [Tit97] andAoyama [Aoy98] for the so-calledglobal
intuitionistic logic (GIPC). Unfortunately, as noticed in the final part of [NO20]
(but previously also in [Cia05]), LGJ@ is not cut-free. Therefore, the authors
proposed an open question, that is, whether there is a cut-free hypersequent
calculus for IPC

@ [NO20, p. 477]. This chapter aims at solving this problem.

5.1.1 Preliminaries

After defining the language, we first introduce the semantics, and then present
the proof systems of [NO20].

1We point out that this logic was independently considered also by L. Humberstone in
[Hum06].
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Definition 5.1.1. The language of IPC
@, (denotedL@

⊥) includes the following set
of connectives {⊥,∧,∨,→,@}. Let At be a set of atoms, p , q , . . . , and Form be
the set of formulas, A, B, . . . , these latter being defined inductively as follows:

A ::� p | ⊥ | (A ∧ A) | (A ∨ A) | (A→ A) | @A

Definition 5.1.2. A frame for IPC
@ is a triple F � 〈W, g , ≤〉, where W is a non-

empty set of states (or points), g is the least element of W (called the base state),
≤ is a pre-order (reflexive and transitive) on W .

Definition 5.1.3. Amodel for IPC
@ is a structure of the formM � 〈F ,V〉, where

F is a frame for IPC
@ and V : At 7→ ℘(W), such that, for each p ∈ At and all

w1, w2 ∈ W , if w1 ∈ V(p) and w1 ≤ w2 , then w2 ∈ V(p). We define the relation
� recursively, as follows:

M , w � p iff w ∈ V(p); (5.1)
M , w 2 ⊥; (5.2)
M , w � @A iffM , g � A; (5.3)
M , w � A ∧ B iffM , w � A andM , w � B; (5.4)
M , w � A ∨ B iffM , w � A orM , w � B; (5.5)
M , w � A→ B iff ∀x ∈ W : w ≤ x andM , x � A implyM , x � B. (5.6)

Finally, we say that a formula A is valid in a modelM � 〈F ,V〉 iffM , g � A.
A formula A is satisfied in a frame F � 〈W, g , ≤〉 iff, for all valuations V , the
formula A is valid inM.

From the perspective of Hilbert systems, IPC
@ is the least set of formulas

containing all instances of the following axioms and closed under the following
rules:

(Ax1) ⊥ → A
(Ax2) A→ (B→ A)
(Ax3) (A→ (B→ C)) → ((A→ B) → (A→ C))
(Ax4) (C→ A) → ((C→ B) → (C→ (A ∧ B)))
(Ax5) (A1 ∧ A2) → Ai
(Ax6) Ai → (A1 ∨ A2)
(Ax7) (A→ C) → ((B→ C) → ((A ∨ B) → C))
(Ax8) @(A→ B) → (@A→ @B)
(Ax9) @A→ A
(Ax10) @A→ @@A
(Ax11) @A ∨ (@A→ B)
(Ax12) @(A ∨ B) → (@A ∨@B)

A A→ B MP
B

A RN
@A

Furthermore, Niki andOmori [NO20, p. 470] introduced also a sequent calculus,
called LGJ@, based on a modification of the sequent calculus proposed by
Titani [Tit97] and Aoyama [Aoy98] for the so-called global intuitionistic logic
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(abbreviated as GIPC), where, instead of @, one has the globalization operator
(denoted �).2 Roughly, in LGJ@ a sequent is an object of the form Γ⇒ ∆, where
Γ,∆ are lists (or sequences) of formulas. The specific rules of LGJ@ are the
following ones:

A, Γ⇒ ∆̄, B
R→′

Γ⇒ ∆̄,A→ B

A, Γ⇒ ∆
L@′

@A, Γ⇒ ∆
Γ̄⇒ ∆̄,A

R@′
Γ̄⇒ ∆̄,@A

where Γ̄, ∆̄ represent finite lists of @-closed formulas, i.e., of formulas built
from ⊥ and formulas of the form @A, by the connectives ∧,∨,→. However, as
remarked above, LGJ@ is not cut-free ([NO20; Cia05]).

5.2 Proof System

In this section, we introduce an analytic calculus for IPC
@ in terms of hyperse-

quents, i.e., a simple generalization of Gentzen’s sequents (see, among others,
[Avr91a; Avr96; AL11] and [Ind21, pp. 209–230]). Let’s start by fixing some
conventions. Γ,∆,Σ,Π,Φ, . . . denote multisets3 of formulas and ] is used to
indicate multiset union; the notation [ ] is used for multisets as follows: Γ0 � [ ],
Γn+1 � Γ ] Γn . Finally, i , j, k , l ,m , n , λ, µ, . . . (possibly subscripted) stand for
natural numbers.

Definition 5.2.1. A hypersequent is a structure of the form:

Γ1 ⇒ ∆1 | · · · | Γn ⇒ ∆n

where eachΓi ⇒ ∆i (for i � 1, . . . , n) is a sequent. Γi ,∆i aremultisets of formulas
and we call them internal contexts. ‘G’,‘H’, . . . , denote side hypersequents and
we refer to them as external contexts.
If ∆i contains at most one formula then the sequent is single-succedent, written
Γi ⇒ A. A hypersequent S1 | ... | Sn is single-succedent, if all sequents S1, . . . , Sn
are single-succedent.

HI
@ is constructed as follows:

Initial sequents:
id

G | A⇒ A
L⊥

G | ⊥, Γ⇒ ∆
Logical rules:

G | Γ⇒ ∆,A G | Γ⇒ ∆, B
R∧

G | Γ⇒ ∆,A ∧ B

G | Ai , Γ⇒ ∆
(i � 1, 2) L∧i

G | A1 ∧ A2, Γ⇒ ∆
2To be precise, Niki and Omori considered only the rules for the propositional and modal

fragments of GIPC. Notice, however, that Titani and Aoyama originally formalized GIPC by
relying on a set of connectives including also quantifiers.

3We recall that a multiset is like a set except that the multiplicity of the elements counts, and
it is like a list (or sequence) except that the order of the elements doesn’t count.
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G | Γ⇒ ∆,Ai
(i � 1, 2) R∨i

G | Γ⇒ ∆,A1 ∨ A2

G | A, Γ⇒ ∆ G | B, Γ⇒ ∆
L∨

G | A ∨ B, Γ⇒ ∆

G | A, Γ⇒ B
R→

G | Γ⇒ A→ B

G | Γ1 ⇒ ∆1,A G | B, Γ2 ⇒ ∆2
L→

G | A→ B, Γ1, Γ2 ⇒ ∆1,∆2

Modal rules:
G | @Γ⇒ A

R@
G | @Γ⇒ @A

G | A, Γ⇒ ∆
L@

G | @A, Γ⇒ ∆
Internal stuctural rules:

G | Γ⇒ ∆
iw, r

G | Γ⇒ ∆,A
G | Γ⇒ ∆

iw, l
G | A, Γ⇒ ∆

G | Γ⇒ ∆,A,A
ic, r

G | Γ⇒ ∆,A
G | A,A, Γ⇒ ∆

ic, l
G | A, Γ⇒ ∆

External stuctural rules:
G

ew
G | Γ⇒ ∆

G | Γ⇒ ∆ | Γ⇒ ∆
ec

G | Γ⇒ ∆
Modal structural rule:

G | @Γ1, Γ2 ⇒ ∆1,∆2
split@

G | @Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2

Cut rule:
G | Γ1 ⇒ ∆1,A H | A, Γ2 ⇒ ∆2

cut
G | H | Γ1, Γ2 ⇒ ∆1,∆2

Remark 6. WehaveemployedaMaehara-style formulationof IPC
@ (see, [Mae54]).

Indeed, not all rules are single-succedent (as, for example, in Gentzen’s LJ), but
we impose such a restriction only on R→ and R@. The notation @Γ denotes any
set of @-formulas, namely, formulas prefixed by @ and the relationship between
@-formulas and the @-closed formulas of LGJ@ can be characterized as follows:
if one replaces @Γ with Γ̄ in the rules R@ and split@ of HI

@, the resulting rules
can be shown equivalent to the original ones. Indeed, all @-formulas are @-
closed formulas and @Γ̄ a` Γ̄.
We remark that split@ is needed to ensure completeness. More specifically,
it guarantees that @-formulas behave as boolean formulas, as established by
(Ax11), namely @A ∨ (@A→ B).
Finally, some standard notions are as follows:

Definition 5.2.2. A derivation d is defined as a finite tree of hypersequents such
that (i) leaves are instances of id or L⊥ and (ii) all hypersequents, except the
lowest one, are upper hypersequents of a certain rule instance. The length of
d, formally |d |, is the (maximal number of applications of inference rules)+1
occurring in in all branches of d. We write `HI

@
H if there exists a derivation

of H in HI
@. The complexity of a formula A, denoted |A|, is the number of

occurrences of its connectives.
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5.3 Soundness & Completeness

In this section, we prove soundness and completeness for HI
@. We start with

the former and show that, whenever the premises of a rule-application are valid
in IPC

@ models, then so is the conclusion (see, e.g., [AL11; Ind15]). To get the
intended proof we first extend semantic notions to sequents and hypersequents
as follows:

Definition 5.3.1. LetM be an IPC
@ model:

1. M , w � Γ⇒ ∆ iffM , w 2 A, for some A ∈ Γ, orM , w � A, for some A ∈ ∆.
2. M is a model of a hypersequent H iff there exists a component S ∈ H such

thatM , g � S.

Notice that semantic validity of a hypersequent is now defined in terms of
truth preservation at g of its components. Finally:

Definition 5.3.2. LetM be an IPC
@ model and H be a hypersequent. `M H iff

everyM is a model of H.

Theorem 5.3.1 (Soundness). If `HI
@

H, then `M H.

Proof. Let r be a rule of HI
@ and M � 〈W, g , ≤,V〉 be an IPC

@ model. We
show that eachM, which is a model of the premise(s) of r, is also a model of
its conclusion. It follows from a case analysis on r. We start by considering the
rules for initial sequents of HI

@:
id Let H � G | A⇒ A and assume for contradiction thatM is not amodel of

H. Thus, we have that for each S ∈ H and S ∈ G,M , g 2 S. In particular,
it follows thatM , g � A andM , g 2 A. Contradiction.

L⊥ Let H � G | ⊥, Γ ⇒ ∆ and assume for contradiction that M is not a
model of H. Thus, we have that for each S ∈ H and S ∈ G,M , g 2 S. In
particular, we obtainM , g � ⊥ andM , g � B, for all B ∈ Γ, butM , g 2 B,
for all B ∈ ∆. However, ⊥ cannot be forced at any point in any IPC

@

model.

We outline the cases for R@ and L@:
R@ Let H � G | @Γ⇒ @A and suppose that it is derived from the premise

G | @Γ⇒ A by an application of R@. Assume for contradiction thatM
is not a model of H. So, for all S ∈ H and S ∈ G, we have thatM , g 2 S.
We obtain in particular thatM , g 2 @Γ ⇒ @A, i.e.,M , g � @B, for all
@B ∈ @Γ, butM , g 2 @A. The latter meansM , g 2 A. It follows that
M , g 2 @Γ⇒ A, which implies thatM is not a model of G | @Γ⇒ A.

L@ Let H � G | @A, Γ⇒ ∆ and suppose that it is derived from the premise
G | A, Γ⇒ ∆ by an application of L@. Assume for contradiction thatM
is not a model of H. So, for all S ∈ H and S ∈ G, we have thatM , g 2 S.
We obtain in particular that M , g 2 @A, Γ ⇒ ∆, i.e., M , g � @A and
M , g � B, for all B ∈ Γ, butM , g 2 B, for all B ∈ ∆. From the former we
getM , g � A. It follows thatM , g 2 A, Γ⇒ ∆. But this implies thatM
is not a model of G | A, Γ⇒ ∆.
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Finally, we display the case for split@:
split@ Let H � G | @Γ1 ⇒ ∆1 | Γ2 ⇒ ∆2 and suppose that it was derived

from G | @Γ1, Γ2 ⇒ ∆1,∆2 by applying split@. Assume thatM is not
a model of H, i.e., for all S ∈ H and S ∈ G, we obtain thatM , g 2 S.
In particular, we haveM , g 2 @Γ1 ⇒ ∆1 andM , g 2 Γ2 ⇒ ∆2. That
is, M , g � @B, for all @B ∈ @Γ1, butM , g 2 B, for all B ∈ ∆1, and
M , g � B, for all B ∈ Γ2, butM , g 2 B, for all B ∈ ∆2. It follows that
M , g 2 @Γ1, Γ2 ⇒ ∆1,∆2, but this implies thatM is not a model of
G | @Γ1, Γ2 ⇒ ∆1,∆2.

The cases for the other logical and structural rules are dealtwith analogously. �

Now, we prove that HI
@ is complete with respect to the axiomatization for

IPC
@ stated in Section 5.1.1.

Theorem 5.3.2 (Completeness). If `IPC
@

A, then `HI
@

A.

Proof. We show that all axioms and rules of IPC
@ are derivable in HI

@. Since
axioms and the rule MP of IPC are known to be derivable, it suffices to prove
that we can provide derivations of the characteristic axioms (Ax8–Ax12) and the
rule RN of IPC

@.
`HI

@⇒ @(A→ B) → (@A→ @B)
id

A⇒ A
id

B⇒ B
L→

A→ B,A⇒ B
(x2) L@

@(A→ B),@A⇒ B
R@

@(A→ B),@A⇒ @B
R→

@(A→ B) ⇒ @A→ @B
R→

⇒ @(A→ B) → (@A→ @B)
`HI

@⇒ @A→ A
id

A⇒ A
L@

@A⇒ A
R→

⇒ @A→ A

`HI
@⇒ @A→ @@A

id
@A⇒ @A

R@
@A⇒ @@A

R→
⇒ @A→ @@A

`HI
@⇒ @A ∨ (@A→ B)
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id
@A⇒ @A

split@
@A⇒ | ⇒ @A

iw, r
@A⇒ B | ⇒ @A

R→
⇒ @A→ B | ⇒ @A

(x2) R∨i

⇒ @A ∨ (@A→ B) | ⇒ @A ∨ (@A→ B)
ec

⇒ @A ∨ (@A→ B)
`HI

@⇒ @(A ∨ B) → (@A ∨@B)
id

A⇒ A
iw, r

A⇒ A, B

id
B⇒ B

iw, r
B⇒ A, B

L∨
A ∨ B⇒ A, B

iw, l, L@
@(A ∨ B),@(A ∨ B) ⇒ A, B

split@
@(A ∨ B) ⇒ A | @(A ∨ B) ⇒ B

(x2) R@
@(A ∨ B) ⇒ @A | @(A ∨ B) ⇒ @B

(x2) R∨i

@(A ∨ B) ⇒ @A ∨@B | @(A ∨ B) ⇒ @A ∨@B
ec

@(A ∨ B) ⇒ @A ∨@B
R→

⇒ @(A ∨ B) → (@A ∨@B)
Finally, if `HI

@ ⇒ A, then `HI
@ ⇒ @A:

⇒ A
R@

⇒ @A
�

5.4 Cut-elimination

In this section, we show the cut-elimination theorem for HI
@ in a systematic

and uniform manner. Intuitively, the proof proceeds by shifting applications of
cut upwards in derivations according to a specific order.
Remark 7. A crucial problem for cut-elimination proofs arises when one en-
counters a derivation where either the external or internal contraction rule was
applied. In this case, the procedure of shifting the application of cut over the
premise where it appears, won’t give as a result a cut with a shorter derivation.
In order to avoid problemswith the contraction rules, cut-elimination proofs for
hypersequent calculi are usually performed either by applying a suitable pro-
cedure to trace the cut-formula through a derivation (see, e.g., Avron [Avr87],
Baaz et al. [BC02; BCF03], Ciabattoni [Cia05]) or by dealing with some multicut
rule suitably adapted to hypersequent systems (e.g., Avron [Avr91a]). Another
strategy, based on Dragalin’s method, was formulated by Poggiolesi, for ex-
ample, in [Pog08a], by requiring (i) invertible logical rules and (ii) admissible
structural rules. Roughly, in such systems one proves the admissibility of cut
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by means of the admissibility of contraction and other structural rules. How-
ever, an adaption of Poggiolesi’s strategy to HI

@ leads to serious troubles with
contraction elimination.
A very general and uniform proof strategy, based on a specific notion of substi-
tutivity, was presented inMetcalfe et al. [MOG08] for both single- andmultiple-
succedent hypersequent systems. Thismethodwas then extended byCiabattoni
et al. [CMM10] to prove cut-elimination for monoidal t-norm logic MTL and
other fuzzy logics expandedwith so-called ‘truth-stresser’modalities. The proof
they propose is particularly important for our purposes since it deals with rules
which are not substitutive in the sense of [MOG08] and, as it will be discussed
below, some of our rules are of this kind. Therefore, in what follows, we will
present a proof based on such a methodology.4

Let’s introduce some important concepts. We say that a marked hypersequent
is a hypersequent with exactly one occurrence of a formula A distinguished,
denoted Γ,A⇒ ∆ or Γ⇒ A,∆. Amarked rule instance is a rule with the principal
formula marked (if any). Finally, we say that a hypersequent G is appropriate
for a rule r if it is single-conclusion when r is single-conclusion. Now, suppose
that G is a (possibly marked) hypersequent and H a marked hypersequent of
the forms:

G � Γ1, [A]λ1 ⇒ ∆1 | · · · | Γn , [A]λn ⇒ ∆n and H � H′ | Π⇒ A,Σ

Let A does not occur unmarked in ]n
i�1Γi . We define cut(G,H) as the set

containing (for 0 ≤ µi ≤ λi , with i � 1, . . . , n):

H′ | Γ1,Πµ1 , [A]λ1−µ1 ⇒ Σµ1 ,∆1 | · · · | Γn ,Πµn , [A]λn−µn ⇒ Σµn ,∆n

In a similar way, suppose that A does not occur unmarked in ]n
i�1∆i :

G � Γ1 ⇒ [A]λ1 ,∆1 | · · · | Γn ⇒ [A]λn ,∆n and H � H′ | Π,A⇒ Σ

So, the set cut(G,H) is (for 0 ≤ µi ≤ λi , with i � 1, . . . , n):

H′ | Γ1,Πµ1 ⇒ [A]λ1−µ1 ,Σµ1 ,∆1 | · · · | Γn ,Πµn ⇒ [A]λn−µn ,Σµn ,∆n

In order to ensure that we can push applications of cut upwards in derivations,
we need the following notion.

Definition 5.4.1. A rule r is substitutive if for any:

1. marked instance of (G1 . . .Gn)/G of r;
2. marked hypersequent H appropriate for r;
3. G′ ∈ cut(G,H);

there exists a G′i ∈ cut(Gi ,H) for i � 1, . . . , n such that (G′1 . . .G′n)/G′ is an
instance of r;

4The approach presented in [CMM10] has offered a simple solution to construct cut-free
hypersequent systems for various logics, for example, in Kurokawa [Kur14], Lellmann [Lel14],
Indrzejczak [Ind15], [Ind21, pp. 224–227].
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As said above, substitutivity was used to provide uniform and systematic
cut-free hypsersequent-style formalizations of several logics (e.g., [MOG08;
CMM10]). The idea is that by substituting some non principal formula with
some multiset on the left and on the right, in both, the premises and the con-
clusion of a rule, gives another instance of the rule. Let HI be denoting the
hypersequent calculus consisting only of the non-modal rules of HI

@:

Lemma 5.4.1 (see e.g. [MOG08]). The logical rules of HI are substitutive.

Remark 8. As noticed, e.g. in [CMM10; Kur14; Ind15], a problem with sub-
stitutivity arises in connection to some of the rules governing @. Consider,
for example, the following derivations, where d′ is the result of pushing cut
upwards in d:

d :
...

A⇒ @B
@B⇒ C

R@
@B⇒ @C

cut
A⇒ @C

 d′ :
A⇒ @B @B⇒ C

cut
A⇒ C ?

?

However, given the restrictionon the antecedent in the formulationofR@, there’s
no way to get a derivation of @C on the right. In other words, this example is
meant to illustrate that arbitrary substitutions disturb R@ since the rule requires
that all formulas in the antecedent have @ as outermost operator.
Nonetheless, on closer inspection, the problem does not arise if one considers
cuts only on sequents in which all formulas in the antecedent are prefixed by
@, i.e., with a derivation concluding with an instance of L@. Indeed, we might
depict the solution to our previous example as follows:

d :

...
L@

@A⇒ @B
@B⇒ C

R@
@B⇒ @C

cut
@A⇒ @C

 d′ :
@A⇒ @B @B⇒ C

cut
@A⇒ C

R@
@A⇒ @C

In sum, in order to permute applications of R@ and other rules, it suffices to
consider only sequents of the form H | @Σ⇒ A,Π.

Let d be a derivation in HI
@. We recall that:

1. |d | is the length of d, i.e., the (maximal number of applications of inference
rules)+1 occurring in d;

2. |A| is the complexity of A, i.e., the number of occurrences of its connectives;
3. ρ(d) is the cut rank of d, i.e., (the maximal complexity of cut-formulas in

d)+1. ρ(d) � 0, if d is cut-free.

Lemma 5.4.2. Let dl and dr be derivations in HI
@ such that:

1. dl is a derivation of G | Γ1, [A]λ1 ⇒ ∆1 | · · · | Γn , [A]λn ⇒ ∆n ;
2. dr is a derivation of H | Σ⇒ A,Π;
3. ρ(dl) ≤ |A| and ρ(dr) ≤ |A|;
4. A is a complex formula occurring as principal in the conclusion of dr .

Then, a derivation d of G | H | Γ1,Σλ1 ⇒ ∆1,Πλ1 | · · · | Γn ,Σλn ⇒ ∆n ,Πλn , with
ρ(d) ≤ |A|, can be constructed in HI

@.
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Proof. By induction on |dl |. First of all, if dl terminates with an axiom, then the
conclusion immediately holds. For the inductive step, we distinguish several
cases according to the last rule r applied in dl :

1. If r was applied only in G, then the conclusion follows by the inductive
hypothesis and an application of r.

2. If r is any of the non-modal rules of HI
@ not introducing A, then, applying

substitutivity (Lemma 5.4.1), the claim follows by the inductive hypothesis,
applications of r and possibly of ew.

3. Let r be a left non-modal rule introducing A. As an example, consider L∧1
and let A � B ∧ C:

..... dl

G | Γ1, B, [B ∧ C]λ1−1 ⇒ ∆1 | · · · | Γn , [B ∧ C]λn ⇒ ∆n
L∧1

G | Γ1, [B ∧ C]λ1 ⇒ ∆1 | · · · | Γn , [B ∧ C]λn ⇒ ∆n

Furthermore, dr ends with R∧. By applying the inductive hypothesis to
the premises of dl we get d′ : G | H | Γ1, B, [Σ]λ1−1 ⇒ ∆1,Πλ1−1 | · · · |
Γn , [Σ]λn ⇒ ∆n ,Πλn . By applying cut with Σ⇒ B,Π (one of the premises of
dr), the desired conclusion follows. Importantly, the resulting derivation has
cut rank ≤ |B ∧ C |.
If r is any other logical rule of HI

@ introducing A, then the proof is similar to
the case just displayed.

4. Suppose that r is a modal rule of HI
@.

(a) dl terminates with an instance of L@. Let A � @B be principal:
..... dl

G | Γ1, B, [@B]λ1−1 ⇒ ∆1 | · · · | Γn , [@B]λn ⇒ ∆n
L@

G | Γ1, [@B]λ1 ⇒ ∆1 | · · · | Γn , [@B]λn ⇒ ∆n

dr ends with R@ and, hence, Σ � @Σ′ and Π � [ ]. By applying the
induction hypothesis we get a derivation d′: G | H | Γ1, B, [@Σ′]λ1−1 ⇒
∆1 | · · · | Γn , [@Σ′]λn ⇒ ∆n ,. Then, by applying cut with the premise
of dr (i.e., H | @Σ′ ⇒ B), possibly ic, ew and ec, we obtain the desired
derivation with cut rank ≤ |@B | .

(b) dl ends with an application of L@, with A not principal. Then dl has the
following form:

..... dl

G | Γ1, B, [A]λ1 ⇒ ∆1 | · · · | Γn , [A]λn ⇒ ∆n
L@

G | Γ1,@B, [A]λ1 ⇒ ∆1 | · · · | Γn , [A]λn ⇒ ∆n
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dr is H | Σ⇒ A,Π. By applying the inductive hypothesis to dl , we get a
derivation d′: G | H | Γ1, B, [Σ]λ1 ⇒ ∆1,Πλ1 | · · · | Γn , [Σ]λn ⇒ ∆n ,Πλn .
Finally, an application of L@ gives us the desired hypersequent G | H |
Γ1,@B, [Σ]λ1 ⇒ ∆1,Πλ1 | · · · | Γn , [Σ]λn ⇒ ∆n ,Πλn with ρ(d′) ≤ |A|.

(c) Suppose that the last rule applied in dl is R@. Let Γ1 � @Γ′1, A � @B and
∆1 � [ ].

..... dl

G | @Γ′1, [@B]λ1 ⇒ C | · · · | Γn , [@B]λn ⇒ ∆n
R@

G | @Γ′1, [@B]λ1 ⇒ @C | · · · | Γn , [@B]λn ⇒ ∆n

dr also ends with R@, where Σ � @Σ′ and Π � [ ]. By applying the
inductive hypothesis to the premise of dl we get a derivation d′ of the
hypersequent G | H | @Γ′1, [@Σ′]λ1 ⇒ C | · · · | Γn , [@Σ′]λn ⇒ ∆n .
Then, the desired hypersequent G | H | @Γ′1, [@Σ′]λ1 ⇒ @C | · · · |
Γn , [@Σ′]λn ⇒ ∆n follows by applying R@.

(d) Suppose that the last rule applied in dl is split@ and that A � @B.
..... dl

G | @Φ, Γ1, [@B]λ1 ⇒ ∆1,∆′1 | · · · | Γn , [@B]λn ⇒ ∆n
split@

G | @Φ, [@B]λ ⇒ ∆1 | Γ1, [@B]λ1−λ ⇒ ∆′1 | · · · | Γn , [@B]λn ⇒ ∆n

dr ends with R@, where Σ � @Σ′ and Π � [ ]. By applying the inductive
hypothesis to the premise of dl we get a derivation d′ of the hypersequent
G | H | @Φ, Γ1, [@Σ′]λ1 ⇒ ∆1,∆′1 | · · · | Γn , [@Σ′]λn ⇒ ∆n . Then, the
desired hypersequent G | H | @Φ, [@Σ]λ ⇒ ∆1 | Γ1, [@Σ]λ1−λ ⇒ ∆′1 |
· · · | Γn , [@Σ]λn ⇒ ∆n follows by applying split@ and possibly ew.

(e) Suppose that the last rule applied in dl is split@ and thatA is a non-modal
formula.

..... dl

G | @Φ, Γ1, [A]λ1 ⇒ ∆1,∆′1 | · · · | Γn , [A]λn ⇒ ∆n
split@

G | @Φ⇒ ∆1 | Γ1, [A]λ1 ⇒ ∆′1 | · · · | Γn , [A]λn ⇒ ∆n

dr ends with H | Σ ⇒ A,Π. By applying the inductive hypothesis
to the premise of dl we get a derivation d′ of the hypersequent G |
H | @Φ, Γ1, [Σ]λ1 ⇒ ∆1,∆′1,Π

λ1 | · · · | Γn , [Σ]λn ⇒ ∆n ,Πλn . Then, the
desired hypersequent G | H | @Φ ⇒ ∆1 | Γ1, [Σ]λ1 ⇒ ∆′1,Πλ1 | · · · |
Γn , [Σ]λn ⇒ ∆n ,Πλn follows by applying split@ and possibly ew.

�

Lemma 5.4.3. Let dl and dr be derivations in HI
@ such that:

1. dl is a derivation of G | Γ,A⇒ ∆;
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2. dr is a derivation of H | Σ1 ⇒ [A]λ1 ,Π1 | · · · | Σn ⇒ [A]λn ,Πn ;
3. ρ(dl) ≤ |A| and ρ(dr) ≤ |A|.

Then, a derivation d of G | H | Σ1, Γλ1 ⇒ Π1,∆λ1 | · · · | Σn , Γλn ⇒ Πn ,∆λn , with
ρ(d) ≤ |A|, can be constructed in HI

@.

Note that in the following proof, when we find a rule introducing A principally
in H | Σi ⇒ [A]λi ,Πi , we apply Lemma 5.4.2 to it and to dl , and if there’s no A in
Γ, we obtain a derivation of G | H | Σ1, Γλ1 ⇒ Π1,∆λ1 | · · · | Σn , Γλn ⇒ Πn ,∆λn ,
with decreased cut rank. Otherwise, the desired hypersequent follows after
some applications of structural rules.

Proof. By induction on |dr |. First of all, if dr terminates with an axiom, then the
conclusion immediately holds. For the inductive step, we distinguish several
cases according to the last rule r applied in dr :

1. If r was applied only in H, then the conclusion follows by the inductive
hypothesis and an application of r.

2. If r is any of the non-modal rules of HI
@ not introducing A, we apply Lemma

5.4.1 and the claim follows by the inductive hypothesis and applications of r.

3. Let r be a right non-modal rule introducing A. As an example, consider R→
and let A � B→ C:

..... dr

H | Σ1, B⇒ C | · · · | Σn ⇒ [B→ C]λn ,Πn
R→

H | Σ1 ⇒ B→ C | · · · | Σn ⇒ [B→ C]λn ,Πn

dl ends with L→. By inductive hypothesis we obtain: G | H | Σ1, Γλ1−1, B⇒
C | · · · | Σn , Γλn ⇒ Πn ,∆λn . We apply R → in order to get the desired
conclusion. Then, since B→ C is principal, the conclusion follows by Lemma
5.4.2.
If r is any other logical rule of HI

@ introducing A, then the proof is similar to
the case just displayed.

4. Let r be either L@ or split@. As an example, take L@. In this case the
cut-formula A is not a principal formula:

..... dr

H | B,Σ1 ⇒ [A]λ1 ,Π1 | · · · | Σn ⇒ [A]λn ,Πn

L@
H | @B,Σ1 ⇒ [A]λ1 ,Π1 | · · · | Σn ⇒ [A]λn ,Πn

dl is a derivation of G | Γ,A ⇒ ∆. By the inductive hypothesis we obtain:
G | H | B,Σ1, Γλ1 ⇒ Π1,∆λ1 | · · · | Σn , Γλn ⇒ Πn ,∆λn . An application of
L@ gives us the requested hypersequent G | H | @B,Σ1, Γλ1 ⇒ Π1,∆λ1 | · · · |
Σn , Γλn ⇒ Πn ,∆λn (with cut rank ≤ |A|).
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5. Suppose that r is right modal rules of HI
@, i.e., R@:

Let dr end with R@. So, in this case, let Σ1 � @Σ1 and A � @B:

..... dr

H | @Σ1 ⇒ B | · · · | Σn ⇒ [@B]λn ,Πn
R@

H | @Σ1 ⇒ @B | · · · | Σn ⇒ [@B]λn ,Πn

dl is a derivation of G | Γ,@B ⇒ ∆. By inductive hypothesis we get a
derivation of: G | H | @Σ1 ⇒ B | · · · | Σn , Γλn ⇒ ∆λn ,Πn . Then, the desired
hypersequent, G | H | @Σ1 ⇒ @B | · · · | Σn , Γλn ⇒ ∆λn ,Πn , follows by R@.
Finally, apply Lemma 5.4.2.

�

Theorem 5.4.4 (cut-elimination). HI
@ is a cut-free system.

Proof. Let d be aderivation inHI
@ with ρ(d) > 0. Weperformadouble induction

on 〈ρ(d), nρ(d)〉, where nρ(d) indicates the number of applications of cut in d
with cut rank ρ(d). Consider an uppermost application of cut in d with cut
rank ρ(d) and apply Lemma 5.4.3 to its premises. As a consequence, either ρ(d)
or nρ(d) decreases. �

As a major consequence of the cut-elimination theorem, we obtain the fol-
lowing feature of HI

@:

Corollary 5.4.4.1 (Subformula property). All formulas occurring in a cut-free
derivation of HI

@ are subformulas of the formula to be derived.

Now, we prove two final results following from the subformula property of
HI

@. Let Φ be a multiset of formulas. We denote via sub(Φ) the multiset of
subformulas of formulas in Φ.

Proposition 5.4.5 (Consistency). In HI
@ the empty sequent cannot be derived,

i.e., 0HI
@⇒.

Proof. Assume that `HI
@⇒. By the subformula property, there’s a derivation of

⇒ in which only elements from sub([ ]) occur. However, this is not possible since
no rule is applicable to conclude⇒. Hence, 0HI

@⇒. �

Proposition5.4.6 (Decidability). GivenahypersequentH, it is decidablewhether
`HI

@
H or 0HI

@
H.

Proof. Let H a hypersequent. Given the subformula property of HI
@, if `HI

@
H,

then there exists a derivation of H in HI
@ (with length ≤ n) consisting only of

elements from sub(H). Thus, performing an effective proof-search procedure is
possible.
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Example 5. We illustrate the method by trying to check whether @p → (q∨ s) ⇒
(@p → q) ∨ (@p → s) is derivable in HI

@. We generate all possible finite
derivation trees with endhypersequent @p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s),
for p , q , s ∈ At. We write all instance of rules that conclude it; if there is one tree
all leaves of which are conclusions of id or L⊥, the endsequent is derivable; if
not, it is underivable.
1. Consider L→ as the last rule applied and let @p → (q ∨ s) be principal in the
last step.
1a.

...
⇒ p

R@
⇒ @p

id
q ⇒ q

iw, l
q ,@p ⇒ q

R→
q ⇒ @p → q

R∨1
q ⇒ (@p → q) ∨ (@p → s)

id
s ⇒ s iw, l

s ,@p ⇒ s
R→

s ⇒ @p → s
R∨2

s ⇒ (@p → q) ∨ (@p → s)
L∨

q ∨ s ⇒ (@p → q) ∨ (@p → s)
L→

@p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s)

Given the presence of an irreducible non initial sequent of the form ⇒ p, the
tree doesn’t lead to a terminating derivation. Permuting L∨ with R∨i is of no
help to conclude the tree.
2.Consider R∨i as the last rule applied and let (@p → q)∨(@p → s) be principal
in the last step.

2a.

id
@p ⇒ @p

id
q ⇒ q

...
s ⇒ q

L∨
q ∨ s ⇒ q

L→
@p → (q ∨ s),@p ⇒ q

R→
@p → (q ∨ s) ⇒ @p → q

R∨1
@p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s)

2b.

id
@p ⇒ @p

...
q ⇒ s

id
s ⇒ s

L∨
q ∨ s ⇒ s

L→
@p → (q ∨ s),@p ⇒ s

R→
@p → (q ∨ s) ⇒ @p → s

R∨2
@p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s)

where neither of the two trees terminates (given s ⇒ q and q ⇒ s). (Notice that
applying (internal or external) contraction before R∨i is of no help in getting a
terminating tree).
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2c.

...
⇒ p

R@
⇒ @p

id
q ⇒ q

iw, l
q ,@p ⇒ q

R→
q ⇒ @p → q

...
s , p ⇒ q

L@
s ,@p ⇒ q

R→
s ⇒ @p → q

L∨
q ∨ s ⇒ @p → q

L→
@p → (q ∨ s) ⇒ @p → q

R∨1
@p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s)

2d.

...
⇒ p

R@
⇒ @p

...
q , p ⇒ s

L@
q ,@p ⇒ s

R→
q ⇒ @p → s

id
s ⇒ s iw, l

s ,@p ⇒ s
R→

s ⇒ @p → s
L∨

q ∨ s ⇒ @p → s
L→

@p → (q ∨ s) ⇒ @p → s
R∨2

@p → (q ∨ s) ⇒ (@p → q) ∨ (@p → s)
where both derivation trees do not terminate. Notice that also further permuta-
tions of rules will not change the situation.
By having considered all possible derivations of @p → (q ∨ s) ⇒ (@p →
q) ∨ (@p → s), it follows that it is not derivable in HI

@.
�

5.5 Conclusion and further work

In this chapter, we have provided a solution to a problem raised in [NO20] by
introducing a simple, sound, complete and cut-free hypersequent calculus for
Niki and Omori’s IPC

@.
We remark that intuitionistic logic with actuality is not the only system devel-
oped within the project of extending intuitionism from mathematical to empir-
ical discourse and, indeed, we expect to be worth investigating also logics in the
vicinity of IPC

@ by accommodating the framework proposed throughout this
chapter. For example, if the symbol ∼ is used to denote so-called empirical nega-
tion (see, e.g., De [De13]), one could consider a hypersequent-style formulation
for M. De’s IPC∼, but also for other related logics such as, for example, A. B.
Gordienko’s TCCω (see [NO20, Remark 5.12]).

109



Chapter 6

Conclusive remarks

Outlook. In this thesis, I’ve investigated and discussed both the logical and
philosophical value of Gentzen-style proof theory, by mainly focusing the at-
tention on generalizations of the sequent calculus and on their applications to
certain non-classical logics. Such a discussion has paved the way to all results
proved in part II. Each choicemade in those chapterswas additionally supported
by our secondmethodological principle for which different purposes and logics
motivate the choice of different sequent systems (non-absolutistic approach). I
concluded all case studies by proposing, among other things, how the formal
methodology adopted in each chapter could be successfully applied to a variety
of issues connected to the central topic of the case study.

Future research. The philosophical analysis that we carried out in Chapter 1,
along with the endorsement of a non-absolutistic approach, points us towards a
broader question, i.e., is a general philosophy of proof systems possible?
The word “general” strictly relates to the idea for which the practice of proof
theory gives us the primary and fundamental source for our philosophical re-
flections on proof systems (practice-first view). I strongly believe that considering
the practical aspect of proof theory allows us to glimpse in a more fine-grained
way the differences, as well as the relations between different proof theoretic
frameworks. More precisely, the notion of practice we’re referring to is not re-
stricted only to the (fundamental) theorem-proving aspect of the proof theoretic
work. Instead, the notion of practice we think might be useful to elaborate a
general philosophy of proof systems is related to other aspects which underlie a
proof theorist’s work. The establishment of research programmes1, each having its
formal objectives and extra-logical motivations, precedes and motivates both,
the calculus choice and the theorem-proving job. In other words, we should un-
derstand, not only how, but also and especially why we deal with certain proof
theoretic structures. Therefore, a proper philosophical assessment and sys-
tematization of proof systems should include the consideration of extra-logical
elements fundamental to the practical work. Such a philosophical analysis is
meant to include the consideration of the foregrounds of different approaches

1The terminology is inspired by Lakatos’ work in the philosophy of science, as explained, for
example, in [AR09].
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Proof system(s)
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Applications
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Properties
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philosophy
mathematics
computer sciences,
. . .

Rules
+

Results

Figure 6.1: General philosophy of proof theory

to proof theory, which contain, for example, background ideas, providing mo-
tivations and justifications, as well as comparisons and critiques to alternative
theories and methodologies.
In sum, the practice-first view, I believe, has the advantage of allowing us to
grasp a more deep dimension of proof theory, where the symbolism is not only
analysed and understood in terms of the properties that it satisfies, but it is seen
as part of an activity, related to specific research programmes that (possibly)
stand in relations with other ones. The general philosophical approach that I
am trying to sketch, therefore, aims at considering proof systems not in isolation,
but as being part of a broader context, and more or less inevitably connected to
all other “players taking part in the game”.
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Appendix to Chapter 3

A1 Proof of Theorem 3.3.6

Proof of Theorem 3.3.6 (cut-admissibility cont.). We finish the proof of cut-
admissibility by displaying some other salient examples. We distinguish three
main cases.
Case 1: If at least one of the premises of cut is an axiom, we distinguish 4
subcases:
Case 1.1: The left premise of cut is an axiomand the cut-formula is not principal.
If the derivation has the following shape:

z : B, Γ⇒ ∆, z : B, w : A w : A, Γ′⇒ ∆′ (cut)
z : B, Γ, Γ′⇒ ∆,∆′, z : B

It is transformed into:
z : B, Γ, Γ′⇒ ∆,∆′, z : B

without applications of cut.
Case 1.2: The left premise of cut is an axiom and the cut-formula is principal.
The derivation:

w : A, Γ⇒ ∆, w : A w : A, Γ′⇒ ∆′
(cut)

w : A, Γ, Γ′⇒ ∆,∆′

is transformed into:
w : A, Γ′⇒ ∆′

(Lemma 3.3.3) Lw+Rw
w : A, Γ, Γ′⇒ ∆,∆′

Case 1.3: The right premise of cut is an axiom and the cut-formula is not
principal. The derivation:

Γ⇒ ∆, w : A w : A, z : B, Γ′⇒ ∆′, z : B
(cut)

z : B, Γ, Γ′⇒ ∆,∆′, z : B

It is transformed into:
z : B, Γ, Γ′⇒ ∆,∆′, z : B

without applications of cut.
Case 1.4: The right premise of cut is an axiom and the cut-formula is principal.
The derivation:

Γ⇒ ∆, w : A w : A, Γ′⇒ ∆′, w : A
(cut)

Γ, Γ′⇒ ∆,∆′, w : A
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is transformed into:
Γ⇒ ∆, w : A

(Lemma 3.3.3) Lw+Rw
Γ, Γ′⇒ ∆,∆′, w : A

Case 2: The cut-formula A is not principal in at least one premise. The proof
proceeds by permuting the application of cut with the rule under consideration,
to move the cut upwards in the transformed derivation.
Case 2.1: A is not principal in the left premise. We distinguish two subcases.
Subcase 2.1.1: Let Γ � z : B ∧d C, Γ′′:

zRv , z : B, v : C, Γ′′⇒ ∆, w : A (L∧d)
z : B ∧d C, Γ′′⇒ ∆, w : A w : A, Γ′⇒ ∆′ (cut)

z : B ∧d C, Γ′′, Γ′⇒ ∆,∆′

and transform it into the following one:

zRv , z : B, v : C, Γ′′⇒ ∆, w : A w : A, Γ′⇒ ∆′ (cut)
zRv , z : B, v : C, Γ′′⇒ ∆ (L∧d)
z : B ∧d C, Γ′′, Γ′⇒ ∆,∆′

where the cut-height is reduced.
Let Γ � zRv , z : B →d C, Γ′′ and consider as an example L →d. We have the
following derivation:

zRv , z : B→d C, Γ′′⇒ ∆, w : A, v : B zRv , z : C, z : B→d C, Γ′′⇒ ∆, w : A
(L→d)

zRv , z : B→d C, Γ′′⇒ ∆, w : A w : A, Γ′⇒ ∆′
(cut)

zRv , z : B→d C, Γ′′, Γ′⇒ ∆,∆′

and transform it into the following one:

..... δ1

zRv , z : B→d C, Γ′′, Γ′⇒ ∆,∆′, v : B

..... δ2

zRv , z : C, z : B→d C, Γ′′, Γ′⇒ ∆,∆′ (L→d)
zRv , z : C, z : B→d C, Γ′′, Γ′⇒ ∆,∆′

where δ1 is:

zRv , z : B→d C, Γ′′⇒ ∆, w : A, v : B w : A, Γ′⇒ ∆′ (cut)
zRv , z : B→d C, Γ′′, Γ′⇒ ∆,∆′, v : B

and δ2 is:

zRv , z : C, z : B→d C, Γ′′⇒ ∆, w : A w : A, Γ′⇒ ∆′ (cut)
zRv , z : C, z : B→d C, Γ′′, Γ′⇒ ∆,∆′

Subcase 2.1.2: Let ∆ � ∆′′, z : B ∧d C:
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zRv , Γ⇒ ∆′′, z : B, w : A zRv , Γ⇒ ∆′′, v : C, w : A (R∧d)
Γ⇒ ∆′′, z : B ∧d C, w : A w : A, Γ′⇒ ∆′ (cut)

Γ, Γ′⇒ ∆′′,∆′, z : B ∧d C

it is transformed into the following application of cut with a shorter derivation
height:

zRv , Γ⇒ ∆′′, z : B, w : A w : A, Γ′⇒ ∆′
(cut)

zRv , Γ, Γ′⇒ ∆′,∆′′, z : B

zRv , Γ⇒ ∆′′, v : C, w : A w : A, Γ′⇒ ∆′
(cut)

zRv , Γ, Γ′⇒ ∆′,∆′′, v : C
(R∧d)

zRv , Γ, Γ′⇒ ∆′′,∆′, z : B ∧d C

where the cut-height is reduced.
Let ∆ � ∆′′, z : A→d B:

zRv , v : B, Γ⇒ ∆′′, z : C, w : A (R→d)
Γ⇒ ∆′′, z : B→d C, w : A w : A, Γ′⇒ ∆′

(cut)
Γ, Γ′⇒ ∆′′,∆′, z : B→d C

it is transformed into the following application of cut with a shorter derivation
height:

zRv , v : B, Γ⇒ ∆′′, z : C, w : A w : A, Γ′⇒ ∆′
(cut)

Rxbc , v : B, Γ, Γ′⇒ ∆′′,∆′, z : C (R→d)
Γ, Γ′⇒ ∆′′,∆′, z : B→d C

Case 2.2: A is principal in the left premise only. We distinguish two subcases.
Subcase 2.2.1: Similarly to the preceding subcase. Let Γ′ � z : B ∧d C, Γ′′:

Γ⇒ ∆, w : A
zRv , w : A, z : B, v : C, Γ′′⇒ ∆′ (L∧d)

w : A, z : B ∧d C, Γ′′⇒ ∆′ (cut)
z : B ∧d C, Γ, Γ′′⇒ ∆,∆′

is transformed into:
Γ⇒ ∆, w : A zRv , w : A, z : B, v : C, Γ′′⇒ ∆′ (cut)

zRv , z : B, v : C, Γ, Γ′′⇒ ∆,∆′, x∗ : B (L∧d)
z : B ∧d C, Γ, Γ′′⇒ ∆,∆′

with a shorter derivation height.
Let Γ′ � zRv , z : B →d C, Γ′′ and consider L →d. We have the following
derivation:

Γ⇒ ∆, w : A

w : A, zRv , z : B→d C, Γ′′⇒ ∆′, v : B w : A, zRv , z : B, z : B→d C, Γ′′⇒ ∆′
(L→d)

w : A, zRv , z : B→d C, Γ′′⇒ ∆′
(cut)

zRv , z : B→d C, Γ, Γ′′⇒ ∆,∆′

is reduced to the following one:
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..... δ1

zRv , z : B→d C, Γ, Γ′′⇒ ∆,∆′, v : B

..... δ2

zRv , z : B→d C, z : C, Γ, Γ′′⇒ ∆,∆′ (L→d)
zRv , z : A→d B, Γ, Γ′′⇒ ∆,∆′

where δ1 is derived by:

Γ⇒ ∆, w : A w : A, zRv , z : B→d C, Γ′′⇒ ∆′, v : B (cut)
zRv , z : B→d C, Γ, Γ′′⇒ ∆,∆′, v : B

while δ2 is derived by:

Γ⇒ ∆, w : A w : A, zRv , z : C, z : B→d C, Γ′′⇒ ∆′ (cut)
zRv , z : B→d C, z : C, Γ, Γ′′⇒ ∆,∆′

with a decreased derivation height.
Subcase 2.2.2: Let ∆′ � ∆′′, z : B ∧d C:

Γ⇒ ∆, w : A
zRv , w : A, Γ′⇒ ∆′′, v : B zRv , w : A, Γ′⇒ ∆′′, z : C (R∧d)

zRv , w : A, Γ′⇒ ∆′′, z : B ∧d C (cut)
zRv , Γ, Γ′⇒ ∆,∆′′, z : B ∧d C

it is transformed into:
..... δ1

zRv , Γ, Γ′⇒ ∆,∆′′, v : B

..... δ2

zRv , Γ, Γ′⇒ ∆,∆′′, z : C (R∧d)
zRv , Γ, Γ′⇒ ∆,∆′′, z : B ∧d C

where δ1 is:

Γ⇒ ∆, w : A zRv , w : A, Γ′⇒ ∆′′, v : B (cut)
zRv , Γ, Γ′⇒ ∆,∆′′, v : B

and δ2 is:

Γ⇒ ∆, w : A zRv , w : A, Γ′⇒ ∆′′, z : C (cut)
zRv , Γ, Γ′⇒ ∆,∆′′, z : C

with a shorter derivation height.
Let ∆′ � ∆′′, z : B→d C and the derivation:

Γ⇒ ∆, w : A
zRv , w : A, v : B, Γ′⇒ ∆′′, z : C (R→d)

w : A, Γ′⇒ ∆′′, z : B→d C (cut)
Γ, Γ′⇒ ∆,∆′′, z : B→d C

It is reduced to the following one:
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Γ⇒ ∆, w : A zRv , w : A, v : B, Γ′⇒ ∆′′, z : C (cut)
zRv , v : B, Γ, Γ′⇒ ∆,∆′′, z : C (R→d)
Γ, Γ′⇒ ∆,∆′′, z : B→d C

with a shorter derivation height.
Case 3: The cases for A being B ∧d C or B→d C, can be found on pp. 61 and ff.
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A2 Proof of Theorem 3.4.2

Proof of Theorem 3.4.2 (Semantic Completeness cont.) In this appendix we construct
a reduction tree for an arbitrary sequent S, by applying, root-first, all rules for
G3D2 according to a specific order. This construction is used to define a coun-
termodel to S (displayed above). Importantly, recall that, to reflect the notion
of validity at the actual world, we will consider derivability at 0, and not with
respect to arbitrary labels.
The reduction tree is defined inductively in stages as follows: (1) n � 0, so Γ⇒ ∆
stands at the root of the tree. (2) If n > 0, we distinguish two subcases. (2.1)
If every topmost sequent is an axiomatic sequent reduction the tree terminates;
(2.2) If no axiomatic sequent is reached, the construction of the reduction tree
does not terminate and we continue applying, root-first, all rules of G3D2 ac-
cording to a specific order. There are 8+ j different stages: 8 for the rules for the
propositional connectives and j for the mathematical rules. We start, for n � 1,
with L¬ and consider topmost sequents of the following form:

w1 : ¬B1, . . . ,wk : ¬Bk , Γ
′⇒ ∆

where w1 : ¬B1, . . . ,wk : ¬Bk , are all formulas in Γwith ¬ as outermost connec-
tive. By applying, root-first, k times, L¬we obtain the following sequent:

Γ′⇒ ∆, w1 : B1, . . . ,wk : Bk

placed on top of the former.
For n � 2, we consider sequents of the form:

Γ⇒ ∆′, w1 : ¬B1, . . . ,wk : ¬Bk

By applying, root-first, k times, R¬we obtain the following sequent:

w1 : B1, . . . ,wk : Bk , Γ⇒ ∆′

placed on top of the former.
For n � 3, we consider sequents of the form:

w1 : B1 ∨ C1, . . . ,wk : Bk ∨ Ck , Γ
′⇒ ∆

By applying, root-first, k times, L∨we obtain the following sequents:

w1 : B1, . . . ,wk : Bk , Γ
′⇒ ∆ and w1 : C1, . . . ,wk : Ck , Γ

′⇒ ∆

For n � 4, we consider sequents of the form:

Γ⇒ ∆′, w1 : B1 ∨ C1, . . . ,wk : Bk ∨ Ck

By applying, root-first, k times, R∨we obtain the following sequents:

Γ⇒ ∆′, w1 : B1, w1 : C1, . . . ,wk : Bk , wk : Ck
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placed on top of the former as its premises.
For n � 5, we consider sequents of the form:

w1 : B1 ∧d C1, . . . ,wk : Bk ∧d Ck , Γ
′⇒ ∆

Let v1, ..., vk be fresh variables, not yet used in the reduction tree. By applying,
root-first, k times, L∧d we obtain the following sequent:

w1Rv1, . . . ,wkRvk , w1 : B1, w1 : B1, v1 : C1, . . . ,wk : Bk , vk : Ck , Γ
′⇒ ∆

placed on top of the former sequent.
For n � 6, we consider sequents of the form:

w1Rv1, . . . ,wkRvk , w1, Γ⇒ ∆′, w1 : B1 ∧d C1, . . . ,wk : Bk ∧d Ck

By applying, root-first, k times, R∧d we obtain the following sequents:

w1Rv1, . . . ,wkRvk , w1, Γ⇒ ∆′, w : B1, . . . ,w : Bk

and
w1Rv1, . . . ,wkRvk , w1, Γ⇒ ∆′, v : C1, . . . , v : Ck

placed on top of the former as its premises.
For n � 7, we consider topmost sequents of the following form:

w1Rv1, . . . ,wkRvk , w1 : B1 →d C1, . . . ,wk : Bk →d Ck , Γ
′⇒ ∆

where labels and principal formulas are in Γ′. By applying, root-first, k times,
L →d (with w1Rv1, . . . ,wkRvk , w1 : B1 →d C1, . . . ,wk : Bk ,→d Ck principal)
we obtain the following sequent:

w1Rv1, . . . ,wkRvk , wm1 : Cm1 , . . . ,wml : Cml , Γ
′⇒ ∆, v jl+1 : B, . . . , v jk : B

where {m1, . . . ,ml} ⊆ {1, . . . , k} and jl+1, . . . , jk ∈ {1, . . . , k}−{m1, . . . ,ml}, and
placed on top of the former as its premises.
For n � 8, we consider all the labelled sequents that have implications in the
succedent. We consider topmost sequents of the following form:

Γ⇒ ∆′, w1 : B1 →d C1, . . . ,wk : Bk →d Ck

Let v1, ..., vk be fresh variables, not yet used in the reduction tree and apply,
root-first, k times, R→d to obtain the following sequent:

w1Rv1, . . . ,wkRvk , v1 : B, . . . , vk : B, Γ⇒ ∆′, w1 : C1, . . . ,wk : Ck

placed on top of the former as its premise.
Finally, we consider relational rules. If it is a rule without eigenvariable condi-
tion, we write on top of the lower sequent the result of applying the relational
rule under consideration.
This construction is then used in the development of the second part of the proof
displayed above (pp. 69 and ff.).
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B1 Proof of Theorem 4.5.2

Proof of Theorem 4.5.2 (Syntactic Completeness). We show that (Ax1)-(Ax16) ca be
derived in the calculi G3rX:
G3rB `⇒ 0 : A→ A

R0ab , a : A⇒ b : A
(a , b fresh) R→

⇒ 0 : A→ A

G3rB `⇒ 0 : A ∧ B→ A and G3rB `⇒ 0 : A ∧ B→ B.
R0ab , a : A, a : B⇒ b : A

L∧
R0ab , a : A ∧ B⇒ b : A

(a , b fresh) R→
⇒ 0 : A ∧ B→ A

R0ab , a : A, a : B⇒ b : B
L∧

R0ab , a : A ∧ B⇒ b : B
(a , b fresh) R→

⇒ 0 : A ∧ B→ B

G3rB `⇒ 0 : (A → B) ∧ (A → C) → (A → (B ∧ C)). We have the following
derivation:

..... δ1

Racd ,S , c : A, a : A→ B⇒ d : B

..... δ2

Racd ,S , c : A, a : A→ C⇒ d : C
R∧

Racd , Rbcd , R0ab , c : A, a : A→ B, a : A→ C⇒ d : B ∧ C
R4

Rbcd , R0ab , c : A, a : A→ B, a : A→ C⇒ d : B ∧ C
(c , d fresh) R→

R0ab , a : A→ B, a : A→ C⇒ b : A→ (B ∧ C)
L∧

R0ab , a : (A→ B) ∧ (A→ C) ⇒ b : A→ (B ∧ C)
(a , b fresh) R→

⇒ 0 : (A→ B) ∧ (A→ C) → (A→ (B ∧ C))
where the conclusion of δ1 is obtained by:

R0cc , Racd ,S′, c : A⇒ d : B, c : A
R2

Racd ,S′, c : A⇒ d : B, c : A
R0dd , Racd ,S′, d : B, c : A⇒ d : B

R2
Racd ,S′, d : B, c : A⇒ d : B

L→
Racd ,S , c : A, a : A→ B⇒ d : B

while the conclusion of δ2 is derived by:

R0cc , Racd ,S′′, c : A⇒ d : C, c : A
R2

Racd ,S′′, c : A⇒ d : C, c : A
R0dd , Racd ,S′′, d : C, c : A⇒ d : C

R2
Racd ,S′′, d : C, c : A⇒ d : C

L→
Racd ,S , c : A, a : A→ C⇒ d : C
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where S � Rbcd , R0ab, S′ � Rbcd , R0ab , a : A → B and S′ � Rbcd , R0ab , a :
A→ C.
G3rB `⇒ 0 : A→ (A ∨ B) and G3rB `⇒ 0 : B→ (A ∨ B).

R0ab , a : A⇒ b : A, b : B
R∨

R0ab , a : A⇒ b : A ∨ B
(a , b fresh) R→

⇒ 0 : A→ (A ∨ B)

R0ab , a : B⇒ b : A, b : B
R∨

R0ab , a : B⇒ b : A ∨ B
(a , b fresh) R→

⇒ 0 : B→ (A ∨ B)
G3rB `⇒ 0 : (A→ C) ∧ (B→ C) → ((A ∨ B) → C) .
The derivation is as follows:

..... δ1

Racd ,S , c : A ∨ B, a : B→ C⇒ d : C, c : A Racd ,S , d : C, c : A ∨ B, a : B→ C⇒ d : C
Racd , Rbcd , R0ab , c : A ∨ B, a : A→ C, a : B→ C⇒ d : C

R4
Rbcd , R0ab , c : A ∨ B, a : A→ C, a : B→ C⇒ d : C

L∧
Rbcd , R0ab , c : A ∨ B, a : (A→ C) ∧ (B→ C) ⇒ d : C

(c , d fresh) R→
R0ab , a : (A→ C) ∧ (B→ C) ⇒ b : (A ∨ B) → C

(a , b fresh) R→
⇒ 0 : (A→ C) ∧ (B→ C) → ((A ∨ B) → C)

where the conclusion of δ1 is derived by:

R0cc , Racd ,S , c : A, a : B→ C⇒ d : C, c : A
R2

Racd ,S , c : A, a : B→ C⇒ d : C, c : A

......
δ′1

Racd ,S , c : B, a : B→ C⇒ d : C, c : A
L∨

Racd ,S , c : A ∨ B, a : B→ C⇒ d : C, c : A

while δ′1 is derived by:

R0cc , Racd ,S′, c : B⇒ d : C, c : A, c : B
R2

Racd ,S′, c : B⇒ d : C, c : A, c : B
R0dd , Racd ,S′, d : C, c : B⇒ d : C, c : A

R2
Racd ,S′, d : C, c : B⇒ d : C, c : A

L→
Racd ,S , c : B, a : B→ C⇒ d : C, c : A

with S � Rbcd , R0ab , a : A→ C and S′ � Rbcd , R0ab , a : A→ C, a : B→ C.
G3rB `⇒ 0 : A∧(B∨C) → (A∧B)∨(A∧C). We obtain the following derivation:

..... δ1

R0ab , a : A, a : B⇒ b : A ∧ B, b : A ∧ C

..... δ2

R0ab , a : A, a : C⇒ b : A ∧ B, b : A ∧ C
L∨

R0ab , a : A, a : B ∨ C⇒ b : A ∧ B, b : A ∧ C
L∧

R0ab , a : A ∧ (B ∨ C) ⇒ b : A ∧ B, b : A ∧ C
R∨

R0ab , a : A ∧ (B ∨ C) ⇒ b : (A ∧ B) ∨ (A ∧ C)
(a , b fresh) R→

⇒ 0 : A ∧ (B ∨ C) → (A ∧ B) ∨ (A ∧ C)
where the conclusion of δ1 is derived by:

R0ab , a : A, a : B⇒ b : A, b : A ∧ C R0ab , a : A, a : B⇒ b : B, b : A ∧ C
R∧

R0ab , a : A, a : B⇒ b : A ∧ B, b : A ∧ C
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while the conclusion of δ2 is obtained by:

R0ab , a : A, a : C⇒ b : A, b : A ∧ B R0ab , a : A, a : C⇒ b : C, b : A ∧ B
R∧

R0ab , a : A, a : C⇒ b : A ∧ B, b : A ∧ C

G3rB `⇒ 0 : ∼∼A→ A.
R0a∗∗b , R0a∗∗a , R0aa∗∗, R0ab , a∗∗ : A⇒ b : A

R3
R0a∗∗a , R0aa∗∗, R0ab , a∗∗ : A⇒ b : A

R1
R0ab , a∗∗ : A⇒ b : A

R∼
R0ab ⇒ b : A, a∗ : ∼A

L∼
R0ab , a : ∼∼A⇒ b : A

(a , b fresh) R→
⇒ 0 : ∼∼A→ A

If G3rB `⇒ 0 : A, G3rB `⇒ 0 : A→ B, then G3rB `⇒ 0 : B.

⇒ 0 : A

⇒ 0 : A→ B
(Lemma 4.5.1)

a : A⇒ a : B
(Lemma 4.3.1) sub(0/a)

0 : A⇒ 0 : B cut
⇒ 0 : B

If G3rB `⇒ 0 : A, G3rB `⇒ 0 : B, then G3rB `⇒ 0 : A ∧ B.

⇒ 0 : B ⇒ 0 : A
R∧

⇒ 0 : A ∧ B

If G3rB `⇒ 0 : A → B, then G3rB `⇒ 0 : (C → A) → (C → B). We have the
following derivation:

R0bb , Rabc , a : C→ A, b : C⇒ c : B, b : C
R2

Rabc , a : C→ A, b : C⇒ c : B, b : C

⇒ 0 : A→ B
(Lemma 4.5.1)

c : A⇒ c : B
(Lemma 4.6.1) lw+lwL

Rabc , c : A, a : C→ A, b : C⇒ c : B
L→

Rabc , a : C→ A, b : C⇒ c : B
(b , c fresh) R→

a : C→ A⇒ a : C→ B
(Lemma 4.5.1)

⇒ 0 : (C→ A) → (C→ B)

If G3rB `⇒ 0 : A → B, then G3rB `⇒ 0 : (B → C) → (A → C). We have the
following derivation:

⇒ 0 : A→ B
(Lemma 4.5.1)

b : A⇒ b : B
(Lemma 4.6.1) lw+rw+lwL

Rabc , a : B→ C, b : A⇒ c : C, b : B
R0cc , Rabc , c : C, a : B→ C⇒ c : C

R2
Rabc , c : C, a : B→ C⇒ c : C

L→
Rabc , a : B→ C, b : A⇒ c : C

(b , c fresh) R→
a : B→ C⇒ a : A→ C

(Lemma 4.5.1)
⇒ 0 : (B→ C) → (A→ C)

If G3rB `⇒ 0 : A→ B, then G3rB `⇒ 0 : ∼B→ ∼A.
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⇒ 0 : A→ B
(Lemma 4.5.1)

a : A⇒ a : B
(Lemma 4.3.1) sub(a∗/a)

a∗ : A⇒ a∗ : B
L∼

a∗ : A, a : ∼B⇒
R∼

a : ∼B⇒ a : ∼A
(Lemma 4.5.1)

⇒ 0 : ∼B→ ∼A

where S � R0ab , 0 : A→ B. This completes the completeness proof for G3rB.
G3rDW `⇒ 0 : (A→ B) → (∼B→ ∼A).

R0d∗d∗, Rad∗c∗,S , d∗ : A⇒ c∗ : B, d∗ : A
R2

Rad∗c∗,S , d∗ : A⇒ c∗ : B, d∗ : A
R0c∗c∗, Rad∗c∗,S , c∗ : B, d∗ : A⇒ c∗ : B

R2
Rad∗c∗,S , c∗ : B, d∗ : A⇒ c∗ : B

L→
Rad∗c∗, Rbd∗c∗, Rbcd , R0ab , d∗ : A, a : A→ B⇒ c∗ : B

R4
Rbd∗c∗, Rbcd , R0ab , d∗ : A, a : A→ B⇒ c∗ : B

R6
Rbcd , R0ab , d∗ : A, a : A→ B⇒ c∗ : B

L∼
Rbcd , R0ab , d∗ : A, a : A→ B, c : ∼B⇒

R∼
Rbcd , R0ab , a : A→ B, c : ∼B⇒ d : ∼A

(c , d fresh) R→
R0ab , a : A→ B⇒ b : ∼B→ ∼A

(a , b fresh) R→
⇒ 0 : (A→ B) → (∼B→ ∼A)

where S � Rbd∗c∗, Rbcd , R0ab , a : A→ B.
G3rDJ `⇒ 0 : (A→ B) ∧ (B→ C) → (A→ C).

R0cc , Racx , Raxd ,S′, c : A⇒ d : C, c : A
R2

Racx , Raxd ,S′, c : A⇒ d : C, c : A

..... δ1

Racx , Raxd ,S , x : B, a : B→ C,⇒ d : C
L→

Racx , Raxd , Racd , Rbcd , R0ab , c : A, a : A→ B, a : B→ C⇒ d : C
(x fresh) R7

Racd , Rbcd , R0ab , c : A, a : A→ B, a : B→ C⇒ d : C
R4

Rbcd , R0ab , c : A, a : A→ B, a : B→ C⇒ d : C
(c , d fresh) R→

R0ab , a : A→ B, a : B→ C⇒ b : A→ C
L∧

R0ab , a : (A→ B) ∧ (B→ C) ⇒ b : A→ C
(a , b fresh) R→

⇒ 0 : (A→ B) ∧ (B→ C) → (A→ C)
and δ1 is derived by:

R0xx , Racx , Raxd ,S′, x : B⇒ d : C, x : B
R2

Racx , Raxd ,S′, x : B⇒ d : C, x : B
R0dd , Racx , Raxd ,S′, d : C, x : B⇒ d : C

R2
Racx , Raxd ,S′, d : C, x : B⇒ d : C

L→
Racx , Raxd ,S , x : B, a : B→ C,⇒ d : C

where S � Racd , Rbcd , R0ab , a : A → B and S′ � Racd , Rbcd , R0ab , a : A →
B, a : B→ C.
G3rTW `⇒ 0 : (A→ B) → ((B→ C) → (A→ C)).
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R0ee ,S , a : A→ B, e : A⇒ e : A, f : C
R2

S , a : A→ B, e : A⇒ e : A, f : C

..... δ1

Raex , Rcx f ,S′, x : B, c : B→ C⇒ f : C
L→

Raex , Rcx f , Rbex , Rde f , Rbcd , R0ab , a : A→ B, c : B→ C, e : A⇒ f : C
R4

Rcx f , Rbex , Rde f , Rbcd , R0ab , a : A→ B, c : B→ C, e : A⇒ f : C
(x fresh) R8

Rde f , Rbcd , R0ab , a : A→ B, c : B→ C, e : A⇒ f : C
(e , f fresh) R→

Rbcd , R0ab , a : A→ B, c : B→ C⇒ d : A→ C
(c , d fresh) R→

R0ab , a : A→ B⇒ b : (B→ C) → (A→ C)
(a , b fresh) R→

⇒ 0 : (A→ B) → ((B→ C) → (A→ C))
and δ1 is derived by:

R0xx , Raex , Rcx f ,S′′, x : B⇒ f : C, x : B
R2

Raex , Rcx f ,S′′, x : B⇒ f : C, x : B

R0 f f , Raex , Rcx f ,S′′, f : C, x : B⇒ f : C
R2

Raex , Rcx f ,S′′, f : C, x : B⇒ f : C
L→

Raex , Rcx f ,S′, x : B, c : B→ C⇒ f : C

where S � Raex , Rcx f , Rbex , Rde f , Rbcd , R0ab , c : B→ C,
S′ � Rbex , Rde f , Rbcd , R0ab , e : A, a : A→ B andS′′ � Rbex , Rde f , Rbcd , R0ab , e :
A, a : A→ B, c : B→ C.
G3rTW `⇒ 0 : (A→ B) → ((C→ A) → (C→ B)).

R0ee , Rcex ,S , e : C,⇒ f : B, e : C
R2

Rcex ,S , e : C,⇒ f : B, e : C

..... δ1

Rax f , Rcex ,S′, x : A, e : C, a : A→ B⇒ f : B
L→

Rax f , Rcex , Racd , Rde f , Rbcd , R0ab , e : C, a : A→ B, c : C→ A⇒ f : B
(x fresh) R9

Racd , Rde f , Rbcd , R0ab , e : C, a : A→ B, c : C→ A⇒ f : B
R4

Rde f , Rbcd , R0ab , e : C, a : A→ B, c : C→ A⇒ f : B
(e , f fresh) R→

Rbcd , R0ab , a : A→ B, c : C→ A⇒ d : C→ B
(c , d fresh) R→

R0ab , a : A→ B⇒ b : (C→ A) → (C→ B)
(a , b fresh) R→

⇒ 0 : (A→ B) → ((C→ A) → (C→ B))
where the conclusion of δ1 is derived by:

R0xx , Rax f , Rcex ,S′′, x : A, e : C⇒ f : B, x : A
R2

Rax f , Rcex ,S′′, x : A, e : C⇒ f : B, x : A

R0 f f , Rax f , Rcex ,S′′, f : B, x : A, e : C⇒ f : B
R2

Rax f , Rcex ,S′′, f : B, x : A, e : C⇒ f : B
L→

Rax f , Rcex ,S′, e : C, a : A→ B⇒ f : B

with S � Rax f , Racd , Rde f , Rbcd , R0ab , a : A→ B, c : C→ A,
S′ � Racd , Rde f , Rbcd , R0ab , c : C → A and S′′ � Racd , Rde f , Rbcd , R0ab , c :
C→ A, a : A→ B.
G3rT `⇒ 0 : (A→ (A→ B)) → (A→ B).
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R0cc , Racx , Rxcd ,S , c : A⇒ d : B, c : A
R2

Racx , Rxcd ,S , c : A⇒ d : B, c : A

..... δ1

Racx , Rxcd ,S , x : A→ B, c : A⇒ d : B
L→

Racx , Rxcd , Racd , Rbcd , R0ab , a : A→ (A→ B), c : A⇒ d : B
(x fresh) R10

Racd , Rbcd , R0ab , a : A→ (A→ B), c : A⇒ d : B
R4

Rbcd , R0ab , a : A→ (A→ B), c : A⇒ d : B
(c , d fresh) R→

R0ab , a : A→ (A→ B) ⇒ b : A→ B
(a , b fresh) R→

⇒ 0 : (A→ (A→ B)) → (A→ B)
and δ1 is derived by:

R0cc , Racx , Rxcd ,S′, c : A⇒ d : B, c : A
R2

Racx , Rxcd ,S′, c : A⇒ d : B, c : A
R0dd , Racx , Rxcd ,S′, d : B, c : A⇒ d : B

R2
Racx , Rxcd ,S′, d : B, c : A⇒ d : B

L→
Racx , Rxcd ,S , x : A→ B, c : A⇒ d : B

where S � Racd , Rbcd , R0ab , a : A→ (A→ B) and S′ � Racd , Rbcd , R0ab , a :
A→ (A→ B), x : A→ B.
G3rT `⇒ 0 : (A ∧ (A→ B)) → B.

R0aa , Raaa ,S , a : A⇒ b : B, a : A
R2

Raaa ,S , a : A⇒ b : B, a : A Raaa , R0ab , a : B, a : A, a : A→ B⇒ b : B
L→

Raaa , R0ab , a : A, a : A→ B⇒ b : B
R11

R0ab , a : A, a : A→ B⇒ b : B
L∧

R0ab , a : A ∧ (A→ B) ⇒ b : B
(a , b fresh) R→

⇒ 0 : (A ∧ (A→ B)) → B

where S � R0ab , a : A→ B.
G3rT `⇒ 0 : (A→ ∼A) → ∼A.

R0b∗a∗, R0ab ,S , b∗ : A,⇒ a∗ : A
R5

R0ab ,S , b∗ : A,⇒ a∗ : A
R∼

R0ab ,S ⇒ a∗ : A, b : ∼A

R0b∗a∗, R0ab ,S , b∗ : A⇒ a∗ : A
R5

R0ab ,S , b∗ : A⇒ a∗ : A
R∼

R0ab ,S ⇒ b : ∼A, a∗ : A
L∼

R0ab ,S , a : ∼A⇒ b : ∼A
L→

Raa∗a , R0ab , a : A→ ∼A⇒ b : ∼A
R12

R0ab , a : A→ ∼A⇒ b : ∼A
(a , b fresh) R→

⇒ 0 : (A→ ∼A) → ∼A

where S � Raa∗a , a : A→ ∼A.
G3rT `⇒ 0 : A ∨ ∼A.

R00∗0, 0∗ : A⇒ 0 : A
R15

0∗ : A⇒ 0 : A
R∼

⇒ 0 : A, 0 : ∼A
R∨

⇒ 0 : A ∨ ∼A

G3rRW `⇒ 0 : (A→ (B→ C) → (B→ (A→ C)).
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R0ee , Rae y , Ryc f ,S , e : A, c : B⇒ f : C, e : A
R2

Rae y , Ryc f ,S , e : A, c : B⇒ f : C, e : A

..... δ1

Rae y , Ryc f ,S , y : B→ C, e : A, c : B⇒ f : C
L→

Rae y , Ryc f , Racd , Rde f , Rbcd , R0ab , e : A, c : B, a : A→ (B→ C) ⇒ f : C
(y fresh) R14

Racd , Rde f , Rbcd , R0ab , e : A, c : B, a : A→ (B→ C) ⇒ f : C
R4

Rde f , Rbcd , R0ab , e : A, c : B, a : A→ (B→ C) ⇒ f : C
(e , f fresh) R→

Rbcd , R0ab , c : B, a : A→ (B→ C) ⇒ d : A→ C
(c , d fresh) R→

R0ab , a : A→ (B→ C) ⇒ b : B→ (A→ C)
(a , b fresh) R→

⇒ 0 : (A→ (B→ C)) → (B→ (A→ C))
and δ1 is derived by:

R0cc , Rae y , Ryc f ,S′, e : A, c : B⇒ f : C, c : B
R2

Rae y , Ryc f ,S′, e : A, c : B⇒ f : C, c : B

R0 f f , Rae y , Ryc f ,S′, f : C, e : A, c : B⇒ f : C
R2

Rae y , Ryc f ,S′, f : C, e : A, c : B⇒ f : C
L→

Rae y , Ryc f ,S , y : B→ C, e : A, c : B⇒ f : C

whereS � Racd , Rde f , Rbcd , R0ab , a : A→ (B→ C) andS′ � Racd , Rde f , Rbcd , R0ab , a :
A→ (B→ C), y : B→ C.
G3rRW `⇒ 0 : A→ ((A→ B) → B).
R0aa , Rcad ,S , a : A⇒ d : B, a : A

R2
Rcad ,S , a : A⇒ d : B, a : A

R0dd , Rcad ,S , d : B, a : A⇒ d : B
R2

Rcad ,S , d : B, a : A⇒ d : B
L→

Rcad , Racd , Rbcd , R0ab , a : A, c : A→ B⇒ d : B
R13

Racd , Rbcd , R0ab , a : A, c : A→ B⇒ d : B
R4

Rbcd , R0ab , a : A, c : A→ B⇒ d : B
(c , d fresh) R→

R0ab , a : A⇒ b : (A→ B) → B
(a , b fresh) R→

⇒ 0 : A→ ((A→ B) → B)
where S � Racd , Rbcd , R0ab , c : A→ B.
G3rR `⇒ 0 : ((A→ A) → B) → B.
R0cd , Ra0a , R0ab , c : A⇒ b : A, d : A

(c , d fresh) R→
Ra0a , R0ab ⇒ b : B, 0 : A→ A Ra0a , R0ab , a : B⇒ b : B

L→
Ra0a , R0ab , a : (A→ A) → B⇒ b : B

R16
R0ab , a : (A→ A) → B⇒ b : B

(a , b fresh) R→
⇒ 0 : ((A→ A) → B) → B

G3rRM `⇒ 0 : A→ (A→ A).
R0ad , Racd ,S , a : A, c : A⇒ d : A R0cd , Racd ,S , a : A, c : A⇒ d : A

R17
Racd , Rbcd , R0ab , a : A, c : A⇒ d : A

R4
Rbcd , R0ab , a : A, c : A⇒ d : A

(c , d fresh) R→
R0ab , a : A⇒ b : A→ A

(a , b fresh) R→
⇒ 0 : A→ (A→ A)

where S � Rbcd , R0ab. �
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B2 Proof of Theorem 4.5.3

Proof of Theorem 4.5.3 (Semantic Completeness cont.) In this appendix we construct
a reduction tree for an arbitrary sequent S, by applying, root-first, all rules
for G3rX according to a specific order. This construction is used to define a
countermodel to S (displayed above). Importantly, recall that, to reflect the
notion of validity at the actual world, we will consider derivability at 0.
The reduction tree is defined inductively in stages as follows: (1) If n � 0,
then Γ ⇒ ∆ stands at the root of the tree. (2) If n > 0, we distinguish two
subcases. (2.1) If every topmost sequent is an axiomatic sequent reduction the
tree terminates; (2.2) If no axiomatic sequent is reached, the construction of the
reduction tree does not terminate and we continue applying, root-first, all rules
of G3rX according to a specific order. There are 8 + j different stages: 8 for the
rules for the propositional connectives and j for the mathematical rules. We
start, for n � 1, with L∼ and consider topmost sequents of the following form:

0 : ∼B1, . . . , 0 : ∼Bk , Γ
′⇒ ∆

where 0 : ∼B1, . . . , 0 : ∼Bk , are all formulas in Γwith ∼ as outermost connective.
By applying, root-first, k times, L∼we obtain the following sequent:

Γ′⇒ ∆, 0∗ : B1, . . . , 0∗ : Bk

placed on top of the former.
For n � 2, we consider sequents of the form:

Γ⇒ ∆′, 0 : ∼B1, . . . , 0 : ∼Bk

By applying, root-first, k times, R∼we obtain the following sequent:

0∗ : B1, . . . , 0 :∗: Bk , Γ⇒ ∆′

placed on top of the former.
For n � 3, we consider sequents of the form:

0 : B1 ∧ C1, . . . , 0 : Bk ∧ Ck , Γ
′⇒ ∆

By applying, root-first, k times, L∧we obtain the following sequent:

0 : B1, 0 : C1, . . . , 0 : Bk , 0 : Ck , Γ
′⇒ ∆

The case for n � 6, with R∨ is symmetric.
For n � 4, we consider sequents of the form:

Γ⇒ ∆′, 0 : B1 ∧ C1, . . . , 0 : Bk ∧ Ck

By applying, root-first, k times, R∧we obtain the following sequents:

Γ⇒ ∆′, 0 : B1, . . . , 0 : Bk and Γ⇒ ∆′, 0 : C1, . . . , 0 : Ck
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placed on top of the former as its premises. The case for n � 5, with L∨ is
symmetric.
For n � 7, we consider topmost sequents of the following form:

R0a1b1, . . . , R0ak bk , 0 : B1 → C1, . . . , 0 : Bk ,→ Ck , Γ
′⇒ ∆

where labels and principal formulas are in Γ′. By applying, root-first, k times,
L → (with R0a1b1, . . . , R0ak bk , 0 : B1 → C1, . . . , 0 : Bk ,→ Ck principal) we
obtain the following sequent:

R0a1b1, . . . , R0ak bk , bm1 : Cm1 , . . . , bml : Cml , Γ
′⇒ ∆, a jl+1 : B, . . . , a jk : B

where {m1, . . . ,ml} ⊆ {1, . . . , k} and jl+1, . . . , jk ∈ {1, . . . , k}−{m1, . . . ,ml}, and
placed on top of the former as its premises.
For n � 8, we consider all the labelled sequents that have implications in the
succedent. We consider topmost sequents of the following form:

Γ⇒ ∆′, 0 : B1 → C1, . . . , 0 : Bk ,→ Ck

Let a1, ..., ak and b1, . . . , bk be fresh variables, not yet used in the reduction tree
and apply, root-first, k times, R→ to obtain the following sequent:

R0a1b1, . . . , R0ak bk , a1 : B, . . . , ak : B, Γ⇒ ∆′, b1 : C1, . . . , bk : Ck

placed on top of the former as its premise.
Finally, we consider relational rules. If it is a rule without eigenvariable condi-
tion, we write on top of the lower sequent the result of applying the relational
rule under consideration. For relational rules with eigenvariable condition, the
proof proceeds analogously to the proof at stage n � 8. As an example, consider
R7 and a topmost sequent of the following form:

Ra1b1c1, . . . , Rak bk ck , Γ
′⇒ ∆

Let x1, . . . , xk be variables not yet used in the reduction tree. By applying k times,
root-first, R7, we obtain the following sequent, placed on top of the former:

Ra1b1x1, Ra1x1c1, Ra1b1c1, . . . , Rak bk xk , Rak xk ck , Rak bk ck , Γ
′⇒ ∆

This construction is then used in the development of the second part of the proof
displayed in Section 4.5 (pp. 87 and ff.).
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B3 Proof of Theorem 4.6.4

Proof of Theorem 4.6.4 (cut-admissibility cont.). We finish the proof of cut-
admissibility by displaying some other salient examples.We distinguish three
main cases.
Case 1: If at least one of the premises of cut is an axiom, we distinguish 4
subcases:
Case 1.1: The left premise of cut is an axiomand the cut-formula is not principal.
If the derivation has the following shape:

R0bc , b : B, Γ⇒ ∆, c : B, a : A a : A, Γ′⇒ ∆′
cut

R0bc , b : B, Γ, Γ′⇒ ∆,∆′, c : B

It is transformed into:

R0bc , b : B, Γ, Γ′⇒ ∆,∆′, c : B

without applications of cut.
Case 1.2: The left premise of cut is an axiom and the cut-formula is principal.
The derivation:

R0ba , b : A, Γ⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

R0ba , b : A, Γ, Γ′⇒ ∆,∆′

is transformed into:
a : A, Γ′⇒ ∆′

(Lemma 4.3.1) sub(b/a)
b : A, Γ′⇒ ∆′

(Lemma 4.6.1) lw+rw+lwL
R0ba , b : A, Γ, Γ′⇒ ∆,∆′

Case 1.3: The right premise of cut is an axiom and the cut-formula is not
principal. The derivation:

Γ⇒ ∆, a : A a : A, R0bc , b : B, Γ′⇒ ∆′, c : B
cut

R0bc , b : B, Γ, Γ′⇒ ∆,∆′, c : B

It is transformed into:

R0bc , b : B, Γ, Γ′⇒ ∆,∆′, c : B

without applications of cut.
Case 1.4: The right premise of cut is an axiom and the cut-formula is principal.
The derivation:

Γ⇒ ∆, a : A R0ab , a : A, Γ′⇒ ∆′, b : A
cut

R0ab , Γ, Γ′⇒ ∆,∆′, b : A

is transformed into:
Γ⇒ ∆, a : A

(Lemma 4.3.1) sub(b/a)
Γ⇒ ∆, b : A

(Lemma 4.6.1) lw+rw+lwL
R0ab , Γ, Γ′⇒ ∆,∆′, b : A
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Case 2: The cut-formula A is not principal in at least one premise. The proof
proceeds by permuting the application of cutwith the rule under consideration,
to move the cut upwards in the transformed derivation.
Case 2.1: A is not principal in the left premise. We distinguish two subcases.
Subcase 2.1.1: Let Γ � x : ∼B, Γ′′:

Γ′′⇒ ∆, a : A, x∗ : B
L∼

x : ∼B, Γ′′⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

x : ∼B, Γ′′, Γ′⇒ ∆,∆′

and transform it into the following one:

Γ′′⇒ ∆, a : A, x∗ : B a : A, Γ′⇒ ∆′
cut

Γ′′, Γ′⇒ ∆,∆′, x∗ : B
L∼

x : ∼B, Γ′′, Γ′⇒ ∆,∆′

where the cut-height is reduced.
Let Γ � Rxbc , x : B → C, Γ′′ and consider as an example L →. We have the
following derivation:

Rxbc , x : B→ C, Γ′′⇒ ∆, a : A, b : B Rxbc , c : C, x : B→ C, Γ′′⇒ ∆, a : A
L→

Rxbc , x : B→ C, Γ′′⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

Rxbc , x : B→ C, Γ′′, Γ′⇒ ∆,∆′

and transform it into the following one:
Rxbc , x : B→ C, Γ′′⇒ ∆, a : A, b : B a : A, Γ′⇒ ∆′

cut
Rxbc , x : B→ C, Γ′′, Γ′⇒ ∆,∆′, b : B

Rxbc , c : C, x : B→ C, Γ′′⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

Rxbc , c : C, x : B→ C, Γ′′, Γ′⇒ ∆,∆′
L→

Rxbc , x : B→ C, Γ′′, Γ′⇒ ∆,∆′

with two cuts of lower height.
Subcase 2.1.2: Let ∆ � ∆′′, x : ∼B:

x∗ : B, Γ⇒ ∆′′, a : A
R∼

Γ⇒ ∆′′, x : ∼B, a : A a : A, Γ′⇒ ∆′
cut

Γ, Γ′⇒ ∆′′,∆′, x : ∼B

it is transformed into the following application of cut with a shorter derivation
height:

x∗ : B, Γ⇒ ∆′′, a : A a : A, Γ′⇒ ∆′
cut

x∗ : B, Γ, Γ′⇒ ∆′′,∆′
R∼

Γ, Γ′⇒ ∆′′,∆′, x : ∼B

Let ∆ � ∆′′, x : A→ B:
Rxbc , b : B, Γ⇒ ∆′′, c : C, a : A

(b , c fresh) R→
Γ⇒ ∆′′, x : B→ C, a : A a : A, Γ′⇒ ∆′

cut
Γ, Γ′⇒ ∆′′,∆′, x : B→ C

it is transformed into the following application of cut with a shorter derivation
height:
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Rxbc , b : B, Γ⇒ ∆′′, c : C, a : A a : A, Γ′⇒ ∆′
cut

Rxbc , b : B, Γ, Γ′⇒ ∆′′,∆′, c : C
(b , c fresh) R→

Γ, Γ′⇒ ∆′′,∆′, x : B→ C

As an example for the relational rules, we deal withR7 (with variable condition).
Let Γ � Rabc , Γ′′:

Rabx , Raxc , Rabc , Γ′′⇒ ∆, a : A
R7

Rabc , Γ′′⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

Rabc , Γ′′, Γ′⇒ ∆,∆′

(x is a fresh variable) It is transformed in the following one:

Rabx , Raxc , Rabc , Γ′′⇒ ∆, a : A a : A, Γ′⇒ ∆′
cut

Rabx , Raxc , Rabc , Γ′′, Γ′⇒ ∆,∆′
R7

Rabc , Γ′′, Γ′⇒ ∆,∆′

The other cases for relational rules are dealt with analogously.
Case 2.2: A is principal in the left premise only. We distinguish two subcases.
Subcase 2.2.1: Similarly to the preceding subcase. Let Γ′ � x : ∼B, Γ′′:

Γ⇒ ∆, a : A
a : A, Γ′′⇒ ∆′, x∗ : B

L∼
a : A, x : ∼B, Γ′′⇒ ∆′

cut
x : ∼B, Γ, Γ′′⇒ ∆,∆′

is transformed into:
Γ⇒ ∆, a : A a : A, Γ′′⇒ ∆′, x∗ : B

cut
Γ, Γ′′⇒ ∆,∆′, x∗ : B

L∼
x : ∼B, Γ, Γ′′⇒ ∆,∆′

with a shorter derivation height.
Let Γ′ � Rxbc , x : B → C, Γ′′ and consider L →. We have the following
derivation:

Γ⇒ ∆, a : A
a : A, Rxbc , x : B→ C, Γ′′⇒ ∆′, b : B a : A, Rxbc , c : C, x : B→ C, Γ′′⇒ ∆′

L→
a : A, Rxbc , x : B→ C, Γ′′⇒ ∆′

cut
Rxbc , x : B→ C, Γ, Γ′′⇒ ∆,∆′

is reduced to the following one:

Γ⇒ ∆, a : A a : A, Rxbc , x : B→ C, Γ′′⇒ ∆′, b : B
cut

Rxbc , x : B→ C, Γ, Γ′′⇒ ∆,∆′, b : B

Γ⇒ ∆, a : A a : A, Rxbc , c : C, x : B→ C, Γ′′⇒ ∆′
cut

Rxbc , c : C, x : B→ C, Γ, Γ′′⇒ ∆,∆′
L→

Rxbc , x : A→ B, Γ, Γ′′⇒ ∆,∆′

with two cuts of lower height.
Subcase 2.2.2: Let ∆′ � ∆′′, x : ∼B:

Γ⇒ ∆, a : A
x∗ : B, a : A, Γ′⇒ ∆′′

R∼
a : A, Γ′⇒ ∆′′, x : ∼B

cut
Γ, Γ′⇒ ∆,∆′′, x : ∼B
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it is transformed into:
Γ⇒ ∆, a : A x∗ : B, a : A, Γ′⇒ ∆′′

cut
x∗ : B, Γ, Γ′⇒ ∆,∆′′

R∼
Γ, Γ′⇒ ∆,∆′′, x : ∼B

with a shorter derivation height.
Let ∆′ � ∆′′, a : B→ C and the derivation:

Γ⇒ ∆, a : A
Rxbc , a : A, b : B, Γ′⇒ ∆′′, c : C

(b , c fresh) R→
a : A, Γ′⇒ ∆′′, x : B→ C

cut
Γ, Γ′⇒ ∆,∆′′, x : B→ C

It is reduced to the following one:

Γ⇒ ∆, a : A Rxbc , a : A, b : B, Γ′⇒ ∆′′, c : C
cut

Rxbc , b : B, Γ, Γ′⇒ ∆,∆′′, c : C
(b , c fresh) R→

Γ, Γ′⇒ ∆,∆′′, x : B→ C

with a shorter derivation height.
Case 3: The procedure for A being ∼B or B→ C, can be found on pp. 91 and ff.
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