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Abstract

We give a straightforward computable-model-theoretic definition
of a property of ∆0

2 sets, called order-computability. We then prove
various results about these sets which suggest that, simple though
the definition is, the property defies any easy characterization in pure
computability theory. The most striking example is the construction of
two computably isomorphic c.e. sets, one of which is order-computable
and the other not.

1 Introduction

The Turing degree of a countable structure (whose domain is a subset of
ω) is the join of the Turing degrees of the domain and of the functions and
relations on that structure, in the relevant language. We say that a structure
is computable if it has Turing degree 0, the degree of the computable sets.
(For the purposes of this paper, all structures are assumed to have domain
ω, because we want the Turing degree to reflect the relative computability
of the functions and relations in the structure. For us, choosing the domain
to be more complex than ω is cheating.)
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It is common for two isomorphic structures to have different Turing de-
grees. (For simplicity, the isomorphic structures are often called copies of
each other.) This observation has led to a great deal of research into the
spectra of structures and of relations on structures, which are essentially
measurements of the intrinsic computational complexity of the structures
themselves and of additional relations on them. We suggest section 15 of [3]
for definitions and an overview of this area. (The two main definitions are
given in this paper at the beginning of Section 4.)

Most of this research has attempted to produce spectra with certain desir-
able characteristics, or to prove that no spectrum can have those characteris-
tics. In this paper we take a different, more concrete approach. We consider
the structure (ω,<), the most straightforward copy of a very simple linear
order. We add one additional unary relation A to the language, and ask, for
specific sets A ⊂ ω, whether the structure (ω,<,A) has a computable copy.
Clearly the answer is positive if A itself is computable, but it can be so for
certain noncomputable A as well. If the structure does have a computable
copy, then we call A an order-computable set.

In approaching this question, we initially expected to find a straight-
forward characterization of order-computability using pure computability-
theoretic properties of the set A, such as the Turing degree of A and/or
the position of A in the Ershov hierarchy. (It is quickly seen that all order-
computable sets are ∆0

2.) However, the property of order-computability de-
fied all attempts at easy characterization in these terms. We believe that
the results in this paper will demonstrate to the satisfaction of all that no
easy characterization is possible without resorting to model theory, thus re-
inforcing the general thesis that computability issues become significantly
more complex when placed in the context of model theory than in pure com-
putability theory on subsets of ω.

2 Order-Computable Sets

Definition 2.1. A set A ⊆ ω is order-computable if there exists a com-
putable copy of the structure (ω,<,A) in the language of linear orders with
an additional unary predicate.

Notice that for every computable structure (ω,≺, R) such that (ω,≺) ∼=
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(ω,<), there is a unique set A such that (ω,≺, R) ∼= (ω,<,A). In particular,

A = {n ∈ ω : (∃x ∈ R) x has exactly n predecessors under ≺}.

Every order-computable set is ∆0
2, since we may use a 0′-oracle to find the

unique element with exactly n predecessors, then check whether it lies in
R. We say that the ordering (ω,≺, R) order-computes A. In the case when
R = E, the set of even numbers, we may say simply that ≺ order-computes
A. This case is standard in the sense that we can always choose R = E:

Lemma 2.2. For every infinite coinfinite order-computable set A, there ex-
ists a computable order ≺ on ω such that (ω,≺, E) ∼= (ω,<,A), where E is
the set of even numbers.

Proof. If (ω,<,A) ∼= (ω,≺′, R) with R and ≺′ computable, then there exists
a computable permutation h of ω with h(E) = R. Define m ≺ n iff h(m) ≺′
h(n).

The same would work for any other infinite coinfinite computable set, of
course; choosing E just standardizes certain of our constructions.

Before describing any results regarding order-computable sets, we develop
some of the tools to be used. If≺ is the order given by Lemma 2.2 correspond-
ing to an order-computable set A, we define the predecessor approximation
function fA for A by:

fA(n, s) =

{
|{y ≤ s : y ≺ n}| if n < s

↑ otherwise

Thus, for each s, the function fA(·, s) is a permutation of the numbers
0, . . . , s − 1. The limit gA(n) = lims→∞ fA(n, s) is the predecessor function
for A. Thus gA(E) = A. (If |A| = k or |A| = k with k < ω, then a similar
process works with either {0, . . . , k − 1} or its complement in place of E.)

It is easy to give conditions for a function f to serve this role:

Definition 2.3. A binary partial function f is a predecessor approximation
function if it satisfies, for all n and s:

• f(n, s)↓ iff n < s;

• the function f(·, s) is a permutation of the set {0, . . . , s− 1};
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• if n < s, then f(n, s) ≤ f(n, s+ 1) ≤ f(n, s) + 1; and

• limt f(n, t) converges.

So every order-computable set A gives rise to a computable predecessor
approximation function, as described above. (More specifically, each com-
putable order ≺ that order-computes A gives rise to such a function, and for
distinct orders the functions will be different.) Conversely, any computable
predecessor approximation function f arises in this fashion, since we may
build a computable order ≺ using f by adding s to the order at stage s+1 so
that s has exactly f(s, s+1) predecessors among the elements already added
at previous stages. The first two conditions in Definition 2.3 make it clear
that this is always possible. The third shows that ≺ really is a computable
linear order (since we never change our mind about the order of elements),
and the last condition shows that (ω,≺) has order type ω.

This analysis allows us to examine the complexity of order-computability.
The original Definition 2.1, correctly stated, is Σ1

1, since it quantifies over iso-
morphisms between computable linear orders. However, it is not strictly Σ1

1,
since any two computable orders of order type ω are in fact ∆0

2-isomorphic.
(We can use a ∅′-oracle to find the least element of each, then the successors of
those elements, and so on.) The simplest bound on the complexity uses Def-
inition 2.3. If A is a ∆0

2 set, suppose that for every x, lims ϕe(x, s)↓= A(x).
Then A is order-computable if:

• A is finite; or

• A is finite; or

• there exists a computable predecessor approximation function ϕi such
that limt ϕi(n, t) ∈ A iff n is even.

The first two items are both Σ0
4 properties of e, and the last is also Σ0

4, once
one works through Definition 2.3. So for ∆0

2 sets (as given by indices of
computable approximations), order-computability is actually a Σ0

4 property,
and similarly for c.e. sets, the index set {e ∈ ω : We is order-computable} is
Σ0

4. We conjecture that these sets are actually Σ0
4-complete.

Often we will ensure that a set A is not order-computable by using a
diagonal argument to show that no partial computable function ϕe is a pre-
decessor approximation function for A. We say that an approximation ϕe,t

proves that ϕe is not a predecessor approximation function if there exist
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n and s such that ϕe,t(n, s + 1) ↓/∈ {ϕe,t(n, s), ϕe,t(n, s) + 1}, or such that
ϕe,t(n, s)↓≥ s, or such that ϕe,t( · , s) is not one-to-one, or such that n ≥ s
and ϕe,t(n, s)↓. If there are no such n and s (and if ϕe(n, s)↓ for all n < s),
then our construction must either make limt ϕe(w, t) = ∞ for some witness
element w, or make limt ϕe(2n, t) /∈ A or limt ϕe(2n+ 1, t) ∈ A for some n.

Building a set A that is order-computable, on the other hand, uses neg-
ative requirements. We define a canonical process for trying to build a com-
putable order on ω that order-computes A. Let A be an infinite coinfinite
∆0

2 set with computable approximation 〈As〉s∈ω. (We will assume that every
As is finite.) First we need a simple lemma.

Lemma 2.4. Let A and 〈As〉 be as above. Then for every s there exists a
stage t > s and a strictly increasing function g : {0, . . . ,maxAs} → ω such
that for each n ≤ maxAs,

n ∈ As ⇐⇒ g(n) ∈ At.

Proof. Since A is infinite and coinfinite, there exists a g as required such that

n ∈ As ⇐⇒ g(n) ∈ A.

But also there must be a t so large that At and A agree up to max(range(g)).

We now define the derived order L = (ω,≺, E) for the approximation
〈As〉 to A. (We may assume that for all s, no x ≥ s lies in As.) To construct
≺, we start with L0 consisting of a single element /∈ E. At stage s + 1,
we write b0,s ≺ b1,s ≺ · · · ≺ bn,s for the order Ls, and let σ be the string
〈E(b0,s), . . . , E(bn,s)〉 ∈ 2n+1. If σ is an initial segment of As+1, we add one
fresh element bn+1,s to Ls, with bn,s ≺ bn+1,s.

If σ 6⊆ As+1, we search for a strictly increasing function g : dom(Ls) → ω
such that

(∀i ≤ n)[bi,s ∈ E ⇐⇒ g(bi,s) ∈ As+1],

If there is no such g, let Ls+1 = Ls. If there are such functions g, choose the
first in the dictionary order. (That is, choose that g with g(b0,s) minimal.
If several still remain, choose that g with g(b1,s) minimal, and so on.) For
each i < n, suppose g(bi,s) < k1 < · · · < kp < g(bi+1,s) are the consecutive
integers from g(bi,s) to g(bi+1,s). We add one new number to the order Ls+1
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for each kj, with the new number being even iff kj ∈ As+1. Thus we have
“embedded” Ls into As+1. This completes the construction.

It is easily shown by induction that each time we find the desired g, we
have

〈E(b0,s+1), . . . , E(bm,s+1)〉 = As+1�(m+ 1)

where m+1 = maxAs+1. This holds at infinitely many stages, since Lemma
2.4 makes it clear that the required g exists at infinitely many stages, so we
do build an infinite computable linear order L by this process. Moreover, L
has an initial segment of order type ω, since A is ∆0

2 and g was always chosen
lexicographically.

However, the derived order L may not actually be of order type ω. (This
will hold for certain approximations 〈As〉 even if A is order-computable.) If
L is of type ω, then clearly A is order-computable. In the rest of this section,
we will build several order-computable sets A. Our technique will be to build
a computable approximation to each A, ensuring that the derived order L
(for the approximation we build) is of type ω. To ensure this, we will have
requirements

Nx : x has only finitely many predecessors in L.

Each Nx acts by placing a finite restraint on A. If we know that x has only
k predecessors at stage s in the construction of L above, then by making
At� (k + 1) = As� (k + 1) for all t > s, we can ensure that x never acquires
any more ≺-predecessors, so that Nx is satisfied.

Our first result uses a simple combination of these requirements with
Friedberg-Muchnik requirements, to build a set that is non-computable but
order-computable. (Clearly every computable set is order-computable.)

Lemma 2.5. There exists a non-computable order-computable c.e. set A.

Proof. This is actually a special case of the later Lemma 2.12, but we give
the proof anyway, as an introduction to this type of argument.

The construction of A and the derived order ≺ that order-computes A
uses the N -requirements defined above, along with Friedberg-Muchnik re-
quirements to ensure A >T ∅:

Pe : A 6= ϕe.

Pe puts at most one element into A, and then stays satisfied forever.
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P-requirements always choose their witness elements we,s larger than any
number yet seen in the construction (hence larger than the total number
of elements in the order ≺ up to that stage), thus implicitly respecting all
higher-priority N -requirements.

Let A0 = ∅, with all we,0 undefined. At stage s+1, if some Pe with e < s
sees that ϕe,s(we,s) ↓= 0, it enumerates we,s into As+1, and declares itself
satisfied. Also, if s + 1 is a stage at which the construction of the derived
order for A (using the approximation built in this construction) makes an
embedding, let x be the largest element of Ls, and make the witness elements
for all unsatisfied Pe with e > x undefined. If there is no embedding at stage
s+1, then for the least e for which Pe is not yet satisfied and we,s is undefined,
choose we,s+1 to be larger than any number yet seen. This completes the
construction.

Now for any fixed x ∈ ω, let s be a stage such that x ∈ Ls and no Pe

with e ≤ x enumerates any element into A after stage s. Of course, x has
only finitely many predecessors in Ls. It may acquire finitely many more at
a future stage t+1 under some embedding of Lt, but if this happens, then all
witness elements for unsatisfied requirements Pe with e > x will be chosen
large after stage t + 1, hence larger than the number p of predecessors of x
in Lt+1. Thus At+1�p = A�p, and so no later embeddings can add any more
predecessors of x to L. Thus Nx is satisfied.

But then, for any e ∈ ω, there is a stage s such that no x ≤ e acquires any
new predecessors in L after stage s. So Pe will eventually have a permanent
witness we = limtwe,t, and will enumerate we into A iff ϕe(we) ↓= 0. Thus
Pe is satisfied as well.

The set built by this construction can easily be forced to be low, by adding
lowness requirements. In fact, though, we have a stronger result.

Theorem 2.6. Every low c.e. set is order-computable.

Proof. Let A be a low c.e. set. We use the characterization in [8], p. 229,
that therefore there must exist a computable function f such that for every
j, Wj ∩ {n : Dn ⊆ A} = Wf(j) ∩ {n : Dn ⊆ A}, and moreover if Wj ∩ {n :
Dn ⊆ A} = ∅, then Wf(j) must be finite. (Here Dn is the nth canonical finite
set.)

Take any enumeration 〈As〉 of A. For each n ∈ ω, we will enumerate a
c.e. set Wg(n), using the Recursion Theorem to assume that we know indices
g(n) in advance, uniformly in n.
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Suppose that after stage s, the order ≺ is defined on exactly k elements,
so that ≺ agrees with Ats�k (i.e. for all j < k, j ∈ Ats iff the (j+1)-st element
of ≺ at this stage is even). If Ats+1 = Ats , then set ts+1 = 1+ ts and make no
change to ≺. Otherwise, some (unique) element n entered A at stage ts + 1,
so we will need to displace the current (n + 1)-st element e (which must be
odd) of the order ≺. We search for the first available embedding of the order
≺ into some At with t > ts, just as when we build the standard model. Since
A may be assumed infinite and coinfinite, we find such a t, by Lemma 2.4.
Suppose that e corresponds to the number n′ ∈ At under this embedding.
We pick the index m such that Dm = At∩{0, . . . , n′}, and enumerate m into
Wg(e). We then run the enumeration of Wf(g(e)) and find the least stage t′

such that either m ∈ Wf(g(e)),t′ or Dm ∩ At′ 6= ∅. If Dm ∩ At′ 6= ∅, we search
for the next larger t with an embedding of ≺ into At and repeat the process
for that t. Otherwise m ∈ Wf(g(e)),t′ , and we set ts+1 = t, add elements to
≺ as dictated by the embedding of ≺ into At, and add extra elements at
the end of ≺ (odd or even, corresponding to At) until ≺ has an odd number
as its rightmost element. We declare this new order to be stage s + 1 in
the construction of ≺, and note that it agrees with (the appropriate initial
segment of) Ats+1 . This completes the construction.

We claim that at each stage, this procedure must finally terminate with
some t. Indeed, there exists an embedding of ≺ into A, which we will even-
tually find as an embedding of ≺ into At for some t. Clearly the m chosen at
this stage will have Dm∩A = ∅, so by our choice of f , this m must eventually
appear in Wf(g(e)).

Now the ordering computed by ≺ does have an initial segment of type ω
that matches A, as in all such constructions. We must show that this initial
segment actually contains every element of the order. To see this, take any
odd element e of ≺. We will show that e has only finitely many predecessors
in ≺. Each embedding adds only finitely many predecessors. If we made
infinitely many embeddings in which predecessors were added before e, then
Wg(e) and Wf(g(e)) would both be infinite, with every m ∈ Wg(e) satisfying
Dm ∩ A 6= ∅. By our conditions on f , this is impossible. Therefore every
such e has only finitely many predecessors, and since at every stage ≺ ends
with an odd number, each even number in ≺ can have only finitely many
predecessors. Thus (ω,≺) ∼= (ω,<), and ≺ order-computes A.

We conjecture that there is no uniform proof for Theorem 2.6. That is,
there is no computable function h such that for every e, if Wx is low, then
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h(x) is the index of a linear order of type ω that order-computes Wx. This
would not contradict the construction above, since the index of the function
f used in the construction need not be computable from the index of the low
c.e. set A. (In fact, if Theorem 2.6 cannot be uniformized, then the index of
f could not be computable from the index of A, for that very reason.)

The lowness in Theorem 2.6 can also be avoided. We recall the difference
hierarchy. A set W is ω-c.e. if there exists a computable function g and a
computable approximation 〈Ws〉 to W such that for all x ∈ ω,

g(x) ≥ |{s : Ws+1(x) 6= Ws(x)}|.

If g can be taken to be the constant function n (for n ∈ ω) and W0 can be
taken to be ∅, then we say that W is n-c.e. (For further details, see III.3.8
of [8].)

Theorem 2.7. For every α ≤ ω and every α-c.e. set W , there exists an
order-computable α-c.e. set A ≡T W .

Corollary 3.17 will show that this result does not extend to α > ω.

Proof. First we define the E-extension of a finite binary string. Fix σ ∈ 2k,
for any k ∈ ω. Write σ0 = σ and let σ1, σ2, . . . , σ2k be a listing of all strings
in 2k, in the dictionary order. We define the E-extension of σ by:

σE(x) = σi(j), where x = j + ik, j < k, i ≤ 2k.

In short, σE has initial segment σ, with every possible string of length k
appended to it. (Notice that except for the first k bits, σE is actually the
same for every string σ ∈ 2k.) For future reference, let h be the function

h(k) = k · (2k + 1).

Thus, if lh(σ) = k, then lh(σE) = h(k).
We give details for the proof of the lemma when α = 1, i.e. for c.e. sets.

The key is the construction of the set A0, the first element of the computable
approximation 〈As〉 to A. We define a0 = 0, and proceed by recursion. Given
σ = A0�ax, set A0(ax) = 0, and then extend A0 so that it has initial segment
τ = (· · · (σ 0̂)E)E) · · · )E, where we take the E-extension exactly (x+1) times.
Then define ax+1 to be the length of τ .

Clearly the sequence 〈ax〉 increases extremely fast. It would be possible
to reduce the rate of increase, but our definition makes the following lemma
immediate:
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Lemma 2.8. For every σ ∈ 2<ω, there exists a monotonic function f from
k into lh(σE) with f(0) ≥ k and σ(i) = σE(f(i)) for all i < k.

This will give us the embeddings we need within A whenever a new ele-
ment appears in W .

Having built A0, we continue with As+1. If Ws+1 = Ws, then As+1 = As.
Otherwise, let x be the unique (WLOG) element of Ws+1 − Ws, and let
As+1 = As ∪ {ax}. Thus A is c.e., and indeed W is 1-reducible to A via the
function x 7→ ax. On the other hand, A ≤T W : we know ax ∈ A iff x ∈ W ,
and elements not in the computable sequence 〈ax〉x∈ω belong to A iff they
belong to the computable set A0.

To see that this A is order-computable, we build an order ≺ as follows.
Start with the empty order. At each stage s+ 1, we assume inductively that
≺ (on its domain of definition Ds, which contains j elements, say) matches
the initial segment As� j. If As+1 = As, we do nothing. Otherwise, let ax

be the new element of As+1. If ax ≥ j, then simply add new elements to
Ds+1, to the right of all elements of Ds, until ≺ on Ds+1 matches As+1� ax.
If j > ax, then add a new even number y to ≺ with exactly ax predecessors
(under ≺) in Ds. Write σ for the binary string generated by Ds under ≺,
and

τ = (σ�ax)̂ 1̂ (σ ↙ ax)

where σ ↙ ax represents σ with its initial segment σ�ax chopped off:

(σ ↙ ax)(n) = σ(n+ ax).

Thus, τ is the string corresponding to Ds ∪ {y} under ≺.
By Lemma 2.8, τ embeds into As+1. Find the shortest such embedding f ,

i.e. that one minimizing f(i) for every i < lh(τ). Since f is an embedding, we
can now add new elements to Ds+1 so that Ds+1 contains exactly f(lh(τ)−1)
elements and matches the initial segment of As+1 of that length.

It remains to show that (ω,≺) ∼= (ω,<). To see this, we claim that if
a number y ∈ Ds − Ds−1 has < ax predecessors under ≺ in Ds, then y has
< ax+1 predecessors under≺ in ω. The first time y acquires new predecessors,
resulting from a change to W�x, it must wind up with no more than h(ax)
predecessors, by Lemma 2.8. (Recall that for σ ∈ 2k, h(k) = lh(σE).) A
subsequent change to W� (x + 1) could add more predecessors, but y would
still have at most h(h(ax)) predecessors. At most (x+1) changes toW�(x+1)
can ever occur, since W is c.e., and these changes would leave y with at most
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hx+1(ax) predecessors. However, hx+1(ax) < ax+1 by our construction of the
sequence 〈ax〉, and so the entrance of any number > x + 1 into W will not
add any predecessors to y. This proves the claim, and the lemma for c.e. sets.

It is clear how to handle the case α > 1: instead of iterating the E-
extension operation (x+ 1) times when extending A0�ax in the definition of
A0, one extends it as many times as A�(x+1) could change. For α ∈ ω, this
is just α · (x+ 1) times; for an ω-c.e. set with bound g (as on p. 9), it would
be

∑
t≤x g(t) times. If x appears in the set W at stage s + 1, we add ax to

As+1, just as before; but also now, if x leaves W at stage s + 1, we remove
ax from As+1. Thus the limit A will also be α-c.e., and the rest of the proof
goes through just as before.

The proof shows a somewhat stronger result, in fact, since the reduction
from W to A was a 1-reduction, not just a Turing reduction. Indeed, in many
cases we have 1-equivalence:

Corollary 2.9. For every set W that is c.e. but not simple, there exists an
order-computable c.e. set A ≡1 W .

Proof. We may assume that W itself is not order-computable, hence not
computable. Since W is not simple, W contains an infinite c.e. set, which in
turn contains an infinite computable set Y . Also, W itself contains an infinite
computable set X. Moreover, X is coinfinite in W and Y is coinfinite in W ,
because W is noncomputable. We now tweak the function f(x) = ax to
get a computable permutation g of ω with g(W ) = A, with ax and A as
defined in the proof of Theorem 2.7. Define computable bijections hX : X →
(A0 − f(X ∪ Y )) and hY : Y → (A0 − f(X ∪ Y )). (Since f is increasing,
these are all infinite computable sets.) Then define g by:

g(n) =


f(n), if n /∈ X ∪ Y
hX(n) if n ∈ X
hY (n) if n ∈ Y

This is the desired computable permutation of ω mapping W onto A.

On the other hand, while order-computable sets must be ∆0
2, they need

not be ω-c.e.

Lemma 2.10. There exists an order-computable set that is not ω-c.e.
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Proof. We build an order-computable set A satisfying requirements:

R〈e,i〉 : If ϕe and ϕi are total, then (∃w)[A(w) 6= lim
s
ϕi(w, s) or

|{s : ϕi(w, s+ 1) 6= ϕi(w, s)}| > ϕe(w)]

Thus, if ϕi gives a computable approximation to the set A, then that ap-
proximation cannot have ϕe as computable bound on the number of changes
of this approximation. If we can make this hold for all e and i, then A will
not be ω-c.e. (Of course, we must also make A order-computable.) Here we
only sketch the method for satisfying these requirements, since this lemma
is a special case of the next lemma.

Our strategy is to choose a witness wj (with j = 〈e, i〉) and wait for
ϕe(wj) to converge. When it does, we know how many times we will have
to change our approximation As(wj), so we redefine all wk (k > j) to be
sufficiently much larger than wj as to allow all those changes to A to take
place without ruining the order-computability of A. We may put numbers
between wj and wj+1 into A and remove them without harming any R-
requirements. At the start none of them is in A, and we move them in and out
as necessary to create embeddings for the construction of the standard order
corresponding to our approximation. Each time ϕi(wj, s+1)↓6= ϕi(wj, s), we
set A(wj) 6= ϕi(wj, s + 1), and change A between wj and wj+1 as needed to
ensure order-computability. This continues until the approximation ϕi(wj, s)
has changed ϕe(wj)+1 times; then we have satisfiedRj, and we leave A�wj+1

fixed forever after.

The question then arises whether there exists an order-computable set
whose Turing degree contains no ω-c.e. set. We do manage to build such a
set, so one conjecture about order-computable sets (that their Turing degrees
might be precisely the ω-c.e. degrees) falls by the wayside.

Lemma 2.11. There exists an order-computable set A whose Turing degree
contains no ω-c.e. set.

Proof. The idea is to satisfy the requirements

R〈e,i,j,k〉 : If ϕe is total and B = ΦA
j and A = ΦB

k , then there exists w s.t.

[B(w) 6= lim
s
ϕi(w, s) or |{s : ϕi(w, s+ 1) 6= ϕi(w, s)}| > ϕe(w)]

12



Write Cs(w) = ϕi(w, s) for all s and w. (We do not know for sure whether
Cs is an approximation to B or not; if it is not, then the procedure below
will eventually terminate.)

We choose a witness xn, where n = 〈e, i, j, k〉, and wait until ΦB
k (xn)↓ with

some use un and ϕe(w)↓ for every w ≤ un. Set mn = 1+un ·maxw<un ϕe(w).
We now move xn into A, thereby forcing a change on B�un. When ΦB

k (xn) =
A(xn) again and the approximation Cs � un matches B � un, we restore
A�use(ΦA

j (un)) to its state before xn entered A, which forces B�un to return
to its state at that time. Eventually Cs�un = B�un again, meaning that we
have forced two C-changes for at least one w < un. We repeat this entire
process mn times (actually mn+1

2
times would suffice), thereby guaranteeing

that some w < un has changed at least ϕe(w) + 1 times, and that Cs(w) has
matched every such change. Thus the function ϕe does not show B to be
ω-c.e.

Once we have permanently chosen xn, we wait for un and ϕe � un and
ΦA

j (un) to converge. Once they do, we know the maximum number of times
we will have to force changes to B�un, and we know how much of A we will
have to restore each time. Therefore, we know how much of A will have to
be left open in order for the necessary embeddings to take place for us to
build a standard order (from our approximation 〈As〉) to order-compute A.
At this time we choose xn+1, xn+2, . . . all to be large enough not to interfere
with that space (since Rn+1 will never change A� xn+1). The requirements
Rn+1, . . . are injured every time we make A-changes on behalf of Rn, and
the procedure for Rn+1, . . . must be restarted each such time.

We can also find a noncomputable Turing degree that contains only order-
computable sets. Indeed, our result is stronger:

Lemma 2.12. There exists a noncomputable c.e. set A such that every set
Turing-computable in A is order-computable.

Corollary 2.13. There exist infinitely many Turing degrees d such that every
set of degree d is order-computable.

Proof of Lemma 2.12. The requirements for constructing A are simple. If
ΦA

e computes a set Be, we will use

Be,s(x) =

{
ΦAs

e,s(x), if ΦAs
e,s(y)↓∈ {0, 1} for all y ≤ x

0, if not.
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as a ∆0
2 approximation to Be, and build the derived ordering ≺e correspond-

ing to Be. (Notice that our approximations are defined even if ΦA
e does not

compute any set.) We then satisfy:

Pe : If ϕe is total, then ϕe 6= A.

N〈e,k〉 : If ≺e is defined on k at some stage, then k has only finitely many

≺e-predecessors.

The construction for the P-requirements is standard, once we have de-
fined the restraints for the N -requirements. At stage s, if k has exactly p
predecessors in the order ≺e, we set

r(e, k, s) = max
x≤p+1

use(ΦAs
e,s(x))

where the use of a divergent computation is 0 by definition. (The computa-
tion must converge for all such x at the first stage s at which the order ≺e

includes k, but might diverge for some such x later if P-requirements injure
N〈e,k〉.) If ≺e does not yet include k, then r(e, k, s) = 0.

For every i ≥ 〈e, k〉 and every stage s, the witness element wi,s will be
> r(e, k, s). The requirement Pi waits for ϕe,s(wi,s) to converge to 0, then
enumerates wi,s into A, possibly injuring lower-priority N -requirements, but
not higher-priority ones. This completes the construction.

Once we reach a stage after which no higher-priority P-requirement ever
again injures N〈e,k〉, we wait until k appears in the order ≺e at some stage
s. Once it does (with exactly x predecessors, say), the restraint r(e, k, s) on
A forces Bt� (x + 2) = Bs� (x + 2) for all t ≥ s. Hence the element k never
again acquires another predecessor in the order ≺e, and r(e, k, t) = r(e, k, s)
for all t ≥ s. In turn, this allows the next P-requirement to choose a witness
element that will never again be changed, and will enter A if necessary to
satisfy P . Thus all requirements are ultimately satisfied.

If B ≤T A, then we have B = ΦA
e for some e, and the 〈Be,s〉 defined above

is a computable approximation to B. If B is infinite, then the order ≺e is the
derived order for this approximation. Since every N〈e,k〉 is satisfied, we know
(ω,≺e) ∼= (ω,<), and thus B is order-computable. (Clearly every finite B is
order-computable as well.)
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3 Non-Order-Computable Sets

An order-computable set must not only be ∆0
2, but must also be the range

of a limitwise-monotonic function. Indeed, if (ω,≺, R) ∼= (ω,<,A), then
A is precisely the set {|{y ≺ x}| : x ∈ R}, and if we enumerate R as
{x0 < x1 < · · · }, then the limit as s → ∞ of the (computable, monotonic)
predecessor approximation function f(k, s) = |{y ≤ s : y ≺ xk}| has range
A.

Limitwise-monotonic functions are also called subcomputable or Σ0
1; a

simple definition is that the function must be total and the set of points
below its graph must be a c.e. set. The range of such a function is always
a Σ0

2 set, but can fail to be ∆0
2, so clearly not all such ranges are order-

computable.
In [5], Khoussainov, Nies, and Shore proved that there exist ∆0

2 sets that
are not the range of any limitwise-monotonic function (though this result
appears to have been proved earlier by Khisamiev [4]). These are the first
examples of ∆0

2 sets that are not order-computable. We can imitate their
proof and include lowness requirements, thereby showing that low sets can
fail to be order-computable.

Lemma 3.1. There exists a low set A that is not the range of any limitwise-
monotonic function.

Corollary 3.2. There exist low sets that are not order-computable.

This set A cannot itself be made c.e., of course. It is an open question,
suggested by the referee of this paper, whether one could build such an A
which is Turing-reducible to a low c.e. set.

Proof of Lemma 3.1. We imitate the finite-injury proof in [5], with its re-
quirements

Re : If fe(x) = lim
t→∞

ϕe(x, t) is total and ϕe is monotonic,

then range(fe) 6= A,

which are satisfied by fixing a witness xe and moving each new ϕe(xe, t) out
of A. We add requirements

Li,x : [(∃∞s)ΦAs
i,s (x)↓] =⇒ ΦA

i (x)↓
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to ensure that A is low. The idea is that each Li,x attempts to protect a
finite initial segment of A so as to satisfy itself. Each higher-priority Re

either acts only finitely often, keeping a particular ϕe(xe, t) out of A forever
(in which case eventually it no longer interferes with Li,x), or else drives
ϕe(xe, t) higher and higher as t increases. In this latter case, for each y there
is a stage s so large that Re sets no conditions on A� y after stage s, and
so, for any string σ such that Φσ

i (x) converges, this Re will eventually allow
A� lh(σ) to be set to σ, leaving Li,x satisfied at all subsequent stages, so that
the restraint function l(〈i, x〉, s) for Li,x will converge and will not injure any
lower-priority requirements from then on.

Define distinct witness elements me,0 for each e ∈ ω, which we will use to
ensure that if ϕe(·, t) does converge monotonically to a total function fe as
t→∞, then A is not the range of fe. We let A0 = {me,0 : e ∈ ω}, make all
xe,0 and te,0 undefined, and set all l(e, 0) = 0.

At stage s+ 1, we have a substage e for each e = 〈i, x〉 ≤ s, starting with
e = 0. First, to avoid injuring any higher-priority Rj or Lk, we search for
the shortest σ ∈ 2<s such that:

• Φ σ
i,s(x)↓; and

• for all j < e such that xj,s ↓< lh(σ), σ(ϕj(xj,s, tj,s)) = 0; and

• for all j < e such that xj,s ↑ and mj,s < lh(σ), σ(mj,s) = 1; and

• for all k < e, σ� l(k, s+ 1) = As+1� l(k, s+ 1).

If there is no such σ, then l(e, s + 1) = 0 and we make no change to As+1.
Otherwise, we define As+1 � lh(σ) = σ and l(e, s + 1) = lh(σ). (The final
condition above ensures that this does not contradict any definition of As+1

at any previous substage of stage s + 1.) If there are several σ of minimal
length satisfying these conditions, use the first in the dictionary order.

We then continue this substage by attending to Re as follows:

1. If there exists j < e such that either

• l(j, s+ 1) ≥ me,s; or

• ϕj,s(xj,s+1, tj,s+1)↓= ϕe,s(xe,s, te,s)↓; or

• xe,s is undefined and ϕj,s(xj,s+1, tj,s+1)↓= me,s,
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then allRk with k ≥ e are injured at stage s+1. We make all xk,s+1 and
tk,s+1 undefined, redefine each mk,s+1 to be the least number larger than
maxn<k l(n, s+ 1) that is not in {mn,s+1 : n < k} ∪ {ϕn(xn,s+1, tn,s+1) :
n < k & xn,s+1 ↓}, and end the stage.

2. If there is no such j, but xe,s is defined, then so is te,s, and we ask if
ϕe,s(xe,s, te,s + 1) ↓≥ ϕe(xe,s, te,s). If not, then Re makes no changes
at all. If so, then Re removes ϕe,s(xe,s, te,s + 1) from As+1, and sets
te,s+1 = te,s + 1.

3. Otherwise xe,s is undefined. We leave me,s+1 = me,s and ask if there ex-
ists a pair 〈x, t〉 ≤ s such that ϕe,s(x, t)↓= me,s. If so, then Re chooses
the elements of the least such pair to be xe,s+1 and te,s+1, respectively,
and removes me,s+1 from A. If not, we do nothing.

As long as e < s and Case 1 did not apply, we now continue with the next
substage e+ 1. If e = s or Case 1 applied, this concludes stage s+ 1.

The proof that the requirements Re are satisfied proceeds just as in
[5], once we have proven that each restraint built by an L-requirement is
bounded. Assume by induction that for each j < e, lims l(j, s) ↓< ω and
that for each j ≤ e, Rj is satisfied. Let s0 be a stage so large that of all
the requirements Rj with j ≤ e, the only ones that make any changes to
A after stage s0 are those that make infinitely many such changes, so that
lims ϕj(xj,s, tj,s) = ∞. (Call these requirements Rj1 , . . . ,Rjn .) If there exists
a stage s′ > s0 at which l = l(e, s′) > 0, then only these Rjk

can change A� l
after stage s′. However, there exists another stage s1 > s′ such that for all
s ≥ s1 and all k ≤ n, ϕjk

(xjk,s, tjk,s) > l. But then at all stages s > s1, the
requirement Le is allowed to set As� l = As′� l. It does so (unless there is a
shorter string it can use for the same purpose). Hence l(e, s) ≤ l for cofinitely
many s, and ΦA

e (x)↓, as required by Le. Also, lims l(e, s) ≤ me+1,s1+1, allow-
ing the induction to proceed on Re+1.

The next lemma gives a straightforward proof for a weak version of Corol-
lary 3.18 below.

Lemma 3.3. There exists a limitwise-monotonic function g whose range is
∆0

2, yet is not order-computable. Indeed, we can build one such function g1

with low range, and another such function g2 whose range has degree 0′.
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Corollary 3.4. The property of order-computability does not respect Turing
equivalence.

Proof of Corollary. Theorem 2.7 and Lemma 3.3 provide two sets of Turing
degree 0′, one order-computable and the other not.

Proof of Lemma. Our strategy for building g = lims h(·, s) is to satisfy:

Cm : (∀s) |{0, . . . , 3m− 1} ∩ range(h(·, s))| ≤ 2m.

Re : If ϕe(x, s) is a predecessor approximation function for an order-

computable infinite set, then range(lim
s
ϕe(·, s)) ∩ range(g) 6= ∅.

We write fe = lims ϕe(·, s) and exploit the fact that the set A = range(g)
is order-computable iff its complement A is. (If (ω,≺, R) is computable, so
is (ω,≺, R).) The requirements Cm make A coinfinite. Therefore, if A were
order-computable, then A would be infinite and have a computable prede-
cessor approximation function ϕe such that range(fe) = A, contradicting
Re.

To satisfy Re, we would like to pick a single witness we and define
h(we, s) = ϕe(we, t) for the greatest t such that ϕe,s(we, t) ↓. (If ϕe(we, 0) ↑,
or if ϕe(we, t + 1) < ϕe(we, t) for some t, then clearly Re is satisfied and
we leave h(we, s) constant for all subsequent s, so as to guarantee that
g = lims h(·, s) is limitwise monotonic.) The danger, of course, is that possi-
bly limt ϕe(we, t) = ω. This would disrupt our strategy, since we must ensure
that limt h(we, t) < ω. To deal with this problem, we choose a single element
we, compute ϕe(we, t) for each t, and assign infinitely many elements we,k

to follow me by setting h(we,k, s) = ϕe(we, t) as above. For each k and all
t, we will ensure that h(we,k, t) ≤ dk, for fixed finite numbers dk such that
d1 < d2 < · · · . Thus we will be able to satisfy Re if fe(we) turns out to be
finite, yet will not have trouble if fe(we) diverges.

For each e for which the hypotheses of Re are satisfied, fe must have in-
finite range. Therefore, we can wait for arbitrarily high values of ϕe(x, t) to
appear, and then choose we to be an x for which ϕe(x, t) is sufficiently large.
This allows us to satisfy all Cm and also any higher-priority finitary require-
ments such as the L-requirements below, and to guarantee that range(g) will
be ∆0

2 (since the functions h(·, t) will only move a given element into or out
of range(g) finitely often as t → ∞). Thus satisfying our requirements will
indeed prove the lemma.
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The elements dk mentioned above are “dumps” which we decide before-
hand will lie in range(g). Specifically, we choose dk = 3k, and assign elements
ck ∈ ω such that h(ck, t) = dk for every k and t. (This does not interfere with
any requirement, since when we need to satisfy an Re, we do so by putting
a number into range(g), never by keeping a number out of range(g).) When-
ever we want to remove an element h(x, s) from range(g), we can always find
a dk > h(x, s), and define h(x, s + 1) = dk, thereby removing h(x, s) from
range(g) for the present without introducing any new elements to range(g).
Thus we can ensure that each Re adds only one new element to range(g), so
that range(g) is coinfinite.

Our satisfaction of the different requirementsRe actually creates no prior-
ity conflicts, since each such requirement wants only to put certain elements
into range(g), not to keep any specific elements out of it. The only negative
requirements arise from making range(g) coinfinite and ∆0

2, and we resolve
these conflicts by making each Re consider only sufficiently large numbers
from range(fe).

To make g1 have low range, we simply add in the lowness requirements as
in the proof of Lemma 3.1; once again, the strategy used there works. Each
Le looks for any σ it can find to guarantee convergence for its requirement; the
only restraints on its search are that σ must respect the (finitary) restraints
of higher-priority Li and Ri, must have σ(dk) = 1 for all k, and must satisfy
the coinfiniteness requirements Cm.

To code the Σ0
1-complete set K into the range of g2, on the other hand,

we use the dumps: whenever we want to put an element into a dump, we do
not just add it to the next higher dump, but rather to the dump dk, where k
is the first element of K we find such that dk is larger than the current value
of the element. Also, rather than guaranteeing that every dk lies in A, we
wait for numbers n to enter Ks. Each time some n ∈ Ks+1 −Ks, we choose
a fresh element x not yet in the domain of h(·, s) and define h(x, s′) = dn

for all s′ ≥ s. Thus K ≤1 A, via the function that takes x to dx. Since
A = range(g2) is ∆0

2, this guarantees K ≡T range(g2).

The predecessor approximation function for A has an important addi-
tional property. Since (ω,≺) is a linear order, we know that if xi ≺ xj, then
every new predecessor of xi that appears must also precede xj. Stating this
in terms of fA yields:

(∀i, j, s) [fA(i, s) < fA(j, s) =⇒ fA(i, s+1)−fA(i, s) ≤ fA(j, s+1)−fA(j, s)].
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We refer to this as the order property for fA (or for gA = lims fA(·, s), by
abuse of terminology).

Moreover, if f is any monotonic computable function with the order prop-
erty and g = lims f is total, then g(E) is order-computable. This yields a
characterization of order-computability, but hardly a satisfactory one.

Above we constructed a low set that was not order-computable. We
now investigate how close such a set can come to being c.e. Recalling the
Ershov hierarchy as defined on p. 9, we remind the reader that 2-c.e. sets are
also called d.c.e., since they can be expressed as the set-theoretic difference
W1 −W2 of two c.e. sets W1 and W2.

Theorem 3.5. There exist a c.e. set W and a low d.c.e. set A that are not
order-computable.

Proof. We give the construction of the set A. To build W , one simply runs
the same construction without the lowness requirements. Since these are the
only requirements that ever remove an element from A, it is clear that the
set W will indeed be c.e., although not low. The contrast gives a fair insight
into the impossibility of building a low c.e. set that is not order-computable
(cf. Theorem 2.6).

Our strategy is to build an approximation to a set A satisfying the stan-
dard lowness requirements:

L〈e,x〉 : [(∃∞s)ΦAs
e,s(x)↓] =⇒ ΦA

e (x)↓

while also ensuring that if ϕe appears to be a predecessor approximation
function for A, then in fact some element of the corresponding linear order
must have infinitely many predecessors:

Re : ϕe is not a predecessor approximation function for A.

The basic module for satisfying a single Re checks at every stage to see
whether ϕe has proven itself not to be a predecessor approximation function
(as described after Definition 2.3). As long as it has not done so, we pick
a witness element we to put into A. We choose we large enough to have an
element of A below it, which we use as a “trigger,” keeping it out of A for the
present. If ϕe responds by matching A up to we at some stage s (i.e. putting
odd numbers in positions corresponding to As and even numbers in positions
corresponding to As), then we define ne to be the even number in position
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we, and pull the trigger, by enumerating the trigger element into As+1 (and
naming it te,s+1). In order to match this change, ϕe must add an even number
to its order in that position, so that ne acquires a new predecessor, and then
must acquire enough more predecessors to correspond to a larger element of
A. If there are only finitely many such stages s, then clearly Re is satisfied.
Otherwise, we wait for a future stage s′ at which ϕe matches the new As′ up
to ϕe(ne, s

′) (thus, on a longer initial segment than at stage s). When this
happens, we enumerate a new trigger te,s′+1 < ϕe(ne, s

′) from As′ into A, and
start the process over. Ultimately this will add infinitely many predecessors
of ne to the order, satisfying Re.

To make this basic module work, of course, we must ensure that elements
of A are far enough apart that triggers will always be available. The interplay
between distinct R-requirements is therefore limited to choosing the initial
elements we,0 far enough apart. This is a straightforward combinatorial ex-
ercise, described in Lemma 3.6. (L-requirements will never be allowed to put
elements into A, so they cannot mess up the combinatorics.)

This basic module never puts any number into A more than once. More-
over, once ϕe(ne, s) has increased, the te and the we that we had put into A
can be removed from A if necessary to satisfy a lowness requirement. Thus,
if we → ∞, we will satisfy each lower priority Li,x-requirement by waiting
until ϕe(ne, s) is so large that we can clean up behind it and build an initial
segment of A of length < ϕe(ne, s) that makes ΦA

i (x) converge.
We start with A0 = ∅ and all variables undefined. At stage s+1, we have

one substage for each i = 〈e, x〉 ≤ s in turn, starting with 0. At substage i,
we first search for the shortest σ ∈ 2<s (if any; otherwise choose the empty
string) such that:

• Φσ
e,s(x)↓; and

• σ�maxj<i l(j, s+ 1) = As�maxj<i l(j, s+ 1); and

• wi,s is defined and σ�wi,s = As�wi,s; and

• for all z such that σ(z) = 1, z ∈ As; and

• for all z < lh(σ) such that z = tj,s for some j < i, σ(z) = As(z).

We set As+1� lh(σ) = σ, and set

l(i, s+ 1) = max
t≤s+1

use(ΦAt
e,t(x))
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(where by definition the use of a divergent computation is 0). If we have
a choice between two σ of equal length, we take the first in the dictionary
order.

If As+1 � lh(σ) 6= As � lh(σ), then Li has injured all Lk (k > i) and all
Rk (k ≥ i): every l(k, s + 1) with k > i, and every nk,s+1, wk,s+1, and
tk,s+1 with k ≥ i, becomes undefined, and we end the stage s immediately.
Otherwise, we continue the substage i, turning now to the requirement Ri.
If ϕi,s has proven that it is not a predecessor approximation function, we end
this substage and go on to substage i + 1. Otherwise we work to satisfy Ri

as follows:

1. If wi,s is undefined, we pick wi,s+1 to equal 2i+1 plus the greatest number
yet seen in the construction, and enumerate it into As+1. We also make
all nk,s+1 with k ≥ i and all wk,s+1 and tk,s+1 with k > i undefined.

2. If wi,s is defined, but ni,s is not, we check whether As� (1 + wi,s) is an
initial segment of the set approximated by ϕi,s. If not, we do nothing.
If so, we set ni,s+1 to be the n such that ϕi,s(n, ui,s) = wi,s, and let
wi,s+1 = wi,s. (Here ui,s is the greatest u such that ϕi,s(x, u) ↓ for all
x < u.) We choose the trigger ti,s+1 to be the greatest number < wi,s

such that:

• ti,s+1 /∈ ∪t≤sAt; and

• no number wj,t with t ≤ s and j ∈ ω satisfies ti,s+1 ≤ wj,t < wi,s;

and enumerate ti,s+1 into As+1. Notice that ni,s+1 is uniquely defined
(since ϕi,s appears to be a predecessor approximation function) and
must be even, since wi,s ∈ As. We will prove in Lemma 3.6 below that
such a ti,s+1 must exist.

3. Otherwise ni,s is defined. With ui,s as above, we check whether As�
(1+ϕi,s(ni,s, ui,s)) is an initial segment of the set approximated by ϕi,s.
If not, we do nothing. If so, then keep ni,s+1 = ni,s, redefine ti,s+1 to
be the greatest element < ϕi,s(ni,s, ui,s) satisfying

• ti,s+1 /∈ ∪t≤sAt; and

• no number wj,t with t ≤ s and j ∈ ω satisfies ti,s+1 ≤ wj,t <
ϕi,s(ni,s, ui,s);

and enumerate ti,s+1 into As+1.
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This completes substage i and the construction.
For each i, write wi = limswi,s. Also, let {v0 < v1 < · · · } be the set

{wi,s : i, s ∈ ω}. (We will not have wi = vi for all i, because of injuries to
the R-requirements.)

Lemma 3.6. At every stage s and substage i of this construction, if substep
2 or 3 requires a trigger ti,s+1 to be defined and enumerated into A, then there
exists a trigger satisfying the two conditions named in that substep.

Proof. This is a combinatorial argument. First, notice that the only elements
to enter A are the various wj,s and the triggers tk,s, which enter A only if
some greater element is already in A.

Choose the least j such that ϕi(ni,s, s) ≤ vj. Now vj was chosen (as wm,s0

for some m ≤ j, at some stage s0) to equal 2m+1 plus the greatest element
yet seen in the construction, at which time the set

T = {t /∈ As0 : vj−1 < t < vj}

of available triggers contained at least 2m+1 − 1 elements. The only way for
any of them ever to enter A is if vj = ϕk(nk, s1) at some stage s1 > s0, for
some k < m; when this happens, vj − 1 would be chosen as tk,s1+1 and would
enter A. At subsequent stages, if Rk enumerates any more triggers into A,
we would have ϕk(nk, s1) > vj, so the triggers would also be > vj. Thus this
Rk enumerates at most one of the 2m+1 − 1 elements into A.

Subsequently, another Rk′ with k′ < m may have either ϕk′(nk′ , s2) = vj

or ϕk′(nk′ , s2) = vj − 1, and may enumerate vj − 2 into A as a trigger. More-
over, if ϕk′(nk′ , s2) = vj − 1, then we might subsequently have ϕk′(nk′ , s3) =
vj, in which caseRk′ would enumerate another element of T into A. However,
this Rk′ enumerates at most these two elements of T into A. The inductive
step is now clear: the third requirement Rk′′ (k′′ < m) might enumerate
as many as four triggers from T into A, corresponding to the four numbers
vj − 3, . . . , vj that could already be in A, and the next R-requirement could
enumerate eight triggers from T into A and so on. But only R0, . . . ,Rm−1

can enumerate triggers from T into A, so the total number of triggers needed
from T is at most 1+ · · ·+2m = 2m+1− 1, and we saw that T is at least this
large. This proves Lemma 3.6.

If lims ti,s is finite, or if Ri never reaches substep 3, then we say that Ri

is finite-acting. Otherwise, Ri is infinite-acting, and 〈ti,s〉s∈ω is an infinite
nondecreasing unbounded sequence.
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We now show by induction on i that every Li (say with i = 〈e, x〉) and
every Ri is eventually satisfied. Assume this is true for all higher-priority
requirements, and let s0 be a stage so large that none of them injures Li after
s0, that As0� l(j, s0) = A� l(j, s0) for all j < i, and that for every finite-acting
higher-priority requirement Rj, we have tj,s0 = tj (or, if tj,s is undefined for

all s, then wj,s0 is defined). If there is a stage s1 > s0 such that Φ
As1
e,s1(x) ↓,

let σ be the restriction of As1 to the use u of this computation. (If there are
many such stages s1, choose the one with the shortest corresponding σ, and
leftmost in the dictionary order for that length. If s1 does not exist, then
Le,x is satisfied.) Now there will be another stage s2 > s1 such that tj,s > u
for every higher-priority infinite-acting Rj and every s ≥ s2. Between stages
s1 and s2, moreover, no number < u will have been removed from A: no
higher-priority L-requirement has acted; the lower-priority L-requirements
never change A below l(i, s1) ≥ u; and by our choice of s1, Li itself has no
reason to redefine A. Hence at stage s2, Li will remove from A any elements
added to A by R-requirements in the meantime, setting As2 = σ, and will
preserve this much of A forever after, so that ΦA

e (x) ↓. Thus Li is satisfied,
and never again injures any lower-priority requirements.

The requirement Ri (acting at the i-th substage of each stage) may stop
permanently in either substep 2 or substep 3 above. If we stop in substep 2,
then wi stays in A forever (since no lower-priority L-requirement can remove
it, and any action by a higher-priority L-requirement would redefine wi,s).
But the initial segment A� (1 + wi) does not match that of the set (if any)
order-computed by ϕi, for if it did, we would move to substep 3.

If we stop in substep 3 and Ri is finite-acting, fix s0 such that ti = ts0 .
Then for all s ≥ s0, the initial segment A�(1+ϕi(ni, s)) does not match that
of the set order-computed by ϕi,s. Otherwise Ri is infinite-acting, so substep
3 must have enumerated the current ti,s into A at infinitely many stages s.
Each time, that forced ϕi(ni, s) to increase in order for ϕi to approximate
an initial segment of A again, because no lower-priority L-requirement was
allowed to remove ti,s from A until a new trigger ti,s′ > ti,s was defined. This
ensures that lims ϕi(ni, s) = ∞. So in both cases, we see that ϕ is not a
predecessor approximation function for A, and Re is satisfied.

The only elements that ever enter A are ones that have never before
entered A, by our choice of wi,s in substep 1 and our conditions on the triggers
in substeps 2 and 3. The L-requirements may remove elements from A, so
A will be d.c.e. The same construction without the L-requirements would
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never remove elements from A, but would still satisfy all R-requirements,
hence would build a c.e. set that is not order-computable.

We may use the same strategy to show that the join of two sets, even of
two c.e. sets, need not preserve order-computability.

Theorem 3.7. There exist order-computable c.e. sets A and B whose join

A⊕B = {2n : n ∈ A} ∪ {2n+ 1 : n ∈ B}

is not order-computable.

Proof. We will build two computable linear orders ≺A and ≺B on the domain
ω, each isomorphic to (ω,<), such that the sets A and B order-computed by
these orders are c.e., yet the join C = A⊕B is not. We build C by the same
method that was used for building W in Theorem 3.5, with witness elements
we,s and trigger elements te,s that may be enumerated into either A or B (but
not both) to force a potential predecessor approximation function ϕe for C
to add new elements preceding the number ne such that ϕe(ne, u) = 2we.
The requirements are as follows:

Px : The element x has only finitely many ≺A-predecessors.

Qx : The element x has only finitely many ≺B-predecessors.

Re : ϕe is not a predecessor approximation function for C.

N -requirements impose finite restraints on enumeration into A and B
at any given stage, and satisfying them will ensure that for each single x,
the supremum of the lengths of these restraints is finite. We start with
elements we already enumerated into A0, so that 2we ∈ C0; these are chosen
far enough apart from each other (as in Theorem 3.5) and will never be
redefined, since the lowness requirements from that theorem do not apply
here. The requirement Re waits for ϕe to find an even element ne with
exactly 2we predecessors, then enumerates triggers into C to force ϕe to add
more predecessors to ne. However, we can satisfy Re at stage s+ 1 either by
enumerating the trigger te,s into As+1, or by enumerating it into Bs+1, and
this allows us to respect the negative requirements.

We start with A0 = {we : e ∈ ω} and B0 = ∅, where w0 = 0 and
we+1 = we + 2e+1. The real witness elements are therefore the numbers 2we,
which are the elements of C0. At stage s + 1, we set the restraint functions
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p(x, s + 1) and q(x, s + 1) to be the number of predecessors of x at this
stage under �A and �B, respectively. These are the restraints imposed by
Px on A and by Qx on B. Then, for each i < s in turn, we follow steps 2
and 3 from page 22. The only change is that when we need to enumerate
a trigger element ti,s, we have to choose whether to enumerate it into As+1

or Bs+1. Let y = µx[p(x, s + 1) ≥ ti,s] and z = µx[q(x, s + 1) ≥ ti,s]. If
y > z, then we enumerate ti,s into As+1 (so 2ti,s enters Cs+1); otherwise ti,s
enters Bs+1 and 2ti,s + 1 enters Cs+1. In either case, this trigger forces ϕi to
add more predecessors to ni, since the element entering Cs+1 is < ϕi(ni, ui,s).
Moreover, we injured the lowest-priority negative requirement possible (under
the convention that Px has higher priority thanQx.) This completes substage
i of stage s+ 1.

To finish stage s + 1 itself, we must also consider ≺A and ≺B. Suppose
that ≺A currently has a elements in its domain. If As+1� a 6= As� a, then
starting from the point where they disagree, we add enough fresh elements
(say a′-many) to the order ≺A to make sure that ≺A on these elements does
approximate As+1�(a+ a′). (If As�a = As+1�a, we add one more element to
the right end of the order ≺A, odd or even as dictated by As+1. This ensures
that ≺A has a domain of at least s+ 1 elements at this stage.) Then we do
the same for ≺B using Bs+1. This completes the construction.

The set C = ∪sCs built by this construction is c.e. but not order-
computable, by the same argument given for the set W in Theorem 3.5,
since with C = A⊕ B, we now have even more space in C between witness
elements 2we and triggers 2ti,s or 2ti,s + 1 than we did in W . It is important
that for each i and s, at most one of the two triggers 2ti,s and 2ti,s + 1 ever
enters C, of course.

However, we claim that A = ∪sAs and B = ∪sBs both are order-
computable. The orders ≺A and ≺B were built to order-compute As+1 and
Bs+1 at each stage s+1, so we need only show that each Px and Qx is injured
only finitely often. (An injury to Px is a change to As�p(x, s), of course.) By
induction on x, suppose that no Py or Qy with y < x is injured after stage s0.
Then we have p(y, s) = p(y, s0) and q(y, s) = q(y, s0) for all s > s0 and all
y < x. Let m = max({p(y, s0) : y < x} ∪ {q(y, s0) : y < x}), and fix a stage
s1 > s0 so large that every Re with we < m either has te,s1 > m or never
enumerates any more triggers into C after stage s1. Hence no R-requirement
at all will try to enumerate any trigger < m into A or B after stage s1. So,
if we need to put a trigger element t < p(x, s+ 1) into As+1 or Bs+1 at some
stage s+1 > s1, then no Qy with y < x will stop us from putting it into Bs+1.
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Thus Px will never be injured after stage s1. The same argument works for
Qx, so all P- and Q-requirements are eventually satisfied.

It is easy to adapt the requirements of Theorem 3.5 to build a c.e. set
that is neither order-computable nor simple; just ensure that all elements
wi,s are even and far enough apart that we can always choose even numbers
as triggers. Then the complement of A clearly contains an infinite c.e. set.
Also, it is straightforward to build both a simple order-computable set and
a non-simple one. (Moreover, both can be made non-computable; Friedberg-
Muchnik requirements and the negative requirements for order-computability
all mesh easily either with simplicity requirements or with a construction
on even numbers only. Follow the proof of Lemma 2.5.) The one difficult
question about simple sets is resolved by the following lemma.

Lemma 3.8. There exists a simple set A that is not order-computable.

Proof. The proof adapts the construction of A in Theorem 3.5 with the same
requirements Re, adding simplicity requirements

Pe : We infinite =⇒ We ∩ A 6= ∅.

(Of course, we leave out the L-requirements, since we want A to be c.e.,
rather than low.)

We adapt the construction from Theorem 3.5. The difficulty is that we
can no longer control which elements enter A, since Pe essentially says that
we must give carte blanche to cofinitely many elements. However, Pe will
only actually enumerate one of these cofinitely many elements into A, and so
we can control the number of elements in a given interval (such as [wi−1, wi])
that could ever be enumerated into A. Then we need only ensure the presence
of enough triggers (for each i < e) to add extra predecessors to each ni and
make ϕi(ni) > wi as before. (Since no requirements are injured, wi is never
redefined; hence the subscript s is unnecessary.)

Thus, the only actual alteration to the construction from Theorem 3.5 is
that in substep 1, we choose then new wi to be greater than 2i+2 + i plus
the greatest number yet seen in the construction. Each Pe is allowed to
enumerate into A one number pe, which must be > we. (Of course, that one
number is all that is needed to satisfy Pe forever.) Any time ϕi,s(ni, s) = pe

for some i < e, we enumerate into A the greatest available trigger < we,
without regard to the second of the two requirements in substep 2 or 3. If pe
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is large, there could be a number wj between this trigger and pe, but we have
included enough available triggers below between we−1 and we to ensure that
pe will never require enumeration of a trigger < we−1. The number 2i+2 + i
above allows for i elements between wi−1 and wi to be enumerated into A by
requirements Pe with e < i, and then sufficiently many more triggers to move
the value of ϕj(nj, s) (for every j < i) past wi, past every trigger already
enumerated into A, and past pi.

Another corollary of Theorem 3.5 strongly restricts the possible global
connections between order-computability and most traditional measures of
computability.

Corollary 3.9. There exist computably isomorphic c.e. sets V and W such
that V is order-computable and W is not.

Proof. As noted after the proof of Theorem 3.5, it is easy to ensure that the
W in the theorem is not simple. Apply Corollary 2.9 to the set W produced
by Theorem 3.5.

The following lemma is closely related; indeed the existence of the sets
A and B would follow from Corollary 3.9. We include it because it gives
a concrete example of a very straightforward computable permutation of ω
that maps an order-computable set to a non-order-computable one.

Theorem 3.10. Let a0 = 1 and an = (n+1)+(n+2) ·an−1, and set m0,0 = 1
and me+1,0 = me,0 + ae+1 + 1 for all e. Define the computable permutation p
of ω by letting p(me+1,0 − k) = me,0 + k + 1 for each e and each k ≤ ae+1.
There exist ∆0

2 sets A and B, computably isomorphic to each other via p,
such that B is order-computable but A is not.

Proof. We build A using the Khoussainov-Nies-Shore strategy to ensure that
A is not the range of any limitwise-monotonic function. The requirements
are precisely the Re defined in the proof of Lemma 3.1. Simultaneously, we
will build a computable linear order (ω,≺) of type ω, such that the set B
order-computed by (ω,≺, E) is precisely the image p(A). This will suffice to
prove the theorem.

We call the interval [me,0 + 1,me+1,0] the (e + 1)-st p-segment, and note
that p maps each p-segment to itself, reversing the order of the elements.
(We consider the two-element segment [0, 1] to be the 0-th p-segment, with
p(0) = 1 and p(1) = 0.)

28



At stage 0, we enumerate every me,0 into A0. On the B-side, we imme-
diately define an ordering ≺ of type ω on the infinite set C = {n ∈ ω : n 6≡
3(mod 4)}, so that the number 2e has exactly p(me,0) predecessors under ≺,
and the odd elements of C fill in the gaps. Thus the set B0 order-computed
by (C,≺, E) is just p(A0). The numbers not in C will all be added to the or-
der later in the construction. The witness elements xe and the corresponding
te,0 are all undefined at stage 0.

At stage 2s, let As = {mi,s : i ∈ ω} and consider the least e < s (if any)
for which xe and te are currently defined and ϕe,s(xe, te,s +1)↓≥ ϕe,s(xe, te,s).
We make ϕe,s(xe, te,s + 1) /∈ As+1 and set te,s+1 = te,s + 1. The B-side has
two possible actions, depending on whether we have changed A or not:

1. If there exists an i > e such that ϕe,s(xe, te,s + 1) = mi,s, then mi,s has
been removed from As+1, and we define mi,s+1 = mi,s − 1 ∈ As+1 and
make xi undefined. In this case the requirement Ri has been injured by
the higher-priority Re. To parallel this A-change in B, we add the next
available odd number k to the order ≺ so that k has exactly p(mi,s)
≺-predecessors. This forces p(mi,s) /∈ Bs+1 and p(mi,s+1) ∈ Bs+1. In
turn, this change requires an A-change, since every element of the order
to the right of k has now acquired a new predecessor. Therefore, for
every j > i, we define mj,s+1 = mj,s−1 and make xj undefined, thereby
injuring Rj. This leaves p(mj,s+1) = p(mj,s) + 1, since p inverts the
ordering on each p-segment, so that As+1 agrees with Bs+1.

2. If there is no such i, then there has been no change in As+1, so we do
nothing further.

For each i, if mi,s+1 is not defined by the process above, then mi,s+1 = mi,s.
At stage 2s+ 1, find the least e < s for which xe is not currently defined

and there exist x, t ≤ s such that ϕe,s(x, t) ↓= me,s+1. (If there is no such
e, we do nothing.) We choose the least such pair 〈x, t〉 corresponding to
this e, let xe = x and te,s+1 = t, set me,s+1 = me,s − 1 ∈ As+1, and make
me,s /∈ As+1. As above, we add the next available odd number k to the order
≺ so that k has exactly p(me,s) ≺-predecessors. Thus p(me,s) /∈ Bs+1 and
p(me,s+1) ∈ Bs+1. For every j > e, we define mj,s+1 = mj,s − 1 and make xj

undefined, thereby injuring Rj in order to preserve the agreement between
As+1 and Bs+1. This completes the construction.

Now me is redefined (with me,s+1 = me,s − 1) when me,s first enters the
range of ϕe, and again each time a higher-priority Ri (i < e) injures Re.
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The numbers an are defined so that if the requirement Re−n is never injured,
then me will be reduced at most an times. For n = 0, this is clear, since if
Re is never injured, then me is reduced only when we first discover a pair
〈x, t〉 with ϕe(x, t) = me. The definition an = (n + 1) + (n + 2) · an−1 was
selected because if Re−n is never injured, then Re−n itself may reduce me

once when xe−n is first defined and ϕe−n(xe−n, te−n,s) = me−n, then again
when ϕe−n(xe−n, te−n,s′) = me−n+1, and so on, for a total of n + 1 injuries.
In between any two of those injuries, me can be reduced at most an−1 times,
by inductive hypothesis, and similarly before the first such injury and after
the last, yielding a total of at most an reductions of me. Hence our choice
of me,0 = me−1,0 + ae + 1, which guarantees that for all s we have me−1,0 <
me,s. Therefore, me,s always lies in the same p-segment of ω, and is mapped
into that same p-segment by p. We see from this that only finitely many
predecessors will be added below each element of ≺, so that (ω,≺) ∼= (ω,<).
Also, as noted above, the approximations As = {me,s : e ∈ ω} and Bs = {n ∈
ω : (∃x)[2x has exactly n ≺s-predecessors]} satisfy As = p(Bs) for every s.

The next theorem can be seen as a complement to Theorem 2.7 and
Lemma 2.10.

Theorem 3.11. There exists a Turing degree a ≤T 0′ such that no set in a
is order-computable.

Proof. We build a computable approximation 〈As〉s∈ω to a set A, and prove
that deg(A) satisfies the theorem. The construction uses an infinite-injury
argument, with the usual tree structure. For each e and each pair of oracle
Turing functionals Ψ and Θ we will have a witness element we,Ψ,Θ satisfying
the following requirements:

R〈e,Ψ,Θ〉 : If ϕe appears to be a predecessor approximation function for a

set B and ΨA = B and ΘB = A, then lim
t
ϕe(we,Ψ,Θ, t) = ∞ or

A is computable.

Additional requirements will prevent A from being computable:

Pe : ϕe 6= A.

Together with the convergence of the approximation 〈As〉s∈ω, this clearly
suffices to prove the theorem.
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We write ψ and θ for the use functionals of Ψ and Θ. By definition
ΨX

s (n) ↑ iff the use ψX
s (n) = 0. Moreover, on the domain of ΨX , ψX is

always an increasing function, for any fixed oracle X.
The tree T that we use to build A has 4-branching nodes α for the R-

requirements and 2-branching nodes π for the P-requirements. The nodes π
have outcomes f and w, and use simple diagonalization to ensure that Pe is
satisfied. The four successors of a node α, in order from left to right, will be
denoted by

αˆ∞ ≺ α b̂ ≺ α â ≺ α f̂

and this order extends lexicographically to all of T . If lh(α) = 〈e,Θ,Ψ〉 = x,
then these outcomes attempt to satisfy Rx. The outcome f denotes a finite
win in which ϕe proves itself not to be a predecessor approximation function;
b is the outcome in which the functional ΨA fails to compute the set Be

order-computed by ϕe, and similarly a is the outcome in which ΘBe fails to
compute A. In the remaining outcome ∞, we will force limt ϕe(wα, t) = ∞
for some number wα, thereby ensuring that ϕe is not actually a predecessor
approximation function for the set Be. The basic module for accomplishing
all this is explained below.

We partition the elements of ω into countably many infinite computable
sets, each of which is the set of toggle elements for some node on T . Let α be
a node on T of length 2x. The specific toggle element used by α at stage s
will be named tα,s, and α will move these elements into and out of A in order
to satisfy Rx. Similarly, nodes α of length 2e + 1 will move toggle elements
into A to satisfy Pe. We call this α an Rx-node or a Pe-node, accordingly,
and we also sometimes speak simply of R-nodes (those of even length) and
P-nodes (odd length). If α is on the true path P , i.e. the leftmost path
through the tree such that every node on P acts at infinitely many stages,
then α will succeed in doing this, and its successor on P will depend on which
strategy it uses to satisfy its requirement.

We use t′α,s to denote the least toggle element for α greater than tα,s. Of
course, to make A ≤T ∅′, we must ensure that every element enters or leaves
A only finitely often.

For each e and each stage s such that ϕe,s fails to prove that ϕe is not
a predecessor approximation function, we find the greatest le,s (possibly 0)
such that ϕe,s( · , le,s) is a permutation of {0, . . . , le,s − 1}, and define Be,s

to be the image of the even numbers under ϕe,s( · , le,s). The length of
the approximation Be,s is therefore le,s. Thus, if ϕe really is a predecessor
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approximation function, then lims le,s = ∞ and Be = limBe,s will exist. (If
ϕe,s does prove that ϕe is not a predecessor approximation function, then
Be,s is undefined.) Moreover, every order-computable set B will appear as
Be for some e.

To initialize a node α at a stage s means to choose tα,s to be a toggle
element for α that is larger than any number yet seen in the construction, to
remove from A all toggle elements for α, and to make wα,s undefined.

We start with A0 = ∅ and every wα,0 and tα,0 undefined. At stage 0
we initialize the empty node. At stage s+ 1, we have substages numbered 0
through (at most) s. At substage u, we act on behalf of some node α of length
u, a successor of the node for which we acted at the preceding substage. This
α will be said to be eligible to act at stage s+ 1, and s+ 1 will be called an
α-stage.

At substage u, we let α be that node that was made eligible at the pre-
ceding substage. (At substage 0 the empty node is eligible.) If lh(α) = 2e+1
is odd, then we act on behalf of Pe, setting tα,s+1 = tα,s. If α f̂ was eligible
at the last α-stage and α has not been initialized since, we simply make α f̂
eligible at this stage as well. Otherwise, if ϕe,s(tα,s)↓= 0, we enumerate tα,s

into As+1 and make α f̂ eligible. Finally, if neither of these cases applies,
then we make αˆw eligible. This completes this substage.

If lh(α) = 2x is even, we choose 〈e,Θ,Ψ〉 = x. We act according to the
least-numbered of the following eight steps that applies:

1. If ϕe,s proves that it is not a predecessor approximation function (so
that Be,s is undefined), then we make α f̂ eligible and end this substage.

2. If wα,s is undefined and θ
Be,s
s (tα,s) ≥ le,s, then again we make α f̂

eligible and end this substage.

3. If θ
Be,s
s (t) = 0 for any t ≤ t′α,s, then we make α â eligible and end this

substage.

4. If wα,s is undefined and 0 < θ
Be,s
s (tα,s) < le,s, we choose wα,s+1 to be

a number such that ϕe,s(wx,s+1, le,s) ↓≥ θ
Be,s
s (tα,s), let tα,s+1 = tα,s,

initialize every node β ) α, and end the stage, by making no node
eligible to act at the next substage. (By the conditions given, such a
number wx,s+1 must exist.)

5. If Θ
Be,s
s � t′α,s 6= As� t′α,s, then we end this substage, with α â eligible to

act at the next substage.

32



6. If Θ
Be,s
s � t′α,s = As� t′α,s, but ΨAs

s � θBe,s
s (t′α,s) 6= Be,s� θ

Be,s
s (t′α,s), then we

end this substage, with α b̂ eligible to act at the next substage.

7. If tα,s /∈ As (and none of the above cases applies), then we put tα,s

into As+1. Then we make αˆ∞ eligible to act at the next substage.
However, we initialize all nodes of length at least n+lh(α) that extend
α, where n is the number of toggle elements for α that are < tα,s. (Our
rule is that these initialized nodes cannot be eligible later in this same
stage.) This completes this substage.

8. Otherwise we have tα,s ∈ As and ΨAs
s �θBe,s

s (t′α,s) = Be,s�θ
Be,s
s (t′α,s) and

Θ
Be,s
s � t′α,s = As� t′α,s. In this case we set

tα,s+1 =

{
t′α,s if ϕe,s(wα,s, le,s) > θ

Be,s
s (t′α,s) > 0

tα,s if not,

We set tα,s /∈ As+1, make α â eligible to act at the next substage, and
end this substage.

When we have finished the last eligible substage, we initialize all nodes
β such that some α to the left of β in T was eligible to act at this stage.
We also initialize all nodes of length s + 1. Any element not mentioned in
the foregoing instructions is preserved at stage s+ 1 (so wβ,s+1 = wβ,s, etc.).
This completes the construction.

We now describe the basic module for satisfying a requirement Rx via
a node α of length 2x = 2 · 〈e,Θ,Ψ〉 on the true path P . The node α f̂
represents the outcome in which ϕe proves itself not to be a predecessor
approximation function. (If this never occurs, but lims le,s is finite, then
again ϕe cannot be a predecessor approximation function, and f may be the
outcome, using Step 2 above.) The node α â represents the outcome in which
A 6= ΘBe . This can occur either in Step 3, if ΘBe simply fails to converge on
a toggle element for α, or in Step 5, in which ΘBe converges but disagrees
with A or in Step 8, where we actively create a disagreement by removing tα,s

from A. If any of these steps holds infinitely often (for some tα = lims tα,s),
then clearly Rx is satisfied. Similarly, the node α b̂ represents a disagreement
between B and ΨA.

Apart from these obvious ways to satisfy Rx, the strategy for α is to
drive lims ϕe(wα, s) to infinity. To do so, α waits for Θ

Be,s
s � t′α,s = As� t′α,s and

ΨAs
s �θBe,s

s (t′α,s) = Be,s�θ
Be,s
s (t′α,s) and ensures that θ

Be,s
α,s (tα,s) < ϕe,s(wα,s, le,s).
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Then, by moving its current toggle element tα,s into A in Step 7, α can force

Be to change somewhere below θ
Be,s
α,s (tα,s), meaning that ϕe(wα,s, le,s) must

have increased, since ϕe is the predecessor approximation function for Be.
(This is the outcome ∞.) If this change occurs and the functionals Θ and
Ψ again appear to compute A and Be from each other, then α removes tα,s

from A again in Step 8.
Of course, α cannot move tα,s into and out of A infinitely often, since

A must be ∆0
2. So α always tries to switch its current toggle element to

a larger one (at the start of Step 8). We know that α succeeds in making
ϕe(wα, le,s) larger and larger, but it must also ensure that θBe(t′α,s) does not
go to infinity as well, so that eventually it will be able to switch from tα,s to
t′α,s. This is where α uses the assumption that Be = ΨA: by preserving A
up to ψA(θBe(t′α,s)), it forces Be to return to its original configuration up to
θBe(t′α,s), so that the use of ΘBe(t′α,s) does indeed stay bounded. In fact, α
does not even begin toggling tα,s until ΘBe has converged on t′α,s. Thus, by
alternately toggling and restoring A, α guarantees that it can keep switching
to new toggle elements, so that limsAs converges.

The requirements fit together very much in the usual way for a tree con-
struction. The true path P contains the leftmost node α at each level of T
such that α is eligible at infinitely many stages and all predecessors of α lie
on P . Lemma 3.13 below shows that P is indeed an infinite path through T .

We now give the formal proof that A is ∆0
2 and satisfies every Rx and Pe.

We write wα = limswα,s; this exists for all α ∈ P . We also write tα = lims tα,s

when this limit exists, but it will fail to exist when αˆ∞ ∈ P (and also for
all nodes to the right of P ). The key to the proof is the very first lemma.

Lemma 3.12. If αˆ∞ ∈ P , then there are infinitely many stages s at which
tα,s+1 > tα,s.

Proof. Clearly α has even length, say 2x. Suppose the statement is false, and
let s0 be the last stage at which either initialization or Step 8 changes tα =
tα,s0 . (Notice that the construction never makes tα,s+1 < tα,s; equality and
increase are the only possibilities.) Let n be the number of toggle elements
for α that are < tα, and let m = n + lh(α). We prove by induction on n
that if every γ ⊃ α with lh(γ)− lh(α) ≥ n is initialized at every α-stage, and
αˆ∞ ∈ P , then tα,s+1 > tα,s at infinitely many stages s.

Let s + 1 be any αˆ∞-stage > s0. Step 7 applies, so we enumerate tα
into As+1. Before it can be enumerated into A again, Step 8 must apply at
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a subsequent α-stage s′ + 1 in order for it to be removed from A. When this

happens, we must have ϕe,s′(wα, le,s′) ≤ θ
Be,s′

s′ (t′α), since otherwise tα,s′+1 >
tα,s′ .

Now when αˆ∞ is eligible at s + 1, we initialize all nodes to its right.
The same process at the next αˆ∞-stage s′′ + 1, along with the enumeration
of tα back into As′′+1, restores As′′+1(t) = As+1(t) for all t except possibly
t = tβ,s+1 for some nodes β in the set

S = {β : αˆ∞ ⊆ β and lh(β) < m},

because α also initializes all nodes γ ⊃ α of length ≥ m at each αˆ∞-stage.
Consider a node β ∈ S and t = tβ,s+1. If β does not lie on P , then it is either
initialized infinitely often or eligible only finitely often, so t enters A only
finitely often. If β ∈ P but βˆ∞ /∈ P or lh(β) is odd, then t only enters A
finitely often, because Step 7 only applies to an R-node β at finitely many β-
stages. Finally, if βˆ∞ ∈ P , then tβ,s+1 must increase infinitely often, by our
inductive hypothesis, because every node γ ⊇ β with lh(γ) − lh(β) ≥ n − 1
satisfies lh(γ)− lh(α) ≥ n, so is initialized (by α) at every β-stage.

Now finitely many nodes β ∈ S may have a permanent toggle element
tβ. (Such β either lie to the left of P , or lie on P but have odd length, or
βˆ∞ /∈ P .) Fix an αˆ∞-stage s1 > s0 at which all these nodes β have already
moved tβ into or out of A for the last time.

Let β0 be the greatest node in S such that β0ˆ∞ ∈ P . Then we eventually
reach a β0ˆ∞-stage r + 1 > s1 after which no t < ϕAs1 (θBe,s1 (t′α)) ever again
enters or leaves A. (If there is no such β0, then let r + 1 = s1.) Now
stage r + 1 is a βˆ∞-stage for every β ∈ S such that βˆ∞ ∈ P , and so
tβ,r /∈ Ar for all such β. Fix a stage s2 > r such that tβ,s2 > ϕAr(θBe,r(t′α))
for all β ∈ S with βˆ∞ ∈ P . Then for each stage s + 1 ≥ s2, we have
As�ϕAr(θBe,r(t′α)) = Ar�ϕAr(θBe,r(t′α)), since every β ∈ S with βˆ∞ ∈ P has
left all its previous toggle elements out of A when it switched to larger ones
or when it was initialized. Therefore, for all α-stages s + 1 ≥ s2 at which
Step 7 or 8 applies, we have

Be,s�u = ΨAs�u = ΨAr�u = Be,r�u

where u = min(θBe,r(t′α), θBe,s(t′α)). Hence θ
Be,s
s (t′α) = θ

Be,r
r (t′α). But as Step

7 continues to apply at infinitely many α-stages s+1, ϕe(wα, le,s) must even-
tually grow larger than θBe,r(t′α), by the argument given in the basic module.
When this happens, Step 8 will choose tα,s+1 to be > tα, contradicting our
hypothesis.
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Lemma 3.13. The true path P is infinite.

Proof. We induct on the length of nodes on P , starting with the empty
node, which is eligible at every stage, and showing that every node on P has
a successor that is eligible infinitely often and initialized only finitely often.
Since every node has at most four immediate successors, we need only worry
about stages s + 1 at which the construction either makes fewer than s + 1
nodes eligible, or initializes its own successors. Steps 4 and 7 for R-nodes
do create such cases. However, by induction on the length of the node, each
node α ∈ P will go through Step 4 only finitely many times, after which
wα,s will remain unchanged. Moreover, initializations by α using Step 7 are
a concern only if αˆ∞ is eligible infinitely often In this case αˆ∞ ∈ P , so
Lemma 3.12 shows that lims tα,s = ∞. Hence the number n in Step 7 grows
without bound at αˆ∞-stages, and each node β ⊇ αˆ∞ on P is initialized
by α only finitely many times.

Lemma 3.14. For every t ∈ ω, limsAs(t) converges.

Proof. A toggle element for a P-node π can enter A at most once; it might
later leave A due to initialization, but it will never again be chosen as tπ,s.

For R-nodes α, notice that α moves only its own current toggle element
tα,s into or out of A at any stage (and then only in Step 7 or 8). Of course,
no number is a toggle element for more than one node. Say that t is a toggle
element for the R-node γ. If γ lies to the left of the true path, then γ is
eligible at only finitely many stages, so limsAs(t) must converge. If γ lies
to the right of the true path, then it is initialized infinitely often, with tγ,s

being chosen large each time, so every tγ,s enters A only finitely often before
γ is initialized again. Finally, suppose γ lies on P . If γˆ∞ ∈ P , then by
Lemma 3.12, tγ,s increases infinitely often, so each individual toggle element
for γ enters A only finitely often. If γˆ∞ /∈ P , then there are only finitely
many γˆ∞-stages, and these are the only stages at which γ enumerates any
element into A.

Lemma 3.15. Every requirement Pe is satisfied by this construction.

Proof. Let π ∈ P be a node of length 2e + 1, and let tπ = tπ,s0 , where s0

is a stage after which π is never initialized. If ϕe were the characteristic
function of A, then ϕe,s(tπ)↓ for some s > s0. But π puts tπ into A precisely
if ϕe(tπ) = 0, so this is impossible.
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Lemma 3.16. Every requirement R〈e,Θ,Ψ〉 is satisfied by this construction.

Proof. Let α be the node on P of length 2x = 2 · 〈e,Θ,Ψ〉, and assume
α is never initialized after stage s0. Suppose that ϕe is a predecessor ap-
proximation function for a set Be and ΨA = Be and ΘBe = A. Then wα

must eventually be chosen by α using Step 4 and never again changed, since
le,s grows arbitrarily large and ΘBe(tα,s0) must converge. Thereafter Steps
1, 2, 3, and 4 never again apply. Also, Steps 5 and 6 may apply at some
α-stages, but since neither of them ever changes tα,s, eventually we will get

Θ
Be,s
s � t′α,s = As� t′α,s and ΨAs

s � θBe,s
s (t′α,s) = Be,s� θ

Be,s
s (t′α,s), at which stages

Steps 7 and 8 will apply in alternation (since Step 7 puts tα,s into As+1 and
Step 8 either removes it or redefines tα,s+1 to be a new toggle element not
yet in A). Thus αˆ∞ ∈ P . But we have seen that then tα,s increases at
infinitely many α-stages via Step 8. Therefore there are infinitely many s for
which ϕe,s(wα, le,s) > θBe,s(t′α,s). But since ϕe is a predecessor approximation
function for Be, we know that lims ϕe,s(wα, le,s) must be finite. Call this limit
u. Now for every t ∈ ω there is a stage s such that Be�θBe(t) = Be,s�θBe(t)
and so θBe,s(t) = θBe(t). But use functions are by definition nondecreas-
ing, so θBe,s(t) ≤ θBe,s(t′α,s) < u, assuming we choose s large enough that
t ≤ t′α,s. Thus A = ΘBe is actually a computable set, being equal to ΘBe�u,
and Rx is satisfied. (Of course, Lemma 3.15 excludes the possibility of A
being computable, so in fact lims ϕe,s(wα, le,s) = ∞.)

This completes the proof of Lemma 3.16, and also of Theorem 3.11.

A close reading of the preceding proof yields more information. Our
thanks go to the referee of this paper for pointing out this corollary, which
shows that Theorem 2.7 is best possible.

Corollary 3.17. The degree a from Theorem 3.11 is (ω + 1)-c.e. Hence
there exists an (ω + 1)-c.e. set which is not Turing-equivalent to any order-
computable set.

Proof. We show that the set A constructed in Theorem 3.11 is (ω + 1)-c.e.
The only elements t to enter A are the toggle elements, say t = tα,s, in Step
7 of the construction. At that stage s we know the use θBe,s(t′α,s), of course,
and the restoration of Be keeps this use fixed right from the first time t enters
A. So we don’t know a bound on the number of moves of t in and out of A
until that first entrance of t into A, but as soon as it takes place, we can
say with certainty that 2+ θBe,s(t′α,s)−ϕe,s(wα,s, le,s) is a bound, because the

37



putative predecessor approximation function ϕe must increase on wα,s each
time t enters or leaves A, and as soon as it becomes > θBe,s(t′α,s), Step 8 will
switch from t = tα,s to t′α,s and t will never enter A again. Of course, if α is
injured before or after this happens, then after initialization the new toggle
element for α will be chosen much larger than t, so t will never enter A again.

Corollary 3.18. There exists a ∆0
2 set B such that each of B and B is the

range of a limitwise monotonic function, yet B is not order-computable.

Proof. Choose any set A from the degree a constructed in Theorem 3.11. Let

B = E ⊕ A = {2n : n ∈ E} ∪ {2n+ 1 : n ∈ A},

where as usual E is the set of even numbers (though used here for an un-
usual purpose). Then B and B both lie in degree a, hence cannot be order-
computable. However, it is simple to build a limitwise monotonic function
with range B. First set f(4x, s) = 4x for all x and s. Then, whenever an
element n enters the computable approximation As, we choose a fresh x and
set f(x, t) = 2n + 1 for t = s, s + 1, . . . as long as n ∈ At. If we find some
t > s with n /∈ At, we set f(x, t) = 4n. If later n re-enters A, a new x is
assigned to it. Then lims f(·, s) is total with range B. A similar construction
works for B.

Notice that in the proof of Corollary 3.18, the only property of A used in
the construction of B was that A ≤T ∅′. Thus this proof also establishes that
every ∆0

2 degree contains the range of some limitwise-monotonic function.
We now briefly consider randomness issues. For a finite binary string σ,

let K(σ) be the prefix-free Kolmogorov complexity of σ. (See [7] for more
on Kolmogorov complexity.) Recall that a set A is 1-random iff there is a c
such that K(A�n) ≥ n− c for all n. We will need the following well-known
result (often known as the “Kraft-Chaitin Theorem”). (See [1] for a proof of
this result and more on the interaction between algorithmic randomness and
computability theory.)

Theorem 3.19. Let {〈ni, σi〉 : i ∈ ω} be a c.e. set of pairs (which we
call axioms) consisting of a natural number and a binary string such that∑

i 2
−ni ≤ 1. Then there is a d such that K(σi) ≤ ni + d for all i.
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From this we derive the following proposition, which was also proven
independently by André Nies (unpublished result).

Proposition 3.20. No 1-random set is order-computable.

Proof. Let (ω,≺) be a computable ordering of type ω and let A be the set
order-computed by (ω,≺, E). Let ≺s be ≺ restricted to 0, . . . , s, and for
n ≤ s let the binary string σn

s of length n+ 1 be defined by

σn
s (i) =

{
0 if the ith element of ≺s is odd

1 if the ith element of ≺s is even.

There are two cases to consider. The first is handled by the following
lemma.

Lemma 3.21. Suppose there is a c such that every n has at most n + c
predecessors in ≺. Then A is computable.

Proof. For each n simultaneously, proceed as follows. Let a be the last ele-
ment of ≺n. Since a ≤ n, we know that a has at most n + c predecessors,
so the c.e. set Sn of all σn

s for s ≥ n has size at most c + 1. Note that Sn

contains A�(n+ 1).
Let k be the greatest number such that |Sn| = k for infinitely many n

and let m be such that |Sn| ≤ k for n > m. Build a computable tree T as
follows. Start with 2<ω. Whenever an n > m is found with |Sn| = k, prune
the tree to remove all paths extending 2n+1 − Sn. Since T is a computable
tree of finite width, all paths of T are computable. But A�(n+1) is in every
Sn, so A is a path of T .

Now suppose that for every c there is an n with more than n + c many
predecessors in ≺. Enumerate axioms as follows. For all c > 0 simultane-
ously, look for n > c and s such that n has k > n + c predecessors in ≺s.
Enumerate an axiom 〈n, σk

s 〉. For every t > s, if n has j − 1 predecessors in
≺t−1 but j predecessors in ≺t (in other words, if t ≺ n), enumerate an axiom
〈n+ j−k, σj

s〉. Note that if l is the number of predecessors of n in ≺ then we
eventually enumerate an axiom 〈n+ l− k,A�(l + 1)〉, and n+ l− k < l− c.

The total measure corresponding to all axioms enumerated for c is less
than

∑
i≥n 2−i = 2−n+1 ≤ 2−c (since n > c). So the total measure corre-

sponding to all enumerated axioms is less than
∑

c>0 2−c = 1, and hence by
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Theorem 3.19 there is a d such that for all enumerated axioms 〈m,σ〉 we
have K(σ) ≤ m + d. But, as noted above, for every c there is an l and an
i < l− c such that we eventually enumerate an axiom 〈i, A�(l+ 1)〉, whence
K(A�(l + 1)) < l − c+ d. Thus A cannot be 1-random.

We note that this lemma probably does not follow automatically from the
fact that every order-computable set is the range of a limitwise-monotonic
function. Indeed, we believe that there do exist 1-random sets that are
themselves the ranges of such functions.

4 Other Results and Open Questions

In [2], Downey, Khoussainov, J. Miller, Nies, and Yu consider questions about
order-computability from a somewhat different standpoint. Recall the defi-
nition of the degree spectrum of a relation R (of arbitrary arity) on a com-
putable structure A:

DgSpA(R) = {deg(S) : (∃B ≤T ∅)(B, S) ∼= (A, R)}.

(Normally R is not in the language of the structure A; otherwise its spectrum
contains only the degree 0.) Intuitively, this measures how complex the
relation R can be made. We require that B be computable as a way of
guaranteeing that DgSpA(R) measure the possible complexity of R uniquely;
one is not allowed to make R more complicated by making the functions and
relations of A noncomputable.

Thus a set A is order-computable iff the degree 0 lies in the degree spec-
trum of A as a unary relation on the structure (ω,<). The paper [2] asks
more general questions about this degree spectrum, for arbitrary c.e. sets A:
must it be upwards-closed under ≤T in the ∆0

2-degrees, must it contain a low
degree, etc. One pleasing result is a strong extension of our Theorem 2.6: the
paper shows that a c.e. degree a is high iff a contains a non-order-computable
c.e. set.

It would also be possible to ask about the spectrum of the structure
(ω,<,A), for an arbitrary set A. By definition, the spectrum of (the isomor-
phism type of) a structure M is the set of all Turing degrees of isomorphic
copies of M:

Spec(M) = {deg(N ) : N ∼= M}.
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(By our conventions, N ranges only over structures with domain ω.) Intu-
itively, this measures the intrinsic difficulty of computing a copy of M: each
degree d in Spec(M) is smart enough to build a structure isomorphic to M.
It is immediate that DgSp(ω,<)(A) ⊆ Spec(ω,<,A), and that the degree 0
lies in one iff it lies in the other, but the reverse inclusion need not hold.
(For instance, the spectrum of any finite set F as a relation on (ω,<) would
just be {0}, whereas the spectrum of the structure (ω,<, F ) would contain
all Turing degrees, by a result of Knight in [6].)

Another collection of questions concerns the derived order, as defined on
p. 5. The main questions to be asked about the derived order (for a ∆0

2 set
A that may or may not be order-computable) involve its order type. If it is
of type ω, of course, then A is order-computable. Indeed, if L has an initial
segment of order type ω + 1, then A is order-computable, since if y is the
rightmost element of this segment, then ({x ≺ y},≺, {x ∈ E : x ≺ y}) is
a computable copy of (ω,<,A). In particular, if the derived order is well-
ordered, then A is order-computable. Moreover, a set A is order-computable
iff there exists a computable approximation to A for which the above process
builds an order of type ω. (The forward direction follows by taking the
computable approximation given by the predecessor approximation function
for the order that order-computes A.)

We can still ask, for order-computable A, which other order types might
be built using other computable approximations. Of more interest are sets
A that are not order-computable. For such an A, we would like to find a
“smallest” linear order L such that some computable approximation to A
gives rise to an order ≺ of type L. This would measure, in some sense,
how close A is to being order-computable. As noted above, however, this L
cannot be an ordinal, which makes it difficult to define “smallest” rigorously.
What (countable) order types are possible? Is there an order type that
would characterize any interesting properties of sets? (For instance, recall
the characterization of the non-high c.e. degrees from [2], given above, as
those containing an order-computable c.e. set. For other order types L, what
can we say about the collection of sets (or the collection of their degrees)
with a computable approximation whose derived order is of type L?)

We close with a few other specific questions arising from results in this
paper.

• Can the non-order-computable degree in Theorem 3.11 be made low?

• Shore has asked whether we can use high permitting to build a noncom-
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putable set A below an arbitrary high set C such that every B ≤T A
is order-computable. (If we restrict our attention to c.e. sets, then the
answer is positive, because deg(C) must have a low noncomputable
c.e. degree below it.) Also, what if C is high but deg(C) is not c.e.?

• Can we do the same below a not-necessarily-high set C?

• Among well-known ∆0
2 sets, which are order-computable? Simpson

has asked about sets such as K and K0 (as defined in [8]) specifically.
Chaitin’s set Ω is not order-computable, of course, by Proposition 3.20.
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