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Abstract

We introduce a notion of bisimulation for graded modal logic. Using these bisimulations the
model theory of graded modal logic can be developed in a uniform manner. We illustrate this
by establishing the finite model property, and proving invariance and definability results.

1 Introduction

The language of graded modal logic (GML) has modal operators ♦>n (for n ∈ N) that can count
the number of successors of a given state: a state w in a model (W,R, V ) satisfies ♦>nϕ iff there
exist at least n R-related states that satisfy ϕ. Originally introduced in the early 1970s [9, 10],
the language has enjoyed an increased interest during the past few years, especially because of its
considerable expressive power. Formal logical and algebraic results on axiomatizability, decidability,
and expressive completeness over bounded trees have been reported in a number of papers [2, 3, 5, 7,
8, 12, 20], and the language has shown up in various guises in knowledge representation, generalized
quantifier theory, algebraic logic, and fuzzy reasoning [6, 13, 14, 17, 18].

This note is concerned with graded modal logic as a description language for reasoning about
models. It is part of a larger enterprise to study the model theory — and in particular, the expressive
power — of restricted description languages such as modal and temporal languages, terminological
logics and feature logics (cf. [1, 15, 16, 19]). Bisimulations have proved to be a very powerful tool
in this area, but so far a version of bisimulation that is appropriate for graded modal logic has not
been proposed.1 As a consequence, the model theory of graded modal logic is not as well developed
as the model theory of, say, standard modal or temporal logic. In this note we propose a notion
of bisimulation, called g-bisimulation that ‘fits’ GML exactly in the sense that a first-order formula
is invariant under g-bisimulations iff it is equivalent to a graded modal formula (cf. Theorem 4.3
below).

The remainder of this note is organized as follows. The next section introduces the main notions
needed. In Section 3 g-bisimulations are defined. In Section 4 we first give a quick and intuitive
proof for the finite model property of GML using g-bisimulations, and then prove the above invariance
theorem, as well as two results on definability. Section 5 contains some concluding comments.

2 Basic definitions

Graded modal formulas are built up using propositional variables p, q, . . ., the constants > and ⊥,
boolean connectives ¬, ∧, and the unary modal operators ♦>n, for n> 1. We use LGML to denote
this language.

1Typist’s comment: In fact, such a notion has been proposed by van der Hoek in [12], but apparently has been
overlooked by the author. However, the cited paper did not establish the invariance and definability results presented
here, and the definition itself was slightly different. in fact, simpler. The question remains whether the results of the
present note can be obtained with the definition of graded bisimulations proposed by van der Hoek.
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A model is a triple M = (W,R, V ), where W is a non-empty set of states, R is a binary relation
on W , and V is a valuation, that is: a function assigning a subset of W to every proposition letter.
The satisfaction relation is defined in the familiar way for the atomic and boolean cases, while for
the modal operators we put

M,w |= ♦>nϕ ⇐⇒ ∃ 6=v1 . . . vn
∧

16i6n(Rwvi ∧M, vi |= ϕ),

where ∃6=v1 . . . vn Φ ≡ ∃v1 . . . vn (
∧

16i<j6n(vi 6= vj) ∧ Φ). If X is a set of states, we write X |= ϕ to
denote that v |= ϕ for all v ∈ X.

The graded modal type of a state is the set of all graded modal formulas it satisfies: tp(w) = {ϕ ∈
LGML | w |= ϕ}; if necessary we record the model M in which w lives as a subscript: tpM(w). Two
states w, v are graded modally equivalent if tp(w) = tp(v) (notation: w ≡g v).

Let L1 be the first-order language with unary predicate symbols corresponding to the proposition
letters in LGML, and with one binary relation symbol R. Models can be viewed as L1-structures in
the usual first-order sense. The standard translation takes graded modal formulas ϕ into equivalent
formulas STx(ϕ) in L1. It maps proposition letters p to unary predicate symbols Px, commutes with
the booleans, and the modal cases are given by

STx(♦>nϕ) = ∃6=y1 . . . yn
∧

16i6n(Rxyi ∧ STyi(ϕ)).

We sometimes write ϕ∗(x) as a shortcut for STx(ϕ). For any model M and state w in M , we
have M,w |= ϕ iff M |= ϕ∗[w], where the latter denotes first-order satisfaction of ϕ∗(x) under the
assignment of x := w.

3 G-bisimulations

In this section we introduce the main notion of this note: g-bisimulations. In [19] bisimulations
are advocated as the central tool in the model theory of modal logic; see [15, 16] for case studies
implementing this strategy for Since, Until logic, and for negation-free modal logics. In Section 4
below we will use g-bisimulations to establish the finite model property, and to prove invariance
and definability results for graded modal logic, thus showing that g-bisimulations can play a similar
central role in the model theory of graded modal logic.

By way of introduction we first consider bisimulations.

Definition 3.1. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two models. A bisimulation between
M and M ′ is a relation Z ⊆ W×W ′ satisfying the following requirements:

1. Z is non-empty;
2. if xZx′, then x |= p iff x′ |= p, for all proposition letters p;
3. if xZx′ and xRy, then there exists y′ ∈ W ′ with yZy′ and x′R′y′;
4. if xZx′ and x′R′y′, then there exists y ∈ W with yZy′ and xRy.

We write Z: (M,w) - (M ′, w′) to denote that Z is a bisimulation between M and M ′ with wZw′.

Ordinary modal formulas are preserved under bisimulations: if (M,w) - (M ′, w′), then for any
modal formula ϕ, we have M,w |= ϕ iff M ′, w′ |= ϕ. On the contrary, graded modal formulas are not
preserved under bisimulations. To see this, consider the following two models M1 and M2, where
M1 = ({0, 1, 2}, {(0, 1), (0, 2)}, V1), M2 = ({3, 4}, {(3, 4)}, V2), and V1, V2 verify all proposition letters
true in all states. The relation Z = {(0, 3), (1, 4), (2, 4)} is a bisimulation between M1 and M2. But
0 6≡g 3, as 0 |= ♦>2> and 3 6|= ♦>2>.

To define a truth-preserving notion of bisimulation for graded modal logic, we need the following
definitions. If X is a set, we write |X| to denote its cardinality, and 2X

n to denote the collection of
all subsets of X of cardinality n> 1. Also, we write xR•Y to denote that xRy for all y ∈ Y . In this
notation we have: M,w |= ♦>nϕ iff there is Y ∈ 2W

n with wR•Y and Y |= ϕ.
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Definition 3.2. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two models. A g-bisimulation between
M and M ′ is a tuple Z = (Z1, Z2, . . .) of relations Zn ⊆ 2W

n ×2W ′
n satisfying the following requirements:

1. Z1 is non-empty;
2. if {x}Z1 {x′}, then x |= p iff x′ |= p, for all proposition letters p;
3. if {x}Z1 {x′} and xR•Y , where Y ∈ 2W

n , then there exists Y ′ ∈ 2W ′
n with Y Zn Y

′ and x′R′•Y
′;

4. if {x}Z1 {x′} and x′R′•Y
′, where Y ′ ∈ 2W ′

n , then there exists Y ∈ 2W
n with Y Zn Y

′ and xR•Y ;
5. if X ZnX

′, then
(a) for every x ∈ X there exists x′ ∈ X ′ with {x}Z1 {x′}, and
(b) for every x′ ∈ X ′ there exists x ∈ X with {x}Z1 {x′}.

We write M,w-g M
′, w′ if there is a g-bisimulation Z between M and M ′ with {w}Z1 {w′}.

To grasp the intuition behind Def. 3.2, reconsider the definition of a (normal) bisimulation. There,
bisimilar states satisfy the same (ordinary) modal formulas because they satisfy the same proposition
letters (Def. 3.1, item 2), and because the relevant relational patterns present in one model are
mirrored in the other (Def. 3.1, items 3 and 4). To guarantee that g-bisimilar states satisfy the same
graded modal formulas, one requires, firstly, that they satisfy the same proposition letters (Def. 3.2,
item 2). Next, to preserve formulas of the form ♦>nϕ, sets of successors of size n present in one model
should be mirrored in the other (Def. 3.2, items 3 and 4). If two such sets ‘mirror’ each other, and
all the states in the one set agree on a formula, then all the states in the other should do so as well
(Def. 3.2, item 5(a,b)). Formally, this is expressed in the following proposition.

Proposition 3.3. If M,w-g M
′, w′, then w ≡g w

′.

Proof. Let Z be a g-bisimulation between (M,w) and (M ′, w′). The proof is by induction on formulas.
The atomic and boolean cases are trivial. For the modal case, assume that w |= ♦>nϕ. Then there
exists Y ∈ 2W

n with wR•Y and Y |= ϕ. By item 3 of Def. 3.2, there exists Y ′ ∈ 2W ′
n with Y Zn Y

′ and
w′R′•Y

′. We are done once we have shown that Y ′ |= ϕ, for then w′ |= ♦>nϕ. To this end, pick any
y′ ∈ Y ′. By item 5(b) of Def. 3.2, there exists y ∈ Y with {y}Z1 {y′}. As Y |= ϕ, we get y |= ϕ and,
by induction hypothesis, this implies y′ |= ϕ.

As a corollary, the models M1 and M2 considered above are not g-bisimilar.
By restricting the definition of g-bisimulation to just a finite tuple (Z1, . . . , Zk) we arrive at the

notion of gk-bisimulation; we write M,w -gk
M ′, w′ if there is a gk-bisimulation between w and w′.

This notion of bisimulation is appropriate for the fragment LGML in which all modal operators ♦>n

have subscripts n6 k. In particular, for k = 1 we get a notion that is equivalent to the standard
notion of bisimulation defined in Def. 3.1.

Let us introduce another restriction, which does not limit the length of the tuple (Z1, . . .), but
rather the number of times the clauses in Def. 3.2 can be applied starting from a given pair of points.

Definition 3.4. Let M = (W,R, V ) and M ′ = (W ′, R′, V ′) be two models, and let m> 0 be a natural
number. A g-bisimulation up to m between M and M ′ is a sequence of tuples Zi = (Zi

1, Z
i
2, . . .),

06 i6m, of relations Zi
n ⊆ 2W

n ×2W ′
n satisfying the following requirements:

1. Z0
1 is non-empty, and Zm

n ⊆ . . . ⊆ Z0
n for each n> 1;

2. if {x}Z0
1 {x′}, then x |= p iff x′ |= p, for all proposition letters p;

3. if {x}Zi+1
1 {x′} and xR•Y , where i < m and Y ∈ 2W

n , then ∃Y ′ ∈ 2W ′
n with Y Zi

n Y
′ and x′R′•Y

′;
4. similar to item 3;
5. like item 5 in Def. 3.2, but with Zi

n and Zi
1 instead of Zn and Z1, for all 06 i6m.

We write M,w-m
g M ′, w′ if there is a g-bisimulation up to m between M and M ′, say Z0, . . . , Zm,

with {w}Z0
1 {w′}. The notion of a gk-bisimulation up to m is defined similarly. The notation -m

gk
has the obvious meaning.
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Let M = (W,R, V ) be a model, and assume w ∈ W . For each i ∈ N we define the i-hull Hi(w)
around w in M as follows. The 0-hull H0(w) is simply {w}; the (i+1)-hull is the set Hi+1(w) =
R(Hi(w)) = {y ∈ W | ∃x ∈ Hi(w): xRy}.

We write Mw to denote the submodel of M that is generated by w. That is, Mw is the submodel
of M whose domain is

⋃
i>0Hi(w). Clearly, for any model M and state w in M , (M,w) -g (Mw, w).

If M is generated by w, we define the restriction of M to depth m, notation: M�m, to be the
submodel of M whose domain is the set

⋃
06i6mHi(w).

Proposition 3.5. Let M be a model generated by a world w. Then (M,w) -m
g (M�m,w).

The degree of a graded modal formula is the largest number of nested modal operators occurring
in it. The index of a formula is the highest n such that the operator ♦>n occurs in the formula. Let
w ≡m

g w′ (resp. w ≡m
gk
w′) denote that w and w′ verify the same graded modal formulas of degree at

most m (and index at most k).

Proposition 3.6. Let M,M ′ be two models, and let w ∈ W , w′ ∈ W ′, m> 0.
If (M,w) -m

g (M ′, w′), then w ≡m
g w′.

If (M,w) -m
gk

(M ′, w′), then w ≡m
gk
w′?

In Theorem 4.5 we will establish, in particular, the converse of the latter implication.

4 Results

In this section we first give a new and intuitive proof of the finite model property for graded modal
logic using g-bisimulations. We then use g-bisimulations to prove the main results of this note:
invariance and definability.

4.1 Finite model property

The finite model property for graded modal logic was first established in [11]; see also [3, 12]. The
proof presented below is attractive because it clearly brings out the two obvious reasons why LGML

has the finite model property: to determine the truth or falsehood of a graded modal formula, only
R-paths wR . . . Rv of finite length are needed, and every state on such a path only needs finitely
many successors.

Let’s get to work. Fix a satisfiable formula ϕ with degree m and index k. Let M and w be such
that M,w |= ϕ. We will construct a finite submodel of M that is still a model for ϕ. First, we may
assume that M = Mw. Consider M�m; it only has finite R-paths, and (M�m,w), w |= ϕ. Note that
M�m need not be finite, as it may be infinitely branching.

Consider the sublanguage LGML(ϕ) in which all formulas are built up using only proposition
letters that occur in ϕ. It is easily verified that there are only finitely many non-equivalent formulas
in LGML(ϕ) with degree at most m and index at most k.

Our final model (M�m)6k is defined as follows. Its domain is the union of certain subsets
H ′0, . . . , H

′
m of the domain of M�m, where H ′i ⊆ Hi(w). Here H ′0 = H0(w) = {w}, and to define

H ′i (for 16 i6m) do the following:

set H ′i = ∅
for all x ∈ H ′i−1

for each of the finitely many non-equivalent LGML(ϕ)-formulas ψ
of degree at most (m−i) and index at most k

select as many as possible (but at most k) R-successors y of x with y |= ψ
add these states to H ′i

end.
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The accessibility relation and valuation of the model (M�m)6k are simply the restrictions to its
the domain. Clearly, (M�m)6k is finite, and (M�m)6k, w-m

gk
M�m,w. Putting things together, we

arrive at the following result:

Theorem 4.1. LGML has the finite model property.

4.2 Invariance

We need the following notion. A model M is ω-saturated (in the sense of first-order logic) if whenever
∆ is a set of L′1-formulas, where L′1 extends L′ by the addition of finitely many new individual
constants, and ∆ is finitely satisfiable in an L′1-expansion of M , then ∆ is satisfiable in this expansion.

Lemma 4.2. Let M and M ′ be two ω-saturated models, and let w ∈ W , w′ ∈ W ′.
Then w ≡g w

′ iff w-g w
′.

Proof. The ‘⇐’ implication is Proposition 3.3. For ‘⇒’ implication, assume that w ≡g w
′, and define

a series of relations Z = (Z1, . . .) between the finite subsets of W and W ′ by putting (for n> 1):

X ZnX
′ iff |X| = |X ′| = n and

∀x ∈ X ∃x′ ∈ X ′: x ≡g x
′ and

∀x′ ∈ X ′ ∃x ∈ X: x ≡g x
′.

Let us check that Z is a g-bisimulation between w and w′. First, as w ≡g w
′, we have {w}Z1{w′},

so Z1 is non-empty. Condition 2 from Def. 3.2 is trivially fulfilled.
As to condition 3, assume {v}Z1 {v′} and vR•Y , where Y ⊆ W and |Y | = n. We need to find

a finite set Y ′ ⊆ W ′ with v′R′•Y
′ and Y ZnY

′. Consider the graded modal types of the states in Y ;
clearly, some of them may coincide, so let

{T1, . . . , Ts} = { tp(y) | y ∈ Y }, where s6 n.

Next, we need to record, for each type Ti, how many states in Y have this type:

ni = |{y ∈ Y | tp(y) = Ti}|, for each 16 i6 s.

Then all ni > 0 and n1 + . . .+ns = n. Now consider the following collection ∆ of first-order formulas
with free variables x and yik, for 16 i6 s, 16 `6 ni:⋃

16i6s

(
{yik 6= yi` | 16 k < `6 ni} ∪ {R(x, yi`) | 16 `6 ni} ∪ {ϕ∗(yi`) | ϕ ∈ Ti, 16 `6 ni}

)
.

We want to show that the set of formulas ∆ is satisfied at x := v′ in M ′. If we succeed in doing
so, then, for each type Ti we have found ni successors of v′ satisfying Ti. Putting these successors
together gives us a set Y ′ of size n. Indeed, there will be ni successors of type Ti due to the conjuncts
yik 6= yi`, and successors of different types will be distinct, as types are maximal. Moreover, it is
obvious that for each state y ∈ Y , there will be a state y′ ∈ Y ′ with {y}Z1 {y′}, and conversely.
Thus Y Zn Y

′, and we have established condition 3.
Let us see why ∆ is satisfiable at x := v′. Since M ′ is ω-saturated, it suffices to show that ∆ is

finitely satisfiable at v′. Assume for the sake of contradiction that this is not the case. Then there
exist finite sets Φi ⊆ Ti, 1 6 i 6 s, (or even formulas, since Ti are closed under finite conjunctions)
such that

M ′ |= ¬
∧

16i6s ∃6=yi1 . . . yini

∧
16`6ni

(R(x, yi`) ∧ Φ∗i (y
i
`))[v

′]

This is equivalent to
M ′, v′ |= ¬(♦>n1Φ1 ∧ . . . ∧ ♦>nsΦs).
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But as M, v |= ♦>n1Φ1 ∧ . . . ∧ ♦>nsΦs, this contradicts to {v}Z1{v′}, since the latter implies v ≡g v
′.

Hence, ∆ is (finitely) satisfiable at v′, as required.
Finally, condition 4 is proved analogously to condition 3, and condition 5 is immediate from the

construction of Z.

An L1-formula α(x) is invariant under g-bisimulations if for all models M and M ′, all states w
in M and w′ in M ′, whenever (M,w) -g (M ′, w′), we have M |= α[w] iff M ′ |= α[w′].

Below, if ∆(x)∪ {α(x)} is a set of first-order formulas with free variable x, then we write ∆ |= α
if, for all models M and states w in M , M |= ∆[w] implies M |= α[w].

Theorem 4.3 (Invariance). Assume that L1 is countable. An L1-formula α(x) is (equivalent to the
translation of) a graded modal formula iff it is invariant under g-bisimulations.

Proof. The ‘⇒’ implication is simply Proposition 3.3. For the other direction, assume that α(x) is
invariant under g-bisimulations. Consider the set of graded modal consequences of α:

GML(α) = {ϕ∗(x) | α(x) |= ϕ∗(x) }.

In order to prove that α(x) is equivalent to the translation of some graded modal formula, it suffices to
show that GML(α) |= α. Indeed, if GML(α) |= α, then, by compactness, ∆(x) |= α(x) for some finite
subset ∆ ⊆ GML(α). Hence |=

∧
∆(x) → α(x). Trivially, |= α(x) →

∧
∆(x), so |= α(x) ↔

∧
∆(x)

and we are done, as ∆(x) is a finite set of translations of graded modal formulas.
It remains to show that GML(α) |= α. Take any M and w and assume that M |= GML(α)[w].

We need to show that M |= α[w]. Consider the following set of L1-formulas:

Γ(x) = {ϕ∗(x) |M,w |= ϕ }.

Obviously, M |= Γ[w].

Claim 1. The set of formulas Γ(x) ∪ {α(x)} is satisfiable.

I Assume not, then by compactness, for some finite subset Γ′ ⊆ Γ, we have |= α → ¬
∧

Γ′. Hence
¬
∧

Γ′ ∈ GML(α). This implies M |= ¬Γ′[w], in contradiction with M |= Γ[w]. J

So, there is a model N and its state v such that N |= α[v] and N |= Γ[v]. The latter is equivalent
to N, v |= tp(w) and hence to w ≡g v. Now, to conclude the proof, we want to ‘lift’ α from (N, v) to
(M,w). To do so, take ω-saturated elementary extensions (N+, v) and (M+, w) of (N, v) and (M,w),
respectively (cf. [4, Theorem 6.1]). Then tpM+(w) = tpN+(v), and so by Lemma 4.2 we get that
(M+, w) -g (N+, v).

Therefore, from N |= α[v] it follows that N+ |= α[v] by elementary extension, then M+ |= α[w]
by invariance of α(x) under g-bisimulations, and finally M |= α[w], as required.
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4.3 Definability

To simplify the presentation, we will work with pointed models ; these are structures of the form
(M,w), where w is a state in M , called the distinguished point of (M,w). We will assume that g-
bisimulations between two pointed models link the singletons containing their distinguished points.

Let K be a class of pointed models. Then K is definable by a set of graded modal formulas if there
exists a set of formulas ∆ such that K = {(M,w) | (M,w) |= ∆}; K is definable by a single formula
if it is definable by means of a singleton set; K denotes the class of pointed models outside K.

K is closed under ultraproducts (ultrapowers) if every ultraproduct (ultrapower) of models in K
is itself in K; K is closed under g-bisimulations if every model g-bisimilar to a model in K is in K.

Below, Th(M,w) = {ϕ ∈ LGML | (M,w) |= ϕ} and Th(K) = {ϕ ∈ LGML | K |= ϕ}.

Theorem 4.4 (Definability 1). Assume that the graded modal language LGML is countable, and let
K be a class of pointed models. Then

1. K is definable by a set of graded modal formulas iff K is closed under g-bisimulations and
ultraproducts, while K is closed under ultrapowers.

2. K is definable by a single graded modal formula iff K is closed under g-bisimulations and
ultraproducts, while K is closed under ultraproducts.

Proof. 1. The only if direction is easy. For the converse, we can ‘bisimulate’ familiar arguments
from first-order model theory. Assume K is closed under ultraproducts and g-bisimulations, while K
is closed under ultrapowers. We will show that ∆ := Th(K) defines K. First, K |= ∆.

Second, assume that (M,w) |= ∆; we need to show (M,w) ∈ K. Let I be the set of all finite
subsets of Th(M,w). Each i ∈ I has a model (Ni, vi) |= i in K. By standard model-theoretic
arguments there exists an ultraproduct (N, v) =

∏
U(Ni, vi) such that Th(N, v) = Th(M,w). As K

is closed under ultraproducts, (N, v) ∈ K.
Now, let U ′ be a countably incomplete2 ultrafilter, and consider the ultrapowers

(N∗, v∗) :=
∏

U ′(N, v) and (M∗, w∗) :=
∏

U ′(M,w).

Both models are ω-saturated (cf. [4, Theorem 6.1]), and moreover w∗ ≡g v
∗. Hence, by Lemma 4.2,

(N∗, v∗)-g (M∗, w∗). So, (N∗, v∗) ∈ K by closure under ultraproducts, and (M∗, w∗) ∈ K, by closure

under g-bisimulations. Finally, (M,w) ∈ K, since K is closed under ultrapowers.

2. Again, the only if direction is easy. Assume K,K satisfy the stated conditions. Then both are
closed under ultrapowers, hence, by item 1, there are sets of graded modal formulas ∆,∆′ defining
K and K, respectively. Obviously, ∆ ∪ ∆′ |= ⊥, so by compactness for some ϕ1, . . . , ϕn ∈ ∆ and
ϕ′1, . . . , ϕ

′
m ∈ ∆′, we have

∧
i ϕi |=

∨
j ¬ϕ′j. Then K is defined by

∧
i ϕi.

2An ultrafilter is countably incomplete if it is not closed under countable intersections (of course, it is still closed
under finite intersections).
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To conclude this, section we present an alternative and more manageable characterization of the
properties definable in graded modal logic.

Theorem 4.5 (Definability 2). Assume that the graded modal language LGML contains only finitely
many proposition letters, and let K be a class of pointed models. Then K is definable by a single
graded modal formula iff, for some k,m ∈ N, K is closed under -m

gk
(gk-bisimulations up to m).

Proof. Clearly, if K is definable by a single formula of index k and degree m, then it is closed under
-m

gk
. To prove the converse, assume that k,m are such that K is closed under -m

gk
. Let (M,w) ∈ K,

and define ϕk,m
M,w to be the conjunction of all formulas in Th(M,w) of degree at most m and index

at most k — there are only finitely many non-equivalent such formulas, as we are working in a
finite-variable language. Hence we may assume ϕk,m

M,w to be a (finitary) formula in LGML.
Using the finite character of the language again, we find that there are only finitely many non-

equivalent formulas of the form ϕk,m
M,w for all (M,w) ∈ K. Let Φk,m be their disjunction. Then Φk,m

defines K. For, assume that (M,w) |= Φk,m; we need to show that (M,w) ∈ K. From (M,w) |= Φk,m

it follows that there is a pointed model (M ′, w′) ∈ K that agrees with (M,w) on all graded modal
formulas of degree at most m and index at most k, i.e., w ≡m

gk
w′. The latter fact implies that

(M,w) -m
gk

(M ′, w′). To see this, define tuples of relations Zi = (Zi
1, . . . , Z

i
k), 06 i6m, by

• {x}Zi
1 {x′}, for 06 i6m, iff x ≡i

gk
; and

• X Zi
nX

′, for 2 6 n 6 k and 0 6 j < m, iff |X| = |X ′| = n and ∀x ∈ X ∃x′ ∈ X ′: {x}Zi
1 {x′}

and ∀x′ ∈ X ′ ∃x ∈ X: {x}Zi
1 {x′}.

This defines a gk-bisimulation up to m between (M,w) and (M ′, w′). As (M ′, w′) ∈ K and K is
closed under -m

gk
, this implies that (M,w) ∈ K, and we are done.

5 Conclusion

In this note g-bisimulations were introduced as a tool for exploring the model theory of graded modal
logic. Their usefulness was demonstrated by their use in obtaining both known results (the finite
model property) and new ones (invariance and definability).

Now that a working notion of bisimulation is available for graded modal logic, it may be used
to obtain further results on the model (and frame) theory of graded modal logic. Obvious ques-
tions to be answered next include the following: Can g-bisimulations be used to prove a Goldblatt-
Thomason style result about the classes of frames definable in LGML? What is the appropriate kind
of Ehrenfeucht-Fräıssé style games needed to prove analogs of the results in this note for the class of
finite models? Fragments of LGML have been used in terminological reasoning [6]; can these fragments
be characterized by adapting the notion of g-bisimulation?
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