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Abstract

This paper establishes a sound and complete semantics for the impure
logic of ground. Fine [2012a] sets out a system for the pure logic of ground,
one in which the formulas between which ground-theoretic claims hold
have no internal logical complexity; and it provides a sound and complete
semantics for the system. Fine [2012b, §§6-8] sets out a system for an im-
pure logic of ground, one that extends the rules of the original pure system
with rules for the truth-functional connectives, the first-order quantifiers,
and λ-abstraction. However, no semantics has yet been provided for this
system. The present paper partly fills this lacuna by providing a sound
and complete semantics for a system GG containing the truth-functional
operators that is closely related to the truth-functional part of the system
of [Fine, 2012b].
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1 Introduction

This paper establishes a sound and complete semantics for the impure logic of
ground. Fine [2012a] sets out a system for the pure logic of ground, one in which
the formulas between which ground-theoretic claims hold have no internal logical
complexity; and it provides a sound and complete semantics for the system.
Fine [2012b, §§6-8] sets out a system for an impure logic of ground, one that
extends the rules of the original pure system with rules for the truth-functional
connectives, the first-order quantifiers, and λ-abstraction. However, it does not
provide a semantics for this system. The present paper partly fills this lacuna
by providing a sound and complete semantics for a system GG containing the
truth-functional operators that is closely related to the truth-functional part of
the system of [Fine, 2012b].1

The present section provides an informal introduction to the leading ideas
behind the paper. In the rest of the paper, we describe the target system GG

1The main differences between the two systems are that we now only allow finitely many
formulas to occur to the left of the ground-theoretic operator and that we have added the
Irreversibility Rule, which should have been part of the original system.
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and the proposed semantics and provide a proof that the system is sound and
complete for the proposed semantics. §§2 and 3 provide the formal specifications
of the system GG and its semantics, and establish soundness and consistency
for the system. The ensuing proof of completeness is Henkin-style. In §4, we
define the canonical model for a given set of grounding claims S, and discuss its
principal features. §§5-7 establish the adequacy of the construction. §8 proves
completeness, and §9 concludes with a sketch of directions for further work.

The reader may find it helpful to have the above two papers at hand, but
let us remind her of some key features of the earlier systems. A distinction is
drawn between weak and strict ground. Intuitively, we might think of a strict
ground as being on a lower explanatory level than what it grounds, while a weak
ground can also be at the same explanatory level. Thus A will always be a weak
ground for itself though never a strict ground. We also introduce the notion
of a partial, as opposed to a full, ground. A weak partial ground is a part of a
weak full ground, while a strict partial ground is a weak partial ground which
cannot be reversed. Thus A,B, together, will be a strict full ground for A ∧B,
while A or B on their own will be strict partial grounds for A ∧B though not,
in general, strict full grounds; and if it is granted that, for distinct bodies x, y
and z, x being of the same mass as y and y the same mass as z weakly fully
grounds x being of the same mass as z, then x being of the same mass as y will
be a weak partial ground for x being of the same mass as z without being either
a strict partial ground or a weak full ground. We are thereby led to a fourfold
classification of ground - strict full, weak full, strict partial, and weak partial -
for which we use the respective symbols <, ≤, ≺, and � and the systems we
consider will treat each of these four types of ground as syntactic primitives.

In the impure system, there are two principal sets of rules concerning the in-
teraction between ground and the truth-functional connectives. There are, first
of all, the introduction rules, which specify the grounds for a truth-functionally
complex statement of a given form in terms of simpler statements. Thus the fact
that A,B strictly grounds A∧B serves as an introduction rule for conjunction.
There are, in the second place, the elimination rules, which tell us how an arbi-
trary ground for a truth-functionally complex statement of a given form must be
related to the grounds for simpler statements. Thus in the case of conjunction,
the elimination rule will tell us that when a set of statements ∆ strictly grounds
A ∧B, it must be possible to split ∆ into two (perhaps overlapping) parts, one
of which weakly grounds A and the other of which weakly grounds B.

The development of a semantics for the logic of ground faces two main tasks:
it must provide an account of the content of the statements that go to make
up a grounding claim; and it must provide an account of the ground-theoretic
connection that should hold among the contents of those statements when the
claim is true. The two tasks go hand in hand, since the account of content
should be precisely what is needed to provide the resources by which a suitable
account of the ground-theoretic connections might be given.

In dealing with these two tasks, we have found it convenient to adopt a form
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of truthmaker semantics.2 The main idea behind such a semantics is that
truthmaking should be exact, i.e., a truthmaker should bear as a whole upon
the statement that it makes true. Since ground is also exact, which is to say
that the grounds should bear as a whole upon what is grounded, it is perhaps
no surprise that a semantics for the logic of ground should also be exact. The
exactitude of ground will be mirrored in the exactitude of the truth-makers.3

Another feature of truthmaker semantics – at least within the setting of
classical logic – is that it is bilateral. The full content, or meaning, of a statement
is not simply given by its truth-makers but also by its falsity-makers. Thus
we may take the truth-condition (sometimes called the positive content) of a
statement to be given by the set of its truth-makers, the falsity-condition (or
negative content) to be given by the set of its falsity-makers, and its content (or
full content) to be given by the ordered pair consisting of its truth-condition,
or positive content, and its falsity-condition, or negative content.

Our semantics for the impure logic of ground will take over these features;
it will be both exact and bilateral. However, the standard “flat” form of truth-
maker semantics, described in [Fine, 2017a], will not serve our purpose, since it
does not provide us with a sufficiently fine-grained conception of content. The
problem is that our impure logic of ground is highly hyper-intensional; it dis-
tinguishes in a very radical way between logically equivalent statements. Thus:
even though A∧B is logically equivalent to B∧A, A∧B will be a weak ground
for A∧B but not generally for B ∧A; even though A∨B is logically equivalent
to B ∨ A, A ∨ B is a weak ground for A ∨ B but not generally for B ∨ A; and,
even though A is logically equivalent to ¬¬A, ¬¬A will be a weak ground for
¬¬A but not for A.

Now the standard truthmaker semantics is indeed hyper-intensional; it will
distinguish, for example, between the truthmakers for A and for A ∨ (A ∧ B),
since the fusion of a truth-maker for A and for B will be a truth-maker for
A ∧ B and hence for A ∨ (A ∧ B), yet not in general for A. However, it is not
hyper-intensional enough. For under the standard semantics, the truth- and
falsity-makers of A ∧ B and B ∧ A, and of A ∨ B and B ∨ A, and of A and
¬¬A will be the same. We therefore require a more fine-grained conception of
content and a more refined conception of truth- and falsity-making by which it
might be defined.

To this end, it will be helpful to see how this more refined conception of
truth-making of our semantics might have evolved, through successive differen-
tiation, from the original, less refined, notion of truthmaking of the standard
semantics. (This reflects the actual development of our semantics). Consider
first the relationship between A∧B and B ∧A. Under the standard semantics,
the truthmakers for A∧B are the fusions of the form (atb) and the truthmakers
for B ∧ A are the fusions of the form (b t a), for a a truthmaker for A and b a
truthmaker for B, and, since (a t b) is assumed to be the same as (b t a), the
truthmakers for A ∧ B and for B ∧ A will be the same. It turns out that the

2A survey of this style of semantics can be found in [Fine, 2017a].
3This connection between ground and truthmaking is further discussed in [Fine, 2020].
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falsitymakers for A ∧ B and for B ∧ A are also the same; and so the standard
semantics will be incapable of distinguishing, as it should, between the contents
of A ∧B and B ∧A.

We may overcome this problem by adopting a more fine-grained conception
of fusion, which we now call combination and which is not subject to the usual
“leveling” constraints, such as associativity, commutativity and idempotence.
The combination [a.b] of a and b, for example, need not be taken to be the same
as the combination [b.a] of b and a. We also allow, in the spirit of generality, for
combination to apply to any finite number of elements (or to an infinite number
of elements in some further applications we will consider). In the special case
in which combination applies to zero items, we will get a null item, which
corresponds to the fusion of zero states in the standard semantics; and, in the
special case of the unit combination of a single item a, combination will take us
up a level to a “raised” version [a] of the item, which, in contrast to the unit
fusion, is never the same as the item itself. The semantics for conjunction is now
explained in terms of combination rather than fusion and, since the combination
[a.b] of a and b need not be the same as the combination [b.a] of b and a, the
previous difficulty is avoided.

Similar problems beset the relationship between (A∨B) and (B∨A). Under
the standard semantics, the truthmakers for (A ∨ B) are the truthmakers for
A and for B (and possibly also for A ∧ B) and so will be the same as the
truthmakers for (B ∨ A). It turns out that the falsity-makers for (A ∨ B) and
for (B ∨A) are also the same; and so the standard semantics will be incapable
of distinguishing, as it should, between the contents of (A ∨B) and (B ∨A).

We overcome this problem by supposing that, in addition to the operation of
combination, there is an operation of choice which applies to any finite number
(or, more generally, to any number) of items and which is, again, not subject
to leveling. The choice [a + b] between a and b, for example, need not be the
same as the choice [b + a] between b and a. Choices are in general different
from combinations but, in the special case of a single element a, we shall find
no need to distinguish between the unit choice of a and the unit combination
[a]. The semantics for disjunction is now explained in terms of choice and, since
the choice [a + b] between a and b need not be the same as the choice [b + a]
between b and a, we will be in a position to distinguish between the contents of
(A ∨B) and (B ∨A).

This change to the standard semantics brings a more sweeping change in
its wake. Before, we could identify the truth-condition of a statement with
the set of its truth-makers and the falsity-condition of the statement with the
set of its falsity-makers and we were able, moreover, to provide a recursive
specification of the truth-and falsity-makers of a conjunction or disjunction in
terms of the truth- and falsity-makers of their immediate components (and
their fusions). We could therefore take as our semantic primitives the notions
of a state being a truth-maker for a given statement and of a state being a
falsity-maker for a given statement. This is no longer possible, for the difference
between (A ∨ B) and (B ∨ A), for example, will lie not in the truth-makers
for their components, which are the same, but in the order in which they are
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given. Thus the semantics must proceed by providing a recursive specification
of the truth- and falsity-conditions, rather than the truth- and falsity-makers,
and combination and choice must be regarded (at least for now) as operations
on truth- and falsity-conditions without there necessarily being any explanation
of the operations solely in terms of the truth- and falsity-makers by which the
conditions are constituted.

Negation introduces a further complication. Under the standard semantics,
the truth-condition for ¬A is the falsity-condition for A and the falsity-condition
for ¬A is the truth-condition for A. This means that A and ¬¬A will have the
same truth-condition and the same falsity-condition; and so the semantics will
be incapable of distinguishing, as it should, between the contents of A and ¬¬A.

Let us grant that the falsity-condition for A is indeed the truth-condition for
¬A. (Indeed, we might even take the falsity-condition for A to be, by definition,
the truth-condition for ¬A.) Is it then so clear that the falsity-condition for
¬A will be the truth-condition for A? For the falsity-condition for ¬A, we
have already assumed, is the truth-condition for ¬¬A. But the direct truth-
condition a for A is only an indirect truth-condition for ¬¬A; it makes ¬¬A
true through first making A true. And we may mark this difference by making
the direct truth-condition for ¬¬A to be, not a, but the unit combination [a]
(cf. [Krämer, 2018b, 10-12]). Thus in providing a semantics for ¬A, there is
not simply a reversal of the truth- and falsity-conditions but a raised reversal,
in which the truth-condition a for A is converted into a raised falsity-condition
[a] for ¬A. We can then distinguish between A and ¬¬A since, when a is the
truth-condition for A, it is [a] rather than a that will be the truth-condition for
¬¬A and, in general, when (a, a′) is the content of A then ([a], [a′]) will be the
content of ¬¬A.

We are not yet done. We have so far assumed that the truth-condition for
A ∧B is the combination of the truth-conditions for A and B respectively and
that the truth-condition for A∨B is the choice between the truth-conditions for
A and B; and similarly for the other cases. But this leads to unwanted results.
For suppose that (a, a′) is the content of A and (b, b′) the content of B. Then the
content of A∨B is ([a+b], [a′.b′]), so the content of ¬(A∨B) is ([a′.b′], [[a+b]]),
and so the content of ¬¬¬(A ∨ B) is ([[a′.b′]], [[[a + b]]]); and the respective
contents of ¬A and ¬B are (a′, [a]) and (b′, [b]), so the content of (¬A ∧ ¬B) is
([a′.b′], [[a] + [b]]), and so the content of ¬¬(¬A ∧ ¬B) is ([[a′.b′]], [[[a] + [b]]]).

Now ¬(A∨B) is a strict full ground for ¬¬¬(A∨B) and so we will want an ap-
propriate ground-theoretic connection to hold between the content ([a′.b′], [[a+
b]]) of ¬(A ∨B) and the content ([[a′.b′]], [[[a+ b]]]) of ¬¬¬(A ∨B). But in the
semantics, we will want the grounding connection between the contents of some
grounds and a grounded statement to depend only upon the positive content
of the grounded statement (we might call this ‘positive bias’, since only the
positive content of the grounded statement is taken into account).

Such a view might plausibly be taken to be built into our conception of
positive content, which concerns the ways in which a proposition might be true,
but not the ways in which it might be false, i.e. its negative content. (It will
also receive some support from the idea, developed below, of contents as bi-
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lateral menus.) But this means, in the particular case above, that it is only the
positive content [[a′.b′]] of ¬¬¬(A∨B) that it is relevant to ¬(A∨B) grounding
¬¬¬(A∨B). So the same ground-theoretic connection should hold between the
content ([[a′.b′]], [[[a+ b]]]) of ¬(A ∨ B) and the content ([[a′.b′]], [[[a] + [b]]]) of
¬¬(¬A ∧ ¬B) and, consequently, ¬(A ∨ B) should also be a strict ground for
¬¬(¬A ∧ ¬B). But our system leaves open whether this is so.

We solve this problem by supposing that combination and choice are opera-
tions, not on conditions, but on contents. Thus the truth-condition for (A∧B)
will be the combination of the respective contents (not truth-conditions) of A
and B, the truth-condition for (A ∨ B) will be the choice of the respective
contents of A and B, the falsity-condition for ¬A will be the unit combina-
tion of the content of A, and similarly for the other cases. There is thus an
interplay between conditions and contents, with contents formed through the
pairing of conditions and conditions formed through the combination and choice
of contents. The previous problem will not then arise since ¬¬¬(A ∨ B) and
¬¬(¬A ∧ ¬B) will end up having different truth-conditions.

From an intuitive point of view, we should think of contents as bilateral
or two-sided; what matters to them is when they are true and when they are
false. We should, by contrast, think of conditions as unilateral or one-sided;
all that matters to them is when they obtain. A content will then be consti-
tuted by a truth-condition, being true when the condition obtains, and by a
falsity-condition, being false when this condition obtains. It remains to explain
why, from an intuitive point of view, we should take conjunctive conditions
to be combinations of contents rather than conditions. In other words, given
two propositions (a, a′) and (b, b′), why should we take the truth-condition c
for their conjunction to be the combination of the two propositions themselves
rather than the combination of their truth-conditions a and b? (A similar prob-
lem also arises for disjunction). The reason is that we adopt a representational
conception of the truth-conditions. It matters to the identity of a conjunc-
tive truth-condition, or combination, c not only what the component truth-
conditions a and b are but also how they get “carried” into the combination via
the respective propositions (a, a′) and (b, b′).

The proposed semantics reveals then an interesting feature of the truthmaker
approach. Truthmaker semantics is generally contrasted with more structural
approaches to propositional identity. For instance, a structural approach might
draw a distinction between A and (A∨A), whereas standard truthmaker seman-
tics does not. As we have seen, our target logic GG requires distinctions of this
sort. The soundness and completeness of that logic under the present approach
therefore reveals that there are natural modifications of standard truthmaker
semantics that accommodate these more finely-grained distinctions, thereby
achieving a kind of semantic commonality between the more coarse-grained
approaches to ground based on standard truthmaker semantics [Correia, 2010],
[Fine, 2012b, §1.10] and the more fine-grained approaches [Fine, 2012b, §§1.7-
1.9] treated under the present modification.

We turn to the second task, of providing an account of ground-theoretic
connection. We here appeal to the abstract theory of menus gestured at in §4 of
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[Fine, 2017b]. A menu provides a vehicle for selection. Thus from the two-item
menu listing eggs-and-bacon and porridge, one can select either eggs-and-bacon
or porridge and, from the one-item menu listing eggs-and-bacon, one can select
the two component items, eggs and bacon, and consequently, from the original
two-item menu, one can select either eggs and bacon or porridge.

The theory of menus provides a general abstract account of selection. Within
such a theory, we take the domain of items to be closed under combination and
choice. Thus, given any finite number of items a1, a2, . . . of the domain, the
choice [a1 + a2 + · · · ] and the combination [a1.a2. · · · ] of those items will also
be items of the domain. Menus are either combinations or choices and so may
themselves figure as items on a menu. So, in the example above, the breakfast
menu will be of the form b = [[a1.a2] + a3], where a1 is eggs, a2 is bacon and a3

is porridge. This menu may then be part of another, meta-menu [b+ l], which
provides a choice between the breakfast menu b and a lunch menu l.

There are two main principles governing the immediate selection of items
from a menu. In the case of a choice [a1 + a2 + · · · ], each of a1, a2, . . . is an
immediate selection; and in the case of a combination [a1.a2. · · · ], a1, a2, . . .
(together) is an immediate selection. A simple account of selection (later to
be modified) can then be obtained through the repeated chaining of immediate
selection: [a+ b], c, for example, will be an immediate selection from [[a+ b].c]
and a an immediate selection from [a + b]; and so a, c will be a selection from
[[a + b].c]. So, in the example above eggs, bacon will be a selection from the
meta-menu [b+ l].

It is important to bear in mind that we have done nothing to rule out non-
trivial identities between combinations or choices. Some of these identities may
be structural in origin. Thus we might think of a menu not as a list but as a set
of items. We would then want [a.b], for example, to be identical to [b.a] and for
[a+b] to be identical to [b+a]. But other identities may have a more substantive
basis. When one orders eggs and bacon at a restaurant, one is served particular
eggs and particular rashers of bacon (and, indeed, might be disappointed to
be served the types rather than the tokens). Consider now the combination
[e1.e2.r1.r2] of some particular eggs e1, e2 and some particular rashers of bacon
r1, r2 and consider some other combination [e3.e4.r3.r4] of particular eggs and
rashers. The particular items from which the combinations are formed are
different. But one might still want to treat the combinations themselves as, in
effect, identical. After all, it is presumably a matter of indifference, if one opts
for the combination [e1.e2.r1.r2], whether one is served e1, e2, r1, r2 rather than
e3, e4, r3, r4. This means that even though a, b, for example, is an immediate
selection from [a.b] and each of a and b is an immediate selection from [a + b],
[a.b] and [a + b] may, through their identity with other forms of combination
and choice, enjoy other immediate selections as well.

The application of the theory of menus to the current semantics will rest
upon taking truth- and falsity-conditions to be menus and taking ground to be
selection. Roughly speaking, disjunction will tell us to make a choice of truth-
conditions, while conjunction will require us to make a combination of truth-
conditions. However, the viability of this application will depend upon making
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two significant modifications to the simple account of selection presented above.
We must, in the first place, allow two-sided menus, which we might represent

as ordered pairs (a, b) of items a and b; and we might, in a more general context,
allow vector menus (a, b, . . . ) of arbitrary length.4 We might, intuitively, think
of a two-sided menu as a ‘positive’ menu of items to be included, on the one
side, and a ‘negative’ menu of items to be excluded, on the other side (as in a
kosher chicken platter, which includes the combination of items making up the
chicken platter while excluding dairy products). Within the intended semantical
application, conditions will correspond to one-sided menus and contents to two-
sided menus, with truth-conditions on the one side and falsity-conditions on the
other side.

However, allowing two-sided menus calls for a slight complication in our
account of selection. For immediate selection is most naturally defined as a
relation between two-sided menus (which correspond to contents, or pairs of
conditions) and a one sided menu (which corresponds to a condition). So, for
example, in making a selection from a kosher chicken platter, all that counts is
what may be selected from the chicken platter. But we would like selection to be
a relation between two-sided menus so that it can be repeatedly chained. We do
this by appeal to the following principle (corresponding to ‘Basis’ in Definition
2.1 below):

Positive Bias Some two-sided menus (or contents) will be an immediate se-
lection from a given two-sided menu (or content) just in case they are an
immediate selection from its positive side (or truth-condition).

We can still say that a two-sided menu (a, b) (or content) is a selection from a
one-sided menu c (or condition), but this must now be taken to mean that (a, b)
is a selection from (c, d) for some item d. Suppose, for example, that a, b, c, d
and e are conditions. Then the pairs (a, b) and (c, d) are contents, while the
choice [(a, b) + (c, d)] is another condition. The content (a, b) will then be an
immediate selection from the content ([(a, b) + (c, d)], e) and, for this reason, an
immediate selection from the condition [(a, b) + (c, d)].

The other modification is more radical. For we want to introduce a notion
of weak selection, corresponding to weak ground, in addition to the previous
notion of strict selection, which corresponded to strict ground. Weak selection,
however exactly it is understood, is plausibly taken to be subject to the following
principle (corresponding to ascent in Definition 2.1):

Subsumption Any case of strict selection is a case of weak selection.

Weak selection is also plausibly taken to be subject to a principle of Cut (cor-
responding to Lower and Upper Cut in Definition 2.1). Say that the set of

4One possible application of vector menus is to many valued logics where, for each truth-
value v, there should be a v-maker. Another possible application is to voting. Suppose n
people vote on the options a1, a2, . . . , am. Then the menu in this case is the n-dimensional
vector ([a1 + a2, . . . , am], [a1 + a2, . . . , am], . . . , [a1 + a2, . . . , am]) and an immediate selection
is of the form (ak1

, ak2
, . . . , akn ). Of course, the options a1, a2, . . . , am may themselves take

the form of further menus, as when a1, a2, . . . , am are representatives who must themselves
choose among different options.
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(two-sided) menus G is a strict (or weak) selection from the set of menus
H = {v1, v2, . . . } if G can be split up into subsets G1, G2, . . . such that G1

is a strict (weak) selection from v1, G2 is a strict (weak) selection from v2, . . . .
Thus the menus G must, collectively, be a distributive selection from H. The
principle then states:

Cut if G is a weak selection from H and H a strict selection from v then G
is a strict selection from v, and if G is a strict selection from H and H a
weak selection from v then G is a strict selection from v.

Thus items that are strictly selected from a given item can be replaced by weak
selections and items from which a strict selection is made can be replaced by
an item from which they are weakly selected – in each case preserving strict
selection.

These principles do not, of course, provide us with a definition, or even an
implicit definition, of weak selection in terms of strict selection. Indeed, they
are compatible with weak and strict selection being the same thing. However,
there is a further plausible assumption we may make, which does allow us to
define the one in terms of the other. This is the following maximality principle:

Any items that constitute a strict selection from [v] will constitute
a weak selection from v (where the corresponding ground-theoretic
principle is that if ∆ strictly grounds ¬¬A then ∆ weakly grounds
A)

Now we know that v is a strict selection from [v]; and so this assumption tells us
that v is the maximal such item in the sense that any other items that constitute
a strict selection from [v] will constitute a weak selection from it. One cannot
do better than v, so to speak, in making a strict selection from [v]. The converse
of this assumption:

any menus that constitute a weak selection from v will constitute a
strict selection from [v]

follows from the other assumptions. For v is a strict selection from [v] and so,
given that G is a weak selection from v, it is, by Cut, a strict selection from [v].

On the basis of these assumptions, we are therefore justified in adopting the
following definition of weak selection in terms of strict selection:

(W/S) G is a weak selection from v iff G is a strict selection from [v] (or, to put
it ground-theoretically, ∆ weakly grounds A iff ∆ strictly grounds ¬¬A).5

5We should note that this definition of weak ground will imply the purely ground-theoretic
definition of weak ground proposed in [Fine, 2012b, 52], viz. that ∆ weakly grounds A iff
∆,Γ strictly grounds B whenever A,Γ strictly grounds B. For the left-to-right direction of
the definition follows from Cut. Suppose now that the right-hand side of the definition holds.
Since A strictly grounds ¬¬A, ∆ strictly grounds ¬¬A and so, by (W/S) ∆ weakly grounds A.
As [deRosset, 2013, 16],[deRosset, 2014, 727-8] observes, the purely ground-theoretic definition
is not compatible with the “flat” semantics that [Fine, 2012a] provides for the pure logic of
ground.
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There is another assumption that may plausibly be taken to relate weak and
strict selection. Say that u is a weak partial selection from v if it is one of the
items in a weak selection from v and that u is a strict partial selection from v
if u is a weak partial selection from v but v is not a weak partial selection from
v; and say that the weak selection G from v is irreversible if v is not a weak
partial selection from any item of G. The assumption then states:

Irreversibility Any irreversible weak selection is a strict selection (where the
corresponding ground-theoretic principle is that any irreversible weak ground
is a strict ground).

We might take the converse:

Any strict selection from an item is an irreversible weak selection

as an additional assumption (as in definition 2.1). Alternatively, it might be
derived from some further assumptions. For suppose the menus G are a strict
selection from v. By the above principle of Subsumption, G is a weak selection
from v. Now suppose, for reductio, that v is a weak partial selection from some
item w in G. By Cut, v is a strict selection, on its own or with other items, from
v. But this, given:

Non-Circularity No item is part of a strict selection of itself

is a contradiction.
We are therefore justified in adopting the following definition of strict selec-

tion in terms of weak selection:

(S/W) The strict selections are the irreversible weak selections (or, put ground-
theoretically, ∆ strictly grounds A iff ∆ irreversibly weakly grounds A).

Thus, given these various assumptions, weak and strict selection – and also weak
and strict ground – will be inter-definable.

There are two other assumptions we will need to make, connecting weak and
strict selection to combination and choice:

Maximality

Any items which constitute a strict selection from [v0.v1. · · · ] will
constitute a weak selection from v0, v1, . . . ;

Any items which constitute a strict selection from [v0 + v1 + · · · ] will
constitute a weak selection from some subset of v0, v1, . . . .

These assumptions generalize the previous maximality principle for [v] and state,
in the case of the combination [v0.v1. · · · ], that v0, v1, . . . constitute a maximal
strict ground, so that any selection must be “at” or “below” v0, v1, . . . , and, in
the case of the choice [v0 + v1 + · · · ], that the subsets of v0, v1, . . . constitute a
maximal strict “cover”, so that any selection must be “at” or “below” some of
v0, v1, . . . .

In the above account of the semantics, we have listed various assumptions
which we would like to hold. These, in addition to Maximality, are:
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Positive Bias The immediate selections from a given two sided menu are the
immediate selections from its first component;

Subsumption Any strict selection is a weak selection;

Cut any weak selection from a strict selection and any strict selection from a
weak selection of a given item is a strict selection from that item;

Irreversibility The strict and the irreversible weak selections coincide.

However, we have provided no assurance that these assumptions do, or even
can, hold.

It is actually rather easy to provide a model in which they hold. For we might
take combinations to be formulas of the form

∧
(A1, A2, . . . , An) and choices to

be formulas of the form
∨

(A1, A2, . . . , An) (for n ≥ 0 and with
∧

(A1) =
∨

(A1)
and with G a weak selection from A when it is a strict selection from

∧
(A)). It is

then relatively straightforward to show that the various conditions on selection
that we have laid down will be satisfied.

Unfortunately, such a model is not enough for the purposes of establishing
completeness, for we need to show that, for any consistent set of ground-theoretic
claims, there should be a model in which they are true. It is consistent, for
example, to suppose that (A ∧ A), (A ∨ A) and ¬¬A are ground-theoretically
equivalent or that there is an infinite descending chain of grounds, with A2 a
strict ground of A1, A3 a strict ground of A2, and so on ad infinitum. But neither
set of claims can be satisfied in the “canonical” model above. We therefore need
to allow for a more flexible conception of propositional identity; and, indeed, a
large part of the difficulty in the completeness proof results from our having to
show how underlying identities in the combinations and choices are capable of
accounting for the required ground-theoretic truths.

Some related semantical approaches are to be found in Krämer [2018a, 2018b]
and Correia [2017]. A detailed comparison of our own semantics with these
other approaches is beyond the scope of the present paper. But we should
note that there are some significant differences relating to (i) the underlying
conception of propositional content, (ii) the semantical treatment of the truth-
functional connectives, (iii) the account of strict ground and its relation to weak
ground, and (iv) the resulting logic of ground. We should note,in particular,
that although these other approaches validate our “minimal” system GG, they
validate much more and therefore lack the flexibility of our own semantics.

2 Semantics

We set out the proposed semantics in terms of selection systems, define the
notion of a model, the content of a truth-functional formula in a model, and the
truth of a grounding claim in a model.

A selection system is a triple F = 〈Σ,Π, F 〉, where Σ and Π are each opera-
tions on finite sequences (including the empty sequence) of ordered pairs of mem-
bers of F , taking each such sequence into a member of F , with Σ(〈v〉) = Π(〈v〉).
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We use lower case letters ‘a’-‘g’ (sometimes with numerical superscripts) for
members of F , lower case letters ‘u’-‘z’ (sometimes with numerical superscripts)
for pairs of members of F , and upper case letters ‘G’-‘K’ (sometimes with nu-
merical subscripts or superscripts) for sets of pairs of members of F . Thus, if
G = F×F , then Σ,Π : G<ω → F . For a pair v, we write v⊕ for v’s first element,
and v	 for its second element. Intuitively, F is a set of conditions, and pairs
of such conditions are contents. Abusing notation, we indicate unions of sets of
contents by comma-separated lists, and we often omit brackets for singletons of
contents in these lists. So, for instance, G,H, v is used for G ∪H ∪ {v}.

Write [v0 + v1 + · · · ] for Σ(〈v0, v1, . . . 〉) and [v0.v1. · · · ] for Π(〈v0, v1, . . . 〉).
[v0 + v1 + · · · ] is the choice of v0, v1, . . . , and [v0.v1. · · · ] the combination of
v0, v1, . . . . Distinct sequences of contents can be taken by either the combina-
tion or choice operations to the same condition; a single sequence can be taken
by the two operations, respectively, to either the same condition or to different
conditions; and the choice of one sequence can be the very same as the combi-
nation of a different one. So, choices and combinations need not be uniquely
decomposable into (sequences of) contents. We use ‘�F’ to indicate the relation
of immediate selection between sets (not sequences) of contents and choices and
combinations, where vi �F [v0 + v1 + · · · ] for each i, and v, w, · · · �F [v.w. · · · ]
(and that is all). We drop the suffix ‘F’ on ‘�F’ when it is evident from context
(and will likewise drop suffixes on the other notions of selection defined below
when no confusion will result). Since the choice of a single content v is just the
same as the combination of v, we denote it by [v], which is neutral between the
‘+’ notation for choice and the ‘.’ notation for combination.

Given a selection system F = 〈Σ,Π, F 〉, the relation of strict selection <F

between a set of contents G and a content v is defined inductively in terms
of immediate selection. In this definition, the weak selection relation G ≤F v
abbreviates (∃d)G <F ([v], d):

Definition 2.1

1. Basis: if G�F v⊕, then G <F v;

2. Ascent: if G <F w and [w] = v⊕ , then G <F v;

3. Lower Cut: if G0 ≤F v
0, G1 ≤F v

1, . . . , Gn ≤F v
n, and v0, v1, . . . , vn <F

v, then G0, G1, . . . , Gn <F v; and

4. Upper Cut: if G0 <F v
0, G1 <F v

1, . . . , Gn <F v
n and v0, v1, . . . , vn ≤F

v, then G0, G1, . . . , Gn <F v.

Relations of partial selection are defined in terms of <F:

• w �F v iff there is an H such that w,H ≤F v; and

• w ≺F v iff w �F v but v 6�F w.

Let a covering of G be a family of sets G0, G1, . . . such that G = G0∪G1∪. . . .
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Definition 2.2 A frame is a selection system F meeting two constraints:

1. Irreversibility: G <F v iff G ≤F v and (∀w ∈ G)v 6�F w; and

2. Maximality:

(a) G <F ([v0.v1. · · · ], d) only if there is a covering G0, G1, . . . of G such
that Gi ≤F v

i, for each i; and

(b) G <F ([v0+v1+· · · ], d) only if there is a non-empty subset w0, w1, . . .
of v0, v1, . . . and a covering G0, G1, . . . of G such that Gi ≤F w

i for
each i.

Suppose we are given a propositional language L , whose connectives are
conjunction, disjunction, and negation. We will identify L with the set of
its sentences. Let <,≤,≺, and � be fresh symbols. (That is, they are pairwise
distinct from one another and from every sentence of L .) The grounding claims
of L then consist of the following:

∆ < φ ∆ ≤ φ φ ≺ ψ φ � ψ

for any ∆ ⊆ L and any sentences φ, ψ of L . We will continue to use the lower-
case Greek letters φ, ψ, δ, and θ (sometimes with superscripts) for sentences of
L and upper-case Greek letters ∆,Γ,Σ, and Θ (sometimes with superscripts)
for sets of such sentences. The Greek letters σ and τ (sometimes with sub-
scripts) are used for grounding claims of L , and upper-case letters S, T , and U
(sometimes with subscripts or superscripts) for sets of grounding claims of L .
An interpretation for a language L into a frame F = 〈Σ,Π, F 〉 is a function ¯̄·
mapping each atomic sentence φ in L to a content ¯̄φ. We extend interpretations
to molecular sentences by means of the following recursive clauses:

1. ¬φ = ( ¯̄φ	, [
¯̄φ] );

2. (φ ∧ ψ) = ( [ ¯̄φ . ¯̄ψ ], [¬φ+ ¬ψ ] ); and

3. (φ ∨ ψ) = ( [ ¯̄φ+ ¯̄ψ ], [¬φ .¬ψ ] ).

We extend the notion of an interpretation to sets of sentences of L in the

standard way: ∆ = {¯̄δ|δ ∈ ∆}.

Definition 2.3 A model M for a language L is a tuple 〈Σ,Π, F,¯̄· 〉, where
F = 〈Σ,Π, F 〉 is a frame, and ¯̄· is an interpretation for L into F.

If M = 〈Σ,Π, F,¯̄· 〉 is a model and F is the frame 〈Σ,Π, F 〉, we write ≤M

for ≤F, and, similarly, for the other relations of ground.

Definition 2.4 Let M be a model 〈Σ,Π, F,¯̄· 〉. Truth in a model for grounding
claims is defined by the following clauses:

1. M � ∆ ≤ φ iff ¯̄∆ ≤M
¯̄φ;
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2. M � ∆ < φ iff ¯̄∆ <M
¯̄φ;

3. M � φ � ψ iff ¯̄φ �M
¯̄ψ; and

4. M � φ ≺ ψ iff ¯̄φ ≺M
¯̄ψ.

S � T iff, for every model M, if M � σ for each σ ∈ S, then M � τ , for some
τ ∈ T . So, sets of grounding claims are treated conjunctively on the left-hand
side and disjunctively on the right-hand side of �. M � S iff M � σ, for some
σ ∈ S.

3 The System GG

We specify the system GG and establish soundness and consistency. The system
comprises the following rules and axioms, which inductively define a derivabiliy
relation  among finite sets of grounding claims:
Structural rules:

THINNING If T  S, then T, T ′  S, S′

SNIP If σ, S  T and S′  T ′, σ, then S, S′  T, T ′

(In the statement of the structural rules, T ′ and S′ are finite sets of grounding
claims. Since  relates sets, contraction and permutation rules are not needed.)
The Pure Logic of Ground:

IDENTITY σ  σ

SUBSUMPTION (≤ / �) : ∆, φ ≤ ψ  φ � ψ (< / ≤) : ∆ < φ  ∆ ≤ φ

(< / ≺) : ∆, φ < ψ  φ ≺ ψ (≺ / �) : φ ≺ ψ  φ � ψ

TRANSITIVITY (� / �) : φ � ψ; ψ � θ  φ � θ (� / ≺) : φ � ψ; ψ ≺ θ  φ ≺ θ

IRREVERSIBILITY φ � ψ  φ ≺ ψ; ψ � φ

REFLEXIVITY  φ ≤ φ

NON-CIRCULARITY φ ≺ φ  ∅

CUT ∆ ≤ φ; φ, ψ0, ψ1, . . . , ψn ≤ ψ  ∆, ψ0, ψ1, . . . , ψn ≤ ψ

REVERSE SUBSUMPTION φ0, φ1, . . . , φn ≤ ψ; φ0 ≺ ψ; φ1 ≺ ψ; · · · ; φn ≺ ψ  φ0, φ1, . . . , φn < ψ

The pure logic differs from Fine’s [2012a] system by the replacement of
Transitivity(≺ / �) with Irreversibility. The latter rule could not be
formulated in the system of derivation used in [Fine, 2012a], which did not al-
low derivation of multiple conclusions. Transitivity(≺ / �) can be derived
from the pure logic above using Irreversibility, Subsumption(≺ / �), the
other Transitivity rules, and Snip.

Let S0, S1, . . . be finite sets of grounding claims. Then S  (S0|S1| . . . ) is
defined to hold iff S  σ0, σ1, . . . for each set σo, σ1, . . . such that σi ∈ Si. It
is easily shown that a model M verifies every such set σ0, σ1, ... iff, for some Si,
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M verifies every grounding claim in Si.
Introduction Rules:

 φ < ¬¬φ

 φ < (φ ∨ ψ)  ψ < (φ ∨ ψ)

 φ, ψ < (φ ∧ ψ)

 ¬φ < ¬(φ ∧ ψ)  ¬ψ < ¬(φ ∧ ψ)

 ¬φ,¬ψ < ¬(φ ∨ ψ)

Elimination Rules:

∆ < ¬¬φ  ∆ ≤ φ

∆ < (φ ∧ ψ)  ( ∆0
φ ≤ φ; ∆0

ψ ≤ ψ | ∆1
φ ≤ φ; ∆1

ψ ≤ ψ | . . . )

∆ < (φ ∨ ψ)  ∆ ≤ φ; ∆ ≤ ψ; ∆ < (φ ∧ ψ)

∆ < ¬(φ ∨ ψ)  ( ∆0
φ ≤ ¬φ; ∆0

ψ ≤ ¬ψ | ∆1
φ ≤ ¬φ; ∆1

ψ ≤ ¬ψ | . . . )

∆ < ¬(φ ∧ ψ)  ∆ ≤ ¬φ; ∆ ≤ ¬ψ; ∆ < (¬φ ∧ ¬ψ)

In the statement of the elimination rules for ∧ and ¬∨, 〈∆0
φ,∆

0
ψ〉, 〈∆1

φ,∆
1
ψ〉, . . .

are taken to be all of the ordered pairs 〈∆n
φ,∆

n
ψ〉 for which ∆ = ∆n

φ ∪∆n
ψ. For

any sets S and T of grounding claims, let S ` T iff there are S′ ⊆ S and T ′ ⊆ T
such that S′  T ′.

Theorem 3.1 (Soundness) If S ` T , then S � T .

Proof Suppose S ` T , and let M = 〈Σ,Π, F,¯̄· 〉 be a model such that M � σ,
for each σ ∈ S. There are finite subsets S′ and T ′ of S and T , respectively, such
that S′  T ′. We show that M � T ′ (and hence M � T ) by induction on the
derivation of S′  T ′. The results in each of the basis cases are easy consequences
of D2.1, D2.2, D2.3, and D2.4. We consider the cases of Transitivity(� / ≺)
and ∧-Elimination by way of illustration.

(Transitivity)(� / ≺): Suppose M � φ � ψ and M � ψ ≺ θ. By the definition

of ≺M, M � ψ � θ, and so ¯̄φ �M
¯̄θ. Suppose (for reductio) that ¯̄θ �M

¯̄φ.

Then we have ¯̄θ �M
¯̄φ �M

¯̄ψ. But, since M � ψ ≺ θ, ¯̄θ 6�M
¯̄ψ. ⊥.

(∧−Elimination): Suppose M � ∆ < (φ∧ψ), so that ¯̄∆ <M (φ ∧ ψ). (φ ∧ ψ)⊕ =

[ ¯̄φ. ¯̄ψ]. By D2.2(Maximality), there is a covering ¯̄∆φ,
¯̄∆ψ of ¯̄∆ such that

¯̄∆φ ≤M
¯̄φ and ¯̄∆ψ ≤M

¯̄ψ. So, M � ∆φ ≤ φ and M � ∆ψ ≤ ψ. Let
(Γ0
φ,Γ

0
ψ), . . . , (Γnφ,Γ

n
ψ) be exactly the pairs of binary coverings of ∆. Then

(∆φ,∆ψ) = (Γiφ,Γ
i
ψ) for some i (0 ≤ i ≤ n). As we observed when intro-

ducing the | notation, it is then easily verified that M � σ0, . . . , σn, for ev-
ery set σ0, . . . , σn of grounding claims such that σi ∈ {Γiφ ≤ φ ; Γiψ ≤ ψ }
for each i.

The result in each of the cases of the structural rules is a trivial consequence
of IH, using D2.3 and D2.4.

It turns out not to be altogether straightforward to show that GG is con-
sistent. This could be shown by constructing a ‘free’ model along the lines of
D4.2. But we can also make use of a simpler, less indirect, construction, which
will have the additional benefit of presenting the rules in a way that highlights
the affinities between GG and more familiar natural deduction systems.6

6See [Poggiolesi, 2016, 2018], and [Litland, 2015] for treatments that draw strong connec-
tions between natural deduction systems and the impure logic of ground.
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We adopt the following introduction rules for the connectives (where ‘( )’
indicates that either premise may be used):

φ φ, ψ ¬φ (¬ψ) φ (ψ) ¬φ,¬ψ
¬¬φ (φ ∧ ψ) ¬(φ ∧ ψ) (φ ∨ ψ) ¬(ψ ∨ ψ)

These rules correspond, of course, to the Introduction Rules of GG, though they
have now been stated as direct rules of inference without the use of <.

A derivation of the formula φ from the set of formulas ∆ is a sequence of
formulas φ1, φ2, . . . , φn, where φn = φ and φk, for each k = 1, 2, . . . , n, is either
a member of ∆ or follows from preceding formulas in the sequence by one of
the above rules. We should note that each of the formulas φk in a derivation
φ1, φ2, . . . , φn will have a justification (not necessarily unique), which consists
of a status as assumed or derived and a specification, in case it is derived, of
the rule by which it is derived. Given a derivation φ1, φ2, . . . , φn, say that φk
figures as a premise if, for some m > k, φk/φm is an instance of one of the
above rules or if, for some m > k and l < m, φk, φl/φm is an instance of one of
the above rules. A derivation φ1, φ2, ..., φn = φ is said to be relevant when each
non-terminal formula φk for k < n figures as a premise in the derivation. The
derivation φ1, φ2, . . . , φn = φ of φ from ∆ is said to be strict when it is relevant
and when each formula of ∆ has a non-terminal occurrence in the derivation
and it said to be weak when it is relevant and when each formula of ∆ has a
terminal or non-terminal occurrence in the derivation. So, for instance, p, q is a
non-relevant derivation of q from p, q, while p, q, (p ∧ q) is a strict derivation of
(p ∧ q) from p, q and also a weak derivation of (p ∧ q) from p, q, (p ∧ q).

Note that a strict derivation may be annotated with justifications for each
step in such a way that members of ∆ are derived and so do not figure as
assumptions. For consider the following derivation p, q, (p ∧ q), r, (p ∧ q) ∧ r of
(p ∧ q) ∧ r from p, q, (p ∧ q), r. We may here take the third formula (p ∧ q)
to be derived from the previous formulas p and q. However, we still have a
strict derivation of (p ∧ q) ∧ r from p, q, (p ∧ q), r since (p ∧ q) is used as a
premise in deriving (p ∧ q) ∧ r. Note also that p, q, (p ∨ q) is a strict derivation
of (p ∨ q) from p, q. Indeed, if φ1, φ2, . . . , φm = φ is a strict (weak) derivation
of φ from ∆ and ψ1, ψ2, . . . , ψn = φ a strict (weak) derivation of φ from Γ then
φ1, φ2, ..., φm−1, ψ1, ψ2, . . . , ψn is a strict (weak) derivation of φ from ∆∪Γ; and
so Amalgamation can be seen to be built into the definition of derivation.

We say that the formula φ is (strictly, weakly) derivable from the set of
formulas ∆ if there exists a (strict, weak) derivation of φ from ∆; and we say
that φ is strictly (weakly) partially derivable from ψ if φ is strictly (weakly)
derivable from a set of formulas ∆ that includes ψ.

It will be convenient to use a somewhat stronger notion of partial derivability.
Suppose D = φ1, φ2, . . . , φn = φ is an arbitrary sequence of formulas. We say
φk is of direct use in deriving φm (in the sequence D) if k < m ≤ n and either
φk/φm is an instance of a one-premise rule or, for some l < m, φk, φl/φm is an
instance of a two-premise rule; and we say φk is of (indirect) use in deriving
φm (in D) if k < m ≤ n and there is a sub-sequence φk = φk1 , . . . , φkp = φm in
which each non-terminal term φkj is of direct use in deriving its successor φkj+1

.
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We may also say that φ is of use in deriving ψ if φ = φk is of use in deriving
ψ = φm in some sequence in D = φ1, φ2, . . . , φn.

For later purposes, we note some basic facts about derivations.

Lemma 3.2

1. If φ is of use in deriving ψ then ψ is strictly partially derivable from φ;

2. If ψ is strictly partially derivable from φ then φ is less complex (contains

fewer occurrence of connectives) than ψ.

Proof An easy induction in each case.

The converse of (i) also holds though not when made relative to a given sequence.
In the sequence (p ∧ q), r, q, (p ∧ q) ∧ r, for example, q is not of use in deriving
(p ∧ q) ∧ r even though (p ∧ q) ∧ r is strictly partially derivable from q.

Lemma 3.3 In any relevant derivation D = φ1, φ2, . . . , φn, each φk for k < n

is of use in deriving φn.

Proof Take a φk for k < n and set k1 = k. Suppose φk is not of use in deriving
φn in D. Since D is relevant, φk1 figures as a premise and so is of direct use in
deriving φk2 for some k2 > k1. But φk2 cannot be identical to φn or of use in
deriving φn in D; and so, for some k3 > k2, φk2 is of use in deriving φk3 . We
produce in this way an infinite sequence φk1 , φk2 , . . . of members of D which,
by the previous lemma, are of increasing complexity. But there are only finitely
many formulas in D. ⊥.

Lemma 3.4 Suppose D = φ1, φ2, . . . , φn = φ is a derivation of φ from ∆.

Let D′ = φk1 , φk2 , . . . , φkm be the subsequence of formulas that are of use in

deriving φn = φ in D. Then D′, φ is a weak (relevant) derivation of φ from

∆ ∩ φk1 , φk2 , . . . , φkm , φ.

Proof D′ is a derivation of φ from ∆ and hence from ∆ ∩ {φk1 , φk2 , . . . , φkm},
since the justification of any formula of φ1, φ2, . . . , φn that is identical to φn or
of use in deriving φn in D will either be in terms of the formula being a member
of ∆ or by reference to previous formulas that are of use in deriving φn and
hence the justification will carry over to D′, φ. Moreover, D′, φ is relevant. For
any formula φkj is of use in deriving φn and hence figures as a premise.

Lemma 3.5 Suppose that φ1, φ2, . . . , φn is a relevant derivation. Then each φk

for k < n is distinct from φn.

Proof By L3.3, each φk for k < n is of use in deriving φn and so, by L3.2, is
distinct from φn.
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We now introduce a notion of L-truth for grounding claims:

φ1, φ2, . . . , φn < φ is L-true if φ is strictly derivable from φ1, φ2, . . . , φn;

φ1, φ2, . . . , φn ≤ φ is L-true if φ is weakly derivable from φ1, φ2, . . . , φn;

φ ≺ ψ is L-true if ψ is strictly partially derivable from φ;

φ � ψ is L-true if ψ is weakly partially derivable from φ.

In effect, we interpret ‘ground’ to mean ground in virtue of logical form.
Finally, given two sets of grounding claims T and S, we say that the sequent

T ` S is valid if either a member of T is not L-true or a member of S is L-
true. This is a very weak “material” interpretation of validity. The sequent
T, p < q ` S, for example, will always be valid since p < q is not L-true.

We can establish by induction:

Theorem 3.6 Each derivable sequent of GG is valid.

Proof We show that the axioms of GG are valid and that the rules of inference of
GG preserve validity. Thinning,Snip, and Identity follow by truth-functional
considerations alone. Subsumption, Reflexivity, and Irreversibility fol-
low straightforwardly from the definitions of (full) derivability and partial deriv-
ability. The introduction rules fall out from our having adopted the correspond-
ing introduction rules.

(Reverse Subsumption): Suppose ψ1, ψ2, . . . , ψm = ψ is a weak derivation
of ψ from ∆ = {φ1, φ2, . . . , φn} and that ψ is strictly partially derivable
from each φk for k = 1, 2, . . . , n. By lemma 1(ii), ψ is distinct from each
φk. But then ψ1, ψ2, . . . , ψm is a strict derivation of ψ from ∆.

(Transitivity)(� / �): Suppose that φ1, φ2, . . . , φm = ψ is a weak derivation
of ψ from ∆ with φ ∈ ∆ and that ψ1, ψ2, . . . , ψn = θ is a weak deriva-
tion of θ from Γ with ψ ∈ Γ. If φ = ψ or if ψ = θ then it trivially
follows that φ � θ is L-true. So suppose φ 6= ψ and ψ 6= θ. Then
φ1, φ2, . . . , φm is a strict derivation of ψ from ∆ \ {ψ} with φ ∈ ∆ \ {ψ}
and ψ1, ψ2, . . . , ψn is a strict derivation of θ from Γ\{θ} with ψ ∈ Γ\{θ}.
But then φ1, φ2, . . . , φm, ψ1, ψ2, . . . , ψn is a strict derivation of θ from
(∆ \ {ψ}) ∪ (Γ \ {θ}). So, θ is strictly, hence weakly, partially derivable
from φ. The case (� / ≺) is proved similarly.

(Non-Circularity): Suppose φ1, φ2, . . . , φn = φ is a strict derivation of φ from
∆. It then follows from lemma 3.5 that φ 6∈ ∆.

(Cut): Suppose φ1, φ2, . . . , φm = φ is a weak derivation of φ from ∆ and
ψ1, ψ2, . . . , ψn = ψ a weak derivation of ψ from φ,Γ. We show D =
φ1, φ2, . . . , φm−1, ψ1, ψ2, . . . , ψn = ψ is a weak derivation of ψ from ∆∪Γ.
Clearly, D is a derivation of ψ from ∆,Γ, since the occurrences of φ
among ψ1, ψ2, . . . , ψn can be justified by appeal to the previous deriva-
tion φ1, φ2, . . . , φm−1. D is also a relevant derivation. The only problem
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case for relevance is one in which φk figures as a premise in φ1, φ2, . . . , φm
to an inference whose conclusion is φm = φ. But we know that φ = ψl for
some l and so we can establish relevance by appeal to ψl instead of φm.
Finally, each member of ∆∪Γ occurs in D since each member of ∆ other
than φ occurs in φ1, φ2, . . . , φm−1, while φ and each member of Γ occurs
in ψ1, ψ2, . . . , ψn.

Elimination Rules: We deal with ∧-Elimination by way of illustration. Sup-
pose that D = φ1, φ2, . . . , φn, φn+1 is a strict derivation of (φ∧ψ) from ∆.
Then, for some k, l ≤ n, φk = φ and φl = ψ. Choose k and l to be maxi-
mal. This means that one of k or l is n, since otherwise φn would not figure
as a premise. By lemma 3.3, each φj , j = 1, 2, . . . , n, is of use in deriving
φn+1 = (φ ∧ ψ) in D. We may then show by an easy induction that each
φj is identical to φ or to ψ or of use in deriving φk = φ or φl = ψ. Look
now at the sub-sequence φp1 , φp2 , . . . , φpk of formulas which can be used
in deriving φk = φ and at the subsequence φq1 , φq2 , . . . , φq1 of formulas
which can be used in deriving φl = ψ. Let ∆1 be the subset of members of
∆ that are identical to φk or are of use in deriving φk and ∆2 the subset
of members of ∆ that are identical to φl or are of use in deriving φl. Then
∆ = ∆1 ∪∆2 and it follows from lemma 3.4 that φp1 , φp2 , . . . , φpk , φ is a
weak derivation of φ from ∆1, and φq1 , φq2 , . . . , φq1 , ψ a weak derivation
of ψ from ∆2.

Corollary 3.7

1. ∅ ` ∆ < φ iff φ is strictly derivable from ∆;

2. ∅ ` ∆ ≤ φ iff φ is weakly derivable from ∆;

3. ∅ ` ψ ≺ φ iff φ is strictly partially derivable from ψ;

4. ∅ ` ψ � φ iff φ is weakly partially derivable from ψ.

Proof The right to left directions may be established by induction on the length
of the relevant derivations. Suppose now that ∅ ` ∆ < φ. By T3.6, ∆ < φ is
L-true and so φ is strictly derivable from ∆. The left to right directions for the
other cases are established similarly.

We also get:

Corollary 3.8 GG is consistent

Proof p < q is not L-true and so the sequent ∅ ` p < q is not valid.

Indeed, we may use the theorem to establish a stronger consistency result.
Say that a grounding claim φ1, φ2, . . . , φn < ψ is simple if n > 0 and each of
φ1, φ2, . . . , φn, ψ is an atom; and say that a set S of grounding claims is simple if
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each of its members is simple. The set S of strict full grounding claims is said to
be closed if it is closed under Cut (for strict full ground) and Amalgamation;
and a closed set S of strict full grounding claims is said to be acyclic if it does
not contain a grounding claim of the form ∆ < φ with φ ∈ ∆. Finally, given a
set A of atoms, let SA be the set of simple grounding claims that can be formed
from the members of A.

We may now show that, for closed, acyclic S, we can consistently suppose,
not only that every member of S holds, but that the members of S are exactly
the grounding claims that hold:

Corollary 3.9 Suppose that S is a closed acyclic set of simple grounding claims

formed from the atoms in A. Then the sequent S ` (SA \ S) is not derivable in

GG.

Proof It suffices to establish the result for finite S.7 Given S, say p ≺S q if,
for some ∆, p ∈ ∆ and ∆ < q ∈ S. Since S is acyclic, we can assign a depth
d(p) to each atom p of A, where d(p) = 0 if for no q is q ≺S p and otherwise
d(p) = max{d(q) : q ≺S p} + 1. With each atom p of A, we associate a fresh
atom p′ not in A. We now define a function f from the atoms of A to formulas:

1. when d(q) = 0, f(q) = q;

2. when d(q) > 0, f(q) =

(f(p11
)∧f(p12

)∧· · ·∧f(p1k1
))∨· · ·∨ (f(pn1

)∧f(pn2
)∧ · · ·∧f(pnkn ))∨ q′

where {p11 , p12 , . . . , p1k1
}, . . . , {pn1 , pn2 , . . . , pnkn } constitute the ∆ for which

∆ < q ∈ S.

To guarantee the uniqueness of f(q) in (2), we suppose that the atoms of A
occur in a fixed order and that conjunctions and disjunctions are associated
from left to right.

Let f(∆) = {f(q) : q ∈ ∆}, and extend f to sets of grounding claims in
the obvious way. The function f maps grounding claims in S to L-truths and
non-members to non-L-truths, allowing us to bring T3.6 to bear. That is, for
any grounding claim ∆ < q ∈ SA:

∆ < q ∈ S iff f(∆) < f(q) is L-true.

Thus each grounding claim in f(S) is L-true and each grounding claim in f(SA\
S) is not L-true. So the sequent f(S) ` f(SA \S) is not valid and hence, by the
theorem, is not derivable in GG. Since GG is closed under uniform substitutions,
S 6` (SA \ S).

It follows, in particular, that the closure of the set {p2 < p1, p3 < p2, . . . } is
consistent. Indeed, we can consistently suppose that these are the only simple
grounding claims to hold. It is turtles all the way down!

7See L8.2 below.
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We might define a sequent S ` T to be super-valid if every uniform substi-
tution instance of it is valid. So, for example, p < q ` ∅ is valid though not
super-valid, since the substitution instance p < ¬¬p ` ∅ is not valid. By the the-
orem, the logic of super-validity is at least GG, since GG is closed under uniform
substitution. In fact, it properly extends GG since p ∧ (p ∧ p) � (p ∧ p) ∧ p ` ∅
is super-valid and yet not derivable in GG. It would be interesting to determine
the logic of super-validity. Indeed, there is a whole range of questions here,
since we might add further principles, such as ∅ ` (φ∧ψ) ≤ (ψ∧φ), to GG and
then attempt to determine the logic for the resulting notion of super-validity.
There is also a connection here with the previously mentioned semantics of Cor-
reia [2017]; for we might take him to be adopting a substitutional conception
of validity under something akin to a free interpretation of the truth-functional
formulas.

4 The Canonical Model: Definition and Eluci-
dation

We define and motivate the canonical model that will be used to establish com-
pleteness. We first extend the language by adding certain sentences used for
the construction; we then define the notion of a “free” condition or content over
the resulting set of sentences; and we finally specify the representative condi-
tions in terms of which the canonical model is defined. We close the section by
discussing some features of the construction.

In what follows, we will refer to an indexed set using standard notation,
writing (xi)i<α for {xi|i < α}. We will almost always omit the limit ordinal α,
and we will often write (xi), omitting the subscripted restriction ‘i < α’ entirely.
We indicate co-indexed sets by using the same subscripts. Where there are two
subscripts, the first subscript may sometimes depend on the second subscript,
and these abbreviations may be embedded. Some examples:
Abbreviation Expansion
(xi) x0, x1, . . .
(∆i ≤ φi) ∆0 ≤ φ0; ∆1 ≤ φ1, . . .
(xij) x00, x10, . . . x01, x11, . . . , x0j , x1j , . . . , xij , . . . , , . . .
((δij)i, γj)j δ00, δ10, . . . , γ0, δ01, δ11, . . . , γ1, . . .

Suppose S is a set of grounding claims of L that is prime (S ` T ⇒ (∃τ ∈
T )τ ∈ S). Intuitively, if S is prime, then whenever S “takes” the disjunction
of a set T of grounding claims to be true, there is also some specific member σ
of T that it already “takes” to be true. The primeness of S implies that it is
consistent (S′ 6` ∅) and that it is closed under derivability (if S ` σ, then σ ∈ S).
S will remain fixed for the discussion in this section and throughout §§5-7. In
what follows, we will sometimes justify claims about S’s members by appeal to
the closure of S to indicate the fact that S is closed under derivability. So, for
instance, we may say that, if S ` φ < ψ, then S ` φ ≺ ψ by “the closure of S.”

Before describing the construction in detail, it may be useful to give a rough
and intuitive outline that makes our proof strategy clearer. We are given a
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prime, and so consistent, set of grounding claims S. Since our proof of com-
pleteness will be Henkin-style, we will ultimately be constructing a model that
verifies exactly those grounding claims of L that are members of S. For this
purpose, S may need to be supplemented in a number of ways. First, note
that a partial weak grounding claim of the form φ � ψ, intuitively, says that
there is some set of contents, ∆ which, together with the content of φ, fully
weakly grounds the content of ψ. S may contain partial weak grounding claims
φ � ψ without containing any full weak grounding claim of the form φ,∆ ≤ ψ
that witnesses this existential generalization. So, whenever φ � ψ ∈ S, we will
add a fresh sentence wψ to our language for the purpose of adding a full weak
grounding claim φ,wψ ≤ ψ to S. We will call these new sentences witnessing
constants.

Second, it would have been convenient if, whenever S had contained a full
grounding claim ∆ < φ, S had also contained a corresponding grounding claim∧

∆ < ¬¬φ. For then we could have constructed a model M in which [φ]

(i.e., the truth condition for ¬¬φ) is identified with [φ+
∧

∆]. Then, using the

definition of selection in a model, we would have had
∧

∆ ≤M φ, and so also

∆ <M φ. Unfortunately, the rules of GG do not guarantee that there is any
such conjunction

∧
∆. Our original language does not generally contain multi-

grade conjunctions, and, even where the language does contain the relevant
conjunction, simply adding the relevant grounding claim will not generally yield
a conservative extension of S. Instead, we will expand the language L to enable
us to add the next best thing: a conjunction v∆,φ whose conjuncts include both
the members of ∆ and some zero-grounded elements z1, z2, described below.
For this purpose, we must of course expand the language to allow multigrade
conjunctions. Then we add v∆,φ ≤ φ to S, and use a construction similar to the

one described above to get a model with the selections: δ0, δ1, . . . , z1, z2 <M
¯̄φ

(where ∆ = (δi)); ∅ <M z1; and ∅ <M z2. We can then use ascent and

under cut to get the selection δ0, δ1, · · · <M φ, as desired.
We cannot add only the grounding claim v∆,φ ≤ φ to S. irreversibil-

ity requires us also to add either some other weak grounding claim witnessing
φ � v∆,φ or v∆,φ < φ. Adding v∆,φ < φ would be foolish. Since φ might itself
have logical structure, maximality may then require that we add some weak
grounding claims linking, say, v∆,φ and some conjunct of φ, requiring us, in
turn, to add strict partial grounding claims linking each δ in ∆ to that con-
junct. Thus we may, again, fail to conservatively extend S. Instead, we satisfy

irreversibility by adding a grounding claim that ensures that φ �M v∆,φ

in the model we construct. That way, irreversibility gets satisfied without
having to add any strict partial grounding claim of L . For this purpose, we
add to our language a “shadow” /v∆,φ/ of v∆,φ, and we throw the grounding
claim φ, /v∆,φ/ ≤ v∆,φ into S.

We now have φ � v∆,φ � φ. So, ensuring that we have a conservative
extension will require us to distinguish v∆,φ and v∆,ψ whenever φ 6= ψ. Oth-
erwise, our additions may yield φ � v∆,φ = v∆,ψ � ψ, and so the resulting
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set of grounding claims will fail to be consistent, much less conservative, when
ψ ≺ φ ∈ S. So, the zero-grounded elements we use as conjuncts of v∆,φ must be
both zero-grounded and unique for a given sentence φ of our original language
L . The zero-grounding part is easy: we add to our original language a new
sentence >∧, whose truth condition is the combination of the empty sequence.
Intuitively, >∧ is the conjunction of zero sentences. To uniquely mark v∆,φ for
each φ ∈ L , we also add to our language a “shadow” /φ/. Now, one of the
conjuncts z1 of v∆,φ can be (>∧ ∨ /φ/), which will be both zero-grounded and
unique to φ.

But this addition requires another new conjunct z2. To illustrate, we may
have φ < ¬¬χ ∈ S. After adding vφ,¬¬χ ≤ ¬¬χ, we will have φ, (>∧ ∨ /φ/) <
¬¬χ. Thus, maximality requires (>∧∨/φ/) � χ. So, we need a way to ensure
that we have our marker (>∧ ∨ /φ/) as a partial weak ground of χ. For this
purpose, we add to our language another new sentence >∨, which behaves like
the disjunction of the markers (>∧ ∨ /ψ/) for all ψ in our original language
L . >∨ is zero-grounded, and so is suitable as our additional conjunct z2.
Since χ < ¬¬χ ∈ S, the construction we are describing requires that we add
v∆,¬¬χ ≤ ¬¬χ. Thus, we have

χ, (>∧ ∨ /χ/),>∨ < ¬¬χ ` χ, (>∧ ∨ /φ/) < ¬¬χ ` (>∧ ∨ /φ/) � χ

as desired.
We have solved the original problem occasioned by the absence from S of

a grounding claim
∧

∆ < ¬¬φ that would allow us to construct a selection
corresponding to a given grounding claim ∆ < φ ∈ S. But, in doing so, we have
created a problem of exactly the same sort. For we have added φ, /v∆,φ/ ≤ v∆,φ,
which in turn requires that we also add φ, /v∆,φ/ < ¬¬v∆,φ, and, of course, there
is not already a grounding claim (φ ∧ /v∆,φ/) ≤ ¬¬v∆,φ (a` (φ ∧ /v∆,φ/) <
¬¬¬¬v∆,φ) in our augmented set of grounding claims. But we already know
how to solve this problem: we iterate the procedure. This, again, creates a
further problem of exactly the same sort. If we iterate out to the limit, then all
such problems are solved.

As it turns out, the result of our efforts is a set S∗, which conservatively
extends S. We call S∗ the canonical model basis for S. Like S, S∗ will be prime
and so consistent. We will then use S to define a selection space (as described
above) and an interpretation function whose selections correspond (under the
interpretation) to the grounding claims in S∗. We will show that that selection
space is a frame, meeting the Irreversibility and Maximality constraints. That
frame, together with the interpretation of S∗, is the canonical model for S,
which verifies exactly the grounding claims of L that are members of S. As
the informal reflections above illustrate, the construction is far from trivial.

We start by extending the language L to L + to include all of the new
sentences we need:

Definition 4.1 The proto-language PL is the smallest set of sentences such
that:

1. If φ is an atomic sentence of L , then φ is an atomic sentence of PL ;
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2. If φ ∈ L (whether atomic or molecular), then wφ is an atomic sentence
of PL ;

3. >∧ and >∨ are each fresh atomic sentences of PL ;

4. if φ ∈PL , then /φ/ is a sentence of PL ;

5. if φ ∈PL , then ¬φ ∈PL ; and

6. if 1 ≤ n ∈ ω and φ0, (φi)1≤i≤n are each sentences of PL , then (φ0 ∧φ1 ∧
· · · ∧ φn) and (φ0 ∨ φ1 ∨ · · · ∨ φn) are each sentences of PL .

The atomic sentences of the language L + are the atomic sentences and “shad-
ows” /φ/ of PL , and L + itself is the closure of the atomic sentences of L +

under negation, multigrade conjunction, and multigrade disjunction, as specified
in clauses (5) and (6) above.

Remark: We add the witnessing atomic sentences wφ for each sentence φ of
L (not L +). By contrast, we add atomic sentences /φ/, which in each case is
a “shadow” of φ, for each sentence (atomic or molecular) of L +.
Remark: Notice that clause (6) applies to finite sequences of sentences of length
≥ 2 to yield conjunctions and disjunctions of any finite -arity ≥ 2. The symbols
‘∧’, ‘∨’, ‘)’, and ‘(’ mentioned in clause D4.1(6) to specify n-ary conjunctions and
disjunctions are the very same symbols used in the specification of the original
language L . So, for sentences φ0 and φ1 of L , the conjunction (φ0 ∧ φ1) of
our original language L is the very same string as the binary conjunction L +

specified in D4.1(6) when φ0, (φi) is just the pair φ0, φ1. Similarly, disjunctions
of L are identical with corresponding binary disjunctions of L +. We do not
allow conjunctions with fewer than 2 conjuncts, and, similarly, for disjunctions.

We use the language to specify the elements of our selection space. We start
with a space that is “free” of interesting identifications among conditions or
contents.

Definition 4.2 The Free Selection Space: Assume that +, ., ↑, and the
atomic sentences of L are pair-wise distinct ur-elements. We define the notions
of a free condition and a free content inductively:

1. If φ is an atomic sentence of L +, then φ and ¬φ are free conditions.

2. If a and b are free conditions, then the ordered pair (a, b) is a free content.

3. If X = 〈v, w, . . . 〉 is a sequence of free contents of length l (l 6= 1, l ∈ ω),
then (+, X) and (., X) are each free conditions (written [v +w+ · · · ] and
[v.w. · · · ], respectively, where convenient).

4. If v is a free content, then (↑, 〈v〉) is a free condition (written [v]).

For any free content v = (a, b), v⊕ = a and v	 = b.
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Remark: We may think of ., +, and ↑ as operations which take finite
sequences X and Y of free contents of appropriate length into the free conditions
(., X), (+, X), and (↑, Y ), respectively. The operations . and + can each be
applied to the null sequence, so that (., ∅) and (+, ∅) are each free conditions.

Now we link the sentences of L + to elements of the free selection space.

Definition 4.3 We define a function ¯̇̄ from L + into the set of free contents
recursively as follows:

1. For φ atomic, ¯̄φ = (φ,¬φ);

2. ¬φ = ( ¯̄φ	.[
¯̄φ]);

3. (φ ∧ ψ ∧ . . . ) = ([ ¯̄φ. ¯̄ψ. · · · ], [¬φ+ ¬ψ + · · · ]); and

4. (φ ∨ ψ ∨ . . . ) = ([ ¯̄φ+ ¯̄ψ + · · · ], [¬φ.¬ψ. · · · ]).

We now define a relationV among sentences of L +. This relation indicates
the new full weak grounding claims linking conjunctions like v∆,φ and the cor-
responding sentence φ that we will be adding to S to yield S∗. As indicated
informally above, the process is iterative, so the relation is defined inductively.

Definition 4.4 Fix an enumeration (φi) of the sentences of L . We take the
natural order on the sentences of L to be the corresponding ordering. If ∆ ⊆ L ,
then we take (δi) to be the natural enumeration of ∆, i.e., the restriction of the
natural order on L to ∆. If (δi) is the natural enumeration of ∆ and ∆ < φ ∈ S,
set

v∆,φ = (δ0 ∧ δ1 ∧ · · · ∧ (>∧ ∨ /φ/) ∧ >∨).

We inductively define the relation V on sentences of L + by:

(S): v∆,φ V φ, if ∆ < φ ∈ S;

(W): (ψ ∧ wφ)V ¬¬φ, if ψ � φ ∈ S;

(Max): (wφ ∧ φ)V ¬¬wφ for φ ∈ L ;

(∅∅∅): (>∧ ∧ (>∧ ∨ /φ/))V >∨, if φ ∈ L ; and

(Induction): if φV ψ, then (ψ ∧ /φ/)V ¬¬φ and (φ ∧ /φ/)V ¬¬/φ/.

Remark: The definition of V says nothing in general about arbitrary
atomic sentences, negations, conjunctions, or disjunctions. So, many sentences
of L + appear on neither the RHS nor the LHS of any instance of V.

Remark: Recall that v∆,φ is the conjunction that we will use to enable
the transparent derivation of ∆ < φ from ∆ < v∆,φ ≤ φ ∈ S∗. Note that
v∆,φ = v∆′,φ′ iff ∆ = ∆′ and φ = φ′.

As indicated informally above, whenever φV ψ, we will identify the truth-
condition for ¬¬ψ (which is the result [ ¯̄ψ] of “raising” the truth-condition for

ψ) with the truth-condition [ ¯̄ψ + ¯̄φ] for (ψ ∨ φ). We now define the equivalence
relation among free conditions and contents corresponding to this identification.
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Definition 4.5 We inductively define a relation ∼ as the smallest equivalence
relation meeting the following conditions:

(>∧>∧>∧): 〈., ∅〉 ∼ >∧;

(VVV): If φV ψ, then [ ¯̄ψ] ∼ [ ¯̄ψ + ¯̄φ];

(Pairing): if a ∼ c and b ∼ d, then (a, b) ∼ (c, d);

(Comp): 1. if (vi ∼ wi), then [v0 + v1 + · · · ] ∼ [w0 + w1 + · · · ];
2. if (vi ∼ wi), then [v0.v1. · · · ] ∼ [w0.w1. · · · ];
3. if v ∼ w, then [v] ∼ [w].

Remark: An immediate import of D4.5(V) is that ¬¬ψ⊕ = [ ¯̄ψ] ∼ [ ¯̄ψ+ ¯̄φ] =

(ψ ∨ φ)⊕, whenever φV ψ.

Definition 4.6 The Canonical Model MS is the ordered tuple 〈Fs,ΣS ,ΠS , · 〉
whose elements are defined as follows. Pick a “representative” function g on
free conditions a, such that g(a) ∈ {b|a ∼ b} and g(a) = g(b) if a ∼ b. Then:

1. FS is the range of g.

2. The choice ΣS(X) of any length l sequence of X = 〈v, w, . . . 〉 of members
of FS ×FS (l 6= 1, l ∈ ω)is g([v+w+ · · · ]) (written as [v+w+ · · · ]g when
convenient).

3. The combination ΠS(X) of any length l sequence of X = 〈v, w, . . . 〉 of
members of FS × FS (l 6= 1, l ∈ ω) is g([v.w. · · · ]) (written as [v.w. · · · ]g
when convenient).

4. Σ(〈v〉) = Π(〈v〉) = g([v]) (written as [v]g), for any member v of FS × FS.

Let g((a, b)) = (g(a), g(b)) for all free contents (a, b). Then ·̄ is the function

from L + into FS × FS such that φ̄ = g( ¯̄φ).

Remark: Clearly, since ΣS and ΠS are defined on all finite sequences of
members of FS × FS and Σ〈v〉 = Π〈v〉 = [v]g for all v ∈ FS , MS is a selection
system. The burden of the following three sections is to show that MS is, in fact,
a model, thereby meriting the label “canonical model”, and that a grounding
claim σ of the original language L is true in MS iff σ ∈ S.

Remark: ∼ is stipulated to be an equivalence relation on free conditions. It
then easily follows that it will also be an equivalence relation on free contents.
The clauses (pairing) and (comp) in D4.5 will ensure that ∼ is a congruence
under pairing, choice, and combination.

(>∧>∧>∧): This clause will guarantee that >∧⊕ is equivalent to the combination
of nothing (the “zero-combination”). So, ∅ <MS

>∧ <MS
(>∧ ∨ /φ/).
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(VVV): This clause is the key to the construction. First, it guarantees that
φV ψ implies φ̄ ≤MS

ψ̄. A picture illustrates the structure:

¬¬ψ = ([ψ̄]g, [¬ψ]g) = ([ψ̄ + φ̄]g, [¬ψ]g)

ψ̄

OO

φ̄

gg

oo

The solid arrows indicate relations of strict selection. The dotted arrow indi-
cates a relation of weak selection between φ̄ and ψ̄, and is warranted by the
definition of φ̄ ≤MS

ψ̄ as (∃d)φ̄ <MS
([ψ̄]g, d).

Specific comment is merited on the consequences of the individual clauses
in the definition D4.4 of (V). The top two levels of each of the pictures below
have the general form indicated in the picture above.

(VVV)(∅∅∅): Since (>∧ ∧ (>∧ ∨ /φ/))V >∨ for each φ ∈ L we have:

¬¬>∨

>∨

OO

(>∧ ∧ (>∧ ∨ /φ/))

gg

oo

>∧

◦

OO

(>∧ ∨ /φ/)

◦

OO

∅

OO

>∧

OO

∅

OO

Here, the fact that solid arrows from >∧ and (>∧ ∨ φ) meet at ◦ indicates that
they are jointly a strict selection from (>∧ ∧ (>∧ ∨ /φ/)). As the picture in-
dicates, ∅ <MS

(>∧ ∧ (>∧ ∨ /φ/)) ≤MS
>∨. In effect, as we have said, >∨

behaves like the disjunction of all (>∧ ∨ /φ/), for φ ∈ L .

(VVV)(W): This clause guarantees that ψ̄, wφ ≤MS
φ̄ whenever ψ � φ ∈ S:
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¬¬¬¬φ

¬¬φ

OO

(ψ ∧ wφ)

hh

oo

φ̄

OO

ψ̄

◦

OO

◦oo wφ

◦

OO

◦

Here, the dotted arrows from ψ̄ and wφ meet at ◦ and continue to φ̄, indicat-
ing that ψ̄ and wφ are jointly a weak selection from φ̄. This weak selection is
guaranteed by the fact that ψ̄, wφ <MS

(ψ ∧ wφ) ≤MS
¬¬φ. together with the

definition of φ̄ ≤MS
ψ̄ as (∃d)φ̄ <MS

([ψ̄]g, d). This ensures that any partial
grounding claim ψ � φ ∈ S has a corresponding partial weak selection in MS .

(VVV)(Max): As in the previous case, this clause guarantees that wφ, φ̄ ≤MS

wφ. The picture above shows that ψ̄, wφ ≤MS
φ̄ whenever ψ � φ ∈ S. irre-

versibility demands that that either ψ̄, wφ is also a strict selection from φ̄,
or that φ̄ is a partial weak selection from one of ψ̄, wφ. This clause satisfies
irreversibility in this case by guaranteeing the latter alternative. The for-
mer alternative needs to be avoided. In particular, we need to avoid the strict
selection ψ̄, wφ <MS

φ̄, since attempting to meet irreversibility by adding
this strict selection might require further additions corresponding to grounding
claims that are not in S. Suppose, to illustrate, that χ � (φ ∧ ψ) ∈ S, but
neither χ � φ nor χ � ψ are in S. If we had (foolishly) attempted to satisfy

irreversibility by adding the strict selection χ̄, w(φ∧ψ) <MS
(φ ∧ ψ), then

Maximality would require us to add either χ̄ �MS
φ̄ or χ̄ �MS

ψ̄ as well.

(VVV)(S): This clause guarantees that v∆,φ ≤MS
φ̄ whenever ∆ < φ ∈ S. We

have thereby obtained the selection ∆̄ <MS
v∆,φ ≤MS

φ̄ whenever ∆ < φ ∈ S.
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¬¬φ

φ̄

OO

v∆,φ

bb

oo

∆̄

◦

ee

(>∧ ∨ /φ/)

◦

ee

>∨

◦

ee

∅

OO

∅

OO

As desired, v∆,φ behaves like the conjunction of the sentences in ∆, except
that it has two “zero-grounded” conjuncts (>∧ ∨ /φ/) and >∨. Recall that the
inclusion of the “shadow” /φ/ of φ as a disjunct in (>∧ ∨ /φ/) guarantees that
v∆,φ 6= v∆,ψ when φ 6= ψ.

(VVV)(Induction): Another function of (VVV) is to guarantee that

φ̄ �MS
ψ̄ �MS

/φ/ �MS
φ̄

whenever φV ψ. The first partial weak selection φ̄ �MS
ψ̄ is secured immedi-

ately, as illustrated by the first picture above.
The other weak selections require us to go up a level. By (VVV)(Induction),

whenever φ V ψ, we also have (ψ ∧ /φ/) V ¬¬φ. So, [¬¬φ]g = [¬¬φ +

(ψ ∧ /φ/)]g. Similarly, by (VVV)(Induction), (φ∧/φ/)V ¬¬/φ/ and so [¬¬/φ/]g =

[¬¬/φ/+(φ ∧ /φ/)]g. These two facts secure the partial weak selection relations
indicated. Again, pictures summarize the construction:

¬¬¬¬φ

¬¬φ

OO

(ψ ∧ /φ/)

ee

oo

φ̄

OO

ψ̄

◦

cc

◦oo /φ/

◦

cc

◦

¬¬¬¬/φ/

¬¬/φ/

OO

(φ ∧ /φ/)

ee

oo

/φ/

OO

φ̄

◦

cc

◦oo /φ/

◦

cc

◦

The partial weak selections

ψ̄ �MS
φ̄ �MS

/φ/ �MS
φ̄
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are represented in the bottom rows of the two pictures.
A special case of this circle of partial weak selections is that

φ̄ �MS
v∆,φ �MS

/v∆,φ/ �MS
φ̄.

Thus, the weak selection v∆,φ ≤MS
φ̄ is reversible: φ̄, /v∆,φ/ ≤MS

v∆,φ. This
enables MS to simultaneously satisfy (irreversibility) and (Maximality),
as described informally above.

5 Witnessing, >∧, >∨, and Theorems in L +

Recall that S is a prime (and hence consistent) set of grounding claims. We
use syntactic methods to extend S. The ultimate goal is to get a well-behaved
extension S∗ which is prime (in L +) and whose grounding claims exactly cor-
respond to the selections of MS . This extension is described and its adequacy
proved in the next two sections. In the present section, we expand S to include:

• full weak grounding claims ψ,wφ ≤ φ corresponding to the partial ground-
ing claims ψ � φ ∈ S;

• the grounding claim ∅ < >∧;

• claims of the form (>∧ ∧ (>∧ ∨ /φ/)) ≤ >∨, for φ ∈ L ; and

• theorems of L +, i.e., grounding claims of L + derivable from the null set:
φi < (φ1∨φ2∨φ3∨· · ·∨φn), (¬φi) < ¬(φ1∧φ2∧φ3∧· · ·∧φn), /φ/ ≤ /φ/,
and the like.

Adding grounding claims corresponding to instances of (V) will be deferred
until the next section.

It is convenient for demonstrating primeness and conservativity to define
syntactic objects that, in effect, represent normal forms for derivations in GG
of grounding claims from S together with grounding claims for witnessing con-
stants, >∧, and >∨; see D5.3 and D5.6 below. These syntactic objects are called
S-derivations.

Definition 5.1 The class of S-derivations is given by the following axioms and
cut rule:

(S): If ∆ ≤ φ ∈ S, then ∆,>∨ ≤ φ is an axiom;

(W): if δ � φ ∈ S, then δ, wφ ≤ φ is an axiom;

(Max): φ,wφ ≤ wφ is an axiom, for φ ∈ L ;

(>>>∧): ∅ ≤ >∧ is an axiom;

(>>>∨): If φ ∈ L , then (>∧ ∨ /φ/) ≤ >∨ is an axiom;

(ID): φ ≤ φ is an axiom;

30



(Determination): The following are axioms:

φ, ψ, . . . ≤ (φ ∧ ψ ∧ . . . ) φi ≤ (φ0 ∨ φ1 ∨ . . . ) φ ≤ ¬¬φ

¬φ,¬ψ, . . . ≤ ¬(φ ∨ ψ ∨ . . . ) ¬φi ≤ ¬(φ0 ∧ φ1 ∧ . . . )

(Cut):
(∆i ≤ ψi)i<n∈ω (ψi),Γ ≤ φ

(∆i),Γ ≤ φ

If ∆ ≤ φ is the conclusion of an S-derivation, then it is said to be derivable or
an S-connection. We will often simply write ∆ ≤ ψ to indicate that ∆ ≤ ψ is an
S-connection. (∆i ≤ ψi) are the minor premises of the application of (cut),
(ψi),Γ ≤ φ is its major premise, (ψi) are its cut formulae, and Γ contains
its side formulae. The major premise of an S-derivation D that terminates
in an application of (cut) is the major premise of that terminal application,
and, similarly, for D’s minor premises, cut formulae, and side formulae. An
S-derivation is an axiom iff it consists of a single application of an axiom rule.

We will use calligraphic capital letters D, E ,F and G (sometimes with sub-
scripts or accents) for S-derivations. We will often represent the form of an
S-derivation of ∆ ≤ φ that is a subderivation of another S-derivation in tabular
form, using

D
∆ ≤ φ

So, for instance, if D is an axiom φ, ψ ≤ (φ ∧ ψ), then we may represent D in
tabular form by

D
φ, ψ ≤ (φ ∧ ψ)

D5.2-D5.9 define some notions and establish some facts concerning the appli-
cation of (Cut) in S-derivations. With the exception of L5.7, these definitions
and results do not depend on the particular choice of axioms for S-derivations.
Although (Cut) cannot be eliminated from S-derivations, the results show that
its application can be severely restricted.

Definition 5.2 The depth Depth(D) of an S-derivation D is defined induc-
tively:

1. If D is an axiom, Depth(D) = 1;

2. if D has the form ( Ei ) E
∆i ≤ φi (φi),Γ ≤ φ

(∆i),Γ ≤ φ
then Depth(D) = sup((Depth(Ei)), Depth(E)) + 1.

Definition 5.3 An S-derivation D is in semi-normal form iff every major
premise of every application of (cut) in D is an axiom.
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Lemma 5.4 (Semi-Normal Form Lemma) If D is an S-derivation of ∆ ≤
φ, then there is an S-derivation of ∆ ≤ φ in semi-normal form.

Proof We prove the result by induction on the depth of S-derivations. It is
obvious that every application of (Cut) with more than one minor premise can
be split into a series of applications of (cut) with exactly one minor premise.
So, we may assume (wlog) that the terminal instance of (cut) in D has exactly
one minor premise.

Axioms: Trivially, if D is an axiom, then it is in semi-normal form.

(Cut): Suppose D terminates in an application of (cut). We prove the result
by a subsidiary induction on the depth of the S-derivation F of the major
premise of D.

Axioms: Suppose F is an axiom. By the outermost IH, the S-derivation
E of D’s minor premise is in semi-normal form. So, D is already in
semi-normal form.

(Cut): Let F be the S-derivation of the major premise in D. Suppose
∆ ≤ φ is the minor premise of D, so that φ is the cut formula of
D. By the outermost IH, we may assume that F is semi-normal.
(Note that semi-normal derivations will not generally have only one
minor premise.) There are three cases: (A) φ occurs only as a side
formula in F ; (B) φ occurs only on the left-hand side of some minor
premises of F ; or (C) φ occurs both as a side formula in F and on
the left-hand-side of some minor premises of F .

(A): D has the form

( F∗i )E Γi ≤ γi (γi), φ,Σ ≤ ψ
∆ ≤ φ (Γi), φ,Σ ≤ ψ

(Γi),∆,Σ ≤ ψ
where E and F∗ are each semi-normal. Then

E ( F∗i )∆ ≤ φ Γi ≤ γi (γi), φ,Σ ≤ ψ
(Γi),∆,Σ ≤ ψ

is semi-normal.

(B): D has the form

( F ′j ) ( Gi )E φ,Γj ≤ γj Σi ≤ χi (γj), (χi),Γ
′ ≤ ψ

∆ ≤ φ φ, (Γj), (Σi),Γ
′ ≤ ψ

∆, (Γj), (Σi),Γ
′ ≤ ψ

where (φ,Γj ≤ γj) are exactly the minor premises of F with φ
on the left-hand side, and (Σi ≤ χi) are exactly the other minor
premises of F . By the outer IH, we may assume (wlog) that
(F ′j), (Gi) are each semi-normal, and E is semi-normal. For each
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j, consider the S-derivation

E∗=
E F ′j

∆ ≤ φ φ,Γj ≤ γj
∆,Γj ≤ γj

Notice that Depth(E∗) ≤Depth(D), and Depth(F ′j) <Depth(F).
So, by the inner IH, there is a semi-normal S-derivation E ′j of
∆,Γj ≤ γj . So,

( E ′j ) ( Gi )∆,Γj ≤ γj Σi ≤ χi (γj), (χi),Γ
′ ≤ ψ

∆, (Γj), (Σi),Γ
′ ≤ ψ

is semi-normal.

(C): D has the form

( F ′j ) ( Gi )E φ,Γj ≤ γj Σi ≤ χi (γj), (χi), φ,Γ
′ ≤ ψ

∆ ≤ φ φ, (Γj), (Σi),Γ
′ ≤ ψ

∆, (Γj), (Σi),Γ
′ ≤ ψ

where (φ,Γj ≤ γj) are exactly the minor premises of F with φ
on the left-hand side, and (Σi ≤ χi) are exactly the other minor
premises of F . As in case (B), we may assume (wlog) that (GJ)
and E are each semi-normal, and, for each j, there is a semi-
normal S-derivation E ′j of ∆,Γj ≤ γj . So,

E ( E ′j ) ( Gi )∆ ≤ φ ∆,Γj ≤ γj Σi ≤ χi (γj), (χi), φ,Γ
′ ≤ ψ

∆, (Γj), (Σi),Γ
′ ≤ ψ

is semi-normal.

Definition 5.5 The principal connection of an S-derivation consisting of a
single axiom ∆ ≤ φ is ∆ ≤ φ. The principal connection of an application of
(cut) is its major premise. The principal connection of an S-derivation is
the principal connection of its terminal application of an inference rule. An S-
connection ∆ ≤ φ is based on S iff it is an instance of (S) (i.e. the connection
corresponds directly to some member of S), or an instance ∆ ≤ φ of ( id) or
(determination), where ∆, φ ∈ L .

Definition 5.6 An S-derivation D is in normal form iff it is in semi-normal
form and every application of (cut) in D with a major premise based on S has
no immediate S-subderivation whose principal connection is also based on S.

Intuitively, S-derivations in normal form are semi-normal S-derivations which
never use axioms based on S consecutively.

Lemma 5.7 (Normal Form Lemma) If there is an S-derivation of ∆ ≤ φ, then
there is an S-derivation of ∆ ≤ φ in normal form.
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Proof We prove the result by induction on the depth of S-derivations D. By
L5.4, we may assume (wlog) that D is semi-normal.

Axioms: Suppose D is an axiom. Then, trivially, D is normal.

(Cut): Suppose D terminates in (cut). Since D is semi-normal, its major
premise is an axiom. By IH, all proper S-subderivations of D are normal.
So, if the major premise of D is not based on S, then D is normal. Suppose,
instead, that the major premise of D is based on S. Then it has the form

( Ej ) ( Fk )(∆i ≤ φi) Γj ≤ ψj Σk ≤ δk (φi), (ψj), (δk),Θ ≤ φ
(∆i), (Γj), (Σk),Θ ≤ φ

where:

• (φi), (ψj), (δk),Θ ≤ φ is based on S;

• (∆i ≤ φi) are exactly the minor premises of D which are axioms
based on S;

• Γj ≤ ψj are exactly the minor premises of D derived by a terminal
application of (cut) whose principal connection is based on S; and

• (Σk ≤ δk) are the remaining minor premises of D.

Also, by the closure of S and reflexivity, γ ≤ γ ∈ S, for each γ ∈
(ψj), (δk),Θ. Since (∆i ≤ φi) are each based on S, ∆i \ {>∨} ≤ φi ∈ S,
for each i. So, by the closure of S and cut (for , not ≤),

(∆i), (ψj), (δk),Θ \ {>∨} ≤ φ ∈ S.

For each j, Ej has the form

( Elj )lΓlj ≤ γlj (γlj)l,Γ
′
j ≤ ψj

(Γlj)l,Γ
′
j ≤ ψj

where (γlj)l,Γ
′
j \ {>∨} ≤ ψj ∈ S and (Γlj)l,Γ

′
j \ {>∨} = Γj \ {>∨}. By

IH, we may assume (wlog) that Ej is in normal form, for each j. So, for
each l, j, the principal connection of Elj is not based on S. So, we have
the following members of S: ((γlj)l,Γ

′
j \ {>∨} ≤ ψj)j , (∆i), (ψj), (δk),Γ \

{>∨} ≤ φ, and (by the closure of S and reflexivity) γ ≤ γ for each
γ ∈ (∆i), (δk),Γ \ {>∨}). So, by the closure of S and cut (for ),

(∆i), (γlj), (Γ
′
j), (δk),Θ \ {>∨} ≤ φ ∈ S.

So, the S-derivation

( Elj ) ( Fk )Γlj ≤ γlj Σk ≤ δk (∆i), (γlj), (Γ
′
j), (δk),Θ,>∨ ≤ φ

(∆i), (Γlj), (Γ
′
j), (Σk),Θ,>∨ ≤ φ
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is in normal form. Since (Γlj)l,Γ
′
j \ {>∨} = Γj \ {>∨}, for each j, this

is an S-derivation in normal form of (∆i), (Γj), (Σk),Θ,>∨ ≤ φ. If >∨ ∈
(∆i), (Γj), (Σk),Θ, this yields the result. Otherwise, let D∅ be the normal
S-derivation

∅ ≤ >∧ >∧ ≤ (>∧ ∨ /φ/)
∅ ≤ (>∧ ∨ /φ/) (>∧ ∨ /φ/) ≤ >∨

∅ ≤ >∨

Then an S-derivation similar to the one above, except with D∅ used to
derive the additional minor premise ∅ ≤ >∨ of the terminal application of
(Cut), is normal and yields the result.

We now define a way of “telescoping” an S-derivation D, so that, intuitively
its applications of (Cut) with more than one minor premise are split up into a
series of applications of (Cut), with each having only a single minor premise.
Working with “telescoped” S-derivations simplifies some of the proofs in the
remainder of this section.

Definition 5.8 If D is an S-derivation, the result DT of telescoping D is de-
fined inductively:

1. If D is an axiom or D has the form

E F
Γ ≤ γ γ,Σ ≤ φ

Γ,Σ ≤ φ
then DT = D;

2. If D has the form

E ( F i ) G
Γ ≤ γ ∆i ≤ δi γ, (δi),Σ ≤ φ

Γ, (∆i),Σ ≤ φ
and G∗ is the result of

telescoping

( F i ) G
∆i ≤ δi γ, (δi),Σ ≤ φ

γ, (∆i),Σ ≤ φ

then DT =
ET G∗

Γ ≤ γ γ, (∆i),Σ ≤ φ
Γ, (∆i),Σ ≤ φ

Definition 5.9 The head connection of an S-derivation D (Head(D)) is defined
inductively:

1. If D is an axiom of the form ∆ ≤ φ, then Head(D) = ∆ ≤ φ; and

2. If D terminates in an application of (cut) and E is the subderivation of
D’s major premise, then Head(D) =Head(E).

Remark: Some obvious facts:
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1. DT and D have the same conclusion;

2. if DT is an S-derivation of ∆ ≤ φ, then Head(DT ) has the form Σ ≤ φ.

3. if D is in semi-normal form, then Head(DT ) = the principal connection of
D;

4. If D is semi-normal, and DT terminates in an application of (Cut) whose
minor premise is Γ ≤ γ, then Head(DT ) has the form γ,∆ ≤ φ.

5. If D is normal, DT terminates in an application of (Cut), and Head(DT )
is based on S, then the immediate sub-derivation E of D’s minor premise
is not such that Head(E) is also based on S.

For convenience, we will often use the result of “telescoping” normal and semi-
normal S-derivations in our proofs. In particular, we will do inductive proofs on
the results DT of “telescoping” normal S-derivations D, so that, in the induction
step, we need consider only applications of (cut) with a single minor premise.

In the remainder of this section, we show that the set of grounding claims
corresponding to S-connections is prime, witnessed, and conservative over S.
We read off grounding claims from S-connections in the obvious way:

Definition 5.10 A grounding claim σ of L + is ≤-constructible (≤-con) iff:

1. σ = ∆ ≤ φ and ∆ ≤ φ is an S-connection;

2. σ = δ � φ and σ,Γ ≤ δ is ≤-constructible, for some Γ;

3. σ = δ ≺ φ, δ � φ is ≤-constructible, and φ � δ is not ≤-constructible; or

4. σ = ∆ < φ, ∆ ≤ φ is ≤-constructible, and (∀δ ∈ ∆)δ ≺ φ is ≤-
constructible.

Different sentences of L + will need to be given different treatment. We have
already distinguished witnessing constants and sentences of the original language
L . We now define another subclass, the class of nullities. Intuitively, nullities
are either the zero-grounded sentences we introduced into L + or sentences that
can be relaced in ≤-con grounding claims by those zero-grounded elements. In
effect, we will show (see L5.16) that nullities can simply be deleted from the
LHS’s of S-connections.

Definition 5.11 A sentence φ of L + is a nullity iff φ,∆ ≤ >∨, for some ∆.
The set L w is the union of the set of sentences of L with {wψ|ψ ∈ L }. The
set L 0 is the union of L w and the set of nullities.

Notice that L w is not a language, since, for instance, wψ ∈ L w but ¬wψ 6∈
L w. Similarly, L 0 is not a language.

It is clear by inspection of the definitions D5.11 of nullities and D5.1 of
S-derivations that:

Lemma 5.12
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1. If φ is a nullity, and δ,Σ ≤ φ, then δ is nullity.

2. If φ ∈ L 0 and δ,Σ ≤ φ, then δ ∈ L 0.

For the purposes of showing that nullities may be removed from the LHS’s
of S-connections, it is useful to demonstrate strict constraints on the conditions
under which they may occur on the RHS’s.

Lemma 5.13

1. If δ,∆ ≤ >∧, then δ = >∧;

2. If δ,∆ ≤ /φ/, then δ = /φ/;

3. If δ,∆ ≤ (>∧ ∨ /φ/), then δ = >∧ or δ = /φ/ or δ = (>∧ ∨ /φ/).

4. If δ,∆ ≤ >∨, then δ ∈ {>∨,>∧, /φ/, (>∧ ∨ /φ/)}, for some φ ∈ L .

5. δ is a nullity iff δ ∈ {>∨,>∧, /φ/, (>∧ ∨ /φ/)}, for some ψ ∈ L .

Proof (1.)-(3.) are easily established by a routine induction on S-derivations.
(4.) follows from (1.)-(3.) by a simple induction on S-derivations. (5.) follows
from (4.) and D5.1.

The following two lemmas constrain the form of S-connections containing
witnessing constants. In effect, they show that, once witnessing constants occur
in an S-connection, that they cannot be cut out. Thus, a witnessing constant is
an inelimable “trace” of an application of (W) in a derivation of an S-connection
to a sentence φ of L . The first is verified by a straightforward induction on
S-derivations of ∆ ≤ wψ:

Lemma 5.14 (Persistence Lemma I) If ∆ ≤ wψ, then wψ ∈ ∆.

Lemma 5.15 (Persistence Lemma II) If D is an S-derivation of Γ ≤ φ,
and the head connection of D has the form wψ,∆ ≤ φ, then wψ ∈ Γ.

Proof We prove the result by induction on DT . Suppose DT is an S-derivation
of Γ ≤ φ with head connection wψ,∆ ≤ φ. If DT is an axiom, then wψ,∆ = Γ,
so wψ ∈ Γ. Suppose, then, that DT terminates in an application of (Cut), with
a major premise of the form ∆′ ≤ φ. By IH, wψ ∈ ∆′. So, wψ is either the cut
formula or a side formula in DT . If wψ is a side formula of D, then wψ ∈ Γ.
Suppose, then, that wψ is the cut formula of DT . Then the minor premise of
DT has the form Γ′ ≤ wψ. By L5.14, wψ ∈ Γ′.

Now we can show that nullities can simply be deleted from the LHS of any
S-connection to a sentence φ ∈ L . This will help us to show conservativity.

Lemma 5.16 Suppose Γ,∆ ≤ φ; ∆, φ ⊆ L (not L +); and (∀γ ∈ Γ)γ is a
nullity. Then ∆ ≤ φ ∈ S.
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Proof We prove the result by induction on S-derivations. By L5.7 we may
assume (wlog) that the S-derivation D of Γ,∆ ≤ φ is in normal form. We prove
the result by induction on DT .

(S): D5.1.

(W): wψ 6∈ L and wψ is not a nullity. ⊥.

(Max): wψ 6∈ L . ⊥.

(ID): S is prime + reflexivity.

(>>>∧): >∧ 6∈ L . ⊥.

(>>>∨): >∨ 6∈ L . ⊥.

(Determination): S is prime + Introduction Rules + subs(< / ≤).

(Cut): Suppose DT terminates in an application of (Cut) of the form

E F
Θ′ ≤ θ θ,Θ,≤ φ

Θ′,Θ ≤ φ
where Θ,Θ′ = ∆,Γ. Since φ ∈ L , Head(D) =Head(F) is either based on
S or is an instance of (W). By L5.15(Persistence Lemma II), if Head(D)
is an instance of (W), then wψ ∈ ∆,Γ. Since wψ is neither a nullity nor
a sentence of L , wψ 6∈ ∆,Γ, for any wψ. So, Head(D) must be based on
S. So, since D is normal, Head(E) is not based on S. But, also, Head(E)
has the form Σ ≤ θ, where θ ∈ L or θ = >∨. Suppose (for reductio) that
θ ∈ L . Since Head(E) is not based on S and θ ∈ L , Head(E) cannot
be an instance of (S), (id), or (determination). Since θ ∈ L , Head(E)
cannot be an instance of (Max), (W), (>∧), or (>∨). So, Head(E) must
be an instance of (W). By L5.15(Persistence Lemma II), if Head(E) is an
instance of (W), then wθ ∈ Θ′ ⊆ ∆,Γ. For the same reasons as above,
then, Head(E) is not an instance of (W). ⊥. So, Θ′ ≤ θ has the form
Σ ≤ >∨. By L5.12(1.), Θ′ ⊆ Γ. So, Θ = ∆,Γ′, where Γ′ ⊆ Γ. By IH,
∆ ≤ φ ∈ S.

If we are to establish the conservativity over S of the ≤-con grounding claims,
we also need to show that the rules involving witnessing constants don’t intro-
duce new grounding claims for the original language. We do this by mapping
≤-con grounding claims involving witnessing constants into grounding claims
of our original language L , and showing that those grounding claims already
belong to S.

Definition 5.17 The L -reduction φL of a sentence φ of L + is the result of
replacing each occurence in φ of any atom wχ with χ.

We can now show that grounding claims involving witnessing constants get
mapped to members of S.
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Lemma 5.18 If δ,∆ ≤ φ, and δ, φ ∈ L w, then δL � φL ∈ S.

Proof Suppose D is an S-derivation of δ,∆ ≤ φ and δ, φ ∈ L w. By L5.4(Semi-
Normal Form Lemma), we may assume that D is semi-normal. We prove the
result by induction on DT .

(S): S is prime + subsumption(≤ / �).

(W): The result is trivial if ψ � φ ∈ S and δ = ψ. Otherwise δ = wφ and
φ � φ ∈ S.

(Max): δL = φ and φ � φ ∈ S.

(ID): δL = φ and φ � φ ∈ S.

>>>∧: >∧ 6∈ L w. ⊥.

(>>>∨): >∨ 6∈ L w. ⊥.

(Determination): S is prime + subsumption(< / ≤)(≤ / �).

(Cut): If δ is a side formula of D, then IH implies the result. Suppose, then,
that δ is not a side formula of D, and so the minor premise of D has the
form δ,∆ ≤ ψ. Since >∨,>∧ 6∈ L w, Head(DT ) is an instance of neither
(>>>∨) nor (>>>∧). So, there are two cases: (A) Head(DT ) is an instance of
(S); or (B) Head(DT ) has the form ψ,Γ ≤ φ, where ψ,Γ ⊆ L w.

(A): Either ψ ∈ L w or ψ = >∨. In the former case, IH implies δL �
ψL � φL ∈ S, and the result follows by the closure of S. If ψ = >∨,
then, by L5.12(1.) δ is a nullity. So, δ 6∈ L w. ⊥.

(B): By IH, δL � ψL � φL ∈ S, and the result follows by the closure
of S.

We can now establish conservativity. We do this separately for weak and
strict grounding claims.

Lemma 5.19 For ∆, δ, φ ⊆ L :

1. ∆ ≤ φ is ≤-constructible iff ∆ ≤ φ ∈ S;

2. δ � φ is ≤-constructible iff δ � φ ∈ S;

Proof

1. ⇒⇒⇒: L5.16.

⇐⇐⇐: ∆ ≤ φ ∈ S
D5.1
===⇒ ∆,>∨ ≤ φ

D5.1(∅≤>∨)
========⇒ ∆ ≤ φ

D5.10
====⇒ ∆ ≤ φ is

≤-con.

2. ⇒⇒⇒: By L5.18, δL � φL ∈ S. Since δ, φ ⊆ L , φL = φ and δL = δ.

⇐⇐⇐: δ � φ ∈ S D5.1
===⇒ δ, wφ ≤ φ D5.10

====⇒ δ � φ is ≤-con.
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Lemma 5.20 Suppose δ, φ ⊆ L .

1. δ ≺ φ is ≤-constructible iff δ ≺ φ ∈ S .

2. ∆ < φ is ≤-constructible iff ∆ < φ ∈ S.

Proof

(1.)⇐⇐⇐: Suppose δ ≺ φ ∈ S.

δ ≺ φ ∈ S S is prime
=======⇒ δ � φ ∈ S L5.19

====⇒ δ � φ is ≤-con.

Suppose (for reductio) that φ � δ is ≤-con.

φ � δ is ≤-con
L5.19
====⇒ φ � δ ∈ S

S is prime
======⇒ δ ≺ δ ∈ S S is consistent

=========⇒ ⊥.

(1.)⇒⇒⇒: Suppose δ, φ ⊆ L and δ ≺ φ is ≤-con.

δ ≺ φ is ≤-con
D5.10
====⇒ δ � φ is ≤-con

L5.19
====⇒ δ � φ ∈ S

S is prime
=======⇒ (δ ≺ φ ∈ S ∨ φ � δ ∈ S).

Also, φ � δ ∈ S L5.19
====⇒ φ � δ is ≤ -con

D5.10
====⇒ δ ≺ φ is not ≤-con⇒ ⊥.

(2.): D5.10, L5.19, (1.), and the clsoure of S.

Lemma 5.21 (Conservativity) For any grounding claim σ of L , σ is ≤-
constructible iff σ ∈ S.

Proof L5.19 and L5.20.

Let Complexity(φ) be the standard syntactic complexity function for L +,
so that, e.g., Complexity(φ) is less than Complexity(¬φ), Complexity(φ ∨ ψ),
and Complexity(φ ∧ ψ). The next lemma says that, for sentences φ that are
neither nullities nor in L , S-connections ∆ ≤ φ correspond to increasing syn-
tactic complexity. This result is useful for establishing that such connections
are irreversible.

Lemma 5.22 If φ 6∈ L 0, δ,∆ ≤ φ, and δ 6= φ, then either (∃ψ ∈ L 0)δ,Γ1 ≤ ψ
and ψ,Γ2 ≤ φ, for some Γ1,Γ2, or Complexity(δ) <Complexity(φ).

Proof We prove the result by induction on S-derivations. Suppose D is an S-
derivation of δ,∆ ≤ φ, δ, φ 6∈ L 0, and δ 6= φ. If D is an axiom, it is an instance of
(determination). It is easy to check in that case that Complexity(δ) <Complexity(φ).
Suppose that D terminates in an instance of (cut). By L5.4 (Semi-Normal Form
Lemma), we may assume (wlog) that D is in semi-normal form. There are only
two cases: (A) Head(DT ) is an instance of (id), or (B) Head(DT ) is an instance
of (determination). If δ is a side formula in DT , then the result follows by
the application of IH to the major premise. Suppose, instead, that δ occurs on
the LHS of the minor premise of DT .
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(A): The minor premise of DT has the form δ,Γ ≤ φ. So, the result follows by
the application of IH to the minor premise.

(B): All of the cases are proved similarly. We do the case in which φ is a
conjunction for illustration. Suppose φ = (φ1 ∧ φ2 ∧ . . . ). The minor
premise of DT has the form δ,Γ ≤ φi. If φi ∈ L 0, then δ,Γ ≤ φi and
φ1, φ2, . . . , φi, . . . ≤ φ. Otherwise, IH applies to δ,Γ ≤ φi. Together with
D5.1(determination) and (cut), this implies the result.

We establish irreversibility, and hence the claim that ≤-constructibility con-
forms to the introduction rules of GG.

Lemma 5.23

1. ¬¬φ,Γ 6≤ φ;

2. (φ ∧ ψ ∧ . . . ),Γ 6≤ φ and (φ ∧ ψ ∧ . . . ),Γ 6≤ ψ and . . . ;

3. (φ ∨ ψ ∨ . . . ),Γ 6≤ φ and (φ ∨ ψ),Γ 6≤ ψ and . . . ;

4. ¬(φ ∧ ψ ∧ . . . ),Γ 6≤ ¬φ and ¬(φ ∧ ψ ∧ . . . ),Γ 6≤ ¬ψ and . . . ;

5. ¬(φ ∨ ψ ∨ . . . ),Γ 6≤ ¬φ and ¬(φ ∨ ψ ∨ . . . ),Γ 6≤ ¬ψ and . . . .

Proof The cases are all proved very similarly. We will show the first conjunct of
(2), that (φ∧ψ∧ . . . ),Γ 6≤ φ, for illustration. There are two cases: (A) φ ∈ L w

or (B) φ 6∈ L w.

(A): Suppose (φ∧ψ ∧ . . . ) 6∈ L . Then (φ∧ψ ∧ . . . ) 6∈ L w. Nor, by L5.13(5.),
is (φ∧ψ∧ . . . ) a nullity. So, (φ∧ψ∧ . . . ) 6∈ L 0. Since φ ∈ L 0, the result
follows by L5.12(2). Suppose, instead, that (φ ∧ ψ ∧ . . . ) ∈ L . Then

(φ ∧ ψ ∧ . . . ),Γ ≤ φ L5.18
====⇒ (φ ∧ ψ ∧ . . . ) � φ ∈ S S is prime

=======⇒ ⊥.

(B): Suppose (for reductio) that (φ∧ψ∧. . . ),Γ ≤ φ. By L5.22, since Complexity(φ∧
ψ ∧ . . . ) 6<Complexity(φ), either φ is a nullity, or there is a χ ∈ L 0 such
that (φ ∧ ψ ∧ . . . ),Γ1 ≤ χ and χ,Γ2 ≤ φ, for some Γ1,Γ2. By L5.13, no
conjunction is a nullity, and so, by L5.12(1.) and D5.1(determination),
φ is not a nullity. So, (φ∧ψ∧ . . . ) 6∈ L 0. By L5.12(2), (φ∧ψ∧ . . . ),Γ 6≤ χ.
⊥.

Say that ∆ ≤ {(φi)} is an S-connection when there is a covering (∆i) of ∆
such that (∆i ≤ φi).

Lemma 5.24 (Amalgamation)

1. if ∆1 ≤ φ, . . . ,∆n ≤ φ, then ∆1, . . . ,∆n ≤ φ.

2. If ∆ ≤ {φ, ψ, . . . } and Γ ≤ {φ, ψ, . . . }, then ∆,Γ ≤ {φ, ψ, . . . }.

41



Proof By D5.1 the following is an S-derivation if E and F are:

E
F ∆1 ≤ φ φ ≤ φ

∆2 ≤ φ ∆1, φ ≤ φ
∆1,∆2 ≤ φ

This establishes (1.) by an obvious induction. (2.) follows from (1.) and the
definition of a covering.

L5.25-L5.27 show that the ≤-con grounding claims conform to the elimina-
tion rules of GG, and hence meet the demands imposed by maximality. We
start with the case of the newly introduced complex sentences, and deal with
the more difficult case of complex sentences in L later.

Lemma 5.25 Suppose ψ 6∈ L w, ∆ ≤ ψ is an S-connection, and ψ 6∈ ∆.

1. ψ = (φ1 ∧ φ2 ∧ . . . )⇒ ∆ ≤ {φ1, φ2, . . . };

2. ψ = (φ1 ∨ φ2 ∨ . . . )⇒ (∃Σ ⊆ (φi))∆ ≤ Σ;

3. ψ = ¬¬φ⇒ ∆ ≤ φ;

4. ψ = ¬(φ1 ∨ φ2∨)⇒ ∆ ≤ {¬φ1,¬φ2, . . . };

5. ψ = ¬(φ1 ∧ φ2 ∧ . . . )⇒ ∆ ≤ {(¬ψi)}, for some (ψi) ⊆ (φi).

Proof Suppose ψ 6∈ L w and ∆ ≤ ψ. All of the cases are proved similarly. We
do (1.) for illustration. (1.) follows straighforwardly from L5.23 and

(H) ψ = (φ1 ∧ φ2 ∧ . . . )⇒ (∆ = ψ ∨ ∆ \ {ψ} ≤ {φ1, φ2. · · · }

We prove (H) by induction on S-derivations of ∆ ≤ ψ. The cases of the ax-
ioms are straightforward. Suppose the S-derivation D of ∆ ≤ (φ1 ∧ φ2 ∧ . . . )
terminates in an application of (Cut). By L5.4 (Semi-Normal Form Lemma),
we may assume (wlog) that D is in semi-normal form. DT ’s major premise has
the form θ,Γ ≤ (φ1 ∧ φ2 ∧ . . . ) and DT ’s minor premise has the form Σ ≤ θ,
where ∆ = Σ,Γ. By IH, either θ,Γ = (φ1∧φ2∧ . . . ) or θ,Γ\{(φ1∧φ2∧ . . . )} ≤
{φ1, φ2, . . . }. If θ,Γ = (φ1∧φ2∧ . . . ), then the result follows immediately by IH
applied to the minor premise. Suppose θ,Γ \ {(φ1 ∧ φ2 ∧ . . . )} ≤ {φ1, φ2, . . . }.
DT ’s head connection is an axiom ∆′ ≤ (φ1 ∧φ2 ∧ . . . ). By D5.1, there are only
two cases: (A) ∆′ = (φ1 ∧ φ2 ∧ . . . ), or (B) ∆′ = (φi).

(A): By D5.3 and D5.8, θ = (φ1∧φ2∧. . . ). So, IH applies to the minor premise:
either (I) Σ = (φ1 ∧ φ2) or (II) Σ \ {(φ1 ∧ φ2 ∧ . . . )} ≤ {φ1, φ2, . . . }.

(I): The result follows trivially.

(II) θ,Γ\{(φ1∧φ2∧. . . )} = Γ\{(φ1∧φ2∧. . . )}. By L5.24(amalgamaton),
since Σ \ {(φ1 ∧ φ2)} ≤ {φ1, φ2, . . . }, Σ,Γ \ {(φ1 ∧ φ2 ∧ . . . )} ≤
{φ1, φ2, . . . }.

42



(B): Recall that θ,Γ\{(φ1∧φ2∧ . . . )} ≤ {φ1, φ2, . . . }. Since D is semi-normal,
θ ∈ (φi). By L5.23, (φ1 ∧ φ1 ∧ . . . ) 6∈ Σ. So,

(B) Σ ∪ (Γ \ {(φ1 ∧ φ2 ∧ . . . )}) = (Σ ∪ Γ) \ {(φ1 ∧ φ2 ∧ . . . )}.

So, for some φi, we have Σ ≤ φi, and φi,Γ \ {(φ1 ∧ φ2 ∧ . . . )} ≤ (φi). By
(B) and an application of (Cut), Σ,Γ \ {(φ1 ∧ φ2 ∧ . . . )} ≤ {φ1, φ2}.

Recall that we showed above (L5.14(Persistence Lemma I) and L5.15(Persistence
Lemma II)) that wφ was an ineliminable “trace” of an application of (W) in a
derivation of an S-connection to a sentence φ of L . We now use this to show
that whenever we get an S-connection ∆ ≤ φ by successive applications cut
starting with an S-connection Γ ≤ φ based on S, the LHS ∆ contains a “trace”
of every sentence of L in Γ. Thus, as we show in the next lemma, ∆ can be
partitioned into nullities, sentences of L cut in by (reversible) applications of
(W), witnessing constants cut in by (reversible) applications of (W), and mem-
bers of Γ. This helps us establish (in conjunction with the normal form lemma)
that the S-derivation of any irreversible S-connection with a sentence of L on
the RHS has to have “gone through” some irreversible S-connection based on
S. So, we can use the fact that S itself conforms to the elimination rules of GG
(and so the demands of maximality) to show that the set of ≤-con grounding
claims does, too.

Lemma 5.26 (Persistence Lemma III) If D is an S-derivation of ∆ ≤ φ
in normal form, and the head connection Γ ≤ φ of DT is based on S, then

(∀γ ∈ Γ)(γ = >∨ ∨ γ ∈ ∆ ∨ wγ ∈ ∆)

.

Proof Suppose D is an S-derivation of ∆ ≤ φ in normal form, and the head
connection Γ ≤ φ of DT is based on S. Suppose D is an axiom. Then Γ = ∆.
Suppose, instead, that D terminates in an application of (Cut). Then DT has
the form

E F
∆′ ≤ δ δ,Σ ≤ φ

∆′,Σ ≤ φ
where ∆ = ∆′,Σ and δ ∈ Γ. Suppose γ ∈ Γ and γ 6= >∨. By IH, (∃γ′ ∈
{γ,wγ})γ′ ∈ δ,Σ. Suppose γ′ 6= δ. Then γ′ ∈ Σ ⊆ ∆′,Σ. Suppose, instead, that
γ′ = δ. If γ′ = wγ , then by L5.14(Persistence Lemma I), wγ ∈ ∆′ ⊆ ∆′,Σ. So,
we may assume that γ′ = γ ∈ L . Since D is in normal form, the Head(E) is not
based on S, So, Head(E) is an axiom, not based on S, whose RHS is γ ∈ Γ ⊆ L .
By D5.1, Head(E) has the form χ,wγ ≤ δ. By L5.15 (Persistence Lemma II),
wγ ∈ ∆′ ⊆ ∆′,Σ.

Now we can show that the ≤-con grounding claims conform to the elimina-
tion rules of GG, and thus the demands of maximality.
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Lemma 5.27 (Constructibility Lemma)

1. if ∆ < (φ1 ∧ φ2 ∧ . . . ) is ≤-constructible, then there is a covering (∆i) of
∆ such that (∆i ≤ φi) are each ≤-constructible.

2. if ∆ < (φ1 ∨ φ2 ∨ . . . ) is ≤-constructible, then there are (ψj) ⊆ (φi) and
a covering (∆j) of ∆ such that (∆j ≤ ψj) are each ≤-constructible.

3. if ∆ < ¬¬φ is ≤-constructible, then ∆ ≤ φ is ≤-constructible.

4. if ∆ < ¬(φ1 ∨ φ2 ∨ . . . ) is ≤-constructible, then then there is a covering
(∆i) of ∆ such that (∆i ≤ ¬φi) are each ≤-constructible.

5. if ∆ < ¬(φ1 ∧ φ2 ∧ . . . ) is ≤-constructible, then there are (ψj) ⊆ (φi) and
a covering (∆j) of ∆ such that (∆j ≤ ¬ψj) are each ≤-constructible.

Proof All of the cases are proved similarly. We do (1.) for illustration. Suppose
φ = (φ1∧φ2∧ . . . ) and ∆ < φ is ≤-constructible. Then there is an S-derivation
D of ∆ ≤ φ. By L5.7 (Normal Form Lemma), we may assume (wlog) that D is
in normal form. There are two cases: (A) φ ∈ L w or (B) φ 6∈ L w.

(A): Since φ is not atomic, φ ∈ L . So φ is a binary conjunction (φ1 ∧ φ2).
There are two sub-cases: (I) The head connection Γ ≤ (φ1 ∧ φ2) of DT is
based on S, or (II) The head connection Γ ≤ (φ1∧φ2) of DT has the form

w(φ1∧φ2∧... ), χ ≤ (φ1 ∧ φ2 ∧ . . . ), for some χ such that χ � φ ∈ S.

(I): Take any γ ∈ Γ. By L5.26(Persistence Lemma III), either γ = >∨,
γ ∈ ∆, or wγ ∈ ∆. So, by D5.10, since (φ1 ∧ φ2),Θ 6≤ δ for any
Θ and any δ ∈ ∆, either γ = >∨ or (γ ∈ L and γ ≺ (φ1 ∧ φ2) is
≤-con). Let Γ′ = Γ \ {>∨}, so that Γ = Γ′,>∨ and Γ′ ⊆ L . By
D5.1, since ∅ ≤ >∨, Γ′ ≤ φ. So, by D5.10, Γ′ < φ is ≤-con. So, by
L5.21(Conservativity), Γ′ < φ ∈ S. By the closure of S, there is a
covering Γ′1,Γ′2 of Γ′ such that (Γ′1 ≤ φ1) ∈ S and (Γ′2 ≤ φ2) ∈ S. If
>∨ ∈ Γ, let Γ1 = Γ′1,>∨ and Γ2 = Γ′2,>∨. Otherwise, let Γ1 = Γ′1

and Γ2 = Γ′2. Γ1,Γ2 is a covering of Γ. We prove by induction on the
depth of D that there is a covering ∆1,∆2 of ∆ such that ∆1 ≤ φ1

and ∆2 ≤ φ2 are each ≤-constructible. Suppose D is an axiom.
Then ∆ = Γ, and by D5.1(S), we have S-derivations Γ1,>∨ ≤ φ1

and Γ2,>∨ ≤ φ2. If >∨ 6∈ Γi, by D5.1(Cut), since ∅ ≤ >∨, Γi ≤ φi

for i ∈ {1, 2}. Suppose instead that DT terminates in an application
of (Cut). Then DT has the form

E F
Σ ≤ γ γ,Θ ≤ (φ1 ∧ φ2)

Θ,Σ ≤ (φ1 ∧ φ2)

By IH, γ,Θ has a covering Θ1,Θ2 such that Θ1 ≤ φ1 and Θ2 ≤ φ2

are each ≤-con, and so there are S-derivations G1,G2 of Θ1 ≤ φ1

and Θ2 ≤ φ2, respectively. There are three cases: (a) γ ∈ Θ1 and
γ 6∈ Θ2, (b) γ 6∈ Θ1 and γ ∈ Θ2, or (c) γ ∈ Θ1 and γ ∈ Θ2. The
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arguments in each case are very similar, so we do (a) for illustration.
In this case, Θ1 = γ, (Θ∩Θ1), and Θ = (Θ∩Θ1),Θ2. Θ2 ≤ φ2 is an
S-connection, and the following is an S-derivation:

E G1

Σ ≤ γ γ, (Θ1 ∩Θ) ≤ φ1

Σ, (Θ1 ∩Θ) ≤ φ1

(II): By L5.15 (Persistence Lemma II), w(φ1∧φ2) ∈ ∆. So, by D5.10, (φ1∧
φ2) � w(φ1∧φ2) is not ≤-con. By D5.1(Max), (φ1 ∧ φ2), w(φ1∧φ2) ≤
w(φ1∧φ2). ⊥.

(B): By L5.25, either φ ∈ ∆ or ∆ ≤ {φ1, φ2, . . . }. Suppose (for reductio) that
φ ∈ ∆. Then, by D5.10, φ ≺ φ is ≤-con. But, by D5.1(id), φ ≤ φ ⊥.

Definition 5.28 Let the relation + between sets of grounding claims of L +

be defined by the axioms and rules for GG specified in §3, with the following
changes:

1. Add axioms

(>∧>∧>∧): + ∅ ≤ >∧

(>∨>∨>∨): If φ ∈ L , then + (>∧ ∨ /φ/) < >∨

2. Replace the axiom for ∧-introduction with a generalization suitable for
finite multigrade conjunctions of L +:

+ (φi) < (φ0 ∧ φ1 ∧ . . . )

and, similarly, replace the introduction rules for ∨,¬∧, and ¬∨ with gen-
eralizations suitable for finite multi-grade conjunctions and disjunctions;

3. Replace the axiom for ∧-elimination with a generalization suitable for
finite multigrade conjunctions of L +:

∆ < (φ0∧φ1∧. . . ) + ( ∆0,0 ≤ φ0; ∆0,1 ≤ φ1; . . . | ∆1,0 ≤ φ0; ∆1,1 ≤ φ1; . . . | . . . )

and, similarly, replace the elimination rules for ∨,¬∧, and ¬∨ with gen-
eralizations suitable for finite multi-grade conjunctions and disjunctions

Let S `+ T iff there are S′ ⊆ S and T ′ ⊆ T such that S′ + T ′. A set S of
grounding claims is prime in L + iff S `+ T ⇒ (∃τ ∈ T )(τ ∈ S).

Now we can show that the set of S-constructible grounding claims is prime.

Lemma 5.29 (Primeness) If S is a prime set of grounding claims of L ,
T 1 `+ T 2 and (∀σ ∈ T 1)σ is ≤-constructible, then (∃τ ∈ T 2)τ is ≤-constructible.

Proof Suppose S1 `+ S2. Then there are T 1 ⊆ S1 and T 2 ⊆ T 2 such that
T 1 + T 2. We prove the result by induction on the definition of T 1 + T 2.
The basis cases are all easy consequences of D5.10, D5.1, L5.13, L5.23, and
L5.27(Constructibility Lemma). We do the cases of Transitivity(�/�), (>∨),
Non-Circularity, ∧-introduction and ∧-Elimination for illustration.
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(Transitivity)(� / �): Suppose φ � ψ and ψ � θ are both ≤-con. By D5.10,
there are ≤-connections of the form φ,Σ ≤ ψ and ψ,Γ ≤ θ. By D5.1(cut)
φ,Σ,Γ ≤ θ is an ≤-connection. So, by D5.10 φ � θ is ≤-con.

(>∨>∨>∨): (>∧ ∨ /φ/) ≤ >∨ is ≤-con by D5.1 and D5.10. By L5.13(3.), >∨,∆ 6≤
(>∧ ∨ /φ/), for any ∆. So, (>∧ ∨ /φ/) < >∨ is ≤-con by D5.10.

(Non-Circularity): φ ≺ φ is not ≤-con by D5.1(id) and D5.10, since φ ≤ φ.

∧-Introduction: L5.23 + D5.1(determination) + D5.10.

∧-Elimination: Suppose ∆ < (φ1∧φ2∧. . . ) is ≤-con. By L5.27 (Constructibil-
ity Lemma), there is a covering {∆1,∆2, . . . } of ∆ such that each member
of {∆1 ≤ φ1, ∆2 ≤ φ2, . . . } is ≤-con. Suppose ∆ < (φ1∧φ2∧. . . )  T
is an instance of ∧-Elimination. Then T has the form σ0, σ1, . . . , where
(〈Γi1,Γi2, . . . 〉), are exactly the ordered tuples such that ∆ = Γi1 ∪∆i

1 ∪ . . .
and, for each i, σi ∈ {Γi1 ≤ φ1, Γi2 ≤ φ2, . . . }. Since ∆1,∆2, . . . is
a covering of ∆, 〈∆1,∆2, . . . 〉 = 〈Γi1,Γi2, . . . 〉, for some i. So, Γi1 ≤ φ1,
Γi2 ≤ φ2, . . . are each ≤-con, for some i. So, σi is ≤-con, for some i.

The induction step involves two cases: Thinning and Snip. Both cases are
very easy. We do Snip for illustration.

Snip: Suppose every grounding claim σ′ ∈ S′, S′′ is ≤-con, σ, S′  T ′ and
S′′  T ′′, σ. By IH, there is a grounding claim τ ∈ T ′′, σ such that τ is
≤-con. Either τ = σ or τ ∈ T ′′ If τ = σ, then every member of σ, S′ is
≤-con, and IH applies to σ, S′  T ′ to entail that there is a τ ′ ∈ T ′ such
that τ ′ is ≤-con. Otherwise, τ ∈ T ′′ and τ is ≤-con. So, in each case,
there is a ≤-con grounding claim that is a member of T ′, T ′′.

Theorem 5.30 (Extension Theorem) If S is a prime set of grounding claims
of L , then the set S+ of ≤-constructible grounding claims is witnessed and
prime in L +, and for grounding claims σ of L , σ ∈ S+ ⇔ σ ∈ S.

Proof S+ is prime in L + by L5.29. The consistency of S+ follows from its
primeness. S+ is witnessed by D5.10. By L5.21, for grounding claims σ of L ,
σ ∈ S+ ⇔ σ ∈ S.

6 The Canonical Model Basis

Suppose S is a prime (and so consistent) set of grounding claims in L . Let
the language L + be the language defined in D4.1. By T5.30, the set S+ of
≤-constructible claims is witnessed, prime in L +, and conservative over S, i.e.,
for any grounding claim σ of L , σ ∈ S+ ⇔ σ ∈ S. However, S+ leaves us with
our initial difficulty for constructing our canonical model: it may contain strict
grounding claims ∆ < φ but no corresponding weak grounding claim

∧
∆ ≤ φ.

Recall that the relationV indicates exactly the new full weak grounding claims
that we need to add. We are now going to throw those into S and show that
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the result has the desired properties. That is, we now extend S+ to include
grounding claims arising from our definition of V. The result is the canonical
model basis for S. In this section, we show that the canonical model basis is
prime, witnessed, and conservative over S. In the next section, we show that
the canonical model basis contains exactly those grounding claims which are
true in the canonical model.

First, we extend the definition of S-connections to include connections re-
quired by V. We define a broader set of S-derivations and the corresponding
relation ≤′ for a relation containing ≤, by adding to the definition D5.1 addi-
tional axioms for instances of V:

Definition 6.1

(VVV): If φV ψ, then:

φ ≤′ ψ ψ, /φ/ ≤′ φ φ, /φ/ ≤′ /φ/

are each axioms.

Remark: Intuitively, ≤′ extends ≤ by simply throwing in connections cor-
responding to instances of V and closing under cut. The new connections
ψ, /φ/ ≤′ φ and φ, /φ/ ≤′ /φ/ are added to ensure that all of the full weak
grounding claims are reversible, so that irreversibility can be satisfied with-
out adding further strict grounding claims. Trivially, if ∆ ≤ φ, then ∆ ≤′ φ.
Remark: In proofs, we will indicate justifications for particular claims aboutV
that appeal to clause (S) of D4.4 using the notation (V)(S), and, similarly, for
the other clauses. Likewise, we will indicate justifications for particular claims
about ≤′ (in the sense of D6.1), using (≤′)(S), and the like. In cases which
appeal to D6.1(V), we will indicate more specific justification using (≤′)(V)(S),
and, similarly, for other clauses of the definition D4.4 of V. So, for instance,
we will say that if ∆ < φ ∈ S, then v∆,φ ≤′ φ by (≤′)(V)(S). Finally, we will
indicate justification by stacking when convenient, as in

v∆,φ ≤′
(V)(S)

φ.

The next lemma establishes some useful properties of V.

Lemma 6.2

1. If φV ψ, then φ has the form (φ1 ∧ φ2 ∧ . . . ).

2. If φV ψ, then φ 6∈ L .

3. If φV ψ, then φ 6= ψ.

4. If φV ψ and φV ψ is an instance of neither (s) nor (∅), then ψ has the
form ¬¬ψ′.

5. If φV ψ and ψ ∈ L , then φV ψ is an instance of either (s) or (w)
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6. If χV θ and χV θ′, then θ = θ′.

Proof (1)-(5) are proved by routine inductions on V. We also prove (6) by
induction on V. All of the basis cases are proved similarly. We prove the basis
case (W ) for illustration.

(W): Suppose ψ � φ ∈ S, χ = (ψ ∧ wφ), and θ = ¬¬φ. Suppose also χ V θ′.
Now, χ(= (ψ ∧ wφ)) does not have any of the following forms:

v∆,φ′ , (wφ
′
∧ φ′), (>∧ ∧ (>∧ ∨ /φ′/)), (ψ′ ∧ /φ′/), (ψ′ ∧ /φ′/).

So, for some φ′, ψ′, ψ′ � φ′ ∈ S and χ = (ψ′ ∧ wφ′) and θ′ = ¬¬φ′. But
then /φ/ = /φ′/ , and so by D4.1 φ = φ′. So, θ = ¬¬φ = ¬¬φ′ = θ′.

(Induction)(1): Suppose φ V ψ, χ = (ψ ∧ /φ/), and θ = ¬¬φ. Suppose
(ψ ∧ /φ/) V θ′. As in the case (W) above, χ does not have any of the
forms required for χV θ′ to come by any of the basis cases forV. Suppose
(for reductio) that, for some φ′, ψ′, φ′ V ψ′, ψ = φ′, and /φ/ = /φ′/, so
that χ = (φ′ ∧ /φ′/) and θ′ = ¬¬/φ′/. (Intuitively, we are supposing that
χ V θ′ comes by the other induction step.) By D4.1, since /φ/ = /φ′/,
φ = φ′. Since φ′ = φ, by IH, ψ′ = ψ. So, φ = φ′ V ψ′ = ψ = φ. But, by
(3), φ 6V φ. ⊥. So, for some φ′, ψ′, φ′ V ψ′, χ = (ψ′ ∧ /φ′/), and θ′ =
¬¬φ′. Then /φ′/ = /φ/. So, by D4.1, φ′ = φ. So, θ = ¬¬φ = ¬¬φ′ = θ′.

(Induction)(2): Suppose φ V ψ, χ = (φ ∧ /φ/), and θ = ¬¬/φ/. Suppose
(φ ∧ /φ/) V θ′. As in the case (W) above, χ does not have any of the
forms required for χV θ′ to come by any of the basis cases for V. As in
the previous induction case, χV θ′ cannot come by there being a φ′ and
ψ′ such that φ′ V ψ′, where ψ′ = φ, /φ′/ = /φ/, and θ′ = ¬¬φ. So, for
some φ′, ψ′, φ′ V ψ′, χ = (φ′ ∧ /φ′/), and χ′ = ¬¬φ′/. Then φ = φ′, and
so, by D4.1, /φ/ = /φ′/. So, θ = ¬¬/φ/ = ¬¬/φ′/ = θ′.

We now define the set of grounding claims corresponding to ≤′ in the ob-
vious way. We also define the notion of a super-normal S-derivation, for the
purposes of managing notational complexity. Applications of cut in this sort
of S-derivation contain no side-formulae that we need to track as parameters in
proofs.

Definition 6.3 Define σ is ≤′-constructible (≤′-con) in a manner similar to
D5.10, except using the relation ≤′ defined in D6.1, instead of ≤. So, for in-
stance, ∆ ≤ φ is ≤′-con iff ∆ ≤′ φ. Define the notions of major premise, minor
premise, cut formulae, side formulae, principal connection, semi-normal form,
normal form, and DT in the obvious ways. Say that D is in super-normal form
(or is super-normal) iff it is the result of adding minor premises of the form
φ ≤′ φ to an S-derivation in normal form to yield an S-derivation in which no
application of (Cut) has any side formulae.
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Remark: Super-normal S-derivations just fill out normal S-derivations with
identity axioms. To illustrate, if

∆ ≤′ φ φ, γ1, γ2 ≤′ ψ
∆, γ1, γ2 ≤′ ψ is in normal form, then

∆ ≤′ φ γ1 ≤′ γ1 γ2 ≤′ γ2 φ, γ1, γ2 ≤′ ψ
∆, γ1, γ2 ≤′ ψ is super-normal.

We can prove a normal form theorem in a way similar to L5.7:

Lemma 6.4 if ∆ ≤′ φ, then there is an S-derivation of ∆ ≤′ φ in normal
form.

We will establish conservativity of the canonical model basis over S+ by
defining a function f that maps the LHS and RHS of an instance ofV (and the
“shadow” of the LHS) to the same formula. This function assimilates instances
of ≤′ required by D6.1(V) to instances of ≤(ID). Thus, f “undoes” the new
connections of ground required by D6.1(V). The lemma immediately after
the definition of f shows, intuitively, that nothing is thereby lost. Define the
function f : L + 7→ L + as follows:

Definition 6.5

1. If φ ∈ L , then f(φ) = φ;

2. If φ is atomic and not of the form /φ′/, where φ′ V ψ for some ψ, then
f(φ) = φ;

3. f(¬φ) = ¬f(φ);

4. if φV ψ, then f(φ) = f(ψ) and f(/φ/) = f(ψ);

5. if f(φ∧ψ∧. . . ) 6∈ L and (φ∧ψ∧. . . ) 6V ψ, for any ψ, then f(φ∧ψ∧. . . ) =
(f(φ) ∧ f(ψ) ∧ . . . ); and

6. If (φ ∨ ψ ∨ . . . ) 6∈ L , then f(φ ∨ ψ ∨ . . . ) = (f(φ) ∨ f(ψ) ∨ . . . ).

Let f(∆) = {f(δ)|δ ∈ ∆}.

Remark: f is well-defined by L6.2. First, V is a functional relation, by
L6.2(6.). Second, in the basis cases of the definition D4.4 ofV, the formulae on
the RHS of V are all either members of L , the atomic sentence >∨, or double-
negations of witnessing constants wφ. So, the result of applying f in each of
these cases is defined by clauses (1)-(3) above. Thus, the result of applying f
to the LHS of basis cases for V is well-defined. Third, in the inductive clause
of the definition D4.4 ofV, the RHS is always a double-negation of either some
lower-level LHS φ of an instance of V, or a “shadow” /φ/ of some such LHS.
In this case, the application of f to ¬¬φ (or ¬¬/φ/) is handled by a “previous”
application of clause (4) above to φ (or /φ/), together with clause (3).

Lemma 6.6 If Γ ≤′ χ, then f(Γ) ≤ f(χ)
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Proof We prove the result by induction on the definition D6.1 of ≤′. The case
of (id) is trivial. The cases of (S), (W), (Max), (>∧), and (>∨), are proved
similarly, using L6.2 and D6.1. We will prove the result in the case of (>∧) for
illustration.

(>∧): f(∅) = ∅. >∧ is atomic, so f(>∧) = >∧. D5.1 implies the result.

(Determination): We prove the case in which χ = (χ1 ∧χ2 ∧ . . . ). The other
cases are proved similarly. Suppose χ = (χ1∧χ2∧. . . ) and Γ = χ1, χ2, . . . .
There are three cases: (A) χ ∈ L , (B) χV ψ, for some ψ, or (C) neither.

(A): Trivial, by D5.1, since f(Γ) = Γ and f(χ) = χ.

(C): By D6.5 f((χ1 ∧χ2 ∧ . . . )) = (f(χ1)∧ f(χ2)∧ . . . ). So, the result is
trivial, by D5.1.

(B): We prove the result by a subsidiary induction on V:

(S): Suppose χ = v∆,φ, where ∆ < φ ∈ S. Then Γ = ∆, (>∧ ∨
/φ/),>∨. So, f(χ) = φ, and it’s easy to see by L6.2(1.) that
f(Γ) = Γ, since neither (>∧ ∨ /φ/) nor >∨ is a conjunction.
Moreover, by the closure of S, ∆ ≤ φ ∈ S. So, ∆,>∨ ≤ φ. Since
(>∧ ∨ /χ/) ≤ >∨, the result follows by D5.1(cut).

(W): Suppose χ = (ψ ∧ wφ), where ψ � φ ∈ S. Then Γ = ψ,wφ =
f(Γ), and f(χ) = ¬¬φ.

ψ,wφ ≤
(W )

φ ≤
(deter.)

¬¬φ.

(Max): Suppose χ = (wφ ∧ φ), where φ ∈ L . Then Γ = φ,wφ =
f(Γ), and f(χ) = ¬¬wφ.

φ,wφ ≤
(Max)

wφ ≤
(deter.)

¬¬wφ.

(∅∅∅): Suppose χ = (>∧ ∧ (>∧ ∨ /φ/)). Then Γ = >∧, (>∧ ∨ /φ/).
f(χ) = >∨ and f(Γ) = Γ. (>∧ ∨ /φ/) ≤ >∨ and >∧ ≤ (>∧ ∨
/φ/) ≤ >∨. So, by (Amalgamation), >∧, (>∧ ∨ /φ/) ≤ >∨.

Induction Step: Suppose that φ V ψ and χ = (ψ ∧ /φ/). Then
f(χ) = f(¬¬φ) = ¬¬f(φ). Γ = ψ, /φ/, and f(φ) = f(/φ/) =
f(ψ). Thus, f(Γ) = f(ψ) and f(χ) = ¬¬f(ψ). D5.1(determination)
implies the result. A similar argument yields the result if χ =
(φ ∧ /φ/).

V: Suppose Γ ≤′ χ is an instance of (V). There are three cases: for some φ, ψ,
φV ψ and either (A) χ = ψ and Γ = φ, (B) χ = φ and Γ = ψ, /φ/, or (C)
χ = /φ/ and Γ = φ, /φ/, In each of these cases, since f(φ) = f(/φ/) =
f(ψ), f(Γ) = f(χ) = f(ψ). The result follows by D5.1,(id).

(Cut): IH and D5.1,(Cut).
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Recall from (D5.11) that L w is the union of the set of sentences of L with
the set of witnessing constants {wψ|ψ ∈ L }.

Lemma 6.7 Suppose δ,∆, φ ⊆ L w. Then

1. if ∆ ≤′ φ, then ∆ ≤ φ; and

2. if (∃Γ)δ,Γ ≤′ φ, then (∃∆)δ,∆ ≤ φ.

Proof D6.5 and L6.6.

Lemma 6.8 (Conservativity) If σ is a grounding claim of L w and σ is ≤′-
con, then σ ∈ S+.

Proof Suppose σ is a grounding claim of L w and is ≤′-con.

1. Suppose σ = ∆ ≤ φ. Then ∆ ≤′ φ. L6.7 and D5.10 imply the result.

2. Suppose σ = δ � φ. L6.7 and D5.10 imply the result.

3. Suppose σ = δ ≺ φ. By (2.) above, δ � φ ∈ S+. By the closure of
S+(irreversibility), either φ � δ ∈ S+ or δ ≺ φ ∈ S+. Suppose (for
reductio) that φ � δ ∈ S+. Since S+ is witnessed, (∃Γ)φ,Γ ≤ δ ∈ S+. So,
φ,Γ ≤ δ, and so φ,Γ,≤′ δ. By D6.3, φ � δ is ≤′-con. ⊥.

4. Suppose σ = ∆ < φ. (1.) above, (3.) above, and the closure of
S+(reverse subsumption) imply the result.

The following two lemmas are immediate by the definition of ≤′-con.

Lemma 6.9 (Consistency) φ ≺ φ is not ≤′-con

Lemma 6.10 (Witnessing) if φ � ψ is ≤′-con, then (∃Γ)φ,Γ ≤ ψ is ≤′-con.

It is straightforward to show that grounding claims corresponding to intro-
duction rules in GG are ≤′-con.

Lemma 6.11 The following are ≤′-con:

1. φ, ψ, · · · < (φ ∧ ψ ∧ . . . );

2. φi < (φ0 ∨ φ1 ∨ . . . );

3. φ < ¬¬φ;

4. ¬φ,¬ψ, · · · < ¬(φ ∨ ψ ∨ . . . ); and

5. ¬φi < ¬(φ0 ∧ φ1 ∧ . . . ).

Proof All of the cases are proved similarly. We do (1.) for illustration. By
(≤′)(determination), φ, ψ, . . . ≤′ (φ ∧ ψ ∧ . . . ). Suppose (for reductio) that
(φ∧ψ∧ . . . ),Γ ≤′ φ, for some Γ. (Cases of other conjuncts are proved similarly.)
By L6.6, f(φ∧ψ∧ . . . ), f(Γ) ≤ f(φ). By D6.5, there are seven cases bearing on
the value of f(φ ∧ ψ ∧ . . . ):
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(A): f(φ∧ψ∧ . . . ) = (f(φ)∧ f(ψ)∧ . . . ). Then, by L5.23(2.), it is not the case
that (f(φ) ∧ f(ψ) ∧ . . . ), f(Γ) ≤ f(φ). ⊥.

(B): (φ∧ψ∧ . . . ) = v∆,δ and ∆ < δ ∈ S. Then f(v∆,δ) = δ. Either φ ∈ ∆ or φ
is a nullity. If φ ∈ ∆, then f(φ) = φ. So, δ, f(Γ) ≤ φ. By the consistency
of S+, it is not the case that δ, f(Γ) ≤ φ. ⊥. Suppose, then, that φ is a
nullity, so that by L5.13(5.) f(φ) = φ. By L5.12, since δ, f(Γ) ≤ φ, δ is a
nullity. But δ is not nullity. ⊥.

(C): (φ ∧ ψ ∧ . . . ) = (χ ∧ wθ) and χ � θ ∈ S. Then f(χ ∧ wθ) = ¬¬θ.
Also, φ = χ, and f(φ) = φ. Since χ � θ ∈ S wθ, χ ≤

(W)
θ, we have

¬¬θ, f(Γ) ≤ χ and so, by D5.1(Cut)¬¬θ, f(Γ), θ ≤ θ. But S+ is prime,
and so consistent. ⊥.

(D): (φ ∧ ψ ∧ . . . ) = (wχ ∧ χ) and χ ∈ L . Then f(wχ ∧ χ) = ¬¬wχ. Either
φ = wχ, and f(φ) = φ. It is easy to see that D5.1 and the closure and
consistency of S+ imply ⊥.

(E): (φ∧ψ∧. . . ) = (>∧∧(>∧∨/χ/)) and χ ∈ L . Then f((>∧∧(>∧∨/χ/))) =
>∨ and f(>∧) = >∧. By L5.13(1.), it is not the case that >∨, f(Γ) ≤ >∧.
⊥.

(F): (∃χ, θ) such that χV θ and (φ∧ψ∧. . . ) = (φ∧ψ) ∈ {(θ∧/χ/), (χ∧/χ/)},
so that φ ∈ {χ, θ} and ψ = /χ/. Then, by D6.5, f(φ) = f(θ), and
f(φ∧ψ∧ . . . ) = ¬¬f(θ). By L5.23, it is not the case that ¬¬f(θ), f(Γ) ≤
f(θ). ⊥.

(G): (φ∧ψ∧. . . ) ∈ L . Then f(φ∧ψ∧. . . ) = (φ∧ψ∧. . . ) = (f(φ)∧f(ψ)∧. . . ),
so this case reduces to case (A).

Showing that ≤′-con grounding claims conform to the elimination rules of
GG, and so the demands of maximality, is much less straightforward. Demon-
strating this fact is the burden of L6.12-L6.17.

It is clear by inspection of D4.4 ofV and then D6.1 that there is no instance
of (≤′)(VVV) with wφ on the RHS. Moreover, whenever /φ/ occurs on the RHS
of such an instance, it also occurs on the LHS. Thus, the following results can
be proved by an easy induction on S-derivations. They are useful because they
show that S-connections to wφ and /φ/ are always reversible and so never
correspond to full, strict grounding claims.

Lemma 6.12 (Persistence)

1. If ∆ ≤′ /φ/, then /φ/ ∈ ∆.

2. If ∆ ≤′ wφ, then wφ ∈ ∆.

3. If D is a semi-normal S-derivation of Γ ≤′ φ, and the principal connection
of D has the form wψ,∆ ≤′ φ, then wψ ∈ Γ.
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Remark: (Amalgamation) By D6.1 the following is an instance of (Cut).

(∆i ≤′ φ)i≤n∈ω φ ≤′ φ
(∆i) ≤′ φ

So, if (∆i ≤′ φ)i≤n<ω, then (∆i) ≤′ φ.
It is convenient to define a distributive notion of S-derivability:

Definition 6.13 Γ ≤′ (δi) iff there is a covering (Γi) of Γ such that (Γi ≤′ δi).

It is easy to see that this distributive extension of ≤′ is transitive and closed
under unions (i.e., (∆i ≤′ Γi)⇒ (∆i) ≤′ (Γi)).

Say that the S-connection ∆ ≤′ φ is reversible iff (∃δ ∈ ∆)(∃Σ)φ,Σ ≤′ δ.
Remark: Clearly, if ∆ ≤′ ψ ≤′ φ, ∆ ≤′ ψ is reversible, and ψ ≤′ φ is

reversible, then ∆ ≤′ φ is reversible. Equivalently, if ∆ ≤′ φ is irreversible,
∆ ≤′ ψ ≤′ φ, and ψ ≤′ φ is reversible, then ∆ ≤′ ψ is irreversible.

Remark: Every instance of (≤′)(V) is reversible.

We can now show that S-connections to our new conjunctions, including
v∆,φ meet the demands of maximality.

Lemma 6.14

1. If Γ ≤′ v∆,φ, then either Γ ≤′ v∆,φ is reversible, or Γ ≤′ ∆, (>∧∨/φ/),>∨.

2. If Γ ≤′ (ψ ∧ wφ), then either Γ ≤′ (ψ ∧ wφ) is reversible, or Γ ≤′ φ.

3. If Γ ≤′ (wφ ∧ φ), then either Γ ≤′ (wφ ∧ φ) is reversible, or Γ ≤′ wφ.

Proof Each of (1.)-(3.) is proved similarly. We do (1.) for illustration. Let
v = v∆φ, and assume Γ ≤′ v. We prove the result by induction on S-derivations.
By L6.4, we may assume that the derivation D of Γ ≤′ v is in super-normal form.
By D6.1, if D is an axiom, it is an instance of (≤′)(determination), (≤′)(V),
or (≤′)(id). So, (S), (W), (Max), (>∧), and (>∨) are not relevant.

(ID): Trivial.

(VVV): Every instance of (V) is reversible.

(Determination): Suppose D is an axiom of the form ∆, (>∧∨/φ/),>∨ ≤′ v.
The result is immediate by (≤′)(id).

(Cut): SupposeD terminates in an application of (Cut). The principal connec-
tion ofD is an instance of either (A) (id), (B) (V), or (C) (determination).

(A): The minor premises of D have the form (Γi ≤′ v). By IH, either
(∃γ ∈ Γi))v � γ is ≤′-con, or Γi ≤′ ∆, (>∧∨/φ/),>∨ for each i. The
result follows by (Amalgamation).

(B): L6.12(Persistence) implies that /v/ ∈ Γ. Since v, /v/ ≤′ /v/, Γ ≤′ v
is reversible.

(C): Trivial.
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The following lemma says that the only way to get an irreversible S-connection
to some φ in our original language L is to “go through” some strict grounding
claim in our original set S. This allows us to show that the canonical model
basis meets the demand imposed by maximality for sentences of L by appeal-
ing to the fact that our original set S is prime, and so already conforms to the
elimination rules of GG.

Lemma 6.15 (Interpolation) If ∆ ≤′ φ and φ ∈ L , then either ∆ ≤′ φ is
reversible, or

(∃Γ)(Γ < φ ∈ S and ∆ ≤′ vΓ,φ ≤′ φ)

Proof We prove the result by induction on ∆ ≤′ φ. By L6.4, we may assume
(wlog) that the S-derivation D of ∆ ≤′ φ is in super-normal form.

(S): Suppose ∆ = ∆′,>∨ and ∆′ ≤ φ ∈ S. Either (A) (∃δ ∈ ∆′)φ � δ ∈ S or
(B) not.

(A): φ,wδ ≤′
(W)

δ. So, ∆ ≤′ φ is reversible.

(B): By the closure of S, ∆′ < φ ∈ S.

∅ ≤′
(>∧)

>∧ ≤′
(deter.)

(>∧ ∨ /φ/).

So,

(∆ =) ∆′, ∅,>∨ ≤′ ∆′, (>∧∨/φ/),>∨ ≤′
(deter.)

v∆′,φ ≤′
(V)

φ

.

(W): Trivially, by (≤′)(Max), (∆ =) δ, wφ ≤′ φ is reversible.

(Max): wψ 6∈ L . ⊥.

(ID): Trivially, φ ≤′ φ is reversible.

(VVV): By L6.2(5.), there are only two relevant instances of V: (S) vΓ,φ ≤′ φ,
where Γ < φ ∈ S; or (W) (ψ ∧ wχ) ≤′ ¬¬χ, where ψ � χ ∈ S and
φ = ¬¬χ.

(S): vΓ,φ ≤′ vΓ,φ ≤′ φ.

(W): By (≤′)(V), ¬¬χ, /(ψ ∧ wχ)/ ≤′ (ψ ∧ wχ), so the S-connection
(ψ ∧ wχ) ≤′ ¬¬χ is reversible.

(Determination): Suppose φ = (φ1 ∧ φ2) and ∆ = φ1, φ2. By the closure
of S(∧-introduction), ∆ < φ ∈ S. As in the case (S)(B) above, this
implies that ∆ ≤′ v∆,φ ≤′ φ. The more general cases for ∧, ∨, and ¬ are
proved similarly.
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(Cut): Suppose D terminates in an application of (cut). The principal con-
nection of D is an instance ∆′ ≤′ φ of either (S), (id), (W), (V)(S),
(V)(W), or (determination). Since D is super-normal, ∆ ≤′ ∆′. So,
the arguments in the basis cases for (V)(S) and (determination) imply
that ∆ ≤′ ∆′ ≤′ v∆′,φ ≤′ φ. That leaves the cases (W), (V)(W), (id) and
(S):

(W): Suppose the principal connection ofD is ψ,wφ ≤′ φ. By L6.12(2.)(Persistence),
wφ ∈ ∆. By (≤′)(Max), φ,wφ ≤′ wφ, so ∆ ≤′ φ is reversible.

((VVV))(W): The principal connection of D has the form (ψ∧wχ) ≤′ ¬¬χ.
Since D is super-normal, the minor premises have the form (Γi ≤′
(ψ ∧ wχ)). By L6.14(2.), there are two cases: (A) Γi ≤′ (ψ ∧ wχ) is
reversible, for some i, or (B) Γi ≤′ χ for all i.

(A): For some δ ∈ Γi ⊆ ∆ and some Θ, (ψ ∧ wχ),Θ ≤′ δ. Since, by
(≤′)(V), ¬¬χ, /(ψ ∧ wχ)/ ≤′ (ψ ∧ wχ),
¬¬χ, /(ψ ∧ wχ)/,Θ ≤′ δ. So, ∆ ≤′ φ is reversible.

(B): By the closure of S(¬¬-introduction), χ < ¬¬χ ∈ S. So, by
V(S), vχ,¬¬χ V ¬¬χ, and thus

(H) vχ,¬¬χ ≤′ ¬¬χ.

Also, by (amalgamation)

(B) (∆ =) (Γi) ≤′ χ.

Since

∅ ≤′
(>∧)

>∧ ≤′
(deter.)

(>∧ ∨ /¬¬χ/) ≤′
(>∨)

>∨

(B) and (amalgamation) imply:

(HH) (∆ =) ∆, ∅, ∅ ≤′ χ, (>∧ ∨ /¬¬χ/),>∨

Putting this all together, we have:

∆ ≤′
(HH)

χ, (>∧ ∨ /¬¬χ/),>∨ ≤′
(deter.)

vχ,¬¬χ ≤′
(H)

¬¬χ

.

(ID): Suppose the principal connection of D is φ ≤′ φ. Then the minor
premises of D have the form (∆i ≤′ φ). Assume that ∆ ≤′ φ is
irreversible, and so, for each i ∆i ≤′ φ is irreversible. By IH, for
each i, there is a Γi such that Γi < φ ∈ S and ∆i ≤′ vΓi,φ ≤′ φ. By
(≤′),(V)(S),

(H) φ, /vΓi,φ/ ≤′ vΓi,φ.

Suppose (for reductio) that ∆i ≤′ vΓi,φ is reversible, for some i. By

(H) and (≤′)(Cut), ∆i ≤′ φ is reversible. ⊥. So, ∆i ≤′ vΓi,φ is
irreversible for all i. By L6.14(1.),

(B) ∆i ≤′ Γi, (>∧ ∨ /φ/),>∨.
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Since Γi < φ ∈ S, for each i, the closure of S,(subsumption,cut,reverse
subsumption) implies that (Γi) < φ ∈ S. Let Γ = (Γi). Then,

(HH) vΓ,φ ≤′ φ.

by (≤′)(V). Putting all of this together:

(∆i) ≤′
(B)

(Γi), (>∧ ∨ /φ/),>∨ ≤′
(deter.)

vΓ,φ ≤′
(HH)

φ.

(S): The principal connection of D has the form ∆′,>∨ ≤′ φ, where ∆′ ≤
φ ∈ S. We are going to divide the formulae δ ∈ ∆′ (and, correlatively,
the minor premises of D) according to whether δ ≺ φ is ≤′-con or not.
On this division, ∆′,>∨ ≤′ φ has the form (θi), (γj),>∨ ≤′ φ, and
the minor premises have the form (Θi ≤′ θi), (Γj ≤′ γj), (Σk ≤′ >∨),
where:

• (θi), (γj) ≤ φ ∈ S;

• strict: for each j, there is no Ξ such that φ,Ξ ≤′ γj ; and

• merely weak: for each i, φ,Ξ ≤′ θi, for some Ξ.

By D6.3 and L6.8(Conservativity), for each j, γj ≺ φ is ≤′-con,
and so γj ≺ φ ∈ S+. By L5.21(Conservativity), γj ≺ φ ∈ S. If
(∆ =)(Θi)(Γj)(Σk) ≤′ φ is reversible, then we are done. So, assume
that it is irreversible. Suppose (for reductio) that, for some i, Θi ≤′ θ
is reversible. Then (Θi)(Γj)(Σk) ≤′ φ is reversible. ⊥. So, IH applies

to the minor premises (Θi ≤′ θi): for each i, there is a vΩi,θi such

that Θi ≤′ vΩi,θi ≤′ θi and Ωi < θi ∈ S. By the closure of S,
(Ωi), (γi) < φ ∈ S. Let Γ = (Ωi), (γj), so that Γ < φ ∈ S. Also, by
(≤′)(V), vΓ,φ ≤′ φ.

Since, for each i, Θi ≤′ θi is irreversible, and by (≤′)(V), vΩi,θi ≤′ θi

is reversible, Θi ≤′ vΩi,θ is irreversible. So, L6.14(1.) applies: we
have, for each i,

Θi ≤′ Ωi, (>∧ ∨ /θi/),>∨.

Since (>∧ ∨ /θi/) ≤′
(>∨)

>∨, this implies, for each i

(H) Θi ≤′ Ωi,>∨

So, for each i, j, k, we have the S connections:

Θi ≤′
(H)

Ωi,>∨

Γj ≤′ γj

Σk ≤′ >∨.

By (amalgamation):

(B) (Θi), (Γj), (Σk) ≤′ (Ωi), (γj),>∨ (= Γ,>∨)

Since ∅ ≤′ >∧ ≤′
(deter.)

(>∧ ∨ /φ/),
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(HH) Γ,>∨, ∅ ≤′ Γ, (>∧ ∨ /φ/),>∨

Putting all of this together, we have:

(Θi), (Γj), (Σk) ≤′
(B)

Γ,>∨ ≤′
(HH)

Γ, (>∧∨/φ/),>∨ ≤′
(deter.)

vΓ,φ ≤′
(V)

φ

We now use L6.15(Interpolation) to demonstrate that maximality is satis-
fied for sentences in L .

Lemma 6.16 Suppose φ ∈ L , and ∆ ≤′ φ is irreversible. Then,

1. When φ = (φ1 ∧ φ2), ∆ ≤′ {φ1, φ2};

2. When φ = ¬¬φ, ∆ ≤′ φ;

3. When φ = (φ1 ∨ φ2), either ∆ ≤′ φ1, ∆ ≤′ φ2, or ∆ ≤′ {φ1, φ2};

4. When φ = ¬(φ1 ∨ φ2), ∆ ≤′ {¬φ1,¬φ2}; and

5. When φ = ¬(φ1 ∧ φ2), either ∆ ≤′ ¬φ1, ∆ ≤′ ¬φ2, or ∆ ≤′ {¬φ1,¬φ2}.

Proof

(1): By L6.15(Interpolation), ∆ ≤′ vΘ,φ ≤′ φ and Θ < φ ∈ S, for some Θ. By
the primeness of S (∧-elimination), there is a covering Θ1,Θ2 of Θ such
that Θ1 ≤ φ1 ∈ S and Θ2 ≤ φ2 ∈ S. By (≤′)(S),

(H) Θ1,Θ2,>∨ ≤′ {φ1, φ2}.

Also, vΘ,φ ≤′ φ is reversible, by (≤′)(V). Since ∆ ≤′ φ is irreversible,
∆ ≤′ vΘ,φ is irreversible. So, L6.14(1.) implies

(HH) ∆ ≤′ Θ, (>∧ ∨ /φ/),>∨.

By (≤′)(>∨), (>∧ ∨ /φ/) ≤′ >∨, so

(B) ∆ ≤′ Θ, (>∧ ∨ /φ/),>∨ ≤′ Θ,>∨.

Putting all of this together, we have

∆ ≤′
(B)

Θ,>∨ ≤′
(H)

{φ1, φ2}.

(2)-(5): Arguments similar to that for (1) yield the results, applying different
elimination rules to Θ < φ. The argument for (2) uses (¬¬-elimination)
where the argument for (1) uses (∧-elimination), and, similarly, for the
other cases.

It is now straightforward to extend L6.16 beyond the special case in which
the RHS is in L :

Lemma 6.17 Suppose ∆ ≤′ χ is irreversible.
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1. When χ = (φ1 ∧ φ2 ∧ . . . ), ∆ ≤′ {φ1, φ2, . . . };

2. When χ = (φ1 ∨ φ2 ∨ . . . ), there is a non-empty subset (ψi) of (φj) such
that ∆ ≤′ (ψi);

3. When χ = ¬¬φ, ∆ ≤′ φ;

4. When χ = ¬(φ1 ∨ φ2 ∨ . . . ), ∆ ≤′ {¬φ1,¬φ2, . . . }; and

5. When χ = ¬(φ1 ∧ φ2 ∧ . . . ), there is a subset (ψi) of (φj) such that
∆ ≤′ (¬ψi).

Proof Easy inductions on S-derivations yield (4.) and (5.).

1. We prove the result by induction on S-derivations. Instances of (Max),
(>∧), and (>∨) do not have conjunctions on the RHS.

(S): L6.16.

(W): By (≤′)(Max), χ,wχ ≤′ wχ. ⊥.

(ID): ⊥.

(V): Suppose χ V ψ, and D is an instance of (≤′)(V). Every instance
of (≤′)(V) is reversible. ⊥.

(Determination): (≤′)(id).

(Cut): Suppose D terminates in an instance of (Cut). By L6.4 we may
assume (wlog) that D is in normal form. The principal connection of
D cannot be an instance of (>∧), (>∨), or (Max). If the principal
connection is an instance of (S) or (W), then χ ∈ L , and so L6.16
implies the result. If it is an instance of (id), then IH and (Amalga-
mation) imply the result. If it is an instance of (determination),
then (≤′)(id) and (Amalgamation) imply the result. If it is an in-
stance of (V) then, by L6.2(4.), the major premise of D has either
the form vΓ,χ ≤′ χ (where χ ∈ L ) or the form

χ′, /χ/ ≤′ χ

(where χ V χ∗, for some χ∗). In the former case, L6.16 implies
the result. In the latter case, by L6.12(1.) (Persistence), /χ/ ∈ ∆.
χ, /χ/ ≤′

(V)

/χ/, so ∆ ≤′ χ is reversible. ⊥.

2. We prove the result by induction on S-derivations. All of the cases are
similar to the corresponding cases for (1.) above, except the case in which
D is an instance of (V), and the case in which D terminates in (Cut) and
has as its principal connection an instance of (V).

(V): The only relevant case is one in which the axiom has the form vΓ,χ ≤′
χ and χ ∈ L . As above, L6.16 implies the result.
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(Cut): As in (1.) above, we assume our S-derivation D is in normal
form. We need only check the case in which the principal connection
of D is an instance of (V). Again, there is only one relevant case:
the principal connection has the form vΓ,χ ≤′ χ, where χ ∈ L . As
above, L6.16 delivers the result.

3. As in (1.) and (2.) above, the key cases are those involving instances of
(V).

(V): Suppose D is an instance of (≤′)(V). Every instance of (≤′)(V) is
reversible. ⊥.

(Cut): We assume our S-derivation D is in super-normal form, so the
application of (Cut) has no side formulae. We need only check the
case in which the principal connection of D is an instance of (V).
There are five cases concerning the form of the principal connection
of D, corresponding to the five clauses in the definition D4.4 of V
in which the RHS may be a double-negation: (S), (W), (Max), and
each of the two (Induction) cases.

(S): The principal connection has the form vΓ,χ ≤′ χ and χ ∈ L .
L6.16.

(W): The principal connection has the form (ψ∧wφ) ≤′ ¬¬φ, where
ψ � φ ∈ S. ¬¬φ ∈ L , so L6.16 yields the result.

(Max): The principal connection has the form (wγ ∧ γ) ≤′ ¬¬wγ ,
where γ ∈ L . Since D is in super-normal form, the minor
premises of D have the form (∆i ≤′ (γ ∧ wγ)) and ∆ = (∆i).
Since ∆ ≤′ ¬¬wγ is irreversible and the principal connection
(wγ ∧ γ) ≤′

(V)

¬¬wγ is reversible, for each i ∆i ≤′ (wγ ∧ γ) is

irreversible. So, the result follows by L6.14(3.) and (Amalgama-
tion).

(Induction)(1): The principal connection has the form (ψ2∧/ψ1/) ≤′
¬¬ψ1, where ψ1 V ψ2, and so (by (V)(Induction)) (ψ2∧/ψ1/)V
¬¬ψ1. Since D is in super-normal form, the minor premises of
D have the form (∆i ≤′ (ψ2 ∧ /ψ1/)) and ∆ = (∆i). Also,
¬¬ψ1, /(ψ2 ∧ /ψ1/)/ ≤′

(V)

(ψ2 ∧ /ψ1/), so the principal connec-

tion is reversible. Since ∆ ≤′ χ is irreversible, none of the mi-
nor premises are reversible.. By (1) above and (Amalgamation),
(∆i) ≤′ {ψ2, /ψ1/}. Also, since ψ1 V ψ2, ψ2, /ψ1/ ≤′

(V)

ψ1. So,

(∆i) ≤′ ψ2, /ψ1/ ≤′ ψ1.

(Induction)(2): The principal connection has the form (ψ1∧/ψ1/) ≤′
¬¬/ψ1/, where ψ1 V ψ2, for some ψ2. An argument similar to
that in case (D) shows that (∆i) ≤′ {ψ2, /ψ1/} ≤′ /ψ1/.

The following lemma shows, as we have repeatedly claimed, that >∨ behaves
as if it is the disjunction of (>∧ ∨ /φ/) for all φ ∈ L . It is useful for proving
the adequacy of the construction of the canonical model in the next section.
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Lemma 6.18 If ∆ ≤′ >∨, then either ∆ ≤′ >∨ is reversible, or ∆ ≤′ {(>∧ ∨
/φ0/), (>∧ ∨ /φ1/), . . . }, for some (φi)i≤n∈ω ⊂ L .

Proof We prove the result by induction on S-derivations D of ∆ ≤′ >∨. Sup-
pose D is an S-derivation of ∆ ≤′ >∨ and ∆ ≤′ >∨ is irreversible. By L6.4 we
may assume (wlog) that D is in super-normal form. If D is an axiom, it is an
instance of (>∨), (V), or (ID).

(>∨>∨>∨): Trivial.

(VVV): Every instance of (≤′)(V) is reversible. ⊥.

(ID): >∨ ≤′ >∨. ⊥.

(Cut): The principal connection of D is an instance of (>∨), (V), or (ID).

(>∨>∨>∨): The principal connection has the form (>∧ ∨ /φ/) ≤′ >∨, for some
φ ∈ L . Since D is super-normal, all of the minor premises have the
form (∆i ≤′ (>∧ ∨ /φ/)), and ∆ = (∆i). (Amalagamation) implies
the result.

(VVV): The only relevant instance has the form (>∧ ∧ (>∧ ∨ /φ/)) ≤′ >∨,
for some φ ∈ L . Since D is super-normal, the minor premises have
the form (∆i ≤′ (>∧ ∧ (>∧ ∨ /φ/))) and ∆ = (∆i). For each i,
>∨, /(>∧∧ (>∧∨/φ/))/ ≤′

(V)

(>∧∧ (>∧∨/φ/)). So, the principal

connection of D is reversible, and thus the minor premises are each
irreversible.. So, L6.17 applies:

(H) (∆i) ≤′ {>∧, (>∧ ∨ /φ/)}.
So,

(∆i) ≤′
(H)

>∧, (>∧ ∨ /φ/) ≤′
(deter.)

(>∧ ∨ /φ/), (>∧ ∨ /φ/).

(ID): The minor premises have the form (∆i ≤′ >∨). IH yields the result.

Let the canonical model basis S∗ for S be {σ|σ is ≤′-con}.

Theorem 6.19 S∗ is prime in L + and has the following features:

Conservativity For grounding claims σ of L , σ ∈ S∗ iff σ ∈ S.

Witnessing If δ � φ ∈ S∗, then (∃Γ)δ,Γ ≤ φ ∈ S∗.

Irreversibility

1. ∆ < φ ∈ S∗ iff ∆ ≤ φ ∈ S∗ and (∀δ ∈ ∆)δ ≺ φ ∈ S∗; and

2. if δ � φ ∈ S∗, then either δ ≺ φ ∈ S∗ or φ � δ ∈ S∗.

Maximality
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1. ∆ < ¬¬φ ∈ S∗ iff ∆ ≤ φ ∈ S∗;
2. ∆ < (φ0 ∧ φ1 ∧ . . . ) ∈ S∗ iff there is a covering (∆i) of ∆ such that

∆i ≤ φi ∈ S∗ for each i;

3. ∆ < (φ0 ∨ φ1 ∨ . . . ) ∈ S∗ iff there is a covering (∆i) of ∆ and a
subset (ψi) of (φj) such that ∆i ≤ ψi ∈ S∗ for each i;

4. ∆ < ¬(φ0 ∨φ1 ∨ . . . ) ∈ S∗ iff there is a covering (∆i) of ∆ such that
∆i ≤ ¬φi ∈ S∗ for each i; and

5. ∆ < ¬(φ0 ∧ φ1 ∧ . . . ) ∈ S∗ iff there is a covering (∆i) of ∆ and a
subset (¬ψi) of (¬φj) such that ∆i ≤ ¬ψi ∈ S∗ for each i.

Proof

(Conservativity): L6.8 and L5.21 imply ⇒. ⇐ follows from ⇒ by (≤′)(S),
D6.3, and the fact that S is prime, since ∅ ≤′ >∨.

(Witnessing): L6.10.

(Irreversibility): Immediate by D6.3.

(Maximality): L6.17 and D6.3 imply ⇒. L6.11, and D6.3 imply ⇐.

(Primeness): The primeness of S∗ in L + is proved straightforwardly in a
manner similar to the proof of L5.29, using D6.1, D6.3, Irreversibility of
S∗, and Maximality of S∗.

7 The Canonical Model Justified

We are given a prime set S of grounding claims of the language L . In this
section, we show that MS satisfies the definition D2.3 of a model and that the
grounding claims of L verified by MS are exactly the members of S (justifying
the label “canonical model for S).

We extend S to its canonical model basis S∗ as defined in the previous
section. S∗ is a set of grounding claims of the language L +, which extends L .
S∗ is witnessed and prime (in L +), by T6.19.

Remark: Recall that ∼ is an equivalence relation on conditions and con-
tents. Intuitively, we identify conditions and contents when they are ∼-related.
Lemmas 7.1-7.10 concern the structure of ∼ and the relationship between ∼ and
¯̄·.

Recall that the function g selects, for any given condition a or content, some
representative of the equivalence class of a given by ∼; see D4.6. The following
facts are immediate consequences of D4.5, D4.6, and D4.3:

Lemma 7.1

1. a ∼ g(a) and v ∼ g(v);

2. g(g(a)) = g(a) and g(g(v)) = g(v);
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3. a ∼ b iff g(a) = g(b), and v ∼ w iff g(v) = g(w);

4. For ◦ ∈ {+, . }, [v0 ◦ v1 ◦ . . . ] ∼ [g(v0) ◦ g(v1) ◦ . . . ] ∼ [g(v0) ◦ g(v1) ◦ . . . ]g;

5. [v] ∼ [g(v)] ∼ [g(v)]g;

6. For ◦,⊗ ∈ {+, . }, [v0 ◦v1 ◦ . . . ] ∼ [w0⊗w1⊗ . . . ] iff [g(v0)◦g(v1)◦ . . . ]g =
[g(w0)⊗ g(w1)⊗ . . . ]g;

7. [v] ∼ [w] iff [g(v)]g = [g(w)]g;

8. ¬φ = (φ̄	, [φ̄]g);

9. (φ ∧ ψ ∧ . . . ) = ([φ̄.ψ̄. · · · ]g, [¬φ+ ¬ψ + · · · ]g); and

10. (φ ∨ ψ ∨ . . . ) = ([φ̄+ ψ̄ + · · · ]g, [¬φ.¬ψ. · · · ]g).

The next few lemmas constrain decomposition of combinations and choices.
L7.2 says that combinations are uniquely decomposable (up to ∼); and L7.4
says that choices of three or more contents are uniquely decomposable (up to
∼). Neither choices [v + w] of two contents nor singletons [v] are uniquely de-

composable, since, by D4.5(V), whenever φV ψ, [ ¯̄ψ] ∼ [ ¯̄ψ+ ¯̄φ]. L7.5 constrains
decomposition in this crucial case.

Lemma 7.2 If [v1.v2. · · · ] ∼ c, then c = [w1.w2. · · · ], and(vi ∼ wi), for some
(wi).

Proof We show by induction on ∼ that, if [v1.v2. · · · ] ∼ c or c ∼ [v1.v2. · · · ],
then (∃w1, w2, . . . )c = [w1.w2. · · · ], and (vi ∼ wi). The effect of this proof
procedure is to make the case of symmetry (which is implicit in our requirement
that ∼ be an equivalence relation) a trivial consequence of IH. (We often employ
this simple technique implicitly in proving results concerning ∼ below.)

(Pairing): Not relevant.

(Comp): Trivial.

(>∧>∧>∧): [v.w. · · · ] 6= >∧ and [v.w. · · · ] 6= (., ∅).

(VVV): [v.w. · · · ] has neither the form [ ¯̄φ] nor the form [ ¯̄φ+ ¯̄ψ].

(Transitivity): Suppose [v.w. · · · ] ∼ b ∼ c. IH implies the result. Similarly,
IH implies the result if c ∼ b ∼ [v.w. · · · ]

A simple induction on ∼ establishes the following lemma. Note that ψ 6= ¯̄ψ:
no sentence ψ is a free content, only literals are free conditions, and no literal
is a free choice or combination.

Lemma 7.3

1. If ψ ∼ a, then either a = ψ or (ψ = >∧ and a = (., ∅)).
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2. If (., ∅) ∼ a, then either a = (., ∅) or a = >∧.

3. If ¬ψ ∼ a, then a = ¬ψ.

A simple induction on ∼ also establishes the following lemma. Note that
[v1 + v2 + v3 + · · · ] has at least three constituents, and so does not have the
form [v + w].

Lemma 7.4

1. If [v1 + v2 + v3 . . . ] ∼ c, then (c = [w1 + w2 + · · · ], and (vi ∼ wi)), for
some (wi).

2. If [v] ∼ c or [v + w] ∼ c, then either c = [v′] or c = [v′ + w′], for some
v′, w′.

Lemma 7.5

1. if [v + w] ∼ [v′ + w′], then either

(a) v ∼ v′ and w ∼ w′; or

(b) v ∼ v′ ∼ ¯̄ψ, w′ ∼ ¯̄φ and φV ψ, for some φ, ψ.

2. If [v +w] ∼ [v′] or [v′] ∼ [v +w], then v′ ∼ v ∼ ¯̄ψ, w ∼ ¯̄φ and φV ψ, for
some φ, ψ.

3. if [v] ∼ [v′], then v ∼ v′.

Proof We prove all three results simultaneously by induction on ∼. Each of the
cases in D4.5 is either irrelevant or trivial, except for transitivity. For the case
of transitivity, by L7.4(2.), there are 8 cases: for some v′, w′, v′′, w′′

1. [v + w] ∼ [v′ + w′] ∼ [v′′ + w′′];

2. [v + w] ∼ [v′ + w′] ∼ [v′′];

3. [v + w] ∼ [v′] ∼ [v′′ + w′′];

4. [v + w] ∼ [v′] ∼ [v′′];

5. [v] ∼ [v′ + w′] ∼ [v′′ + w′′];

6. [v] ∼ [v′ + w′] ∼ [v′′];

7. [v] ∼ [v′] ∼ [v′′ + w′′]; or

8. [v] ∼ [v′] ∼ [v′′];

By considerations of symmetry, there are essentially only four cases, typified by
(1), (2), (4), and (8).

(1.): By IH(1.), v′ ∼ v and either (A) w′ ∼ w or (B) v′ ∼ ¯̄ψ′, w′ ∼ ¯̄φ′, and
φ′ V ψ′.
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(A): By IH (1.) applied to [v′ + w′] ∼ [v′′ + w′′], v ∼ v′ ∼ v′′, and either

w′′ ∼ w′ or (v′′ ∼ ¯̄ψ′′, w′′ ∼ ¯̄φ′′, and φ′′ V ψ′′), for some φ′′, ψ′′. In
the former case, the result (1.)(a.) is satisfied. In the latter case, the
result (1.)(b.) is satisfied.

(B): By IH (1.) again, v ∼ v′ ∼ v′′, and either w′′ ∼ w′ or (v′′ ∼ ¯̄ψ′′,

w′′ ∼ ¯̄φ′′, and φ′′ V ψ′′) for some φ′′, ψ′′. In the former case, v ∼
v′ ∼ v′′ ∼ ¯̄ψ′, w′′ ∼ w′ ∼ ¯̄ψ′, and φ′ V ψ′. So, the result (1.)(b.) is
satisfied. In the latter case, the result (1.)(b.) is also satisfied.

(2.): By IH(1.), v′ ∼ v and either (A) w′ ∼ w or (B) v′ ∼ ¯̄ψ′, w′ ∼ ¯̄φ′, and
φ′ V ψ′, for some φ′, ψ′.

(A): By IH(2.), v′′ ∼ v′ ∼ v; also by IH(2), v ∼ v′ ∼ ¯̄ψ, w ∼ w′ ∼ ¯̄φ and
φV ψ, for some φ, ψ, so the result (2.) is satisfied;

(B): By IH(2.), v′′ ∼ v′ ∼ v, so the result (2.) is satisfed.

(4.): By IH, ¯̄φ ∼ v ∼ v′ ∼ v′′, ¯̄φ ∼ w, and φV ψ, for some φ, ψ. So, the result
(2.) is satisfied.

(8.): By IH(3.), v ∼ v′ ∼ v′′. So, the result (3.) is satisfied.

The next series of lemmas culminate in L7.10, which says that our interpre-
tation function ·̄ (and also ¯̄·) is one-one.

Lemma 7.6 If φ is atomic and ¯̄φ⊕ ∼ ¯̄ψ⊕, then φ = ψ.

Proof Suppose φ is atomic and ¯̄φ⊕ = ¯̄ψ⊕. By D4.3, φ ∼ ¯̄ψ⊕. By L7.3,

either ¯̄ψ⊕ = φ or ¯̄ψ⊕ = (., ∅). By D4.3, ¯̄ψ⊕ = φ. Since, for all χ, θ, . . . ,

φ 6∈ {¬χ, [ ¯̄χ], [ ¯̄χ. ¯̄θ. · · · ], [ ¯̄χ+ ¯̄θ + · · · ]}, ψ is atomic and ¯̄ψ⊕ = ψ.

Lemma 7.7 If ¬φ ∼ ¯̄ψ, then ψ has the form ¬χ, where ¯̄φ ∼ ¯̄χ.

Proof Suppose ¬φ ∼ ¯̄ψ. We first show that ψ has the form ¬χ. It is useful to
prove

(H) If ¬φ ∼ ψ, then ψ has either the form ¬χ or the form (ψ1 ∧ ψ2 ∧ . . . )

by induction on the complexity of ψ:

ψψψ atomic: By L7.6, ψ = ¬φ. ⊥.

ψ = (ψ1 ∨ ψ2 ∨ . . . )ψ = (ψ1 ∨ ψ2 ∨ . . . )ψ = (ψ1 ∨ ψ2 ∨ . . . ): Then [¬ψ1.¬ψ2. · · · ] = ¯̄ψ	 ∼ ¬φ	 = [ ¯̄φ]. By L7.2, [¬ψ1.¬ψ2. · · · ] 6∼
[ ¯̄φ]. ⊥.

We can now use (H) to prove the result by induction on the complexity of φ.
Suppose (for reductio) that ψ has the form (ψ1 ∧ ψ2 ∧ . . . ).

φφφ atomic: ¬φ = ¬φ⊕ ∼ ¯̄ψ⊕ = [ ¯̄ψ1. ¯̄ψ2. · · · ]. By L7.3, [ ¯̄ψ1. ¯̄ψ2. · · · ] = ¬φ. ⊥.
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φ = ¬φ′φ = ¬φ′φ = ¬φ′: [ ¯̄φ′] = ¬φ⊕ ∼ ¯̄ψ⊕ = [ ¯̄ψ1. ¯̄ψ2. · · · ]. By L7.2, [ ¯̄φ′] 6∼ [ ¯̄ψ1. ¯̄ψ2. · · · ]. ⊥.

φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . ): [¬φ1 + ¬φ2 + · · · ] = ¬φ⊕ ∼ ¯̄ψ⊕ = [ ¯̄ψ1. ¯̄ψ2. · · · ]. By L7.2,

[¬φ1 + ¬φ2 + · · · ] 6∼ [ ¯̄ψ1. ¯̄ψ2. · · · ]. ⊥.

φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . ): [ ¯̄φ] = ¬φ	 ∼ ¯̄ψ	 = [¬ψ1 + ¬ψ2 + · · · ]. By L7.5, ¯̄φ ∼ ¬ψ1.
By (H), φ is either a negation or a conjunction. ⊥.

So ¬φ ∼ ¬χ, for some χ. Then [ ¯̄φ] = ¬φ	 ∼ ¬χ	 = [ ¯̄χ]. By L7.5(3.), ¯̄φ ∼ ¯̄χ.

Lemma 7.8 If (φ1 ∧ φ2 ∧ . . . ) ∼ ¯̄ψ, then ψ has the form (ψ1 ∧ ψ2 ∧ . . . ), for

( ¯̄φi ∼ ¯̄ψi).

Proof Suppose (φ1 ∧ φ2 ∧ . . . ) ∼ ¯̄ψ. We first prove by induction on the com-
plexity of ψ that ψ has the form (ψ1 ∧ ψ2 ∧ . . . ).

ψψψ atomic: By L7.6, ψ = (φ1 ∧ φ2 ∧ . . . ). ⊥.

ψ = ¬χψ = ¬χψ = ¬χ: By L7.7, (φ1 ∧ φ2 ∧ . . . ) has the form ¬φ. ⊥.

ψ = (φ1 ∨ φ2 ∨ . . . )ψ = (φ1 ∨ φ2 ∨ . . . )ψ = (φ1 ∨ φ2 ∨ . . . ): [ ¯̄ψ1 + ¯̄ψ2 + · · · ] = ¯̄ψ⊕ ∼ ¯̄φ⊕ = [ ¯̄φ1. ¯̄φ2. · · · ]. By L7.2, [ ¯̄ψ1 +
¯̄ψ2 + · · · ] 6∼ [ ¯̄φ1. ¯̄φ2. · · · ]. ⊥.

By D4.3 and L7.2, ( ¯̄φi ∼ ¯̄ψi).

Lemma 7.9 If (φ1 ∨ φ2 ∨ . . . ) ∼ ¯̄ψ, then ψ has the form (ψ1∨ψ2∨ . . . ), where

( ¯̄φi ∼ ¯̄ψi).

Proof Suppose φ1 ∨ φ2 ∨ . . . ∼ ¯̄ψ. We first prove by induction on the complex-
ity of ψ that ψ has the form (ψ1 ∨ ψ2 ∨ . . . ).

ψψψ atomic: By L7.6, ψ = (φ1 ∨ φ2 ∨ . . . ). ⊥.

ψ = ¬χψ = ¬χψ = ¬χ: By L7.7, (φ1 ∨ φ2 ∨ . . . ) has the form ¬φ. ⊥.

ψ = (ψ1 ∧ ψ2 ∧ . . . )ψ = (ψ1 ∧ ψ2 ∧ . . . )ψ = (ψ1 ∧ ψ2 ∧ . . . ): By L7.8, (φ1 ∨ φ2 ∨ . . . ) has the form (χ1 ∧ χ2 ∧ . . . ). ⊥.

So, (φ1 ∨ φ2 ∨ . . . ) ∼ (ψ1 ∨ ψ2 ∨ . . . ) = ¯̄ψ. Then [¬φ1.¬φ2. · · · ] = (φ1 ∨ φ2 ∨ . . . )	 ∼
¯̄ψ	 = [¬ψ1.¬ψ2. · · · ]. By L7.2, (¬φi ∼ ¬ψi). By L7.7, ( ¯̄φi ∼ ¯̄ψi).

Lemma 7.10

1. If ¯̄φ ∼ ¯̄ψ, then φ = ψ.

2. If φ̄ = ψ̄, then φ = ψ.

Proof Suppose ¯̄φ = ¯̄ψ. We prove (1) by induction on the complexity of φ.

φφφ atomic: L7.6.
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φ = ¬χφ = ¬χφ = ¬χ: By L7.7, ψ has the form ¬γ and ¯̄χ ∼ ¯̄γ. IH implies that χ = γ.

φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . ): By L7.8, ψ has the form (ψ1 ∧ψ2 ∧ . . . ) and ( ¯̄φi ∼ ¯̄ψi). By
IH, (φi = ψi).

φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . ): As in the previous case, L7.9 and IH imply φ = ψ.

(2) is an immediate consequence of (1) and D4.3 since, if φ̄ ∼ ψ̄ then ¯̄φ ∼ φ̄ ∼
ψ̄ ∼ ¯̄ψ.

Definition 7.11 (Immediate Selection) We define a relation �S between
sets of contents of FS and conditions of FS in the obvious way:

1. vi �S [v0 + · · · ]g for each i,

2. v, · · · �S [v. · · · ]g,

3. v �S [v]g and

4. G 6�S g((+, ∅))

We allow the special case in which 〈v, . . . 〉 = ∅. In this case, ∅ �S [ ]g.

Because choices [v0 +v1 + · · · ]g and singleton choices/combinations [v]g may
not be uniquely decomposable, there can be surprising immediate selections.
For instance, there can be cases in which v �S [w]g, but v 6∼ w. But there
are sharp limits on such surprises. Lemmas 7.12-7.21 below specify those limits.
Lemmas 7.12-7.16 specify the limitations on immediate selection when the right-
hand relatum is the truth-condition ¯̄ψ⊕ of some sentence ψ of L +. Lemmas
7.18-7.21 specify those limitations in the other cases.

Lemma 7.12 If G�S [φ̄0.φ̄1. · · · ]g, then G = (φ̄i).

Proof Suppose thatG�S [φ̄0.φ̄1. · · · ]g. There are two cases: (I) [φ̄0.φ̄1. · · · ]g =
[v0.v1. · · · ]g and G = (vi), for some (vi) ⊆ (FS × FS); or (II) [φ̄0.φ̄1. · · · ]g ∈
{[v0 + v1 + · · · ]g, [v]g} and G ∈ {v, (vi)}, for some v, (vi) ⊆ (FS ×FS). By L7.2,
case (II) does not occur. In case (I), [φ̄0.φ̄1. · · · ]g = g([v0.v1. · · · ]) ∼ [v0.v1. · · · ].
By L7.2, (φ̄i ∼ vi), so (by L7.1), (g(vi) = g(φ̄i) = φ̄i). Since (vi) ⊆ (FS × FS),
(vi = g(vi)). So, G = (vi) = (φ̄i).

The following lemma is proved in a way similar to L7.12, using L7.4 in place
of L7.2:

Lemma 7.13 If G�S [φ̄0 + φ̄1 + φ̄2 + · · · ], then G = φ̄i, for some i.

Lemma 7.14 If G�S [φ̄1 + φ̄2]g, then (∃δ, i)(G = δ̄ and δ ≤ φi ∈ S∗).

Proof If G = φ̄i, for some i = 1, 2, then we may set δ = φi and φi ≤ φi ∈ S∗ by
D6.3. So, it is enough to show that, if G�S [φ̄1 + φ̄2]g, then either G ∈ {φ̄1, φ̄2}
or (∃δ)(G = δ̄ and δ ≤ φ1 ∈ S∗. By D7.11 there are three cases: (A) [φ̄1+φ̄2]g =
[v0.v1. · · · ]g and G = (vj) for some (vj) ⊆ (FS ×FS); (B) [φ̄1 + φ̄2]g = [v]g and
G = v, for some v ∈ (FS ×FS); or (C) [φ̄1 + φ̄2]g = [v1 + v2 + · · · ]g and G = vj ,
for some (vj) ∈ (FS × FS) and some j. By L7.2, case (A) does not occur.
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(B): By L7.5, there is a ψ such that v ∼ φ̄1 ∼ ¯̄ψ. So, G = v = g(v) = φ̄1.

(C): By L7.4, [v1 +v2 + · · · ] has the form [v1 +v2]. By L7.5 there are two cases:

(I) v1 ∼ φ̄1 and v2 ∼ φ̄2 or (II) v1 ∼ φ1 ∼ ¯̄ψ, v2 ∼ ¯̄δ, and δ V ψ, for some
δ, ψ.

(I): Either G = v1 = g(v1) = φ̄1 or G = v2 = g(v2) = φ̄2.

(II): Since φ̄1 ∼ ¯̄ψ, by L7.10, φ1 = ψ. If G = v1, then G = v1 = g(v1) =
φ̄1. If G = v2, then G = v2 = g(v2) = δ̄ and δ V φ1, for some δ. By
D6.1(V), δ ≤ φ1 ∈ S∗.

The following lemma is proved similarly to L7.14.

Lemma 7.15 If G�S [φ̄]g, then (∃δ)(G = δ̄ and δ ≤ φ ∈ S∗).

Lemma 7.16 If G�S φ̄⊕, then (∃∆)(G = ∆̄ and ∆ < φ ∈ S∗).

Proof Suppose G�S φ̄⊕. We prove the result by induction on the complexity
of φ.

φφφ atomic: By L7.3, G = ∅ and φ = >∧. By (≤)(>∧), ∅ ≤ >∧. Also, trivially,
∅ ≤ >∧ is irreversible. So, by D6.3, ∅ < >∧ ∈ S∗.

φ = ¬χ, χφ = ¬χ, χφ = ¬χ, χ atomic: By L7.7, ¬χ⊕ = ¬χ 6∈ {[v]g, [v + · · · ]s, [v. · · · ]g}, for any
v, w. So, G 6�S φ̄⊕. ⊥.

φ = ¬¬χφ = ¬¬χφ = ¬¬χ: ¬¬χ⊕ = [χ̄]g. By L7.15, (∃δ)(G = δ̄ and δ ≤ χ ∈ S∗). By T6.19,
δ < φ ∈ S∗.

φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . ): L7.12 and T6.19 imply the result.

φ = ¬(φ1 ∨ φ2 ∨ . . . )φ = ¬(φ1 ∨ φ2 ∨ . . . )φ = ¬(φ1 ∨ φ2 ∨ . . . ): L7.12 and T6.19 imply the result.

φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . ): L7.14 and T6.19 imply the result.

φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . ): L7.14 and T6.19 imply the result.

Definition 7.17 a is formularic iff a ∼ ¯̄φ⊕, for some φ ∈ L +. (a, b) is for-
mularic iff a and b are each formularic.

The following lemma is proved by an easy induction on ∼:

Lemma 7.18

1. If a ∼ b and a is formularic, then b is formularic.

2. If v ∼ w and v is formularic, then w is formularic.

Lemma 7.19

1. If [v] is formularic, then v ∼ ¯̄ψ, for some ψ ∈ L +.
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2. If [w + · · ·+ v + · · · ] is formularic, then v ∼ ¯̄ψ, for some ψ ∈ L +.

3. If [w. · · · .v. · · · ] is formularic, then then v ∼ ¯̄ψ, for some ψ ∈ L +.

Proof Suppose a ∈ {[v], [w. · · · .v. · · · ], [w+ · · ·+ v + · · · ]} and a is formularic.

Then a ∼ ¯̄φ⊕, for some φ ∈ L +. We prove the result by induction on the
complexity of φ.

φφφ atomic: Then a ∼ φ. By L7.3, a = φ or a = (., ∅). ⊥.

φ = ¬χ, χφ = ¬χ, χφ = ¬χ, χ atomic: By L7.3, a = ¬χ. ⊥.

φ = ¬¬χφ = ¬¬χφ = ¬¬χ: Then a ∼ ¯̄φ⊕ = [ ¯̄χ]. By L7.5, either v ∼ ¯̄χ or v ∼ ¯̄θ′, for some θ′.

φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . ): L7.2.

φ = ¬(φ1 ∨ φ2 ∧ . . . )φ = ¬(φ1 ∨ φ2 ∧ . . . )φ = ¬(φ1 ∨ φ2 ∧ . . . ): L7.2.

φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . ): By L7.4 and L7.5, v ∼ ¯̄θ, for some θ.

φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . ): By L7.4 and L7.5, v ∼ ¯̄θ, for some θ.

Remark: An immediate consequence of the defintion D4.2 is that, if a is
not formularic, then a = (+, ∅) or a has one of the forms: [v], [v0 + v1 + · · · ], or
[v0.v1. · · · ].

Lemma 7.20 (Unique Decomposition)

1. If [v] is not formularic and [v] ∼ a, then, for some v′, a = [v′] and v′ ∼ v;

2. If [v0 + v1 + · · · ] is not formularic and [v0 + v1 + · · · ] ∼ a, then, for some
(wi), a = [w0 + w1 + · · · ] and (vi ∼ wi);

3. If [v0.v1. · · · ] is not formularic and [v0.v1. · · · ] ∼ a, then, for some (wi),
a = [w0.w1. · · · ] and (vi ∼ wi); and

4. If (+, ∅) ∼ a, then a = (+, ∅).

Proof All of the cases are proved similarly. We do (2.) for illustration. Suppose
[v0 + v1 + · · · ] is not formularic and [v0 + v1 + · · · ] ∼ a. We prove the result by
induction on ∼:

(Pairing): [v0 + v1 + · · · ] does not have the form (a, b), for free conditions a, b.

(Comp): Trivial.

(>∧>∧>∧): Neither >∨ nor (., ∅) have the form [v0 + v1 + · · · ].

(VVV): Both [ ¯̄ψ](= ¬¬ψ⊕) and [ ¯̄ψ + ¯̄φ](= (ψ ∨ φ)⊕) are formularic.

(Transitivity): IH immediately implies the result.
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An immediate consequence of L7.20 is that the free conditions a exhaustively
partition into: (i): (+, ∅), (ii) the formularic conditions ¯̄φ⊕ for sentences φ of
L +, and (iii) uniquely decomposable (up to ∼), non-formularic choices and
combinations. Thus, L7.16 and the following lemma together provide helpful
necessary and sufficient conditions for the immediate selection relation �S to
obtain.

Lemma 7.21 For v, (vi) ⊆ (FS × FS):

1. If G�S [v]g and [v] is not formularic, then G = v;

2. If G�S [v0 +v1 + · · · ]g and [v0 +v1 + · · · ] is not formularic, then G = vi,
for some i; and

3. If G�S [v0.v1. · · · ]g and [v0.v1. · · · ] is not formularic, then G = (vi)

Proof Each of the claims is proved similarly, using L7.20. We do (1.) for
illustration. Suppose G�S [v]g and [v] is not formularic. Then there are three
cases: (A) [v] ∼ [w] and G = w = g(w), for some w; (B) [v] ∼ [w0 + w1 + · · · ]
and G = wi = g(wi), for some (wi) and some i; or (C) [v] ∼ [w0.w1. · · · ] and
G = (wi) = (g(wi)), for some (wi). By L7.20, cases (B) and (C) do not occur,
and G = w = g(w) ∼ v, for some w. So, G = w = g(w) = g(v) = v.

We are now ready to show that there is an exact corespondence between
selection in MS and the members of the canonical model basis S∗. D7.22-T7.30
establish this result.

We define the class of MS-derivations of selections G <S v using the fol-
lowing axiom and rules, which correspond to the clauses of the definition D2.1
of selection. As before, a selection is of the form G ≤S v iff it is of the form
G <S ([v]g, d), for some d:

Definition 7.22

1. Basis: G <S v is an axiom whenever G�S v⊕;

2. Ascent:
G <S v
G <S ([v]g, d)

for any d.

3. Lower Cut:
(Gi ≤S vi)i<n∈ω (vi) <S v

(Gi) <S v

4. Upper Cut:
(Gi <S v

i)i<n∈ω (vi) ≤S v
(Gi) <S v

The notions of the major premise and minor premises of applications of (upper
cut) and ( lower cut) are defined in the obvious way. We will often write
G <S v to indicate that there is an MS-derivation of G <S v, and G ≤S v to
indicate that there is an MS-derivation of G <S ([v]g, d), for some free condition
d.
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Remark: (Amalgamation): Since v �S [v]g, v <MS
([v]g, d) (i.e. v ≤S

v) is an axiom for all v ⊂ FS × FS and d ∈ FS , it follows that

(Gi <S v)i<n∈ω v ≤S v
(Gi) <S v

is an instance of (Upper Cut) and

(Gi ≤S v)i<n∈ω v <S v
(Gi) ≤S v

is an instance of (Lower Cut). So, if (Gi <S v), then (Gi) <S v; and if
(Gi ≤S v), then (Gi) ≤S v.

Definition 7.23 An MS-derivation is in semi-normal form (or is semi-normal)
iff every major premise of every application of (upper cut) or ( lower cut)
is an axiom.

An argument broadly similar to the proof of L5.4(Semi-Normal Form Lemma)
yields a similar result for MS-derivations:

Lemma 7.24 (Semi-Normal Form Lemma) If there is an MS-derivation
of G <S v, then there is a semi-normal MS-derivation of G <S v.

Lemma 7.25 If ¯̄φ⊕ ∼ ¯̄ψ⊕ and ∆ < φ ∈ S∗, then ∆ < ψ ∈ S∗.

Proof Suppose ¯̄φ⊕ ∼ ¯̄ψ⊕ and ∆ < φ ∈ S∗. There are six syntactic forms φ may
have.

φφφ atomic: By L7.6, ψ = φ.

φ = ¬χ, χφ = ¬χ, χφ = ¬χ, χ atomic: By L7.3(3.) and D4.3, ψ = φ.

φ = ¬¬φ′φ = ¬¬φ′φ = ¬¬φ′: ¯̄φ⊕ = [ ¯̄φ′] ∼ ¯̄ψ⊕. By L7.4(2.), either (A) ¯̄ψ⊕ = [v], for some v, or

(B) ¯̄ψ⊕ = [v + w], for some v and w.

(A): By L7.5(3.), v ∼ ¯̄φ′. Inspection of D4.3 shows that ψ must have the

form ¬¬ψ′, where v = ψ′. To illustrate, suppose (for reductio) that

ψ is a disjunction (ψ1 ∨ ψ2 ∨ . . . ). Then ¯̄ψ⊕ = [ ¯̄ψ1 + ¯̄ψ2 + · · · ] = [v].
⊥. Similar arguments show that ψ cannot be a literal, a conjunction,
the negation of a disjunction, nor the negation of a conjunction. So,

ψ = ¬¬ψ′, for some ψ′, and so ¯̄ψ⊕ = [ψ′] = [v]. So, ψ′ ∼ φ′. By
L7.10, ψ′ = φ′ and so ψ = φ.

(B): By L7.5(2.), v ∼ φ̄′. As in the previous case, the fact that ¯̄ψ⊕ has

the form [v+w], implies that there are two cases: (I) v = ¯̄ψ1, w = ¯̄ψ2,

and ψ = (ψ1 ∨ ψ2), for some ψ1, ψ2; or (II): v = ¬ψ1, w = ¬ψ2, and
ψ = ¬(ψ1 ∧ ψ2), for some ψ1, ψ2.

(I): By L7.10, ψ1 = φ′. By T6.19, since ∆ < ¬¬φ′ ∈ S∗, ∆ ≤ φ′ ∈
S∗, and so ∆ < (φ′ ∨ ψ2)(= (ψ1 ∨ ψ2) = ψ) ∈ S∗.
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(II): By L7.10, ¬ψ1 = φ′. By T6.19, since ∆ < ¬¬φ′ ∈ S∗, ∆ ≤
¬ψ1 ∈ S∗, and so ∆ < ¬(ψ1 ∧ ψ2) ∈ S∗.

φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . )φ = (φ1 ∧ φ2 ∧ . . . ): As above, L7.2, L7.10, and T6.19 imply the result.

φ = ¬(φ1 ∨ φ2 ∧ . . . )φ = ¬(φ1 ∨ φ2 ∧ . . . )φ = ¬(φ1 ∨ φ2 ∧ . . . ): As above, L7.2, L7.10, and T6.19 imply the result.

φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . )φ = (φ1 ∨ φ2 ∨ . . . ): There are two cases: (A) (φi) has more than two members,
so that φ has the form (φ1∨φ2∨φ3∨ . . . ) or (B.) φ has the form (φ1∨φ2).

(A): As above, L7.4(1.), D4.3, L7.10, and T6.19 imply the result.

(B): φ = (φ1 ∨ φ2) and ¯̄ψ⊕ ∼ ¯̄φ⊕ = [ ¯̄φ1 + ¯̄φ2]. So, by L7.4(2.) and

L7.5(1.),(2.), there are two cases: (I) ¯̄ψ⊕ has the form [v1 + v2],

where (vi ∼ ¯̄φi); or (II) ¯̄ψ⊕ has the form [v], where there are θ1, θ2

such that v ∼ ¯̄φ1 ∼ θ1, φ2 ∼ θ2, and θ1 V θ2.

(I): The argument in case (A) above yields the result.

(II): By L7.10, φ1 = θ1, φ2 = θ2, and so φ2 V φ1. By (≤′)(V),
φ2 ≤ φ1 ∈ S∗. By T6.19, since ∆ < (φ1 ∨ φ2) ∈ S∗, either ∆ ≤
φ1, ∆ ≤ φ2, or both ∆1 ≤ φ1 and ∆2 ≤ φ2 (where ∆ = ∆1,∆2)
is a member of S∗. In each case, the closure of S∗ implies that
∆ < ¬¬φ1 ∈ S∗. As above, since ¯̄ψ⊕ has the form [v], D4.3
constrains the form of ψ: ψ must be of the form ¬¬χ, where
v = ¯̄χ. Since ¯̄χ = v ∼ ¯̄φ1, L7.10 implies that χ = φ1. So,
∆ < ¬¬φ1(= ¬¬χ = ψ) ∈ S∗.

φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . )φ = ¬(φ1 ∧ φ2 ∧ . . . ): As above, L7.4, L7.5, L7.10, and T6.19 imply the result.

Lemma 7.26

1. If G <S (φ̄⊕, d), then there is a ∆ ⊆ L + such that G = ∆̄ and ∆ < φ ∈
S∗.

2. If G <S φ̄, then there is a ∆ ⊆ L + such that G = ∆̄ and ∆ < φ ∈ S∗.

3. If G ≤S φ̄, then there is a ∆ ⊆ L + such that G = ∆̄ and ∆ ≤ φ ∈ S∗.

Proof (2.) and (3.) follow from (1.) and T6.19. We prove (1.) by induction
on MS-derivations D of G <S (φ̄⊕, d). By L7.24, we may assume that D is
semi-normal.

(Basis): Suppose G�S (φ̄⊕, d). L7.16.

(Ascent): Suppose D has the form:

E
G <S w

G <S ([w]g, b)
where [w]s = φ̄⊕.

By L7.19, g(w) = ψ̄, for some ψ ∈ L +. So, IH applies to E : G = ∆̄ and
∆ < ψ ∈ S∗, for some ∆. Also, ψ̄ = w �S (φ̄⊕, d), so L7.16 implies that
ψ < φ ∈ S∗. The result follows by T6.19.
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(Lower Cut): Suppose D has the form

( F i )Gi ≤S vi (vi) <S (φ̄⊕, d)
(Gi) <S (φ̄⊕, d)

By IH, for some (δ̄i), ((vi) = (δ̄i) and (δi) < φ ∈ S∗); and (since [δ̄i]g =

¬¬δi⊕) (∃∆̄i)(Gi = ∆̄i and ∆i < ¬¬δi ∈ S∗), for each i. The result follows
by T6.19.

(Upper Cut): Suppose D has the form

( F i )Gi <S v
i (vi) ≤S (φ̄⊕, d)

(Gi) <S (φ̄⊕, d)

Since (vi) ≤S (φ̄⊕, d) is an axiom, (vi)�S [(φ̄⊕, d)]. There are two cases:

(A) (φ̄⊕, d) ∼ ¯̄ψ, for some ψ, or (B) not.

(A): [(φ̄⊕, d)]g = [ ¯̄ψ]g = ¬¬ψ⊕. By L7.16, since (vi) �S ¬¬ψ⊕, ((vi) =
(δ̄i)) and (δi) < ¬¬ψ ∈ S∗), for some (δ̄i). Also, IH, applies to
(Gi <S v

i) to imply that (∃∆̄i)(Gi = ∆̄i and ∆i < δi ∈ S∗), for each
i. By T6.19, (∆i) < ψ ∈ S∗. Since ψ̄⊕ = φ̄⊕ =, the result follows by
L7.25.

(B): Since (vi) �S [(φ̄⊕, d)]g, by L7.19 and L7.20(Unique Decomposi-
tion), (vi) = (φ̄⊕, d). So, IH applies to the minor premises: for each
i (∃∆i)(Gi = ∆̄i and ∆i < φ ∈ S∗). The result follows by T6.19.

Lemma 7.27 If ∆ < φ ∈ S (not merely S∗), then (1.) v∆,φ ≤S φ̄, and (2.)
∆̄,>∨ <S φ̄.

Proof

1. Suppose ∆ < φ ∈ S. Then, by D4.4, v∆,φ V φ. By D4.5 and D4.3,
[φ̄]g = [φ̄+ v∆,φ]g. So, v∆,φ �S [φ̄]g. The result follows by D7.22.

2. By D4.3, D4.5, D4.6 and D7.22, ∆̄, (>∧ ∨ /φ/),>∨ <S v∆,φ is an axiom.
Also, by D7.22, ∅ <S >∧ <S (>∧ ∨ /φ/). So, the result follows by (1.)
and D7.22.

Lemma 7.28 If ∆ ≤ φ, then there is an MS-derivation of ∆̄ ≤S φ̄.

Proof By induction on ∆ ≤ φ. It is useful to first prove

(H) If φV ψ, then φ̄ ≤S ψ̄; ψ̄, /φ/ ≤S φ̄; and φ̄, /φ/ ≤S /φ/.

Suppose φV ψ. Then, by D4.5 [ ¯̄ψ] ∼ [ ¯̄ψ + ¯̄φ]. So, φ̄�S [ψ̄]g. So, φ̄ ≤S ψ̄ is an

axiom. Since φ V ψ, (ψ ∧ /φ/) V ¬¬φ by D4.4(Induction). So, (ψ ∧ /φ/) ≤S
¬¬φ. D4.3 and D7.22 then imply that there is an MS-derivation (using (upper
cut)) of ψ̄, /φ/ ≤S φ̄. A similar argument establishes that φ̄, /φ/ ≤S /φ/.
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(ID): Immediate by D7.22, since φ̄�S [φ̄]g.

(>∧>∧>∧): By D4.5 and D4.3, ∅ �S >∨⊕. The result follows by D7.22.

(Determination): All of the cases are proved similarly. We do the case of con-
junction for illustration. φ, ψ, . . . ≤ (φ∧ψ∧. . . ). By D4.3, (φ ∧ ψ ∧ . . . )⊕ =

[φ̄.ψ̄. · · · ]g. So, φ̄, ψ̄, · · · �S (φ ∧ ψ ∧ . . . )⊕. The result is immediate by
D7.22.

(VVV): (H) implies the result.

(W): Suppose ψ � φ ∈ S. By D4.4, (ψ ∧ wφ) V ¬¬φ. By (H), (ψ ∧ wφ) ≤S
¬¬φ. By the argument for the case (determination) above, ψ̄, wφ <S
(ψ ∧ wφ). So, by D7.22(upper cut), ψ̄, wφ <S ¬¬φ. ¬¬φ has the form
([φ̄], d).

(Max): An argument similar to that for the case (W) above yields the result.

(>∨>∨>∨): By D4.4, (>∧ ∧ (>∧ ∨ /φ/))V >∨. By (H), (>∧ ∧ (>∧ ∨ /φ/)) ≤S >∨.
By the argument for the case (determination) above, >∧, (>∧ ∨ /φ/) ≤S
(>∧ ∧ (>∧ ∨ /φ/)). So, by D7.22(lower cut), >∧, (>∧ ∨ /φ/) ≤S >∨.
By the argument for the case (>∧) above, ∅ ≤S >∧. So, by D7.22,
(>∧ ∨ /φ/) ≤S >∨.

(S): Suppose ∆ ≤ φ ∈ S. By the closure of S, ∆ < ¬¬φ ∈ S. By L7.27
∆̄,>∨ <S ¬¬φ. ¬¬φ has the form ([φ̄], d).

(Cut): IH and D7.22 immediately imply the result.

Lemma 7.29

1. If ∆ < φ ∈ S∗, then there is an MS-derivation of ∆̄ <S φ̄.

2. If ∆ ≤ φ ∈ S∗, then there is an MS-derivation of ∆̄ ≤S φ̄.

Proof (2.) follows from D6.3 and L7.28. Suppose ∆ < φ ∈ S∗. We prove (1.)
by induction on the complexity of φ.

φφφ is a literal: A simple induction on D6.1 shows that every S-connection of
the form ∆ ≤ ¬>∧ is reversible. So, ∆ < ¬>∧ 6∈ S∗. Similar arguments
show that ∆ < ¬>∨ 6∈ S∗, ∆ < ¬/χ/ 6∈ S∗, for any χ ∈ L +, and
∆ < ¬wχ 6∈ S∗, for any χ ∈ L . So, there are five cases: (A) φ = /χ/,
for some χ ∈ L +, (B) φ = >∧, (C) φ = >∨; (D) φ ∈ L (and not merely
L +); or (E) φ = wχ, for some χ ∈ L .

(A): By L6.12 /χ/ ∈ ∆. By T6.19(Irreversibility), /χ/ 6∈ ∆. ⊥.
(B): A simple induction on D6.1 shows that, if ∆ ≤ >∧, then either

∆ = >∧ or ∆ = ∅. By T6.19(Irreversibility), ∆ 6= >∧. So, ∆ = ∅.
By D4.5 and D4.3, ∅ �S >∧⊕, so ∅ <S >∧ is an axiom.
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(C): By L6.18, ∆ ≤ ((>∧∨/φi/)), for some (φi) ⊂ L . So, by L7.28, there

is a covering (∆i) of ∆ such that, for each i, ∆̄i ≤S (>∧ ∨ /φi/). Also

by L7.28, (>∧ ∧ (>∧ ∨ /φi/)) ≤S >∨. By D7.22, >∧, (>∧ ∨ /φi/) <S
(>∧ ∧ (>∧ ∨ /φi/)) and ∅ ≤S >∧; so (>∧ ∨ /φi/) <S (>∧ ∧ (>∧ ∨ /φi/)).
Putting this all together, we have

∆̄i ≤S (>∧ ∨ /φi/) <S (>∧ ∧ (>∧ ∨ /φi/)) ≤S >∨.

It’s easy to see that D7.22 implies that ∆̄i <S >∨, for each i. The
result follows by (Amalgamation).

(D): By L6.14(1.) and L6.15(Interpolation), there is a (γi) and a covering
(Γi),∆1,∆2 of ∆ such that (Γi ≤ γi), ∆1 ≤ (>∧ ∨ /φ/), ∆2 ≤ >∨,

and v(γi),φ ≤ φ. By L7.28, (Γ̄i ≤S γ̄i), ∆̄1 ≤S (>∧ ∨ /φ/) ,

∆̄2 ≤S >∨ , and v(γi),φ ≤ φ̄. By D4.3, (γ̄i), (>∨ ∧ /φ/),>∨ �S

v(γi),φ⊕. So, D7.22 implies the result.

(E): By L6.12(Persistence), wχ ∈ ∆. By T6.19(Irreversibility), wχ 6∈ ∆.
⊥.

φφφ is molecular, and not a literal: φ has one of the following forms: ¬¬ψ,¬(ψ1∧
ψ2∧. . . ),¬(ψ1∨ψ2∨. . . ), (ψ1∧ψ2∧. . . ), or (ψ1∨ψ2∨. . . ). Each of the cases
is proved similarly. We consider the case of ¬(ψ1 ∨ ψ2 ∨ . . . ) for illustra-
tion. By T6.19(Maximality), ∆ has a covering (∆i) such that (∆i ≤ ¬ψi).
So, by L7.28, (∆̄i ≤S ¬ψi). By D4.3, (¬ψi) �S ¬(ψ1 ∨ ψ2 ∨ . . . )⊕. The
result follows by D7.22.

Theorem 7.30 (Conservativity)

1. ∆ ≤ φ ∈ S∗ iff ∆̄ ≤S φ̄;

2. ∆ < φ ∈ S∗ iff ∆̄ <S φ̄;

3. δ � φ ∈ S∗ iff δ̄, H ≤S φ̄; and

4. δ ≺ φ ∈ S∗ iff δ̄, H ≤S φ̄, and there is no I such that φ̄, I ≤S δ̄.

Proof By L7.10, ∆̄ = Γ̄ iff ∆ = Γ. So, (1.) and (2.) are immediate consequences
of L7.29 and L7.26. (4.) follows from (3.) and D6.3. By T6.19(Witnessing),
if δ � φ ∈ S∗, then δ,∆ ≤ φ ∈ S∗, for some ∆. By (1.) above, there is an
MS-derivation of δ̄, ∆̄ ≤S φ̄. For the converse, suppose that δ̄, H ≤S φ̄. By
L7.26, there is a ∆ such that δ̄, H = ∆̄ and ∆ ≤ φ ∈ S∗. Since δ̄ = γ̄, for some
γ ∈ ∆, L7.10 implies that δ = γ ∈ ∆. The result follows by T6.19.

The remainder of this section (L7.31-T7.36) establishes that MS meets the
constraints of maximality and irreversibility, and so qualifies as a model.
When we were dealing on the proof-theoretic side with the canonical model
basis, maximality was harder and irreversibility easier. Now that we are
dealing on the semantic side with the canonical model, the situation is reversed.
We start by demonstrating that MS satisfies maximality.
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Lemma 7.31 (Maximality) Suppose (vi) ⊆ (Fs × Fs).

1. If G <S ([v0. · · · ]g, d), then there is a covering (Gi) of G such that (Gi ≤S
vi).

2. If G <S ([v0 + · · · ]g, d), then there is a subset (uj)of (vi) and a covering
(Gj) of G such that (Gj ≤S uj).

Proof The proofs of (1.) and (2.) are similar. We do (1.) for illustration.
Suppose that G <S ([vo. · · · )g, d), for some d. If 〈v0, . . . 〉 = 〈v〉, for some
v, then G <S ([v]g, d), i.e. G ≤S v. The trivial covering G of G yields the
result. Suppose, then, that 〈v0, . . . 〉 6= 〈v〉. There are two cases: (A) [v0. · · · ] is
formularic, or (B) not.

(A): By L7.19 for each i, vi = ψ̄i, for some ψi ∈ L +. So, [v0. · · · ] =
(ψ0 ∧ ψ1 ∧ . . . )⊕. By L7.26, G = ∆̄ and ∆ < (ψ0 ∧ ψ1 ∧ . . . ) ∈ S∗,

for some ∆. By T6.19(Maximality), there is a covering (∆i) of ∆ such
that (∆i ≤ ψi) ⊆ S∗. By L7.29, there are MS-derivations of (∆̄i ≤s ψ̄i).
Since G = ∆̄, (∆̄i) is a covering of G.

(B): We prove the result by induction on MS-derivations D. By L7.24, we may
assume (wlog) that D is semi-normal.

(Basis): Suppose that G <S ([v0. · · · ]g, d) is an axiom, so that G �S

[v0. · · · ]g. By L7.21, G = (vi). Each instance of (vi ≤S vi) is an
axiom.

(Ascent): Suppose D has the form

E
G <S w

G <S ([w]g, b)
where [w]g = [v0. · · · ]g.

By L7.20, 〈vi〉 = w. ⊥.
(Lower Cut): Suppose D has the form

( F j )Gj ≤S wj (wj) <S ([v0. · · · ]g, d)
(Gj) <S ([v0. · · · ]g, d)

Since (wj) <S ([v0. · · · ]g, d) is an axiom, (wj) �S [v0. · · · ]g. By
L7.21, (wj) = (vi). So, (Gj ≤S wj) = (Gi ≤S vi) by re-indexing.

(Upper Cut): Suppose D has the form

( F j )Gj <S w
j (wj) ≤S ([v0. · · · ]g, d)

(Gj) <S ([v0. · · · ]g, d)

Since (wj) ≤S ([v0. · · · ]g, d) is an axiom, (wj) �S [([v0. · · · ]g, d)]g.
By L7.21, (wj) = ([v0. · · · ]g, d). So, IH applies to each of the MS-
derivations (F j): for each j there is a covering (Gji)i of Gj such
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that there are MS-derivations of (Gji ≤S vi)i. By re-ordering, for
each i, we have MS-derivations of (Gji ≤S vi)j . By D7.22, there are
MS-derivations of each of the selections ((Gji)j ≤S vi)i.

To establish that MS satisfies irreversibility it is useful to show that
weak selections from contents that do not correspond to any element of L +

must take a particularly strong form.

Lemma 7.32

1. If v 6∼ ¯̄ψ, for any ψ ∈ L +, and G ≤S v, then either G = v, or G <S v,
or (G = v,G′ and G′ <S v).

2. If v 6∼ ¯̄ψ, for any ψ ∈ L +, and w,G ≤S v, then either w = v or w,H <S
v, for some H.

Proof (2.) follows immediately from (1.) (setting G in (1.) to G,w). Suppose

v 6∼ ¯̄ψ, for any ψ ∈ L +. We prove (1.) by induction on MS-derivations D. By
L7.24, we may assume (wlog) that D is semi-normal.

(Basis): Suppose G �S [v]g. By L7.19, [v]g is not formularic. So, by L7.21,
G = v.

(Ascent): Suppose there is an MS-derivation of G <S w and [w]s = [v]s. As
above, w = v. So, IH yields the result.

(Lower Cut): Suppose that there are MS-derivations of each of (Gi ≤S vi)
and that (vi) <S ([v]g, d) is an axiom. As above, (vi) = v. So, IH applies
to each of the selections (Gi ≤S vi). It is easy to see that the result follows
by D7.22.

(Upper Cut): Suppose that there are MS-derivations of each of (Gi <S vi)
and that (vi) <S ([([v]g, d)], e) is an axiom. As above, (vi) = ([v]s, d). So,
IH applies to each of the selections (G <S v

i). It is easy to see that the
result follows by D7.22.

Now we show that the application of choice and combination to some con-
tents yields a condition that is “raised” up a level. This is the key to demon-
strating that MS satisfies irreversibility.

Lemma 7.33

1. v⊕ 6∼ [w + · · ·+ v + · · · ].

2. v⊕ 6∼ [w. · · · .v. · · · ].

3. v⊕ 6∼ [v]

Proof Each of (1.)-(3.) is proved similarly. We do (1.) for illustration. There
are two cases: either (A) [w + · · ·+ v + · · · ] is formularic, or (B) it is not.
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(A): By L7.19, [w + · · · + v + · · · ] ∼ [ ¯̄ψ0 + · · · + ¯̄ψi + · · · ], where v ∼ ¯̄ψi.
So, g(v) = ψ̄i. Suppose (for reductio) v⊕ ∼ [w + · · · + v + · · · ]. Then
g(v⊕) = [ψ̄0 + · · ·+ ψ̄i + · · · ]g; so

ψ̄i �S g(v⊕)⇒ ψ̄i �S g(v)⊕ ⇒ ψ̄i <S g(v)⇒ ψ̄i <S ψ̄
i.

By T7.30, ψi < ψi ∈ S∗. But, by D6.3, ψi < ψi 6∈ S∗. ⊥.

(B): We prove the result by induction on free conditions a = v⊕, defined in
D4.2. Suppose (for reductio) that v⊕ ∼ [w + · · · + v + · · · ]. If v⊕ is
formularic, then the argument in (A) yields the result, so we may assume
(wlog) that v⊕ is not formularic. So, L7.20 implies that v⊕ = [w′ + · · ·+
v′ + · · · ] and v′ ∼ v, for some w′, . . . , v, . . . .

Basis: a = v⊕ is a literal of L +. All such literals are formularic. ⊥.

Inductive Step: Let v′ = (a′.b′). IH is that, for all w∗, . . . , v∗(= (a′, b∗)), . . . ,
a′ = v∗⊕ 6∼ [w∗ + · · · + v∗(= (a′, b∗)) + · · · ]. Since v′ ∼ v, v′⊕ ∼ v⊕.
So, v′⊕ ∼ v⊕ = [w′+ · · ·+ v′+ · · · ]. By IH, v′⊕ 6∼ [w′+ · · ·+ v′+ · · · ].
⊥.

Lemma 7.34 (Irreversibility ⇒)

1. If v,H 6<S v.

2. If H <S v, then there is no w ∈ H and no G such that v,G ≤S w.

Proof (2.) follows from (1.) by D7.22. In regard to (1.), either (A) v is
formularic, or (B) it is not.

(A): Suppose (for reductio) that v,H <S v. Then, by L7.26, there are δ,∆
such that v = δ̄ and δ,∆ < δ ∈ S∗. By D6.3, δ,∆ < δ 6∈ S∗.

(B): By D4.2 either (I) v⊕ = (+, ∅) or (II) v⊕ is a choice, combination, or
singleton.

(I): An easy induction on MS-derivations shows that, for all G, G 6<S v.

(II): We prove the result by induction on free contents. The basis cases
are handled by the arguments for (A) and (B)(I). All of the remaining
cases are proved similarly. We do the case in which v⊕ = [w0 +w1 +
· · · ]g. IH is that, for each i, there is no MS-derivation of wi, G <S w

i.
Suppose G <S v. By 7.31 (Maximality), there is a subset (uj) of
(wi) and a covering (Gj) of G such that (Gj ≤S uj). Suppose (for
reductio) v ∈ Gj , for some j, so that v,Gj ≤S uj . Then, by L7.26,

since v 6∼ ¯̄ψ for any ψ ∈ L +, uj 6∼ ¯̄φ for any φ ∈ L +. Also, by
L7.33, uj⊕ 6∼ v⊕, so uj 6= v. So, L7.32 applies to the MS-derivation
of v,Gj ≤S uj : v,H <S u

j , for some H. So, by D7.22, uj , H <S u
j .

But, by IH, there is no MS-derivation of uj , H <S u
j . ⊥.
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Lemma 7.35 (Irreversibility ⇐) If G ≤S v and v,H 6≤S w for any H and
any w ∈ G, then G <S v.

Proof Suppose there is an MS-derivation of G ≤S v, but no MS-derivation of
v,H ≤S w for any H and any w ∈ G. There are two cases: either (A) v ∼ ¯̄ψ,
for some ψ ∈ L +, or (B) not.

(A): v = g(v) = ψ̄. By L7.26, G = ∆̄ and ∆ ≤ ψ ∈ S∗, for some ∆. By T7.30,
for all δ ∈ ∆, ψ � δ 6∈ S∗. So, by D6.3, (∀δ ∈ ∆)δ ≺ ψ ∈ S∗, and so
∆ < ψ ∈ S∗. By T7.30 again, there is an MS-derivation of ∆̄ <S ψ̄.

(B): By L7.32, either v ∈ G or there is an MS-derivation of G <S v. Since
every instance of v ≤S v is an axiom, v 6∈ G.

The restriction of ·̄ to atomic sentences is an interpretation. By L7.1, the
extension of that interpretation to molecular sentences φ is just φ̄. Clearly, there
is an MS-derivation of G <S v iff G <MS

v. So, the following theorem is imme-
diate by L7.31(Maximality), L7.34(Irreversibility ⇒), and L7.35(Irreversibility
⇐):

Theorem 7.36 MS is a model.

8 Completeness

Definition 8.1 We have assumed that the sentences of the language L are
well-ordered. It follows that the grounding claims for L are well-ordered, and
so can be indexed to an ordinal α, so that they form a set of of the form
{τ0, τ1, . . . , τβ , . . . } (β < α). Suppose also that S and T are finite sets of ground-
ing claims such that S 6` T . For each β < α, define Sβ by recursion:

1. S0 = S;

2. Sβ+1 =

{
Sβ ∪ {τβ}, if Sβ , τβ 6` T ;
Sβ , otherwise.

3. Sλ =
⋃
β<λ(Sβ) for limit λ.

Let S+
T =

⋃
β<α(Sβ).

Recall that ` was defined so that U ` V ⇔ U ′  V ′, for some U ′ ⊆ U and
V ′ ⊆ V . A simple induction on the definition of  shows that, if U ′  V ′, then
U ′ and V ′ are both finite, yielding the following lemma.

Lemma 8.2 (Syntactic Compactness) If U ` V then there are finite U ′ ⊆ U
and V ′ ⊆ V such that U ′ ` V ′, U ′ ` V , and U ` V ′.

L8.2 and an induction on the cardinality of finite sets of grounding claims
U straightforwardly yields
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Lemma 8.3

1. If S  U and (∀τ ∈ U)S, τ  T , then S  T .

2. If S ` U and (∀τ ∈ U)S, τ ` T , then S ` T .

Standard reasoning from L8.2, L8.3, and L5.21 (Main Witnessing Lemma)
then shows

Lemma 8.4 If S and T are sets of grounding claims of L such that S 6` T ,
then there is a prime, witnessed extension S∗ of S such that S∗ 6` T .

Lemma 8.5 If S and T are sets of grounding claims of L such that S 6` T ,
then there is a model M such that (∀σ ∈ S)M � σ and M 6� T .

Proof Suppose S 6` T . By L8.4, there is a prime, witnessed extension S∗ of
S such that S∗ 6` T . By T6.19, the canonical model basis S′ for S∗ is such
that, for all grounding claims σ of the language L ∗ of S∗, σ ∈ S′ iff σ ∈ S∗.
By T7.36, MS∗ is a model. By T7.30, (∀σ ∈ S∗)MS∗ � σ. Since S ⊆ S∗,
(∀σ ∈ S)Ms∗ � σ. By T7.30, MS∗ � T ⇔ (∃σ)σ ∈ (S∗ ∩ T ). Since S∗ 6` T ,
S∗ ∩ T = ∅. So, MS∗ 6� T .

Theorem 8.6 (Completeness) If S � T , then S ` T .

Proof Suppose S � T . By the definition of �, there is no model M such that
(∀σ ∈ S)M � σ and M 6� T . By L8.5, S ` T .

9 Further Work

We make some brief suggestions as to how further work on the ideas presented
in this paper might proceed.

9.1 Going infinitary

Our system is finitary: in each of the full grounding claims ∆ ≤ A and ∆ < A,
the set of formulas ∆ must be finite; and T ` S just in case there are finite
sets T ′ ⊆ T and S′ ⊆ S such that T ′  S′. It will prove desirable for certain
purposes to relax the first of these requirements and allow in principle for a
statement to have infinitely many grounds; and once this is done, it will be
natural to relax the second of these requirements and to allow the grounding
claims to the left and right of  to be infinite.

This means that the rules of THINNING, SNIP, CUT and REVERSE SUB-
SUMPTION will need to be revised. It also means that, in the semantics, we
must allow for the infinitary application of combination and choice. Proofs of
soundness and completeness can then, with suitable modifications, go through
much as before.
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9.2 Quantification

Our system is sentential; the formulas flanking a grounding claim are those of
sentential logic - formed from sentential atoms by means of the usual truth-
functional connectives. The question therefore arises as to how to extend the
system with quantifiers so that the formulas flanking a grounding claim can be
those of an arbitrary first order language.

In order to be able to account for the grounds for a universal statement, we
presuppose given a domain D of individuals (as in [Fine, 2012b]). Suppose then
that a1, a2, . . . are the distinct individuals of D; and let D = {a1, a2, . . . } be
the set of corresponding names for those individuals. An interpretation over D
should then assign to every n-place predicate F a function F taking each n-tuple
of individuals from D into a content; and the content of the atomic sentence
Fak1ak2 . . . akn should then be taken to be F(ak1

, ak2
, . . . , akn

).
When it comes to the quantifiers, we might think of a universal statement

∀xφ(x) as the conjunction φ(a1) ∧ φ(a2) ∧ . . . of its instances and of an exis-
tential statement ∃xφ(x) as the disjunction φ(a1) ∨ φ(a2) ∨ . . . of its instances.
Since there is an obvious extension of the introduction and elimination rules for
binary conjunction and disjunction to conjunctions and disjunctions of arbitrary
length, we may read off the introduction and elimination rules for universal and
existential quantification from the extended rules for conjunction and disjunc-
tion. We are thereby lead to adopt the following pair of positive introduction
and elimination rules for the universal quantifier:

∀I  φ(a1), φ(a2), · · · < ∀xφ(x)

∀E ∆ < ∀xφ(x)  ∆ ≤ φ(a1), φ(a2), . . . .

In the statement of ∀e, S  ∆ ≤ χ1, χ2, . . . abbreviates

S  (∆1
1 ≤ χ1; ∆1

2 ≤ χ2, . . . | ∆2
1 ≤ χ1; ∆2

2 ≤ χ2, . . . | . . . )

where (〈∆i
1,∆

i
2, . . . 〉) are exactly the sequences (of appropriate length) for which

∆ = ∆i
1 ∪∆i

2 ∪ . . . [Fine, 2012b, 64]. There would be corresponding rules for
the existential quantifier. There is a corresponding semantic treatment. For,
as we have seen, the semantics for binary conjunction and disjunction may be
extended to conjunctions and disjunctions of arbitrary length; and we may then
let the semantics for these conjunctions and disjunctions of arbitrary length be
our guide in providing a semantics for the quantifiers. However, there is a hitch.
For the semantics for φ(a1) ∧ φ(a2) ∧ . . . or for φ(a) ∨ φ(b) ∨ . . . takes account
of the order of the conjuncts or of the disjuncts. Thus the truth-condition for
φ(a1) ∧ φ(a2) ∧ . . . , for example, will be the combination of the contents of
φ(a1), φ(a2), . . . in that order. Since the combination may vary with the order,
this makes it unclear what the content of the universal statement should be
taken to be.

This is, in fact, a general difficulty for any semantics which is based on the
semantic equivalence of ∀xφ(x) to φ(a1) ∧ φ(a2) ∧ . . . and which is sensitive to
the order of the conjuncts in a conjunction. There are a number of ways within
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our own framework of dealing with this difficulty. Perhaps the most conservative
option is to suppose given a well-ordering a1, a2, . . . of the individuals of D and
a corresponding well-ordering a1, a2, . . . of the individual names. We can then
stipulate that, for semantical purposes, ∀xφ(x) is to be taken to be equivalent
to φ(a1)∧φ(a2)∧ . . . in that very order, so that its truth-condition is to be the
combination of the contents of φ(a1), φ(a2), . . . in that very order; and similarly
for ∃xφ(x). This is, of course, to introduce an arbitrary element into the seman-
tics, since any other well-ordering of the individuals would have done just as
well. But we may think of the combination (or choice) of the specific sequence
of contents of φ(a1), φ(a2), . . . as representing the combination (or choice) of the
corresponding set of contents, without our thereby having to extend the existing
apparatus of combination and choice to include their application to sets rather
than sequences.

Quantifiers with variable domains raise additional complications, since there
is then the need for totality facts (as in [Fine, 2012b, 59 et seq.]). We believe
that the development of the semantics in this direction requires the introduction
of dependent combinations and choices, but this is not something that we shall
pursue here.

9.3 Propositional identities

In [Fine, 2012b, 67], it was suggested that one might want to add certain ground-
theoretic equivalences to the logic of ground. In the case of conjunction, one
might want to insist upon commutativity in the form:

(φ ∧ ψ) ≤ (ψ ∧ φ).

and similarly in the case of disjunction. However, the ground-theoretic equiva-
lence of φ∧ψ and ψ ∧ φ would not guarantee the ground-theoretic equivalence,
for example, of ¬(φ ∧ ψ) and ¬(ψ ∧ φ); and so, just as we previously suggested
in the case of the quantifiers that one might wish to insist upon the ground-
theoretic equivalence of any two alphabetic variants, so we might, in the present
case, wish to insist upon the ground-theoretic equivalence of θ and θ′ whenever
θ′ could be obtained from θ by replacing a subformula (φ ∧ ψ) with (ψ ∧ φ)
(and similarly in the case of disjunction). A corresponding semantic treatment
could be obtained by subjecting combination and choice to the corresponding
conditions. However, certain propositional equivalences are incompatible with
the existing rules. The equivalence of ¬¬φ with φ, for example, is incompatible
with φ being a strict ground for ¬¬φ and, likewise, the equivalence of φ∨φ with
φ is incompatible with φ being a strict ground for φ ∨ φ; and associativity for
either disjunction or conjunction also runs into difficulties. For:
((φ ∨ ψ) ∨ ψ) ≤ (φ ∨ (ψ ∨ ψ))

 (φ ∨ ψ) < (φ ∨ (ψ ∨ ψ))
 (φ ∨ ψ) ≤ (ψ ∨ ψ) (using ∨ -elimination)
 φ < (ψ ∨ ψ)
 φ ≤ ψ.
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A similar argument shows that associativity for conjunction implies that φ � ψ.
Letting φ = ¬¬A and ψ = A, we get an inconsistency.

Under a “flat” approach to the semantics, by contrast, these various equiva-
lences will hold. It turns out that our approach can be modified and extended in
such a way as to accommodate one such “flat” approach, the theory of content
and an associated logic of ground given by Angell’s theory of analytic contain-
ment.8 Angell’s theory includes all of the equivalences noted above, as well
as DeMorgan equivalences. So, a suitable modification of the approach here,
with frames given by choice and combination operations and interpretations as-
signing contents to formulae, yields the logic of GG if choice and combination
are constrained as in the semantics of §2, and the logic of the Angellic system
if choice and combination are constrained differently. Thus, each logic can be
characterized as a special case of a single, general approach. It remains unclear
whether other interesting views of propositional identity can be characterized
in a similar way.

9.4 Lambda abstraction

The system of [Fine, 2012b] contains some obvious rules for lambda abstraction.
In extending the semantics to the closed lambda abstract λxφ(x), the obvious
strategy is to take its semantic value to be a function which assigns, to each

individual a of the domain, the content ([φ(a)], [¬φ(a)]). The contents of φ(a)
and ¬φ(a) are “raised;” and we thereby guarantee that φ(a) is the immediate
strict ground for λxφ(x)a and ¬φ(a) the immediate strict ground for ¬λxφ(x)a.
However, this has the undesirable consequence that λxφ(x)a and ¬¬φ(a) will
always have the same content and hence be intersubstitutable in any ground-
theoretic context.

One way round this difficulty is to suppose that there are different ways
in which a content can be raised. Thus the semantics for negation involves
one form of raising, under which the content of a statement is converted into
a falsity condition for its negation, while the semantics for lambda abstraction
will involve another form of raising, under which the content of a statement or of
its negation, is converted into a truth or falsity condition for the corresponding
complex predication. From this point of view, our previous identification of
[v] with a singleton combination or choice was a harmless simplification which
should be dropped once different forms of raising are in play.9

8[Angell, 1989]. See [Correia, 2010], [Fine, 2012b], and [Fine, 2016] for semantic charac-
terizations of Angell’s system and the corresponding logic of ground. The specification of the
modifications of the present approach to capture GG (under one set of constraints on choice
and combination) and Angell’s system (under another set of constraints) and the associated
proofs are omitted here for reasons of length.

9Material from this paper was presented at a workshop on truthmaker semantics at NYU,
at a conference on truthmaker semantics at the University of Hamburg, and in a Spring 2020
seminar on recent work in philosophical logic at NYU. We would like to thank participants in
those events, as well as Fabrice Correia and Stephan Krämer for comments and advice.
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