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Abstract

In this paper we provide arguments against the dominant role played by the notion of pure sate
within the orthodox account of quantum theory. Firstly, we will argue that the origin of this notion
is intrinsically related to the widespread empirical-positivist understanding of physics according
to which ‘theories describe actual observations of subjects (or agents)’. Secondly, we will show
how within the notion of pure state there is a scrambling of two mutually incompatible definitions.
On the one hand, a contextual definition which attempts to provide an intuitive physical grasp
in terms of the certain prediction of a measurement outcome; and on the other hand, a non-
contextual purely abstract mathematical definition which has no clear physical content. We will
then turn our attention to the way in which pure states and mixtures have been considered by two
categorical approaches to QM, namely, the topos approach originally presented by Chris Isham
and Jeremy Butterfield [27, 28, 29] and the more recent logos categorical approach presented by
the authors of this article [11, 12]. While the first approach presents serious difficulties in order to
produce an orthodox understanding of pure states and mixtures, the latter presents a new scheme
in which the distinction between pure states and mixtures becomes completely irrelevant.
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1 Pure States in Quantum Mechanics

The notion of pure state plays an essential role within the many debates that take place today within
the orthodox literature discussing about Quantum Mechanics (QM). Its role established since the
axiomatic formulation of the theory has become increasingly dominant establishing a primacy over
the so called mized states. As explained by David Mermin [33, p. 758]: “[P]eople distinguish between
pure and mixed states. It is often said that a system is in a pure state if we have maximum knowledge
of the system, while it is in a mixed state if our knowledge of the system is incomplete.” The explicit
reference to “our knowledge” is strictly related to the following operational definition of pure states:
‘If a quantum system is prepared in such way that one can devise a maximal test yielding with
certainty (probability = 1) a particular outcome, then it is said that the quantum system is in a
pure state.” In turn, the notion of mazimal test allows to interpret a quantum observable as being
an actual property —i.e., a property that will yield the answer yes when being measured [36]. It is



then stated that the pure state of a quantum system is described by a unit vector in a Hilbert space
which in Dirac’s notation is written as [i)).
Depending on the basis, a pure state in H is also represented by a superposition of states:

) = aile)i

As a consequence, depending on the choice of the basis, a pure state will yield uncertain results.
Asher Peres explains this important point in the following manner:

“According to quantum theory, we have a choice between different, mutually incompatible tests.
For example, we may orient the Stern-Gerlach magnet in any direction we please. Why then is
such a Stern-Gerlach test called complete? The reason can be stated as the following postulate:
A. Statistical determinism. If a quantum system is prepared in such a way that it certainly
yields a predictable outcome in a specified mazimal test, the various outcomes of any other test
have definite probabilities. In particular, these probabilities do not depend on the details of the
procedure used for preparing the quantum system, so that it yields a specific outcome in the given
maximal test. A system prepared in such a way is said to be in a pure state.” [34, p. 66]

The notion of pure state can be also extended to density operators. Let H be a Hilbert space. A
density operator p (i.e. a positive trace class operator with trace 1) is called a state. Being positive
(and self-adjoint), the eigenvalues of p are non-negative and real and it is possible to diagonalize it.
If the rank of p is equal to 1, this diagonal matrix is given by (1,0,...,0) and p is equal to vv' for
some normalized vector v € H. In this case, p is called a pure state. If the rank of p is grater than 1
(or equivalently if Tr(p?) < 1), the state is called a mized state; or in short, mizture. For example,
the vector a|0) + B[1), |a|? + |B|2 = 1, gives the following density matrix:
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Notice that, if p is a pure state (i.e., Tr(p?) = 1), there always exists a basis in which the matrix can

be diagonalized as:
(10
Ppure = 00

Contrary to the case of pure states, when considering mixed states, all observables are uncertain;
they all possess a probability which pertains to the open interval (0, 1). These properties are referred
to in the literature as indeterminate or potential properties (see e.g., [36]). Indeterminate properties
might, or might not become actualized in a future instant of time; they are uncertain properties
which cannot be considered as elements of physical reality (in the EPR sense [24]). As an example
of a mixed state (i.e., Tr(p?) < 1) we can consider the following diagonal matrix,

mire 0 §

Here, the observables related to the diagonal elements have probability % Such states are referred
to in te literature as providing minimal knowledge. So while pure states guarantee the existence of
an observable which, if measured, will be obtained with certainty (probability equal to 1), mixed
states do not. This means there will exist no single context for which a mixed state will predict with
certainty a yes-no answer for a specific measurement.

The just mentioned distinction between pure states and miztures was introduced in order to
support a twofold foundation. On the one hand, an empirical-positivist understanding of physics as



an algorithmic mathematical device capable of predicting observations; and on the other, an atomist
metaphysical understanding of physical reality in terms of systems constituted by definite valued
properties. These two interconnected presuppositions have severe inconsistencies when related to
the orthodox mathematical formalism of QM. Not only the notion of pure state is ill defined, but
the reference to ‘mixtures’ —as contraposed to ‘pure states’— is extremely problematic for it erases
the fundamental distinction between quantum mixture and classical mizture —a known distinction
in the specialized literature which Bernard d’Espagnat termed proper and improper (see [13, chap.
6]). However, we will show that even the distinction between pure state and improper mixed state
becomes irrelevant when seriously considering the Born rule as providing the invariant condition
which allows us to describe an objective (non-classical) state of affairs.

Historically, the definition of pure state was not introduced by mere chance. This notion is a
fundamental cornerstone of a specific viewpoint regarding the understanding of physical theories in
general, and of QM in particular. So before considering the intrinsic technical difficulties of the
definition of pure state, in order to understand in depth the already rotten roots of “purity” we
require some historical context to which we will now turn our attention.

2 The 20th Century Positivist Re-Foundation of Physics

In the 20th Century, physics as a discipline was subject of a deep re-foundation, mainly due to the
coming into power of positivism and its empiricist anti-metaphysical agenda. Physics had been, since
the ancient Greeks, always understood as a discipline which attempted to describe or express physis
—a kernel Greek concept later on translated as ‘reality’ [4]. The attempt of physicists was to capture
aspects of reality through theories; i.e. the aim was to theoretically represent physical reality. Of
course, the nature and meaning of this representation was not unproblematic. In the 17th Century,
Immanuel Kant, a physicist himself, inaugurated a critical account of representation through which
the naive idea of ‘unveiling’ reality as it is was severely questioned. As part of the revolt against
those who naively believed in the possibility of discovering the thing in itself, Machian positivism
deconstructed the very foundation of classical mechanics. At the end of the 19th Century, Ernst Mach
argued a critical analysis of classical mechanics as related to atomist metaphysics and absolute space
and time. His investigations led him to the conclusion that science is nothing but the systematic
and synoptical recording of data of experience. In his Analysis of Sensations, Mach concluded that
primary sensations constitute the ultimate building blocks of science, inferring at the same time
that scientific concepts are only admissible if they can be defined in terms of sensations. From this
empiricist standpoint he argued strongly against the existence of atoms. Metaphysical speculation
—understood now as a discourse attempting to go beyond the observed phenomena— should be
erased from scientific inquiry and research. The crisis produced by Mach turned physics away from
(classical) metaphysical presuppositions and closer back to “common sense” human experience. The
result was the coming into being of a completely new idea of physical understanding. Theories would
not be regarded anymore as describing or expressing —in some way— reality. This would be too
metaphysical, too pretentious. Instead, theories had to be understood in a seemingly more modest
manner; i.e., as a simple ‘economy of (human) experience’.

The critical Machian attack against classical Newtonian metaphysics, played also an essential role
in the development of both Relativity and the theory of quanta. But even though QM was developed
taking into account 19th Century positivists anti-metaphysical ideas,! it remained anyhow strongly
linked to atomism. This scrambling produced very soon a paradoxical entanglement between two
mutually incompatible positions, namely, atomist substantivalism that maintained —in metaphysical

!Heisenberg’s matrix mechanics is an excellent example.



terms— the existence of unobservable atoms, and Machian empirical-positivism which grounding
itself in observed phenomena affirmed the need to eradicate all a priori metaphysical notions from
physics —including of course that of ‘atom’. However, regardless of the obvious inconsistencies,
very soon, the critical analysis of the Newtonian metaphysical picture was forgotten and atomist
metaphysics became regarded —even by positivists— as part of our “common sense” understanding
of the world.

Joining forces with positivism, after the IIWW, instrumentalism helped to distance and replace
the original foundation of physics —grounded on the old metaphysical notion of physis— by a more
human foundation relative to actual observations. The shout: “shut up and calculate!” meant a lot
more: “shut up, calculate, and stop talking about metaphysics and a reality we cannot observe!”
Today, the entanglement between, on the one hand, an empiricist (anti-metaphysical) instrumentalist
account of physics as a discipline making exclusive reference to “common sense” observations, and on
the other, a deeply rooted classical language making reference to (unobservable) microscopic particles
has crated what might be called a curious “sophistic substantialism” (see for a detailed discussion
[9]). This strange paradoxical conjunction finds its Archimedean point in the notion of actuality
which plays a double role within the debates about the philosophical foundation of the theory of
quanta. Indeed, actuality has two different —not necessarily compatible— meanings and uses which
have been confused and scrambled within the orthodox literature. Firstly, there is an empiricist
understanding of actuality as the hic et nunc experience of an individual agent. According to Bas
van Fraassen, one the most prominent contemporary empiricists:

“the only believe involved in accepting a scientific theory is belief that it is empirically adequate:
all that is both actual and observable finds a place in some model of the theory. So far as empirical
adequacy is concerned, the theory would be just as good if there existed nothing at all that was
either unobservable or not actual. Acceptance of the theory does not commit us to belief in the
reality of either sort of thing.” [38, p. 197]

This first meaning of actuality can be resumed in the following manner:

Definition 2.1 (Empiricist Actuality) Actuality as making reference to hic et nunc observations
of subjects (or agents).

Secondly, actuality is also —implicitly— understood in metaphysical terms as characterizing a mode
of existence independent of observations. In the XVII Century, within the Newtonian mechanical
description of the world, any indetermination —related in the Aristotelian scheme to the potential
realm of being— was erased from the physical representation of reality. In fact, within classical
mechanics, every physical system could be described exclusively by means of its actual properties.
As remarked by Dennis Dieks:

“In classical physics the most fundamental description of a physical system (a point in phase
space) reflects only the actual, and nothing that is merely possible. It is true that sometimes
states involving probabilities occur in classical physics: think of the probability distributions in
statistical mechanics. But the occurrence of possibilities in such cases merely reflects our ignorance
about what is actual. The statistical states do not correspond to features of the actual system
(unlike the case of the quantum mechanical superpositions), but quantify our lack of knowledge
of those actual features.” [16, p. 124]

This second understanding of actuality which can be defined without any reference whatsoever to
observability is of course purely formal and metaphysical. As discussed in [11], an Actual State of
Affairs (ASA) can be defined as a closed system considered in terms of a set of actual (definite valued)
properties which can be thought as a map from the set of properties to the {0,1}. Specifically, an



ASA is a function ¥ : G — {0,1} from the set of properties to {0, 1} satisfying certain compatibility
conditions. We say that the property P € G is true if ¥(P) = 1 and P € G is false if ¥(P) =
0. The evolution of an ASA is formalized by the fact that the morphism f satisfies ®f = V.
Diagrammatically,

{0,1}

Then, given that ®(f(P)) = ¥(P), the truth of P € G;, is equivalent to the truth of f(P) € Gi,.
This formalization comprises the idea that the properties of a system remain existent through the
evolution of the system. The model allows then to claim that the truth or falsity of a property
is independent of particular observations. Or in other words, binary-valuations are a formal way
to capture the classical actualist (metaphysical) representation of physics according to which the
properties of objects preexist to their measurement.

Definition 2.2 (Metaphysical Actuality) Actuality as making reference to a mode of existence
defined in terms of definite binary valuedness of properties which evolve completely independently of
subjects and their measurements.

Maybe the best exposure of this scrambling present within QM is the definition of element of
physical reality presented in the famous 1935 paper by Einstein, Podolsky and Rosen [24].

Element of Physical Reality: If, without in any way disturbing a system, we can predict with
certainty (i.e., with probability equal to unity) the value of a physical quantity, then there exists an
element of reality corresponding to that quantity.

As remarked by Diederik Aerts and Massimiliano Sassoli de Bianchi [2, p. 20]: “An element of reality
is a state of prediction: a property of an entity that we know is actual, in the sense that, should we
decide to observe it (i.e., to test its actuality), the outcome of the observation would be certainly
successful.” It is in this way that the relation between observation and reality is pasted together.
The notion of pure state in QM has an analogous role to the one played by actuality within the
present widespread empiricist understanding and analysis of physical theories. Just like the notion of
actuality has a double reference, the notion of pure state scrambles contextual measurements with a
non-contextual mathematical definition. As we shall see in the next section, the tension threatening
inconsistency within the definition itself of ‘pure state’ is found not only at the philosophical level of
analysis, it is also —maybe more importantly— already present within its formal definition itself.

3 The (Non-)Contextual Definition(s) of ‘Pure State’

An exposure of the tension found within the just mentioned incompatible reference to the notion of
‘actuality’ is also present in QM within the definition(s) of pure state. As we mentioned above, there
is an operational definition of pure state grounded on a specific context of inquiry, but there is also
a non-contextual definition of pure state provided in purely abstract mathematical terms. Let us
analyze these two different definitions in some detail.

The operational contextual definition of pure state rests —as already discussed— on a specific
type of measurement called mazximal test. Such a test is maximal in the case we obtain with certainty
(probability = 1) the observable in question: if we measure the state |¢) (in its correspondent basis)
we are certain that we will obtain the observable related to this state. This definition rests on the
explicit reference to the particular basis (or context) in which the vector in Dirac’s notation can



be written as a single term, namely, as [1)). We say the definition is ‘contextual’ because it makes
explicit reference to only one context between the many possible ones. Exactly the same actualist
intuition appears in the case of density operators where the state p is a pure state, if there exists a
basis in which the matrix can be diagonalized as:

10
0 0
Ppure = )
00 ... 0
This contextual definition has the purpose to secure the existence of an observable which will be
certain, and consequently actual, if measured.

Definition 3.1 (Operational Contextual Definition of Pure State) Given a quantum system
in the state |1)), there exists an experimental situation (or context) in which the test of it will yield
with certainty (probability = 1) its related outcome.

Instead, mathematical physicists tend to use a seemingly different non-contextual definition of
pure state. This definition has no physical counterpart and makes reference to a purely abstract
mathematical feature of vectors, namely, that when considered in terms of density operators their
norm is 1, that is, p is a pure state if Tr(p?) = 1, or equivalently? when p = p2.

Definition 3.2 (Mathematical Non-Contextual Definition of Pure State) A vector in Hilbert
space W3 Or in terms of density operators, an operator p which is a projector, i.e. such that the
Tr(p?) =1 or p = p>.

In this case the notion of pure state is obviously non-contextual and makes reference simultaneously
to the abstract vector U, to the state [¢), but also to the state ) a;|p); and to any other rotation of
the mentioned “pure state” (see for discussion [5]).

To sum up, the notion of pure state has a double definition, on the one hand, in terms of a
contextual measurement, and on the other, in terms of a purely non-contextual abstract feature of
vectors. We find here a shift with no relation of continuity between the contextual “common sense”
operational account and its non-contextual abstract mathematical counterpart. While the operational
definition makes reference to a specific physical situation, the mathematical one goes clearly beyond
this constraint and considers pure states as invariants (basis independent). Threatening inconsistency,
pure states are used and defined in a seemingly paradoxical manner, both contextual and non-
contextual.

4 Mathematical Invariance and Physical Objectivity

The relation between a mathematical formalism, a conceptual scheme and experience is not a “self
evident” given within theories. Indeed, this interrelation is one of the most complex and subtle
aspects present within the development of physical theories. Albert Einstein addressed this relation
explicitly when developing his special theory of relativity, arguing that every physical concept must be
able to provide an explicit operational connection to both physical reality and experience; something
which —he also stressed— pure mathematics lacks completely.

2A density matrix can be diagonalized, thus giving a set of eigenvalues 0 < A\ < ... < A\, < 1 with S =11If
Tr(p?) = 1, then Ay = ... = A\p—1 = 0 and A\, = 1. Hence, rk(p) = 1 and then p = |v)(v| and p = p*>. Conversely, if
p= p2 it has eigenvalues 0 or 1, but from >, A; = 1 it follows Ay = ... = Ap_1 =0 and A, = 1. Hence, Tr(p2) =1.

3Like in [12] we distinguish here between the purely abstract vector ¥ and its specific representation in a basis |¢).



“We cannot ask whether it is true that only one straight line goes through two points. We can only
say that Euclidean geometry deals with things called ‘straight lines,’” to each of which is ascribed
the property of being uniquely determined by two points situated on it. The concept ‘true’ does
not tally with the assertions of pure geometry, because by the word ‘true’ we are eventually in
the habit of designating always the correspondence with a ‘real’ object; geometry, however, is not
concerned with the relation of the ideas involved in it to objects of experience, but only with the
logical connection of these ideas among themselves.” [23, p. 2]

Einstein remarked the fundamental distinction between purely abstract mathematical notions and
physical concepts. When discussing the concept of simultaneity he explained the following;:

“The concept does not exist for the physicist until he has the possibility of discovering whether
or not it is fulfilled in an actual case. We thus require a definition of simultaneity such that this
definition supplies us with the method by means of which, in the present case, he can decide
by experiment whether or not both the lightning strokes occurred simultaneously. As long as
this requirement is not satisfied, I allow myself to be deceived as a physicist (and of course the
same applies if I am not a physicist), when I imagine that I am able to attach a meaning to
the statement of simultaneity. (I would ask the reader not to proceed farther until he is fully
convinced on this point.)” [23, p. 26]

Thus, there must always exist within a physical theory something like an “operational methodology”
which allows to connect its physical concepts and mathematical formalism with physical experience.

As remarked by Max Born [3]: “the idea of invariant is the clue to a rational concept of reality,
not only in physics but in every aspect of the world.” In physics, it is the invariance present in
the mathematical formalism of the theory which allows us to determine what is to be considered
the same irrespectively of the perspective from which it is being represented. Invariants capture the
objective non-contextual content of a theory. Consequently, only invariant notions can be considered
independently and beyond a particular experimental situation (or context). In physics, invariants
are quantities having the same value for any reference frame. The transformations that allow us
to consider the physical magnitudes from different frames of reference have the property of forming
a group. In the case of classical mechanics we have the Galilei transformations which keep space
and time apart, while in relativity theory we have the Lorentz transformations which introduce
an intimate connection between space and time coordinates. Of course, restricting ourselves to
physical magnitudes that remain always the same, independently of the reference frame, does not
provide a dynamical picture of the world, instead such description only provides a static table of
data. Obviously such description is completely uninteresting for physics, which always attempts to
describe, not only how the world is but —far more importantly— how the world changes. Thus, that
which matters the most for physical description is the invariant variations of physical magnitudes,
that is, the dynamical magnitudes which vary but can be considered still the same (e.g., position,
velocity, momentum, energy, etc.). The difference within the identity. More specifically, in physics
it is not only important to consider magnitudes that vary with respect to a definite reference frame
(S), but also the consistent translation that allows us to consider that same variation with respect
to a different frame of reference (S’). This relation (of the values between S and S’) is also provided
via the transformation laws. Such transformations include not only the dynamics of the observables
but also the dynamics between the different observers (see also [10]).

Even though the values of physical magnitudes might also vary from one reference frame to the
other —due to the dynamics between reference frames—, in both classical physics and relativity

“In [7] we provided the following related definition of Meaningful Operational Statement: FEvery operational
statement within a theory capable of predicting the outcomes of possible measurements must be considered as meaningful
with respect to the representation of physical reality provided by that theory.



theory there is a consistent translation between the values of magnitudes of different frames secured
by the transformation laws. The position of a rabbit running through the fields and observed by a
distant passenger of a high speed train can be translated to the position of that same rabbit taken from
the perspective of another passenger waiting on the platform of the station. The fact that the values
of observables (position, momentum, etc.) can be consistently translated from one reference frame
to the other allows us to assume that such physical observables also bear an objective real existence
completely independent of the specific choice of the reference frame pertaining to each observer. It
is this consistency within translation which allows the physicist to claim that: the rabbit has a set of
dynamical properties (position, a momentum, etc.) independently of his observers in the train and on
the platform. The observables of the physical system are independent of the observers; i.e., they are
non-contextual. We can thus claim that such properties are dynamical variations that pertain to the
physical system itself.” The same reasoning can be applied to coordinate transformations in the phase
space I'. If we consider a set of observables in a coordinate system, S, and perform a transformation
of coordinates (e.g., a rotation) to a new system, S’, then the values of the observables will be
also consistently translated from the system S to the system S’. Such consistency, which is again
secured by the transformation, is the objectivity condition which allows us to consider the observables
as preexistent to the choice of the coordinate system (i.e., the mathematical representation from
which we choose to describe our system). It is in this way, that mathematical invariance allows
us to detach the empirical subject —the particular observer— from the objective representation of
physical reality. Now, returning to our previous analysis, a pure state is strictly related to a single
basis. Consequently, its operational definition only makes sense for an observer traveling in the train,
but not for one standing in the platform!

The problem we are discussing here is intrinsically related to the orthodox manner in which the
formalism of the theory has been constrained to binary values. As discussed in [10], a Corollary
of the Kochen-Specker theorem [32] is that in quantum theory there is no invariance of observables
when considering the binary valuations of properties pertaining to different contexts; i.e., there does
not exist a Global Binary Valuation. The orthodox conclusion is that the restrictions imposed by
the formalism must be regarded as contextual; and this means that “the properties of a system
are different whether you look at them or not.” QM does not describe an objective (preexistent)
state of affairs, measurements do not discover or unveil reality. Instead of staying close to the
mathematical formalism, orthodoxy has preferred to retain the restrictions imposed by the atomist
metaphysical picture of binary properties constituting systems. And it is the introduction of these
(metaphysical) constraints within the mathematical formalism of the theory which leads to these
very weird conclusions —at least for a realist. However, as we have argued in detail in [6, 11], if
we give up the binary restriction applied to the representation of the mathematical formalism and
advance towards an intensive definition of physical quantities, it is then possible to restore a Global
(Intensive) Valuation for all projection operators without inconsistencies. The key which opens this
possibility is the invariant character of the Born rule itself. If we take seriously this rule, which can
be derived from the mathematical formalism itself, we must conclude that the elements of physical
reality described by QM are not of a binary nature; instead, they must be regarded in intensive
terms. Thus, if we are willing to pay the price of giving up the metaphysical picture of binary
properties, objectivity can be easily restored and the subjects (or agents) performing experiments
can be once again regarded as completely detached from the theoretical representation of physical

5In more general terms, as discussed in [11], it is exactly this formal aspect which allows us to talk in terms of an
Actual State of Affairs (ASA) that evolves in time; i.e., a dynamical description in terms of the variation of (objective)
definite valued observables (or ‘dynamical properties’) independent of the (subjective choice of the) perspective (or
reference frame) from which they are being observed. Even in relativity theory, due to the Lorentz transformations,
one can still consider ‘events’ as the building blocks of physical reality.



reality provided by QM.

5 Pure States and Mixtures from a Categorical Viewpoint

Going back to QM, we can now begin to understand the serious difficulties present within the
definition(s) of pure state. It is only the contextual definition of pure state which provides the
possibility to find out in a concrete case if the concept is true or false —or in other words, it
is only one basis between the infinitely many existent basis which contains a physical operational
content. However, the mathematical non-contextual definition of pure state, which is not equivalent,
lacks completely such operational reference. This is clearly problematic, for there is no obvious link
between the contextual and the non-contextual definitions of pure state. Things become even more
complicated when we shift our attention to mized states in which case there is no physical counterpart
related to QM —beyond the mere reference to measurement outcomes.® Given a physical situation,
it seems difficult to even tell the difference between a classical (proper) mixture and a quantum
(improper) mixture without invoking —once again— the reference to a pure state (see [13, Chap.
6]).

In this section we would like to turn our attention to two categorical approaches which have
addressed in radically different ways the meaning of pure and mixed states. On the one hand,
the topos approach, originally proposed by Chirs Isham, Jeremy Butterfield and Andreas Doring
[20, 22, 21, 27, 28, 29, 30, 31|, and on the other, the more recent logos approach presented by
the authors of this paper [11, 12]. But before entering this discussion, let us provide some basic
mathematical notions.

First of all, a category consists of a collection of objects (often denoted as X, Y, A, B), a collection
of morphisms (or arrows, denoted f, g,p,q) and four operations,

e To each arrow f, there exists an object dom(f), called its domain.
e To each arrow f, there exists an object codom(f), called its codomain.
e To each object X, there exists an arrow 1y, called the identity map of X.

e To each pair of arrows f, ¢ such that dom(g) = codom(g) there exists a composition map, fg
such that dom(fg) = dom(g) and codom(fg) = codom(f).

An arrow f is often denoted as f : X — Y to empathizes the fact that dom(f) = X and codom(f) =
Y. We say that an arrow f : X — Y is invertible if there exists an arrow g : Y — X such that
fg =1y and gf = 1x. The collection of arrows between X and Y is denoted hom(X,Y).

Example 5.1 The first example of a category is the category of sets Sets. Another example is the
category of graphs. The category of graphs, denoted Gph, extends naturally the category of sets. A
(simple) graph is a set with a reflexive and symmetric relation. More formally, G is a graph if

o Reflexivity: P ~ P for all P € G.
o Symmetry: if P ~ Q, then Q ~ P for all P,Q € G.

Elements of the graph are called nodes and an edge between two nodes is present if these two nodes
are related. Arrows between graphs send nodes to nodes and edges to edges.

SWhile classical mixtures make reference to the ignorance of an underlying preexistent actual state of affairs, quantum
mixtures —due to the non-existence of a joint probability distribution [37]— are simply incompatible with such a
(classical) ignorance interpretation; and even worse —just like quantum superpositions [7]—, quantum mixtures lack a
reference beyond measurement outcomes and mathematical structures.



A remarkable fact is that the collection of categories has itself a structure of a category. The arrows
are called functors. A functor F' : C — D assigns objects to objects, arrows to arrows and is
compatible with the four operations (domain, codomain, identity and composition).

Let us present three standard constructions in category theory, the comma category, the graph of
a functor and the category over an object. The second construction is a particular case of the first
and the third of the second. Let F': A — C and G : B — C be two functors with the same codomain.
The comma category F|G is a category whose objects are arrows in C of the form

f:F(A) — G(B),

where A € A and B € B. An arrow between f and g is a commutative square. The graph of a functor
F : A — C is defined as the comma category F|1, where 1 = 1¢ : C — C is the identity functor. In
the special case where the functor F is equal to hom(—, C) for some object C' € C, the graph of this
functor is called the category over C and is denoted C|c. This is our main structure. Objects in C|¢
are given by arrows to C, p: X = C, q¢: Y — C, etc. Arrows f : p — ¢ are commutative triangles,

L.y
N A

C
Example 5.2 Let Sets|a be the category of sets over 2, where 2 = {0,1} and Sets is the category
of sets. Objects in Sets|a are functions from a set to {0,1} and morphisms are commuting triangles,

g1 ! G2
{0,1}

In the previous triangle, ¥ and ® are objects of Sets|a and f is a function satisfying ®f = V.

As we mention before, this category is relevant in classical logic. We can assign a true/false
value to every element of G1 and/or Ga in a consistent manner. We say that P € G1 (assume P is a
proposition in the space Gy ) is true if V(P) = 1, else we say that P is false. Even more so, assume
that we have a map f : G — Go such that ®f = U, then the truth or falsity of P is unchanged via
f, that is f(P) is true if and only if P is true,

X

f(P) is true <= 1= ®(f(P)) = V(P) <= P is true

In the logos approach we generalize the category Sets|z extending Sets to Gph and the set 2 to the
interval [0, 1].

Now that we have some basic facts and constructions from category theory, let us review the topos
approach and how it can handle mixed states. For an introduction to the topos approach, see [11] or
[25]. The topos approach makes use of the definition of context category and of spectral presheaf. Let
H be a Hilbert space and consider V(H) the set of commutative subalgebras V' C B(H) of bounded
operators (with identity). Using the natural order in V(#), we can consider it as a category. We call
V(H) the context category. Toeach V € V(H) (V C B(H) is a commutative subalgebra with identity),
we assign its Gelfand spectrum (a compact topological space). This assignment, denoted X, is called

the spectral presheaf. The topos approach is particulary interested in some particular subobjects
of ¥. A subobject S is called clopen if S(V) is a clopen” subset of X(V) for all V € V(H). We

"A clopen subset in a topological space is a set both open and closed.
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denote the set of clopen-subobjects as Sub.(X). The authors construct a map 9 : P(H) — Suby(X)
called daseinisation of projection operators which sends each projector P; to a clopen subobject 6(P),
where P(H) denotes the set of projectors in H. The basic idea behind this construction is to recover
classical physics. For each V' € V(H), the space (V') has to be interpreted as a state space and
for each projector P, the subset 6(P)(V') has to be interpreted as a proposition in the state space
X (V). In summary, according to the slogan quantum physics is equivalent to classical physics in the
appropriate topos, [22], the topos approach defines for each V' € V(H), a state space and a Boolean
logic (all subject to compatibilities conditions).

In [19, 22] Isham and Doéring make an attempt to incorporate to the topos approach the notions
of probability and density matrices. In order to do so, they extend their previous constructions [22,
p. 6]. As they [22, p. 3] argue: “Probabilities are thereby built into the mathematical structures in
an intrinsic manner. They are tied up with the internal logic of the topos and do not show up as
external entities to be introduced when speaking about experiments” The authors define the presheaf
[0,1]% given by [0, 1]-valued, nowhere-increasing functions on V(H). In other words, if p € [0,1]Z,
then p(V) € [0,1] for all V € V(H) and if V' C V we have p(V') > p(V). Now, given a density
matrix p, the authors constructed a map p? : Suby(X) — [0,1]% such that, when restricted to the
image of § and taking minimum over V(#), they recover Born’s rule,

: 14 P
yin # (6(P))(V) :=Tr(pP)
The general definition of u” to the whole set Suby(X) is rather technical and non-trivial. In fact,
several alternative constructions are needed in order to prove the previous formula. The basic idea
behind their construction is that a density matrix p defines a probability measure on each state space
(V).

At this point it becomes important to make some remarks about the topos program. Even though
the authors of the present paper believe the topos approach is a very interesting and original proposal,
it has several mathematical and philosophical drawbacks. From a mathematical point of view, it is
evident from the new mathematical constructions, that it becomes necessary to adapt all the previous
formalism in order to be able to incorporate mixed states. The result of this process is the creation
of a very complex and elaborated theory which is difficult to follow even for an expert in the field.
Furthermore, it is not even clear if the results in the previous formulation are still valid. From a
philosophical point of view there seems to exist a tension between, on the one hand, a supposedly
realist approach to physics which attempts to talk about systems and well defined properties,® and
on the other, a neo-Bohrian scheme? which makes explicit use of several anti-realist ideas such as
the idea that ‘truth’ can be ‘partial’ or understood in ‘degrees’, that ‘reality is contextual’ and must
be understood in purely inter-subjective terms. As Bernard D’Espagnat has made clear, “Bohr was
not a realist” .10

8As remarked by Déring and Isham in [18]: “When dealing with a closed system, what is needed is a realist
interpretation of the theory, not one that is instrumentalist. The exact meaning of ‘realist’ is infinitely debatable, but,
when used by physicists, it typically means the following: (1) The idea of “a property of the system” (i.e. “the value
of a physical quantity”) is meaningful, and representable in the theory. (2) Propositions about the system are handled
using Boolean logic. This requirement is compelling in so far as we humans think in a Boolean way. (3) There is a
space of “microstates” such that specifying a microstate leads to unequivocal truth values for all propositions about the
system. The existence of such a state space is a natural way of ensuring that the first two requirements are satisfied.
The standard interpretation of classical physics satisfies these requirements, and provides the paradigmatic example of
a realist philosophy in science. On the other hand, the existence of such an interpretation in quantum theory is foiled
by the famous Kochen-Specker theorem.”

9The topos approach has been developed explicitly as a neo-Bohrian attempt to understand QM. A reference to the
Danish physicist which has become completely explicit not only in the works of Chris Heunen, Klaas Landsman and
Bas Spitters, but also in the works of Vasilios Karakostas and Elias Zafiris.

101 [14, p. 98] D’Espagnat quoted Bohr arguing that: “The description of atomic phenomena has [...] a perfectly
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In the logos approach, taking as a standpoint the orthodox mathematical formalism of QM, we
attempt to restore an objective account in which subjects are —as Einstein wanted— completely
detached from the theoretically represented state of affairs. We do so by willingly paying the price
of abandoning the classical metaphysical account of reality in terms of ‘systems’ and ‘properties’
—which the topos approach wants to retain— and introducing a new non-classical representation
in which the physical notions of power and potentia play an essential role. Taking as a standpoint
the invariance of the Born rule, our main interest becomes the category Gph|jo 1) of graphs over the
interval [0, 1]. Let us begin by reviewing some properties of the category of graphs.

First, we give an example of a graph coming from the quantum formalism,

Example 5.3 Let H be Hilbert space and let ¥ be a vector, | V| = 1. Take G as the set of observables
with the commutation relation given by QM, the quantum commutation relation. This relation is
reflexive, symmetric but not transitive, hence G is a non-complete!* graph.

Definition 5.4 Let G be a graph. A context is a complete subgraph (or aggregate) inside G. A
maximal context is a context not contained properly in another context. If we do not indicate the
opposite, when we refer to contexts we will be implying maximal contexts.

For example, let P;, P, be two nodes of a graph G. Then, {P;, P»} is a context if P; is related to P,
P; ~ P,. Saying differently, if there exists an edge between P; and P». In general, a collection of
nodes {P;}ic;r € G determine a context if P; ~ Pj for all i,j € I. Equivalently, if the subgraph with
nodes {P;};cs is complete.

Theorem 5.5 Let H be a Hilbert space and let G be the graph of immanent powers with the com-
mutation relation given by QM. It then follows that:

1. The graph G contains all the contexts (or quantum situations).
2. Each context is capable of generating the whole graph G.
Proof:  See [12]. O

In the logos approach we work with the category gph|[071]. An object in gph][m] consists of a
map ¥ : G — [0, 1], where G is a graph. Intuitively, ¥ assigns a potentia to each node of the graph
G. Specifically, to each node P € G, we assign a number W(P), but this time, ¥(P) is a number
between 0 and 1. Then, in order to provide a map to the graph of immanent powers, we use the Born
rule. We remark that in the logos scheme the Born rule is not an axiom added to the theory which
would require an independent derivation —as argued by Deutsch, Wallace and Dieks [15, 39]— but a
consequence of the orthodox mathematical formalism itself. Gleason’s theorem [26] is just an answer
to the mathematical problem of defining all measures on the closed subspaces of a Hilbert space.
Gleason’s theorem derives the Born as the natural measure for QM, and at the same time precludes
the possibility of two valued measures (see [37] for a detailed analysis.). Thus, to each power P € G,
we assign through the Born rule the number p = ¥(P), where p is a number between 0 and 1 called
potentia. As discussed in detail in [11], we call this map ¥ : G — [0, 1] a Potential State of Affairs
(PSA for short). Summarizing, we have the following:

objective character, in the sense that no explicit reference is made to any individual observer and that therefore... no
ambiguity is involved in the communication of observation.” He then explains this quotation in the following manner:
“That Bohr identified objectivity with intersubjectivity is a fact that the quotation above makes crystal clear. In view
of this, one cannot fail to be surprised by the large number of his commentators, including competent ones, who merely
half-agree on this, and only with ambiguous words. It seem they could not resign themselves to the ominous fact that
Bohr was not a realist.”

LA graph is complete if there is an edge between two arbitrary nodes.
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Definition 5.6 Let ‘H be a Hilbert space and let p be a density matriz. Take G as the graph of
immanent powers with the quantum commutation relation. To each immanent power P € G apply
the Born rule to get the number W(P) € [0, 1], which is called the potentia (or intensity) of the power
P. Then, ¥ : G — [0,1] defines an object in Gph|j 1. We call this map a Potential State of Affairs
(or a PSA for short).

Intuitively, we can picture a PSA as a table,

P = p

Py = py
U:G(H)—[0,1], T: Py — ps

Thus, an abstract vector in Hilbert space (or a density matrix) provides a table of intensive powers
describing an objective PSA. The Born rule —contrary to the orthodox interpretation and the topos
interpretation [22]— acquires an objective reference, namely, the intensive measure (i.e., the potentia)
of each power. In this case, the epistemic account of such intensive quantification must be produced
through a statistical analysis. Obviously, a single measurement is not enough in order to find out
the specific value of the potentia of a power; we require many measurements of the same power in
order to learn about its potentia.

In this way, the logos approach departs from the well known positivist idea according to which
physical theories predict measurements that can be restricted to yes-no questions. As Peres explains
(34, p. 202]: “There are ‘elementary tests’ (yes-no experiments) labelled A, B, C, . . . Their outcomes
are labelled a, b, ¢, ... =1 (yes) or 0 (no). In quantum theory, these elementary tests are represented
by projection operators.” It is this idea —considered by many as “not controversial”’— which implies
the (metaphysical) imposition of a binary reference to physical existence. After this definition,
there is an implicit —very controversial— shift from the empirical finding of actual measurements
(observables) to the metaphysical reference of projection operators now understood as preexistent
properties (See section 2 and also [8]). As Peres continues to explain:

“The simplest observables are those for which all the coefficients a, are either 0 or 1. These
observables correspond to tests which ask yes-no questions (yes = 1, no = 0). They are called
projection operators, or simply projectors , for the following reason: For any normalized vector v,
one can define a matrix P, = vo', with the properties P? = P, and P,u = volu = v{v,u) (3.52)
The last expression is a vector parallel to v, for any u, unless (v, u) = 0. In geometric terms, P,u
is the projection of u along the direction of v.” [34, p. 66]

It is by imposing this binary restriction to the values of projection operators that, as explicitly shown
by the Kochen-Specker theorem [32], one reaches a contradiction. Like many others today, Peres [34,
p. 14] concludes that therefore: “Quantum physics [...] is incompatible with the proposition that
measurements discover some unknown but preexisting reality.” This conclusion goes back to Bohr’s
analysis of QM and his insistence that the most important (epistemological) lesson to be learnt from
QM is that, we subjects, are not only spectators but also actors in the great drama of (quantum)
existence. However, as we have demonstrated in [11] through the explicit development of an intensive
non-contextuality theorem, this is simply not true. When considering the Born rule as computing
intensive values, objectivity can be restored and QM becomes compatible with the proposition that
(statistical) measurements discover an unknown but preexistent (potential) reality. Of course, the
price we have willingly paid is to give up the classical (metaphysical) representation of reality in
terms of actual ‘systems’ and ‘properties’.

To sum up, some important remarks go in order:
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I. Our approach makes explicit the existence of two distinct levels of mathematical representation
regarding vectors. On the one hand, we have the PSA, i.e., as an abstract vector in Hilbert
space ¥; and on the other hand, we have the particular basis-representation of the PSA in
a specific context; i.e., the vector written in a basis |¢)) which we call a quantum situation.
While the first level is obviously non-contextual, the second level is explicitly contextual (see
for a detailed analysis [12]). In the logos approach we have not only different names for these
different concepts but also a notation which makes explicit this fundamental distinction right
from the start.

II. The interpretation of the Born rule in intensive terms allows to bypass the need of a binary
valuation. But more importantly, it provides an invariant quantification of projection operators
and a global intensive valuation which escapes the constraints of the Kochen-Specker theorem
restoring an objective reference to the formalism [8, 11].

III. The logos approach embraces the shift from a binary understanding of certainty to an intensive
one. The number that we find by applying the Born rule is not a measure of ‘lack of knowledge’
of an inaccurate representation of an Actual State of Affairs; it is on the very contrary an
objective account of the potentia of the powers constituting an objective Potential State of
Affairs. As a direct consequence, the distinction between pure state and mized state becomes
completely irrelevant. Pure states are states which, when considered from within a specific
basis, bear an intensity equal to 1.

An important feature of our logos approach is that it allows us to distinguish between the notions
of PSA, superpositions and intensive powers. Indeed, given a PSA, W, defined by a unit vector, v,

and given a basis (or context), C = {|w1), ..., |wk)}, we can write v as a Quantum Situation:
k
QSvc = Zci\wz‘>-
i=1

In fact, we can assign to ¥ a multiplicity of different superpositions (or quantum situations):

QSvc,,QSv ey, --,QSve,

one for each context {Ci,...,C,}. Even more, as remarked in Theorem 5.2, each superposition can
generate (~+) not only the other superpositions (by simply making a change of basis) but also the
whole PSA,

QSwc ~ QSwe, ...~ QSvue, ~ U,

It is also true that there is a class of equivalence between the different representations which allow
us to write the following:

QSvc, =QSvc, =...=QSuc, = V.

However, this equivalence relation does not mean that these different quantum situations are making
reference to a physical system constituted by properties (for a more detailed discussion see [12]).

A useful visual representation is provided in the logos approach through the use of graphs with
partially filled nodes representing each power and its respective potentia. Graphs allow us to picture
simultaneously the whole PSA, W, the different context dependent quantum situations, QS ¢c,, as
well as each different power with its respective potentia.
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Fig. 1: A PSA ¥ with two different quantum situations (or contexts) pointed.

In figure 1 we can clearly see that even though there is a sense in which @Sy ¢, = QSwv ¢, , there
is also an obvious sense in which QSy ¢, # QSvc,. An obvious difference between them is that the
quantum situations @Sy ¢, and QSy ¢, are not making reference to the same section of the graph W.
Furthermore, different quantum situations are related to different meaningful operational statements
(see footnote 4) providing a specific information of the state of affairs.

The following theorem guarantees that the PSA representation is equivalent to the density matrix
representation:

Theorem 5.7 The knowledge of a particular PSA, V, is equivalent to the knowledge of the density
matriz py. In particular, if VU is defined by a normalized vector vy, ||vg|| = 1, then we can recover
the vector from W.

Proof:  See [12]. O

Through the use of graphs the logos representation is capable to account for both non-contextual and
contextual levels simultaneously. While the whole graph provides an account of the non-contextual
PSA, U, the specific context makes reference to the particular experimental (quantum) situation,
QSwc, in which the nodes (powers) and their intensive values (potentia) computed through the
Born rule can be exposed through a statistical analysis. This is the most important point for the
ongoing discussion. The logos approach allows to clearly distinguish between the non-contextual and
the contextual parts of the mathematical formalism.

Now that we have the mathematical definition of a PSA, let us go back to the analysis of pure
states. For simplicity, let us work in C2. The following analysis can be carried out without difficulties
to any dimension. As we defined mathematically (Definition 3.2), a pure state is a unit vector v € C?
or in terms of density matrices, it is a 2 x 2 hermitian matrix p of the form |v)(v|,

_ \a|2 ab _ 2 2 _
p - <(Lb |b|2 9 v = (a/, b), |G/’ + ‘b’ - 1
Notice that
p* = |v)(vlv)(v] = [v)(v] = p

and
Tr(p?) = lal* + |al*b* + [al*[6]* + [b]* = |a]*(Jal* + [b*) + (|af* + [b]*)[b]* = 1.

Let us translate this representation to our formalism. First, the graph of immanent powers G in
C? can be pictured as follows,
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Fig. 2: Graph of immanent powers in dimension two.

The previous graph continues to the left and right indefinitely.
Let us choose the basis v1 = (1,0) and v9 = (0,1). This is represented as choosing a maximal
context, that is, a complete set of commuting observables C = {|v1)(v1], |v2)(v2l},

Y SN
O O—= O
Fig. 3: Graph with the context C marked.

Now, we define the PSA ¥ : G — [0, 1] by using the Born rule. In this example,
Tr(p - Jor)(vi]) = la?,  Tr(p- |vz)(va]) = [b>.

We picture the restriction of ¥ to the context C as

O—0

Fig. 4: The context C with the assigned potentia to each power.

But of course, we can choose another basis. In fact, we can choose the orthonormal basis given by
v = (a,b) and w = (—b,a). Over this context, the representation of ¥ is rather easy,

O—0

Fig. 5: Another context showing a pure state.

As we mentioned above, it is only this particular basis which contains a clear physical operational
counterpart relating ‘the state’ to the ‘certain prediction of a measurement outcome’. Indeed, since
—following the empiricist-positivist agenda— it is only the actual and observable which can find a
place in some model of the theory, certain knowledge becomes restricted to actual observable values.
From the logos approach none of these states is problematic. All states provide objective intensive
knowledge of the state of affairs described by QM [6].

Through the use of graphs we can now visualize very easily the fundamental equivocity present
within the different —both contextual and non-contextual— definition(s) of pure state (section 3).
As we discussed above, while the mathematical definition makes reference to an abstract context-
independent vector (i.e. an invariant), the operational counterpart is clearly context-dependent and
restricts itself to a particular basis (i.e., the basis in which there exists one power with potentia equal
to 1). The following graph (figure 6) shows the simultaneous reference of the notion of pure state,
first, to an abstract vector in Hilbert space, second, to a vector represented in a specific basis, and
third, to a single eigenvector whose eigenvalue is 1. Clearly, each of these mathematical elements
possesses not only a distinct mathematical definition, they also codify a completely different set of
meaningful operational statements containing the physical information.

In the logos approach, through the use of graphs we understand visually the confusion present
in the orthodox literature according to which a pure state makes reference, at the same time, firstly,
to the whole PSA; secondly, to the single filled node; and thirdly, also to any maximal context
containing this node. The scrambling of these three distinct levels of mathematical representation
is clearly problematic since we have explicitly shown in the logos approach that there is obviously a
difference between considering the whole graph (i.e., a PSA, ¥), , a particular section of the graph
(i.e., a quantum situation, @Sy ¢), and a particular node of the graph (i.e. an intensive power, P;).
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Fig. 6: The orthodox referential equivocity
present within the definition of pure state(s).

To summarize, while in the topos approach it is necessary to redefine the formalism to incorporate
mixed states, in the logos approach, any PSA is treated in a natural and simple way without having
to abandon the orthodox formalism or adding anything “by hand”. While the topos approach
makes reference to classical mixtures interpreting them in terms of ignorance, the logos approach
makes reference to quantum mixtures right from the start giving them an objective probabilistic
interpretation in terms of intensive values and dissolving in this way the orthodox distinction between
pure and mixed states. While the topos approach remains tied to a contextual and intersubjective
reference to a (binary) actual state of affairs, the logos approach restores the possibility to think
of QM as a theory capable of producing a non-contextual, objective representation of a (potential)
state of affairs. Finally, while the topos is extremely complicated, both formally and conceptually,
the logos approach presents a simple introduction to QM through the theory of graphs as well as an
intuitive conceptual understanding of what is really going on through the notion of intensive power.

6 The Democracy of States in the Logos Approach to QM

In a truly Spinozian spirit, we might say that, in the logos approach —contrary to orthodoxy—
there are no states which can be considered as more important or fundamental than others; all
states in QM are as important. Our representation in terms of graphs makes explicit the democratic
nature of a potential state of affairs in which different quantum states co-exist. An intensity of a
node (a power) equal to 0.5 and an intensity equal to 1, both provide the same complete accurate
type of certain knowledge. The so called actual properties become just a particular case of potential
or indefinite properties, just like probability equal to 1 is a particular value of probability, not
essentially different from probability equal to 0.5 or 0.77. Actual properties are just a particular
case of potential properties, those with potentia =1. Consequently, also from a purely mathematical
perspective, a (pure) state p = p? and a (impure) state p # p?, are regarded as equivalent. Both
states provide particular graphs with different tables of powers and potentia, the fact that in the first
case there exists a power which has a potentia = 1 is completely irrelevant both from a physical and
mathematical perspective.

Carlo Rovelli has recently argued in [35] that Schédinger introduced “the notion of ‘wave func-
tion’ 7, soon to be evolved into the notion of ‘quantum state’ i, endowing it with heavy ontological
weight. This conceptual step was wrong, and dramatically misleading. We are still paying the price
for the confusion it has generated.” Indeed, as we have discussed above, the deep confusion and
misunderstanding comes, partly, from the equivocity introduced by the orthodox notation which is
unable to account for the different levels of mathematical representation present within the formalism
of the theory. But this equivocity has been created by the inadequate idea according to which ‘QM
obviously talks about systems’. The problem is not that v is understood in ontological terms, the
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problem is that its understanding has been dogmatically restricted to the classical atomist represen-
tation in terms of space-time systems. In the logos approach we have provided not only a notation
which makes explicit the distinction between the different mathematical levels of representation, we
have also provided a conceptual framework in which the mathematical formlaism finds a natural con-
nection to operationally well defined physical concepts. While the non-contextual aspect of abstract
vectors is described in terms of a PSA, the contextual nature of quantum superpositions is clearly
stressed through the reference to the notion of ‘quantum situation’. In this respect, an important as-
pect of our logos approach is that all these new (non-classical) notions possess a physical operational
counterpart. And just like Einstein required, these newly introduced physical concepts contain the
operational conditions allowing to discover whether or not they are fulfilled in an actual case.

Conclusion

In this paper we have discussed the untenability of the notion of pure state in the orthodox formalism
of QM. Through the aid of graphs we have shown the equivocity present within the different definitions
confused and scrambled in the present literature. We have also shown that through the application
of an intensive analysis it is possible to restore an objective theoretical representation of QM. In this
new scheme it becomes explicit why the distinction between pure state and mized state is completely
irrelevant both from a mathematical and a physical perspective.
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