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Abstract This article discusses the set of Harsanyi payoff vectors of a coopera-
tive TU-game, also known as the Selectope. We reconsider some results on Harsanyi
payoff vectors within a more general framework. First, an intuitive approach is used,
showing that the set of Harsanyi payoff vectors is the core of an associated convex
game. Next, the set of individual rational Harsanyi payoff vectors, the Harsanyi impu-
tations in short, is considered. Existence conditions are provided, and if non-empty,
we provide a description as the core of a well-defined convex game, and show that it
is an externally stable set.
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1 Introduction

A cooperative game with transferable utilities, or simply a game, describes a situation
in which groups of players, the coalitions, can obtain certain payoffs by cooperation.
A solution is a mapping which assigns to every game a set of payoff distributions over
the players in the game. Well-known set-valued solutions are the Core and the set of all
random order values, also known as the Weber set. In this article these sets are consid-
ered in the context of the set of payoff vectors obtained by all possible distributions of
the Harsanyi dividends (Harsanyi 1959, 1963), of the coalitions among its members.
We call this set the Harsanyi set; it is considered first in Hammer et al. (1997) (as the
Selectope) and, independently, in Vasil’ev (1978, in Russian, and 1981). These articles
show that the Harsanyi set encloses the core of the game, and Vasil’ev furthermore
proved that this set has a core-type structure, a result that is shown independently in
Derks et al. (2000).

In Hammer et al. (1997) the inclusion of the core is shown with the help of a net-
work flow model, whereas Vasil’ev (1978) applies induction techniques. Here, we will
apply a transparent approach, related to the ones in Vasil’ev (1981) and Derks et al.
(2000), based on a convenient adaptation of the game into a convex game. In this way,
and with the help of the characterization of the extreme points of the core of convex
games in Shapley (1971), not only the inclusion of the core in the Harsanyi set is
proved but also its core-type structure is revealed. Relations between the Harsanyi set
and the Weber set are discussed in Derks et al. (2006).

Here, we will provide new and intuitive proofs for the results mentioned above,
and we reposition several others within a more general framework. Starting with the
preliminary Sect. 2, the game theoretic notions are further discussed in Sect. 3. We
provide a new proof for the characterization of the Harsanyi set as the core of an
adapted, convex game. In Sect. 4 we generalize several results, known for the set of
the so-called Harsanyi imputations, being the individually rational payoff vectors in
the Harsanyi set. We discuss necessary and sufficient conditions for the existence of
these imputations, and show that the Harsanyi Imputation set, like the Harsanyi set,
is the core of an adapted, convex game. In the concluding Sect. 5, we provide a class
of externally stable sets. The Harsanyi imputation set, if non-empty, is one of them,
implying its external stability.

2 Preliminaries

A cooperative game with transferable utilities, or simply a game, is a pair (N , v),
where N = {1, . . . , n} is a finite set of players, and v : 2N → IR such that v(∅) = 0,
is the characteristic function yielding for each subset S of N the payoff v(S) that can
be achieved if the players in S cooperate. Non-empty subsets of the player set are,
therefore, called coalitions. We denote the collection of all non-empty subsets of N
by � = {S ⊆ N : S �= ∅}. A payoff vector is a vector x ∈ IRn assigning payoff
xi ∈ IR to player i ∈ N . For a payoff vector x ∈ IRn and S ∈ �, we denote with
x(S) = ∑

i∈S xi the total payoff to the players in coalition S.
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In a game (N , v), or v for short, the main issue is the distribution of the worth
v(N ) of the grand coalition among the players. A payoff vector x is therefore said to
be efficient if the total payoff x(N ) equals v(N ); it is said to be individually rational
if each player i ∈ N gets at least his own worth v({i}). A payoff vector is called an
imputation if it is both efficient and individually rational; the set of imputations of the
game v is denoted by I (v):

I (v) = {x ∈ IRn : x(N ) = v(N ), xi ≥ v({i}), i ∈ N }.

One may consider the elements of the imputation set as those distributions of the grand
coalition worth that ‘meet the demands’ of the single players. An efficient payoff vector
x that satisfies x(S) ≥ v(S) for each coalition S is called stable for obvious reasons.
The set of stable payoff vectors is called the core of the game v and is denoted by
C(v):

C(v) = {x ∈ IRn : x(N ) = v(N ), x(S) ≥ v(S), S ∈ �}.

Unfortunately, the core, and also the imputation set, may be empty.
Let �(N ) (or �) denote the set of all permutations π : N → N on the player set

N . For a permutation π ∈ �, assigning rank number π(i) ∈ {1, 2, . . . , n} = N to
player i ∈ N , define the set π i to be { j ∈ N : π( j) ≤ π(i)}; it denotes the set of all
players with rank number at most equal to the rank number of i , including i . Then the
marginal contribution vector mπ (v) ∈ IRn of game v and permutation π is given by

mπ
i (v) = v(π i ) − v(π i \ {i}), i ∈ N ,

and thus assigns to player i its marginal contribution to the worth of the coalition
consisting of all his predecessors in π .

The well-known Shapley value (Shapley 1953), has been characterized as being the
average of the marginal contribution vectors over all permutations. It is an element
of the convex hull of the marginal contribution vectors of v, denoted by W (v), and
referred to as the Weber set. Contrary to the core, the Weber set is always non-empty.
It contains the core as a subset, as shown by Weber (1988); it may, however, have no
points in common with the imputation set (see Martinez de Albéniz and Rafels 1998);
of course this only occurs when the core is empty.

The core and the Weber set coincide if and only if the game v fulfills the inequalities
v(S ∪ T ) + v(S ∩ T ) ≥ v(S) + v(T ) for every pair of coalitions S, T ∈ � (Shapley
1971; Ichiishi 1981). A game is called convex when these inequalities are fulfilled.

The dividends �S(v), S ∈ �, of the game v follow recursively from the system of
equations

v(S) =
∑

T ⊆S

�T (v), S ∈ �.

The dividend is first discussed in Harsanyi (1959, 1963) as a notion that captures
the value of a coalition which is solely acquired by the cooperation of all players
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within the coalition. Here, we will consider payoff vectors obtained by distributing
the dividend of each coalition S over the players in S. To facilitate this distribution
we make use of the weight systems p = (pS

i )S∈�,i∈S , assigning to each coalition S
and member i of S a weight pS

i . A weight system p is called a sharing system if all
weights are non-negative, and the weights pS

i , i ∈ S, sum up to 1 for each coalition
S; the collection of sharing systems is thus given by

P =
{

p = (pS
i )S∈�,i∈S : p ≥ 0,

∑

j∈S

pS
j = 1, for each S ∈ �

}
.

For a game v and sharing system p ∈ P , let the payoff vector φ p(v) ∈ IRn be given
by

φ
p
i (v) =

∑

S:i∈S

pS
i �S(v), i ∈ N ,

i.e., the payoff φ
p
i (v) to player i is the sum, over all coalitions S containing i , of the

share pS
i of player i in the Harsanyi dividend �S(v) of coalition S. We therefore call

the payoff vector φ p(v) a Harsanyi payoff vector. Observe that, due to the equality
v(N ) = ∑

S∈� �S(v), for each sharing system p it holds that
∑

i∈N φ
p
i (v) = v(N ),

and thus each Harsanyi payoff vector is efficient. Examples of Harsanyi payoff vectors
are the marginal contribution vectors (Derks et al. 2006), and in particular, the Shapley
value which is the Harsanyi payoff vector with weights pS

i = (|S|)−1, i ∈ S, S ∈ �.
Let H(v) denote the set of all Harsanyi payoff vectors of the game v, i.e.,

H(v) = {φ p(v) : p ∈ P}.

This set is introduced as the so-called Selectope in Hammer et al. (1997). Indepen-
dently, Harsanyi payoff vectors and the set H(v) are discussed in Vasil’ev (1978,
1981). Here, we prefer to call the set H(v) the Harsanyi set instead of Selectope,
because we want to stress the property of distributing the Harsanyi dividends instead
of the role of the selectors as discussed in Derks et al. (2000).

3 The Harsanyi set

In this section, we will recall some results on the Harsanyi set and reposition them in
the historical context, and provide new proofs. These results concern the relationship
between the core and the Harsanyi set, and the geometrical structure of the Harsanyi
set. In particular, we provide alternative proofs for the Harsanyi set enclosing the core,
and having a core-type structure.

For a game v we consider the following game vH , defined by

vH (S) = min
x∈H(v)

x(S) S ∈ �.
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The game vH is called the Harsanyi mingame; it specifies the minimal amount the
coalitions attain in a Harsanyi payoff vector. All these vectors are efficient in the game
v. Therefore, vH (N ) = v(N ), and we may conclude that the Harsanyi set is a subset
of the core of vH :

H(v) ⊆ C(vH ). (1)

By definition, the Harsanyi payoff vectors distribute the dividends �S(v) among the
members of coalition S ∈ �, so that for a given coalition S the dividend �T (v) is
fully allocated to the members of S if T ⊆ S, and fully allocated to the players outside
S if T ∩ S = ∅; otherwise, i.e., if T ∩ S �= ∅ and T \S �= ∅, the amount �T (v), when
distributed among the players in T , may be allocated in full, part, or not to players in S.
The total distribution in a Harsanyi payoff vector to players in coalition S is therefore
minimized when the distribution of �T (v), with T such that T ∩ S �= ∅ and T \S �= ∅
holds, is only performed among the members of S in case �T (v) < 0, and among the
players outside S otherwise. This shows that

vH (S) ≥
∑

T ⊆S

�T (v) +
∑

T :T ∩S �=∅,T \S �=∅,�T (v)<0

�T (v), S ∈ �. (2)

Actually, equality holds in (2). To show this consider for a permutation π of the player
set N = {1, 2, . . . , n} the following payoff vector

xπ
i =

∑

S⊆π i ,i∈S,�S(v)>0

�S(v) +
∑

S⊆π−i ,i∈S,�S(v)<0

�S(v), i ∈ N ,

with π i being the already defined set of predecessors of i , and π−i = { j ∈ N :
π( j) ≥ π(i)} the set of successors of i in π . It is straightforward that xπ is a Harsanyi
payoff vector in the game v as each dividend �T (v) of v is distributed to one of the
players in T . In other words, the vector xπ assigns to each player i all positive divi-
dends �T (v) of coalitions T where i is the π -last member, and all negative dividends
of coalitions where player i is the π -first member. The coalition of predecessors of i
therefore attains all dividends, namely, �T (v), T ⊆ π i , and the negative dividends
�T (v) of coalitions T with T ∩ π i �= ∅ and T \π i �= ∅.

For any coalition S there is a permutation π and player i such that S consists
precisely of the predecessors of i . We thus have

vH (S) ≤ xπ (S) =
∑

T ⊆S

�T (v) +
∑

T :T ∩S �=∅,T \S �=∅,�T (v)<0

�T (v), S ∈ �,

so that equality in (2) follows.
We just showed that vH (π i ) = xπ (π i ) for any permutation π and player i ; so,

the payoff xπ
i to player i equals vH (π i ) − vH (π i\{i}), which is actually the payoff

to player i in the marginal contribution vector of vH corresponding to permutation
π . This implies that the marginal contribution vectors of vH are core elements of
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vH . The Weber set W (vH ) is contained in the core of vH , so W (vH ) = C(vH )

must hold. Therefore, we conclude that vH is a convex game. Furthermore, as convex
combinations of Harsanyi payoff vectors are again Harsanyi payoff vectors, we have
C(vH ) = W (vH ) ⊆ H(v), and with (1) equality follows.

Theorem 1 (Vasil’ev 1981; Derks et al. 2000) For each game v, the Harsanyi min-
game vH is convex, and H(v) = C(vH ).

The Harsanyi set H(v) of a game v has therefore a core-type structure, being the
core C(vH ) of the corresponding Harsanyi mingame vH . Since the game v majorizes
its Harsanyi mingame, with equal value for the grand coalition N , the core of v must
therefore be a subset of the core of vH .

Corollary 1 (Hammer et al. 1997; Vasil’ev 1981) For each game the stable payoff
vectors are Harsanyi payoff vectors.

4 Harsanyi imputations

It is desirable that a payoff vector is efficient and, if possible, also individually rational.
Martinez de Albéniz and Rafels (1998) show that the Weber set may not contain impu-
tations. This is also the case for the larger Harsanyi set, as the following example
shows.

Let N be a player set with four or more players, and S a coalition with 2 play-
ers. Consider the game (N , v) where the dividends of all coalitions are 0 except for
the coalitions S and N\S: �S(v) = 1, and �N\S(v) = −1. Then v(N ) = 0 and
v(T ) = 1 for coalitions T �= N with S ⊆ T , and v(T ) = −1 for coalitions T �= N
with N\S ⊆ T , and v(T ) = 0 otherwise. The game has only one imputation x : xi = 0
for each player i . Now, using the inequality (2) we obtain vH (S) ≥ 1, and knowing
that each Harsanyi payoff vector should distribute at least vH (S) to the players in S,
the imputation x cannot be a Harsanyi payoff vector. So, the nonempty imputation set
of v has no elements in common with its Harsanyi set.

Let HI (v) denote the intersection of the Harsanyi set and the imputation set, i.e.,

HI (v) = {x ∈ H(v) : xi ≥ v({i}), i ∈ N } = {x ∈ C(vH ) : xi ≥ v({i}), i ∈ N }.

We call its elements Harsanyi imputations.
Let w be a game on player set N , and z ∈ IRn an arbitrarily chosen vector. We

denote the portion of the core of w that lies above z by Cz(w), i.e.,

Cz(w) = {x ∈ C(w) : x ≥ z}.

Clearly, we have HI (v) = C(vH ) ∩ I (v) = Cz(w), with w = vH and zi = v({i}),
i ∈ N . We show that Cz(w) is either empty, or is equal to the core of the game wz

defined by

wz(S) = max
T ⊆S

{w(T ) + z(S\T )}, S ∈ �.
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Intuitively, the payoffs zi , i ∈ N , may be considered here as a kind of minimum
participation level of the players, and in this context the game wz is observed when
the players are offered to choose between cooperation in the game w or to be paid
according to the (not necessarily efficient) payoff vector z. In this situation the elements
of Cz(w) are the preferred outcomes.

The following theorem shows that in case these outcomes exist they are exactly the
stable payoff vectors of the game wz .

Theorem 2 Let w be a game on player set N and z ∈ IRn. If w(N ) ≥ w(T )+z(N\T )

for each coalition T , then Cz(w) = C(wz); otherwise, Cz(w) = ∅.

Proof First, consider the case that a coalition T exists, with w(N ) < w(T )+z(N\T ).
Then for each vector y ∈ IRn satisfying y ≥ z and y(T ) ≥ w(T ) it holds that
y(N ) = y(T ) + y(N\T ) ≥ w(T ) + z(N\T ) > w(N ), so that Cz(w) is empty.

Secondly, let w(N ) ≥ w(T ) + z(N\T ) for all T ⊆ N . Then it follows that

wz(N ) = max
T ⊆N

{w(T ) + z(N\T )} = w(N ).

Now, suppose that y ∈ Cz(w). Then we have, for each coalition S,

y(S) = y(T ) + y(S\T ) ≥ w(T ) + z(S\T ), for all T ⊆ S,

and thus y(S) ≥ wz(S). This shows that y ∈ C(wz). On the other hand, for each
y ∈ C(wz) we have

y(S) ≥ wz(S) ≥ max {w(S), z(S)}, S ∈ �.

Together with y(N ) = wz(N ) = w(N ) this proves that y ∈ C(w) and y ≥ z, i.e.,
y ∈ Cz(w). Hence Cz(w) = C(wz). 
�

The proof shows that the equality w(N ) = wz(N ) implies Cz(w) = C(wz). It
should be noted that w(N ) = wz(N ) does not imply that Cz(w) is non-empty. For
example, let w be a monotonic game with an empty core (for instance, w(S) = 1 for
all non-empty coalitions S), and z = 0. Then wz = w, implying w(N ) = wz(N ).
However, Cz(w) = C(wz) = C(w) = ∅.

It is interesting to examine which of the properties of w are invariant under the
transformation into wz . In particular, the convexity property is of interest in our con-
text, since we want to apply the previous theorem on the Harsanyi mingame vH , which
is a convex game. Actually, we have the following theorem.

Theorem 3 Let w be a convex game on player set N and z ∈ IRn. Then wz is also
convex.

Proof Let S, T be two arbitrary non-empty coalitions. Then there exist coalitions U ⊆
S and V ⊆ T such that wz(S) = w(U )+ z(S\U ) and wz(T ) = w(V )+ z(T \V ).
By subtracting the equality z(U ) + z(V ) = z(U ∪ V ) + z(U ∩ V ) from the equality
z(S) + z(T ) = z(S ∪ T ) + z(S ∩ T ) we obtain

z(S) − z(U ) + z(T ) − z(V ) = z(S ∪ T ) − z(U ∪ V ) + z(S ∩ T ) − z(U ∩ V ).
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Taking into account that U ⊆ S and V ⊆ T , this equality reduces to

z(S\U ) + z(T \V ) = z((S ∪ T )\(U ∪ V )) + z((S ∩ T )\(U ∩ V )).

Therefore,

wz(S) + wz(T ) = w(U ) + z(S\U ) + w(V ) + z(T \V )

≤ w(U ∪ V ) + w(U ∩ V ) + z((S ∪ T )\(U ∪ V ))

+ z((S ∩ T )\(U ∩ V ))

≤ wz(S ∪ T ) + wz(S ∩ T ),

thus implying the convexity of wz . 
�
Now, consider the convex Harsanyi mingame vH and take z ∈ IRn with zi = v({i}),

i ∈ N . Then (vH )z is convex and thus C((vH )z) is non-empty. Applying Theorem 2
with w = vH and zi = v({i}), i ∈ N , we obtain the following result.

Corollary 2 (Vasil’ev 1981) Harsanyi imputations of a game v exist if and only if
for all coalitions T we have v(N ) ≥ vH (T ) + ∑

i �∈T v({i}). If non-empty, the set of
Harsanyi imputations is equal to the core of the convex game (vH )z , with zi = v({i}),
i ∈ N.

Martinez de Albéniz and Rafels (1998) show that the Weber set of a game v has a
non-empty intersection with the set of imputations if v fulfills the very mild condition
v(N ) ≥ v(T ) + ∑

i �∈T v({i}) for all coalitions T . The corollary shows that the set
of Harsanyi imputations is non-empty if and only if the game v fulfills the weaker
collection of inequalities v(N ) ≥ vH (T ) + ∑

i �∈T v({i}), T ∈ �. Observe that in the
example at the start of this section we have 0 = v(N ) < 1 = vH (S) + ∑

i �∈S v({i}).

5 Harsanyi imputations and external stability

Rafels and Tijs (1997) show that the Weber set is externally stable. Here, a set G ⊆ I (v)

is called externally stable in a game v if for each imputation x outside G there is an
imputation y in G and a coalition S such that xi < yi for each player i in S, and
y(S) ≤ v(S) (Von Neumann and Morgenstern 1944).

It is shown in Vasil’ev (1988) that the set HI (v) of Harsanyi imputations is exter-
nally stable. Its proof involves some complex techniques. Here, we provide a more
accessible proof for this stability result.

We first prove a more general external stability result in which the notion of a large
core plays a central role. We say that a game v has a large core if for each vector
x ∈ IRn with x(S) ≥ v(S) for each coalition S, there is a vector y ∈ C(v) such that
y ≤ x . Convex games are known to have a large core (Sharkey 1982).

Theorem 4 For each game v and convex game v′ with v′ ≤ v, the intersection
C(v′) ∩ I (v) is either empty or externally stable (w.r.t. v).
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Proof Observe that we only need to consider the case C(v′)∩I (v) �= ∅ and I (v)\C(v′)
�= ∅. According to Theorem 2 we have

C(v′) ∩ I (v) = C(v′′)

where v′′ = (v′)z , with zi = v({i}), i ∈ N , i.e.,

v′′(S) = max
T ⊆S

{v′(T ) +
∑

i∈S\T

v({i})}, S ⊆ N .

Take an arbitrary element y of I (v)\C(v′). To prove the theorem, we construct an
imputation y′ of v in C(v′) ∩ I (v) that dominates y.

Since y �∈ C(v′), there is at least one coalition S with y(S) < v′(S) and thus also
y(S) < v′′(S), since v′ ≤ v′′. Choose a coalition Ŝ such that y(Ŝ) < v′′(Ŝ) and
y(T ) ≥ v′′(T ) for each subcoalition T of Ŝ. Notice that for each T ⊂ Ŝ,

v′′(Ŝ) > y(Ŝ) = y(T ) + y(Ŝ\T ) ≥ v′′(T ) +
∑

i∈Ŝ\T

v({i}) ≥ v′(T ) +
∑

i∈Ŝ\T

v({i}),

so that we actually must have v′′(Ŝ) = v′(Ŝ), implying that

v′′(Ŝ) ≤ v(Ŝ). (3)

Now, increase all coordinates yi , i ∈ Ŝ, by the same amount |Ŝ|−1(v′′(Ŝ) − y(Ŝ)),
and all other coordinates by a sufficiently large amount such that the payoff vector
thus obtained, say x , majorizes v′′, i.e., v′′(T ) ≤ x(T ) for all T ∈ �. Since v′′ is
convex because v′ is convex, v′′ has a large core. This implies the existence of a vector
y′ ∈ C(v′′) such that y′ ≤ x . Since

v′′(Ŝ) ≤ y′(Ŝ) ≤ x(Ŝ) =
∑

i∈Ŝ

(yi + |Ŝ|−1(v′′(Ŝ) − y(Ŝ))) = v′′(Ŝ),

it follows that v′′(Ŝ) = y′(Ŝ) = x(Ŝ). With y′ ≤ x we conclude that y′
i = xi for

all i ∈ Ŝ, and thus y′
i = xi > yi for all i ∈ Ŝ. Combined with (3), it follows that

y′ dominates y (w.r.t. v), proving that C(v′) ∩ I (v) is an externally stable subset of
I (v). 
�

To apply this theorem to the set of Harsanyi imputations, recall that HI (v) =
C(vH ) ∩ I (v), the Harsanyi mingame vH is convex, and vH ≤ v. We thus arrive at
the following result.

Corollary 3 (Vasil’ev 1988) The set of Harsanyi imputations of a game is either empty
or externally stable.

Together with Corollary 2 it follows that the set of Harsanyi imputations is externally
stable if and only if v(N ) ≥ vH (T ) + ∑

i �∈T v({i}) for all coalitions T .
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Observe further that, by Corollary 3, the Harsanyi imputation set should contain
all non-dominated imputations. These imputations constitute the well-known Domi-
nation core. The core is always contained in the Domination core, but not vice versa
in general; it may happen that the core is empty whereas the Domination core is
non-empty. Therefore, Corollary 3 is a refinement of Corollary 1.
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