Technical Notes

We here state some basic results used in the main body of "Abstraction and Grounding", forthcoming in Philosophy and Public Affairs. ${ }^{1}$ We will assume that each of the pluralities we discuss is indexed to an ordinal. For the purposes of constructing explanatory arguments, we will also assume that we have a first-order language \mathcal{L} with identity, names for every element of each of the pluralities of individuals under discussion, names for every natural number, and a relational predicate symbol for each of the relations-in-extenson among the pluralities that we will discuss. We write $a a$ and $b b$ for non-empty pluralities, and $\emptyset \emptyset$ for the empty plurality (if there is one). Let

$$
\begin{gathered}
T^{+}(a a)=\left\{\left\ulcorner c=c^{\prime}\right\urcorner \mid c=c^{\prime} \wedge\left(c, c^{\prime} \in a a\right)\right\} \quad T^{-}(a a)=\left\{\left\ulcorner c \neq c^{\prime}\right\urcorner \mid c \neq c^{\prime} \wedge\left(c, c^{\prime} \in a a\right\}\right. \\
\text { and } T(a a)=T^{+}(a a) \cup T^{-}(a a) .
\end{gathered}
$$

Intuitively, $T(a a)$ is the set of truths concerning identities and distinctnesses among $a a$.
In what follows, we will refer to an indexed collection using standard notation, writing $\left(x_{i}\right)_{i<\alpha}$ for $\left\{x_{i} \mid i<\alpha\right\}$. To avoid clutter, we will write $\left(x_{i}\right)$, omitting the subscripted restriction ' $i<\alpha$ ' entirely. We indicate co-indexed sets by using the same subscripts. Where there are two subscripts, the first subscript may sometimes depend on the second subscript, and these abbreviations may be embedded. Some examples:

Abbreviation Expansion

$$
\begin{array}{ll}
\left(x_{i}\right) & x_{0}, x_{1}, \ldots \\
\left(\Delta_{i} \Rightarrow \phi_{i}\right) & \Delta_{0} \Rightarrow \phi_{0} ; \Delta_{1} \Rightarrow \phi_{1}, \ldots \\
\left(x_{i j}\right) & x_{00}, x_{10}, \ldots, \quad x_{01}, x_{11}, \ldots, \quad x_{0 j}, x_{1 j}, \ldots, x_{i j}, \ldots, \quad, \ldots
\end{array}
$$

The notions of a relevant derivation of the formula ϕ from the set of formulas Δ and of \Rightarrow are defined as in Appendix A. We will be sloppy about use-mention distinctions when more care will not improve clarity.

Where $f \in a a \otimes b b$, let the domain of f be the plurality $\mathscr{D}(f)$, such that $a \in \mathscr{D}(f)$ iff $f(a, b)$, for some b; and let the range of f be the plurality $\mathscr{R}(f)$ such that $b \in \mathscr{R}(f)$ iff $f(a, b)$, for some a.

Proposition 1 Let $f \in a a \otimes b b, f \neq \emptyset$, and $\neg f(a, b)$. Let $\mathscr{D}(f) \backslash\{a\}=\left(a_{i}\right)$ and $\mathscr{R}(f) \backslash b=\left(b_{j}\right)$. Then $\left(a \neq a_{i}\right),\left(b \neq b_{j}\right) \Rightarrow \neg f(a, b)$.

Proof We may suppose (wlog) that $a \in \mathscr{D}(f), b \in \mathscr{R}(f), f\left(a, b_{1}\right)$, and $f\left(a_{1}, b\right)$, so that $\neg f(x, y)$ if grounded in the same way as $\neg\left(\left(x=a \wedge y=b_{1}\right) \vee\left(x=a_{1} \wedge y=b \vee\left(x=a_{i} \wedge y=b_{i}\right)\right.\right.$, for $i \geq 2$. Then, since $\neg f(a, b)$,

$$
\neg\left(a=a \wedge b=b_{1}\right), \neg\left(a=a_{1} \wedge b=b\right),\left(\neg\left(a=a_{i} \wedge b=b_{i}\right)\right) \Rightarrow \neg f(a, b) .
$$

The result follows by CUT, since
$b \neq b_{1} \Rightarrow \neg\left(a=a \wedge b=b_{1}\right) \quad a \neq a_{1} \Rightarrow \neg\left(a=a_{1} \wedge b=b\right) \quad\left(a \neq a_{i}, b \neq b_{1} \Rightarrow \neg\left(a=a_{i} \wedge b=b_{i}\right)\right)$.

[^0]Proposition 2 Let $f \in a a \otimes b b$, and $f(a, b)$. Then $a=a, b=b \Rightarrow f(a, b)$.
Proposition 3 Suppose $f \in a a \otimes b b$, and $f: a a \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}} b b$. Then,

1. For some $S \subseteq T(a a), S, T(b b) \Rightarrow f$ is $1-1$; and
2. For some $S \subseteq T(b b), S, T(a a) \Rightarrow f$ is functional.

Proof For each $a_{i}, a_{j} \in a a, b_{k} \in b b$, let $\phi_{i j k}=\left(f\left(a_{i}, b_{k}\right) \wedge f\left(a_{j}, b_{k}\right) \rightarrow a_{i}=a_{j}\right)$. If $a_{i} \neq a_{j}$, then, since f is 1-1, either $f\left(a_{i}\right) \neq b_{k}$ or $f\left(a_{j}\right) \neq b_{k}$. Suppose (wlog) $f\left(a_{i}\right) \neq b_{k}$. By P1, for some $S \subseteq T(a a), S,\left(b_{k} \neq b_{m}^{\prime}\right) \Rightarrow f\left(a_{i} \neq b_{k}\right) \Rightarrow \phi_{i j k}$, for $b b \backslash\{b\}=b_{1}^{\prime}, b_{2}^{\prime}, \ldots$. If $a_{i}=a_{j}$, then, by P2, $a_{i}=a_{i}, b_{k}=b_{k} \Rightarrow \phi_{i j k}$. Now, for each $b_{k} \in b b$, there are $a_{i}, a_{j} \in a a$ such that $a_{i}=a_{j}$ and $f\left(a_{i}, b\right)$, and so $a_{i}=a_{i}, b_{k}=b_{k} \Rightarrow \phi_{i j k}$. And, for each $b_{k}, b_{k}^{\prime} \in b b$ such that $b_{k} \neq b_{k}^{\prime}$, there are $a_{i}, a_{j} \in a a$ such that $a_{i} \neq a_{j}$, and thus $S,\left(b_{k} \neq b_{k}^{\prime}\right) \Rightarrow \phi_{i j k}$. So, $S, T(b b) \Rightarrow\left(\forall a_{i}, a_{j} \in a a\right)\left(\forall b_{k} \in b b\right) \phi_{i j k}=f$ is $1-1$, for some $T \subseteq T(a a)$. This proves (1). An exactly similar argument yields (2).

Proposition 4 Suppose $f: a a \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}} b b$, and let $a a=\left(a_{i}\right)$ and $b b=\left(b_{i}\right)$. Then

1. $\left(a_{i}=a_{i}\right)\left(b_{j}=b_{j}\right) \Rightarrow f$ is onto; and
2. $\left(a_{i}=a_{i}\right)\left(b_{j}=b_{j}\right) \Rightarrow f$ is total.

Proof Let $b_{j} \in b b$. Then, for some $a_{k_{j}} \in a a, a_{k_{j}}=a_{k_{j}}, b_{j}=b_{j} \Rightarrow(\exists a \in a a) f(a)=b$. So, $\left(a_{k_{j}}=a_{k_{j}}\right),\left(b_{j}=b_{j}\right) \Rightarrow(\forall b \in b b)(\exists a \in a a) f(a)=b$. Since f is total, $\left(a_{k_{j}}=a_{k_{j}}\right)=\left(a_{i}=a_{i}\right)$. This proves (1). A similar argument proves (2).

Proposition 5 Suppose $f(a a \underset{\text { onto }}{\stackrel{1-1}{\longrightarrow}} b b)$. Then:

1. $T(a a), T(b b) \Rightarrow f: a a \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} b b ;$
2. $T(a a) \Rightarrow f: a a \underset{\text { onto }}{\stackrel{1-1}{\rightarrow}} a a ;$ and
3. $T(a a) \Rightarrow a a \approx a a$.

Proof (1) follows by P3 and P4. (2) follows immediately from (1), and (3) from (2).

Proposition 6

1. Suppose $\left.\left.f \in a a \otimes b b, a_{i}, a_{j} \in a a, b_{k} \in b b, f\left(a_{i}, b_{k}\right)\right), f\left(a_{i}, b_{k}\right)\right)$, and $a_{i} \neq a_{j}$. Then
(a) $a_{i}=a_{i}, a_{j}=a_{j}, b_{k}=b_{k}, a_{i} \neq a_{j} \Rightarrow \neg\left(f\left(a_{i}, b_{k}\right) \wedge f\left(a_{j}, b_{k}\right) \rightarrow a_{i}=a_{j}\right)$; and
(b) $a_{i}=a_{i}, a_{j}=a_{j}, b_{k}=b_{k}, a_{i} \neq a_{j} \Rightarrow \neg(f$ is 1-1).
2. Suppose $\left.\left.f \in a a \otimes b b, b_{i}, b_{j} \in b b, a_{k} \in a a, f\left(a_{k}, b_{i}\right)\right), f\left(a_{k}, b_{j}\right)\right)$, and $b_{i} \neq b_{j}$. Then
(a) $b_{i}=b_{i}, b_{j}=b_{j}, a_{k}=a_{k}, b_{i} \neq b_{j} \Rightarrow \neg\left(f\left(a_{k}, b_{i}\right) \wedge f\left(a_{k}, b_{j}\right) \rightarrow b_{i}=b_{j}\right)$; and
(b) $b_{i}=b_{i}, b_{j}=b_{j}, a_{k}=a_{k}, b_{i} \neq b_{j} \Rightarrow \neg(f$ is functional).

Proof By P2, we have $a_{i}=a_{i}, b_{k}=b_{k} \Rightarrow f\left(a_{i}, b_{k}\right)$ and

$$
a_{j}=a_{j}, b_{k}=b_{k} \Rightarrow f\left(a_{j}, b_{k}\right) .
$$

(1a) follows by an application of cut. (1b) follows immediately from (1a). The proof of (2) is similar.

Proposition 7

1. Suppose $f \in a a \otimes b b, f$ is nonempty, $b \in b b$, and, for all $a \in a a, \neg f(a, b)$. Then, letting $b b \backslash\{b\}=\left(b_{j}^{\prime}\right), T^{-}(a a),\left(b \neq b_{j}^{\prime}\right) \Rightarrow \neg(f$ is onto $b b)$.
2. Suppose $f \in a a \otimes b b, f$ is nonempty, $a \in a a$, and, for all $b \in b b, \neg f(a, b)$. Then, letting $a a \backslash\{a\}=\left(a_{i}^{\prime}\right), T^{-}(b b),\left(a \neq a_{i}^{\prime}\right) \Rightarrow \neg(f$ is total on $a a)$.

Proof For each $a_{i} \in a a$, P1 implies $\left(a_{i} \neq a_{i}^{\prime}\right),\left(b \neq b_{j}^{\prime}\right) \Rightarrow \neg f\left(a_{i}, b\right)$, where $a a \backslash\left\{a_{i}\right\}=\left(a_{i}^{\prime}\right)$. So,

$$
T^{-}(a a),\left(b \neq b_{j}^{\prime}\right) \Rightarrow \neg(\exists a \in a a) f(a, b) \Rightarrow \neg(\forall b \in b b)(\exists a \in a a) f(a, b) \Rightarrow \neg(f \text { is onto } b b) .
$$

This proves (1). The proof of (2) is similar.

Let B be any individual not in \mathbb{N}^{+}. Inductively define $a a_{n}$ for $n \in \mathbb{N}^{+}$so that $a a_{1}=B, B$ and $a a_{n+1}=a a_{n} \cup n, n$.

Proposition 8

1. Suppose $m, n \in \mathbb{N}, m>n$, and $a a_{n} \not \approx a a_{m}$. Then $T\left(a a_{m}\right) \Rightarrow a a_{n} \not \approx a a_{m}$.
2. Suppose $m, n \in \mathbb{N}, m>n$, and $a a_{m} \not \approx a a_{n}$. Then $T\left(a a_{m}\right) \Rightarrow a a_{m} \not \approx a a_{n}$.

Proof To prove (1), note that, since $\neg f: a a_{n} \xrightarrow[\text { onto }]{\stackrel{1-1}{\longrightarrow}} a a_{m}$ for every non-empty $f \in a a_{n} \otimes a a_{m}$, P6 and P7 imply that $S \Rightarrow \neg f: a a_{n} \frac{1-1}{\text { onto }} a a_{m}$, for some $S \subseteq T\left(a a_{m}\right)$. For the empty function
$\emptyset, B=B \Rightarrow \neg \emptyset(B, B) \Rightarrow \neg\left(\emptyset: a a_{n} \frac{1-1}{\text { onto }} a a_{m}\right)$. So, we have $S \Rightarrow a a_{n} \not \approx a a_{m}$, for some $S \subseteq T\left(a a_{m}\right)$. Now, there is a $g \in a a_{n} \otimes a a_{m}$ such that $g(B, b)$ for each $b \in a a_{m}$. Moreover, g is not functional, since $m>n$. So, by P6, for each $a_{i}, a_{j} \in a a_{m}$, where $a_{i} \neq a_{j} a_{i}=a_{i}, a_{j}=$ $a_{j}, B=B, a_{i} \neq a_{j} \Rightarrow \neg\left(g\right.$ is functional). By amalgamation, $T\left(a a_{m}\right) \Rightarrow a a_{n} \not \approx a a_{m}$. (2) is proved similarly, using a $g \in a a_{m} \otimes a a_{n}$ that is a constant, non-injective function.

Let $S_{1}=\{\ulcorner B=B\urcorner\}$, and, for $n \in \mathbb{N}^{+}$, let

$$
S_{n+1}=\{\ulcorner B=B\urcorner,\ulcorner B \neq 1\urcorner,\ulcorner 1 \neq B\urcorner, \ldots,\ulcorner B \neq n\urcorner,\ulcorner n \neq B\urcorner\} .
$$

Proposition 9 For all $m, n \in \mathbb{N}^{+}, m<n$:

1. $S_{m} \Rightarrow m=m$;
2. $S_{n} \Rightarrow n \neq m$; and
3. $S_{n} \Rightarrow m \neq n$.

Proof We prove the result by induction. The basis case for (1) follows immediately from P5, since $T\left(a a_{1}\right)=\ulcorner B=B\urcorner$, and so $B=B \Rightarrow a a_{1} \approx a a_{1} \Rightarrow 1=1$.. The result in the basis cases for (2) and (3) follows from P8 and the basis case of (1). For the induction step, assume that each of (1)-(3) are true for each $k<m, j<n$. To see that (1) is true for n, notice that P 5 implies $T\left(a a_{n}\right) \Rightarrow n=n$, and every member ϕ of $T\left(a a_{n}\right) \backslash S_{n}$ has one of the forms $\ulcorner j=j\urcorner$, $\left\ulcorner j \neq j^{\prime}\right\urcorner$, or $\left\ulcorner j^{\prime} \neq j\right\urcorner$ for some $j, j^{\prime}<n, j>j^{\prime}$. By IH, $S_{j} \Rightarrow k=k, S_{j} \Rightarrow j \neq j^{\prime}$, and $S_{j} \Rightarrow j^{\prime} \neq j$. Also, $S_{j} \subseteq S_{n}$. So, cut yields (1). The arguments for (2) and (3) are similar, using P8 in place of P5.

Since the specification of explanatory inferences and the grounding principles in (deRosset and Linnebo, ming, $\S 5$) are exactly parallel, and strict ground, like \Rightarrow is closed under CUT, Proposition 1 in (deRosset and Linnebo, ming, §5) can be proved by substituting ' $<$ ' for ' \Rightarrow ' in the proof of P9.

Proposition 10 Suppose that $\emptyset \emptyset$ is an empty plurality, i.e., $(\forall x) x \notin \emptyset \emptyset$. For all $n \in \mathbb{N}^{+}$:

1. $\emptyset \Rightarrow 0=0$;
2. $\emptyset \Rightarrow 0 \neq n$; and
3. $\emptyset \Rightarrow n \neq 0$.

Proof $\emptyset \emptyset \otimes \emptyset \emptyset$ has exactly one member, the empty function f, and we have $\emptyset \Rightarrow(\forall x \in \emptyset \emptyset) \phi$, for any ϕ. So, $\emptyset \Rightarrow f: \emptyset \emptyset \frac{1-1}{\text { onto }} \emptyset \emptyset \Rightarrow 0=0$, yielding (1). Let $b b_{n+1}=0,1, \ldots, n$, for $n \in \mathbb{N}$. To show (2), note that $\emptyset \emptyset \otimes b b_{n}$ has exactly one member, the empty relation f. Also, we have $\emptyset \Rightarrow \neg(\exists a \in \emptyset \emptyset) \phi$, for all ϕ. So,

$$
\emptyset \quad \Rightarrow \quad \neg(\exists a \in \emptyset \emptyset) f(a, 0) \quad \Rightarrow \quad \neg\left(\forall b \in b b_{n}\right)(\exists a \in \emptyset \emptyset) f(a, b) \quad \Rightarrow \quad \neg\left(f \text { is onto } b b_{n}\right)
$$

$$
\Rightarrow \quad \neg\left(f: \emptyset \emptyset \frac{1-1}{\text { onto }} b b_{n}\right) \Rightarrow \neg\left(\exists g \in \emptyset \emptyset \otimes b b_{n}\right)\left(g: \emptyset \emptyset \frac{1-1}{\text { onto }} b b_{n}\right) \Rightarrow \emptyset \emptyset \nsim b b_{n} \Rightarrow 0 \neq n .
$$

The proof of (3) is similar, using the failure of the empty relation in $b b_{n} \otimes \emptyset \emptyset$ to be total on $b b_{n}$ in place of the failure of the empty relation in $\emptyset \emptyset \otimes b b_{n}$ to be onto $b b_{n}$.

Proposition 11 Suppose that $\emptyset \emptyset$ is an empty plurality, i.e., $(\forall x) x \notin \emptyset \emptyset$. For all $n, m \in \mathbb{N}$, where $n \neq m, \emptyset \Rightarrow n=n$ and $\emptyset \Rightarrow n \neq m$.

Let $b b_{n+1}$ be defined as in the proof of $\operatorname{Prop} 10$, and recall that $\operatorname{PREC}(x x, y y)$ abbreviates

$$
\left(\exists y y^{\prime} \subseteq y y\right)(\exists y \in y y)\left((\forall z \in y y)\left(z \in y y^{\prime} \leftrightarrow z \neq y\right) \wedge x x \approx y y\right) .
$$

Given an empty plurality $\emptyset \emptyset$ and the explanatory inferences for quantifications restricted to a plurality, it is easy to see that there will be explanatory arguments witnessing $\Delta \Rightarrow$ $\operatorname{Prec}\left(b b_{k}, b b_{k+1}\right) \Rightarrow P(k, k+1)$ for all $k \in \mathbb{N}^{+}$, where all members of Δ have one of the forms: $n=n, n \neq m$, or $b b_{n+1} \approx b b_{n+1}$, for some $n, m \in \mathbb{N}$. Similarly, it is easy to see that there will be explanatory arguments witnessing $\Delta \Rightarrow \operatorname{Prec}\left(\emptyset \emptyset, b b_{1}\right) \Rightarrow P(0,1)$, where Δ 's members are all either $0=0$ or $\emptyset \emptyset \approx \emptyset \emptyset$. So, the application of Prop 11 yields:

Proposition 12 Suppose that $\emptyset \emptyset$ is an empty plurality, i.e., $(\forall x) x \notin \emptyset \emptyset$. For all $n, m \in \mathbb{N}$, where $n+1 \neq m, \emptyset \Rightarrow P(n, n+1)$ and $\emptyset \Rightarrow \neg P(n, m)$.

Now we can sketch how all of the facts expressible in second-order Peano arithmetic are grounded, assuming the existence of an empty plurality $\emptyset \emptyset$. Second-order Peano arithmetic can be formulated in a language, $\mathcal{L}_{\mathrm{PA} 2}$, whose only primitive predicates are ' $=$ ' and ' P ' (Boolos, 1995). We wish to proceed to show, by induction on syntactic complexity, that, so long as there is an empty plurality $\emptyset \emptyset$, for every formula φ of $\mathcal{L}_{\mathrm{PA} 2}$ (relative to a variable assignment), either φ or $\neg \varphi$ is derivable in an explanatory argument from the empty set of premises and so zero-grounded. (To simplify the exposition, we elide the variable assignments and talk directly about natural numbers and relations-in-extension based on these.) Propositions 11 and 12 ensure that the claim holds for atomic formulas involving ' $=$ ' and ' P '. The same goes for atomic formulas involving plural membership or predication of a relation-in-extension (cf. Appendix A). The induction step for disjunction, conjunction, and negation is straightforward. As for the quantifiers, the key is first to define the plurality $n n$ of all natural numbers as the least plurality containing 0 and closed under the successor relation. (This plurality exists according to our Critical Plural Logic by its axiom of Infinity; see Appendix B.) We can now use plurality-restricted quantifiers of the form ' $(\exists x \in n n)$ ' and ' $(\forall x \in n n)$ ' to interpret the first-order quantifiers of $\mathcal{L}_{\mathrm{PA} 2}$, and analogously for quantification over pluralities and relations-in-extension. The induction step for true existential generalizations and negated universal generalizations involving these quantifiers is straightforward, while that of true universal generalizations (or negated existential generalizations) requires that true plurality-restricted generalizations of these forms can be derived in explanatory arguments from the collection of their instances (or negated instances).

References

Boolos, G. (1995). Frege's theorem and the Peano postulates. Bulletin of Symbolic Logic, 1(3):317-326. Reprinted in Boolos (1998).

Boolos, G. (1998). Logic, Logic, and Logic. Harvard University Press, Cambridge, MA.
deRosset, L. and Linnebo, O. (forthcoming). Abstraction and Grounding. Philosohy and Phenomenological Research.

[^0]: ${ }^{1}$ https://onlinelibrary.wiley.com/doi/10.1111/phpr. 13036

