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Abstract 

The modern abundance and prominence of data has led to the development of “data science” as 

a new field of enquiry, along with a body of epistemological reflections upon its foundations, 

methods, and consequences. This article provides a systematic analysis and critical review of 

significant open problems and debates in the epistemology of data science. We propose a partition 

of the epistemology of data science into the following five domains: (i) the constitution of data 

science; (ii) the kind of enquiry that it identifies; (iii) the kinds of knowledge that data science 

generates; (iv) the nature and epistemological significance of “black box” problems; and (v) the 

relationship between data science and the philosophy of science more generally.  
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1. Introduction 

Data science has become a mature field of enquiry only recently, propelled by the proliferation of 

data and computing infrastructure. While many have written about the philosophical problems in 

data science, such problems are rarely unified into a holistic “epistemology of data science” (we 

avoid the more generic expression “philosophy of data science” – more on this presently). In its 

current state, this epistemology is vibrant but chaotic. For this reason, in this article, we review the 

relevant literature to provide a unified perspective of the discipline and its gaps; assess the state of 

the debate; offer a contextual analysis of the significance, relevance, and value of various topics; 

and identify neglected or underexplored areas of philosophical interest. We do not discuss data 

science’s GELSI (governance, ethical, legal, and social implications). They already receive 

considerable attention, and their analysis would lie beyond the scope of the present work, even if, 

ultimately, we shall point to obvious connections. It seems clear that data science’s epistemology 

and ethics (in the inclusive sense of GELSI indicated above) may need to find a unified framework. 

Still, this article would be the wrong context to attempt such a unification. Methodologically, we 

determined the scope of the epistemological analysis by a structured literature search, detailed in 

the Appendix. Our findings partition the epistemology of data science into five areas (see Figure 

1), and the article is structured accordingly. Section 2 focuses on descriptive and normative 

accounts of the composition of data science, i.e., accounts of what data scientists do and should 

do. Section 3 analyses reflections upon the kind of enquiry that data science is. Section 4 discusses 

questions about the nature and genealogy of the knowledge that data science produces. Section 5 

concentrates on so-called “black box” problems, such as interpretability and explainability. Section 

6 explores the epistemically revolutionary new frontier raised by data science: the so-called “theory-

free” paradigm in scientific methodology. Section 7 briefly concludes our analysis. 

 

 
 

Figure 1. The epistemology of data science: a map. 
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2. The characterisation of data science 

This section reviews the most relevant definitions of data science proposed in the literature, 

spanning descriptive and normative alternatives. It concludes by offering a new proposal that 

synthesises the most valuable elements of each. 

2.1 Minimalist and maximalist characterisations 

The historical origins of data science can be traced back to the work of early naturalists. However, 

a more recognisable form of the practice began to emerge only with the systematic study of 

probability and statistics – first through games of chance toward the end of the Renaissance 

(Hacking, 1975) and later through sociological analyses around the time of the Industrial 

Revolution (Gigerenzer et al., 2013), culminating in the emergence of genetics in late Victorian 

Britain (MacKenzie, 1984). Economic incentives were paramount at every turn, be it through 

better gambling strategies, more accurate actuarial tables, or improved agricultural yields. At the 

dawn of the twentieth century, statistics came to be recognised as an academic discipline worthy 

of its own journals and university departments. Technological advances in subsequent decades 

marked a definite break from theory-driven and inferential classical statistics. New approaches, 

such as bootstrapping and Markov chain Monte Carlo simulations, replaced strong parametric 

assumptions with brute computational power. Viewed from this perspective, machine learning 

algorithms – which automatically detect and exploit subtle patterns in large datasets – are simply 

the next logical step in a centuries-long progression toward ever more automated forms of 

empirical reasoning.  

 The question of when precisely these early forays into quantitative modes of analysis 

crystallised into what we now call “data science” presupposes that the discipline has some as yet 

unspecified essential character. Although we are sceptical of any purported “solution” to the so-

called “problem” of demarcation – in this area, as in science more generally – we observe two 

broad trends in the literature on this topic, which we shall deem the “minimalist” and “maximalist” 

accounts (more on this below). Minimalists aim for necessary conditions, as weakly constraining 

as possible but still carving out a unique space for data science. Maximalists strive for sufficient 

conditions with detailed ontologies and methodological taxonomies. Minimalist approaches 

characterise early debates on the nature of data science. Contemporary analyses tend to embrace 

maximalist approaches, identifying in data science a means to develop causal knowledge directly 

connected to the object of analysis. 

 Minimalist conceptions do not commit data science to any method or subject(s), and do 

not make any specific claims about what kind of discipline data science is. They focus only on the 

pedagogical aspects and their dependency on information and data. Chambers (1993) and 

Carmichael and Marron (2018) provide two examples of minimalist accounts. Chambers (1993) 

presents a “greater statistics” view of data science, characterised as “everything related to learning 

from data” (Chambers, 1993, p. 182, italics in the original). Similarly, Carmichael and Marron (2018, 

p. 117) claim that data science is “the business of learning from data” and that a data scientist is 

someone who “uses data to solve problems”.  

 Maximalist accounts are more fine-grained. Breiman (2001) characterises data science by 

the kind of knowledge that it generates. Statisticians (taken to include data scientists) may be 

interested in making correlative predictions from data and extracting information about any 

associated underlying natural causal mechanisms. Correlative/predictive and causal knowledge are 
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distinguished and implicitly valued. Causal knowledge is assumed to correspond directly with 

‘underlying’ and ‘natural’ mechanisms in the real world, while correlative/predictive knowledge 

may only obliquely correspond to reality, through association with causation. Three important 

examples in the literature help to clarify this point. 

Consider first the maximalist account provided by Mallows (2006, p. 322). It concerns a 

practical end. As he writes, “Statistics concerns the relation of quantitative data to a real-world 

problem, often in the presence of variability and uncertainty. It attempts to make precise and 

explicit what the data has to say about the problem of interest.” Mallows emphasises the primacy 

of problem-solving rather than general pedagogy, a point also stressed by Blei and Smyth (2017) 

below. A unique aspect of Mallows’ account is the explicit mention of variability and uncertainty, 

which data-scientific and statistical methods must confront. This constitutes an implicit 

commitment to a separation of the noisy real world and the idealised constructs familiar to the 

natural and social sciences. Further, statistics is characterised as a fundamental epistemic method 

in its own right – as the bridge between the two worlds.  

The second example is offered by Donoho (2017, p. 746), who also supports a maximalist 

approach. This account of data science has a sociological dimension, referencing the Data Science 

Association’s “professional code of conduct”: “‘Data Scientist’ means a professional who uses 

scientific methods to liberate and create meaning from raw data [our italics].” This emphasises a close 

connection between data analysis and scientific inquiry, not just in methodology but also in its 

fundamental assumptions and aims. The usage of ‘liberate’ supposes that data originates from 

processes amenable to systematic study and comprehension. However, the term ‘create’ implies a 

deviation from the classical scientific endeavour, suggesting the permissibility of superimposing 

artificial ontologies upon data as means to whatever ends. Hence data science is carved out as, at 

least, a quasi-science, if not a full-blown one (more on this in Section 3). It is worth noting that 

the concept of “raw” data is problematic because data are never entirely devoid of interpretation. 

As Donoho writes from within the era of big data, his assumption that “raw data” is a suitable 

base from which to distil and create meaning may be a consequence of the contemporary attitude 

that data can, are, and will be recorded in sufficient depth, breadth, and quality for any problem 

domain.  

Finally, Blei and Smyth (2017, p. 8691) give a characterisation between minimalism and 

maximalism: “data science blends statistical and computational thinking… It connects statistical 

models and computational methods to solve discipline-specific problems.” This view commits 

data science solely to statistical and computational methods, emphasising a practical rather than 

pedagogical priority. However, this characterisation does not specify information – broadly 

conceived – as data science’s object of interest, nor does it mark specific disciplines as parents or 

patients of data science. 

2.2 Descriptive taxonomies 

Some authors have attempted to characterise data science by providing descriptive, procedural 

taxonomies of the discipline. Three descriptive accounts, written at different times over the last 

six decades, offer a diachronic perspective. 

To our knowledge, Tukey (1962) gave the first descriptive taxonomy of “data analysis” 

focusing on: “procedures for analysing data and techniques for interpreting the results of such 

procedures; ways of planning the gathering of data to make its analysis easier, more precise, or 
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more accurate; all the machinery and results of (mathematical) statistics which apply when 

analysing data” (Tukey, 1962, p. 2). Tukey intended to give a transparent description of what 

actually occurs in the analysis of data. As we shall discuss in Section 3, the orthodox view at his 

time of writing was that data analysis was applied statistics, and hence primarily mathematical. By 

describing its nature plainly and accurately, Tukey’s account was a transgression of the status quo: 

breaking off the concept of data analysis from applied statistics into its own field. 

Some years after Tukey, Wu (1997) presented a threefold descriptive taxonomy centred on 

data collection (experimental design, sample surveys); data modelling and analysis; and problem 

understanding/solving, and decision making. Like Tukey’s, this description came as part of a 

broader project to move mathematical statistics in a scientific direction. Wu himself bid to rename 

“statistics” as “data science” or “statistical science”, and we note the inclusion of the manifestly 

scientific “experimental design”. 

More recently, Donoho (2017) has provided an extensive taxonomy which cites the 

University of Michigan’s “Data Science Initiative” programme: “[Data Science] involves the 

collection, management, processing, analysis, visualization, and interpretation of vast amounts of 

heterogeneous data associated with a diverse array of scientific, translational, and interdisciplinary 

applications” (Donoho, 2017, p. 745). A brief comparison with Tukey’s and Wu’s accounts 

highlights the maturation and growth of data science: the procedural pipelines have coevolved 

with intermediary stages between inputs and products. 

 Earlier accounts ought not to be faulted for missing a moving target, as they may not have 

foreseen the growing demands and affordances of the digital era. However, we may still identify a 

trade-off between constraint specificity and contemporaneity in descriptivist accounts of data 

science, which has evolved along with computation. Any account that isolates data science from 

its computational context risks obsolescence, but any account that does not must grapple with a 

massively entangled and evolving digital sphere, with all its attendant mechanisms and 

requirements. Therefore, going forward, we distinguish ones-and-zeroes data science from pen-

and-paper statistics by its digital and computationally intensive nature. 

2.3 Normative Taxonomies 

Others thought that the status quo conception of data science of their time was inadequate to meet 

the demands placed on society by the proliferation of data. This led them to develop revisionist 

accounts, often proposing normative taxonomies of data science. Here, we consider what may be 

seen as the four most influential revisionary accounts offered so far: Chambers (1993), Breiman 

(2001), Cleveland (2001), and Donoho (2017). 

 Chambers (1993) remarks that, at the time of his analysis, there was a trend in academic 

statistics towards what he calls “lesser statistics” – mathematical statistics filtered through journals, 

textbooks, and conferences – rather than towards engaging in real-world applications to data. In 

this context, he presents the following tripartite taxonomy (Chambers 1993, p. 182) of the 

composition of his “greater statistics”, referring to the concept mentioned earlier as “everything 

related to learning from data”: 

 

1. Preparing data (planning, collection, organization, and validation); 

2. Analysing data (by models or other summaries); 

3. Presenting data (in written, graphical or other form). 
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Chambers’ taxonomy delineates the processes and products of data science from the decision-

making and outcomes that result from those products. The promotion of data preparation to stand 

equal to analysis and presentation is remarkably prescient. The subprocesses of planning, 

collection, organisation, and validation anticipate, respectively, the sourcing, volume, diversity, and 

quality of data required of practical data science, as opposed to the abstract concerns of “lesser 

statistics”. When taken together with the descriptions of the analysis and presentation of data, a 

conception is revealed of human limitations when confronted with data, and with data science 

seen as the epistemic endeavour to exceed those limitations. 

Breiman (2001) echoes the need for statistics to move towards the real world. Like some 

of the maximalist statements of data science analysed in Section 2.1, his account too emphasises 

that data analysis collaborates with, and thus acts on, specific disciplines, supplying them with 

analytical tools. To understand Breiman’s radical normative conception of data science as 

disinterested in truth, in favour of practical knowledge, one needs to engage in a brief historical 

and sociological detour. In homage to C. P. Snow, Breiman remarks that preference for truth or 

action characterises two contrasting “cultures” in statistics: the predictive camp, which he 

estimated at his time of writing in 2001 contained only ~2% of academic statisticians and data 

analysts, and the inference camp containing the rest. Those in the former camp are primarily 

interested in generating accurate labels on unseen data. Those in the latter focus on revealing 

mechanisms and estimating parameters. This is a distinction we shall revisit in Section 4. Breiman’s 

revisionism becomes manifest when he argues that the emphasis on inference over prediction has 

led to a distracting obsession with “irrelevant theory” and the drawing of “questionable 

conclusions”, thereby keeping statisticians “from working on a large range of interesting current 

problems”. Today, the relative sizes of the two cultures are nearly reversed (e.g., Anderson, 2008). 

Breiman’s vision of a theory-free data science marks a significant deviation from the classic 

epistemological project of “understanding understanding”. 

Cleveland (2001, pp. 22-23) considered the teaching programs of his time to be deficient, 

producing data practitioners unprepared for the demands of an increasingly data-rich society. In 

this sociological context, he proposes the following taxonomy: 

1. Multidisciplinary investigations (data analysis in the context of different discipline-specific 

areas) 

2. Models and methods for data (statistical models, model-building methods, estimation 

methods, etc.) 

3. Computing with data (hardware, software, algorithms) 

4. Pedagogy (curriculum planning, school/college/corporate training) 

5. Tool evaluation (descriptive and revisionary analysis of tools and their methods of 

development) 

6. Theory (foundational and theoretical problems in data science) 

 

Cleveland’s taxonomy puts forward a conception of data science as a fundamentally 

computational, fully-fledged scientific discipline in its own right. Four points are particularly 

relevant in this case. First, the elevation of “Computing” alongside “Models and methods for data” 

marks data science as fundamentally digital, separating it from statistics at large. In contrast to 

Chambers’ taxonomy, computers are by now explicitly recognised as the vehicle that makes data 

science possible. Second, under “Pedagogy”, there is recognition of the necessity to preserve and 
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propagate data science as an academic and commercial field. Third, the novel inclusion of “Tool 

evaluation” and “Theory”, absent in previous accounts, signals a conception of data science as 

self-reflective and progressive. Fourth, the fact that “Multidisciplinary investigations” is placed on 

the same footing as the other five taxa indicates a relative deprioritisation of application. This is a 

significant shift from preceding accounts, like Breiman’s, that treat data science merely as a means 

to an end.  

 More recently, Donoho (2017, p. 755) has given a comprehensive revisionary taxonomy 

to meet current needs. Emulating Chambers’ terminology, “greater data science” is set in contrast 

to some of the descriptive taxonomies described in Section 2.1, which he calls “lesser data science”. 

Greater data science consists of: 

 

1. Data gathering, preparation and exploration 

2. Data representation and transformation 

3. Computing with data 

4. Data modelling 

5. Data visualisation and presentation 

6. Science about data science 

 

In contrast to Cleveland’s taxonomy, Donoho’s focuses just on data science qua field and means 

of enquiry. Two aspects of this taxonomy are epistemologically interesting. First, mirroring 

Cleveland, the repeated presence of the sixth metascientific category: data science should reflect 

and conduct science on itself in order to improve and develop. Second, Donoho’s description is 

procedurally complete, beginning at data exploration and gathering, and going through all the 

analytical steps from origins to final products. This ambitious scope contributes to the normative 

force of Donoho’s proposal. 

 .We have to the end of Section 2. In light of these previous considerations, it seems 

reasonable to propose the following definition of data science: 

 

Data science is the study of information systems (natural or artificial), by probabilistic 

reasoning (e.g., inference and prediction) implemented with computational tools (e.g., 

databases and algorithms).  

 

This definition is inclusive enough to cover all instances of machine learning – supervised, 

unsupervised, and reinforcement learning – as well as more generic procedures that typically fall 

under the umbrella of statistics, such as scatter plotting to inspect trends and bootstrapping to 

quantify uncertainty. It may or may not exclude some edge cases, depending on one’s 

interpretation of constituent terms. For instance, it covers deterministic systems if one holds that 

these are a subset of probabilistic systems. It covers hand-calculated regression models if one holds 

that human cognition is a kind of computation. Yet these are grey areas, even if the former may 

be an obvious case of computer science and the latter an obvious case of statistics. Data science 

stretches across both disciplines, emphasising different aspects. 
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3. Kind of enquiry 

Critics may allege that data science is not an academic discipline, but a set of tools bundled together 

through pragmatic functions. At issue is whether data are the “right kind of thing” to stand as the 

subject matter of a discipline. If “data” is a concept too insubstantial or the methods of data science 

are too heterogeneous, then any attempt to carve out a unified data science seems doomed to fail.1 

However, there is a growing demand for data science, not just in the business world, but also in 

academia, as evidenced by a proliferation of university courses and programs, specialised teaching 

positions, dedicated conferences, journals, and industry positions. Therefore, for the sake of 

argument, let us assume that data science is at the very least on its way to becoming an entrenched 

and mature discipline. The next question is of what kind. The literature offers three main answers: 

a sort of academic statistics, where statistics is a formal, theoretical part of applied mathematics; 

statistics, but appropriately expanded to bring it outside of applied mathematics and into a proto-

science; and a full-blown science in itself. We now turn to examine each alternative in detail. 

3.1 Data science as statistics 

The first two of these answers take data science to be some form of statistics. For example, 

Donoho (2017, p. 746) provides a comprehensive collection of papers, talks, and blogs whose 

authors argue that data science simply is statistics by a different name. This stance further speciates 

according to whether one takes statistics to be part of, or separate from, applied mathematics. 

Arguing for the former case, Wu (1997) cites a dictionary definition of statistics: “the mathematics 

of the collection, organisation and interpretation of numerical data”. This narrow view of data 

analysis does not have many contemporary proponents. Most of the current literature either 

accepts that data analysis is part of an extended statistics -- which itself is no longer seen as strictly 

formal mathematics (cf. Chambers’ greater statistics) -- or grants data analysis the status of a 

standalone field, external but related to statistics, which is considered a narrow part of formal, 

applied mathematics. Breiman’s (2001) and Mallows (2006) take the latter stance, by calling for the 

expansion of statistics to include scientific elements and engage with real-world disciplines. This 

does not entail that statistics is itself a full-bodied science. Data analysis, on this view, remains 

statistics, even though it begins to transcend strictly formal mathematical deductive inference and 

practices. 

3.2 Data science as science 

Other authors locate data analysis as a scientific discipline. Carmichael and Marron (2018, p. 120) 

claim that a manifestly scientific data science is a “reaction to the narrow understanding of lesser 

statistics” [our italics]”. There are two main strategies to support the claim that data analysis is a 

science.  

The first is to formulate demarcation criteria for whatever it is we already call science (cf. 

Popper, 1959), and then show that data science satisfies them. Tukey (1962, p.5) made this attempt, 

setting out three paradigmatic demarcation criteria for science: “intellectual content”, 

“organization into an understandable form”, and “reliance upon the test of experience as the 

ultimate standard of validity”. By running up his contemporary data science against these criteria, 
 

1 This is an open question in the philosophy of information, which we will not address here, as it is deep enough to 
warrant its own dedicated investigation. We will, however, note that a sustained attempt at some analysis of the 
concepts of data and information may be found in Floridi (2010). 
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Tukey concluded that whatever makes other disciplines scientific also applies to data science. 

(Donoho 2017) focuses on a paradigmatic scientific feature of a subject: the formulation of 

empirically accountable questions which are solved through scientifically rigorous techniques. 

Since there is conceptual room for a field of this nature that operates on data and information, he 

concludes that there is space for a forthcoming genuine science of data analysis. 

 However, this first strategy clashes with the heterogeneity of science. The demarcation 

debate lost steam following Laudan’s (1983) decisive critique of Popper’s falsificationism. In light 

of this, the second, alternative strategy is to demonstrate relevant similarities between data science 

and paradigmatic sciences, and that these similarities warrant an extension of the general concept. 

For example, Wu (1997) cites a series of important similarities between his descriptive taxonomy 

of statistics and paradigmatic sciences. These similarities include: the “empirical — physical” 

approach of statistics, in which we use induction to infer knowledge from observations and 

deduction to infer implications of theories; the primacy of experimental design and data collection; 

and the use of Bayesian reasoning to evaluate models and evidence. However, there are notable 

ways in which data science diverges from paradigmatic sciences. Such dissimilarities include the 

kind of knowledge it generates (see Section 4), the modes of logical inference by which it proceeds 

(see Section 4), and the status it endows to hypotheses (see Section 6).  

A further dissimilarity may be that data science somehow sits alongside normal sciences, 

providing them with the tools and resources needed to make more profound, discipline-specific 

discoveries. If these dissimilarities are regarded as sufficiently significant, it becomes plausible that 

data science might not be a science at all, or perhaps may be a transcendental science. This is the 

topic of the next section.  

3.3 The Transcendental Science 

The debate above overlooks the possibility that data science is neither applied statistics nor science 

but entirely something else. Wiggins has expressed this thought in private communication with 

Donoho, claiming that “Data science is not a science… It is a form of engineering, and the doers 

in this field will define it, not the would-be scientists” (Donoho 2017, p. 764). A similar claim 

could plausibly be made about computer science, which is rooted in mathematics but sufficiently 

specialized to constitute its own field of inquiry. As it is evident from the descriptive taxonomies 

above, there are many relevant similarities between computer science and data science. One 

interesting possibility would be to cleave both data “science” and computer “science” into non-

scientific categories of their own.  

The point is sharpened if one sees data science as a basis for empirical science. Much like 

how Wittgenstein came to view philosophy as a set of tools and methods for resolving confusion 

in other areas like mathematics or psychology, data science may be conceived as serving a 

transcendental function for the sciences, as the condition for the possibility of empirical inquiry as 

such. There is nothing fundamentally different between, say, Linnaeus’ taxonomies and the 

hierarchical ontologies familiar to database managers. Tycho Brahe’s journals are essentially a high-

quality dataset. Newton’s laws of motion are an algorithm, obtained from and verified against 

empirical data, for predicting values for some physical variables based on the values of others. We 

shall not pursue this approach in this article. We posit it more as a suggestion to be explored than 

a thesis to be defended. 
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4 The knowledge generated by data science 

This section examines the knowledge generated by data science. The analysis is structured into two 

related parts: the process, or how, (concerning modes of inference) and the product, or what, 

(referring to the epistemic products) of data science. 

4.1 Modes of inference 

Different means of enquiry have differing affinities to the three typical modes of inference: 

deduction, induction, and abduction. The epistemology of data science reflects on the extent to 

which data scientists deploy these various modes. 

 Deductive inferences are present in data science through the heavy reliance on 

mathematical and logical reasoning. Probability theory, differential calculus, functional analysis, 

and theoretical computer science are all purely deductive disciplines widely used to derive the 

properties of algorithms and design new learning procedures with little concern for empirical 

behaviour. For instance, the backpropagation algorithm used to optimise parameters in neural 

networks combines elements of linear algebra and multivariable calculus to converge, provably, on 

a local optimum of an objective function. No datasets are required to derive this result. 

Inductive inferences are also of central importance. Data is a finite sample of the world. 

Data science then identifies structures in the data and distils them into information that applies 

beyond the data itself. This is achieved by projecting the patterns and structures found in data to 

new contexts, going beyond the antecedent domain. This projection is precisely inductive 

inference. This represents a defeasible solution to Hume’s problem of induction, whereby 

statistical testing can provide stronger or weaker evidence in favour of particular hypotheses 

(Mayo, 1996; 2018). For this reason, Harman & Kulkarni (2007) argue that statistical learning 

theory represents a principled and sophisticated defence of induction. Similar remarks can be 

found in Frické (2015), who observes that “Inductive algorithms are a central plank of the Big 

Data venture.” More recently, Schurz (2019) has argued that formal results from reinforcement 

learning demonstrate the optimality of meta-induction, thereby solving Hume’s problem on a priori 

grounds.  

One can distinguish between two canonical types of inductive inference, object and rule 

induction. The first is the informed prediction of singular unobserved instances: hypotheses of the 

form “the next observed instance of X will be Y” based on previous data of the co-instantiation 

of X’s and Y’s. This is known as object induction. Rule induction, by contrast, posits universal claims 

of the form “all X’s are Y’s”, based on the same data. Data-scientific investigation involves both. 

Singular predictive instances are commonplace in any application of supervised learning, where 

the goal is to learn a function from inputs to outputs. These are the kinds of inductions that interest 

Breiman’s (2001) “first culture” of statistics. At the same time, one of the purposes of data science 

is to identify underlying structures and mechanisms. The project of causal inference, which we 

revisit in Section 4.2, is devoted to such forms of rule induction. 

Turning to abductive inference, Alemany Oliver and Vayre (2015) have emphasised the 

importance of abductive reasoning in data science methods, particularly in how data science is 

embedded into broader scientific practice (see Section 6 for further discussion). They argue that 

the tools of data science have an interest first in the exploration of data to determine its internal 

structure, and second in the identification of the best hypotheses to explain this structure. This 

inference from structure to an explanatory hypothesis is an abductive inference. The view that 



 

 

11 

science is essentially abductive can be traced back to Peirce, though modern adherents abound 

(Harman, 1965; Lipton, 1991; Niiniluoto, 2018). The status of abduction in a data-intensive 

context is further elevated by the theoretical virtue of explanatory unification (Kitcher, 1989). In 

the philosophy of science, a common virtue of a theory is its explanatory power, with some authors 

maintaining that such power is grounds to choose one of two empirically equivalent theories (cf. 

van Fraassen’s (1980) discussion of pragmatic virtues). One dimension of explanatory power is the 

extent of the diversity and heterogeneity of phenomena that a theory can explain simultaneously 

(cf. Kitcher, 1976). If the methods of data science allow for the identification of patterns in a 

diverse and heterogeneous range of phenomena, then perhaps we will develop a broader and more 

nuanced picture of the explanatory power of our theories. For those theories that can unify many 

phenomena, abductive reasoning confers more robust support on them considering various data 

science techniques. 

In addition to being an end in itself, epistemological reflection on modes of influence also 

sheds light on the connections between data science, mathematics, and science. The similarities 

between these disciplines – such as their relevance, explanatory power, practical utility, and degree 

of success – are precisely what is in question when we look to extend the categories coherently. 

For example, mathematical proofs are formulated deductively. But given the importance of non-

deductive inferences in data science, one needs to recognise an important dissimilarity between 

the two and refrain from placing data science strictly within applied mathematics. Likewise, natural 

sciences use a mixture of deduction, induction, and abduction in their everyday practice, with more 

formal sciences making more frequent use of deduction, and more applied sciences relying more 

on abduction. Other sciences assign different weightings to differing modes of inference. For 

example, abduction is commonplace in the social, political, and economic sciences. Cognitive 

science is another example that relies on abduction given the frequency of empirically equivalent, 

underdetermined theories. It seems that data science, if it is a science, is in good company.  

4.2 Epistemic products 

The trichotomy of machine learning – which spans supervised, unsupervised, and reinforcement 

learning algorithms – helps to delineate the kind of knowledge generated by data science and its 

techniques. 

 Supervised learning models predict outcomes based on observed associations. They 

automate the process of inductive reasoning at scales and resolutions that far exceed the capacity 

of humans. However, large datasets and powerful algorithms are not sufficient to overcome the 

fundamental challenges inherent to this mode of inference. A model that does well in one 

environment may fail badly in another if data no longer conform to the observed patterns. For 

instance, a classifier trained to distinguish cows from camels may struggle when presented with a 

cow in the desert or a camel on grass, presuming the training set only contains images of both 

animals in their natural habitats. Since the background was a reliable indicator of the outcome in 

training, the model could be forgiven for assuming the same would hold at test time. This fallibility 

is inherent in all inductive reasoning, which nevertheless helps us accomplish many important 

epistemic goals.  

 Unsupervised learning is a more heterogeneous set of methods, broadly united by their 

tendency to infer structure without any predefined outcome variable(s). Examples include 

clustering algorithms, autoencoders, and generative models. At their best, these tools can shed 
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light on latent properties – how samples or features reflect some underlying facts about the data 

generating process. For instance, clustering methods are commonly used in cancer research to 

categorise patients into subgroups based on biomarkers. The idea is that an essential fact (e.g., that 

cancer manifests in identifiable subtypes) is reflected by some contingent property (e.g., gene 

expression levels). The risk of overfitting – i.e., “discovering” some structure in training data that 

does not generalise to test data – is especially high in this setting, as there is no outcome variable 

against which to evaluate results. 

 In reinforcement learning, one or more agent(s) must navigate an environment with little 

guidance beyond a potentially intermittent reward signal. The goal is to infer a policy that 

maximises rewards and/or minimises costs. A good example of this is the multi-armed bandit 

problem. An agent must choose among a predefined set of possible actions – i.e., must “pull” 

some “arm” – without knowing the rewards or penalties associated with each. Therefore, an agent 

in this setting has to strike a difficult balance between exploration (randomly pulling new arms) 

and exploitation (continually pulling the arm with the highest reward thus far). Reinforcement 

learning has powered some of the most notable achievements of data science in recent years, such 

as AlphaGo, an algorithm that is currently the world’s best player of Go, chess, and several other 

classic board games. The epistemic product of such algorithms is neither associations (as in 

supervised learning) nor structures (as in unsupervised learning), but policies – methods for making 

decisions under uncertainty. 

 On their own, these methods do not necessarily provide causal knowledge. However, some 

of the most important research on AI of the last 20 years has focused on causal reasoning (Spirtes 

et al., 2000; Pearl, 2009; Imbens & Rubin, 2015; Peters et al., 2017). Such research demonstrates 

how probabilistic assumptions can combine with observational and/or interventional data to infer 

causal structure and treatment effects. Remarkably, this literature is only just beginning to gain 

traction in the machine learning community. Recent work in supervised learning has shown how 

causal principles can improve out-of-distribution performance (Arjovsky et al., 2019), while 

complex algorithms such as neural networks and gradient boosted forests are increasingly used to 

infer treatment effects in a wide range of settings (Nie and Wager, 2021). Causal discovery – the 

task of learning causal associations from observational data – is a quintessential unsupervised 

learning problem. This has been an active area of research since at least the 1990s and remains so 

today (see Glymour et al. (2019) for a recent review). Reinforcement learning – perhaps the most 

obviously causal of all three branches, given its reliance on interventions – has been the subject of 

intense research in the last few years (Bareinboim et al., 2021). Various authors have shown how 

causal information can improve the performance of these algorithms, which in turn helps reveal 

causal structure. 

These methods can, in principle, be used to infer natural laws. Schmidt and Lipson (2009) 

have proposed what appears to be the algorithmically obtained laws of classical mechanics. Their 

method involved analysing the motion-data of various dynamical systems using algorithms that 

had no prior physical knowledge of mechanics. They claim to obtain the Lagrangian and 

Hamiltonian of those dynamical systems, together with various conservation laws. This provides 

an attractive data point for those who are hopeful for the possibility of the autonomous discovery 

of natural laws. The roles of correlation and causation in science, and of autonomous, theory-free 

science are discussed in Section 6. 
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5. Black box problems 

The tools of data science have become highly sophisticated and complex. This is partly because 

data science has always been accountable to practical motivations. Any development that produces 

a more successful (more efficient, accurate, deployable, etc.) outcome is adopted in virtue of its 

utility, often without pausing for reflection on how it is to be embedded in our wider conceptual 

schemes. This has led to questions about the opacity of these tools. In this section, we evaluate 

various types of black box problems proposed in the literature.  

First, it may be helpful to provide a clarification. Burrell (2016) has proposed that there are 

three ways in which data science algorithms become opaque. The first is their intentional 

concealment for commercial or personal gain. The second is the opacity that arises from 

technological literacy and proficiency being a necessary condition to understand sophisticated 

algorithms. And the third is inherent complexity arising from algorithmic optimisation procedures 

that exceed the capacity of human cognition. The first two of these problems are pragmatic 

problems that occur when data science is embedded in wider society (see Tsamados et. al. (2021) 

for recent work on these issues). They are not the kind of epistemological problems with which 

we are concerned here. Thus, we will focus only on the last problem. Furthermore, there have 

been many technical solutions or proto-solutions to various instances of black box problems. The 

nature of these solutions does not concern us because we are focused on the philosophical level 

of abstraction above such technical investigations. In this section, we provide only a brief, 

comparative overview in order to illustrate (dis)similarities, or instances where putatively different 

problems may collapse into one.  

To begin with, black box problems fall into one of two kinds, which we call conceptual and 

non-conceptual. Conceptual problems are those which concern the boundaries of the concepts that 

are employed in discussing black boxes. For example, whether simply trying to project concepts 

like “explainability” into a machine learning context can be achieved in a coherent and non-

ambiguous way. Non-conceptual problems, conversely, do not concern the nature, boundaries, 

and coherences of employed concepts themselves, but the broader problems that result from the 

use of these concepts, such as in epistemology. Here, we will restrict our focus only to non-

conceptual problems in the domain of epistemology. However, it is worth bearing in mind that 

further non-conceptual problems arise elsewhere, for example, in ethics or politics. 

5.1. Conceptual problems 

Some black box problems arise from our ordinary concepts being in some way inadequate or 

unclear when projected into machine-learning contexts. Lipton (2018) has acknowledged this 

imprecision over the use of “interpretation”. He observes that “the task of interpretation appears 

underspecified. Papers provide diverse and sometimes non-overlapping motivations for 

interpretability and offer myriad notions of what attributes render models interpretable” (Lipton, 

2018, p. 36). Similarly, Doshi-Velez and Kim (2017) have remarked on the lack of agreement of a 

definition of “interpretability”, and further about how it is to be evaluated. They identify two 

paradigmatic uses of “interpretability” in the literature: interpretability in the context of an 

application and interpretability through a quantitative proxy. Rigorous definitions of both are 

found lacking.  

There have been a few attempts to respond to such conceptual problems. One important 

first step is to construct a clear taxonomy of how problematic concepts like interpretability are 
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used, and what the desiderata and methodologies of interpretability research are. This is the kind 

of project in which Lipton (2018) engages. A second attempt is to refine these concepts, or at least 

conduct the groundwork to facilitate this refinement. Doshi-Velez and Kim (2017) engage in this 

kind of project, laying the groundwork for the subsequent rigorous definition and evaluation of 

interpretability. Authors have also refined the concepts of interpretability and its cognates by 

making fine-grained distinctions within them, adding to their structure. Doshi-Velez and Kim 

(2017) distinguish between local and global interpretability to avoid confusion. The former applies 

to individual predictions and the latter to the entire decision boundary or regression surface. 

Watson and Floridi (2020) make a similar distinction between local (token) and global (type) 

explanations, though in a more formal mathematical context.  

Further work on the representations deployed in black box problems concerns the 

relationship between various roughly synonymous terms: words like “interpretability”, 

“explainability”, “understandability”, “opacity”, and so on. It is of philosophical interest whether 

any or all of these terms overlap in whole or in part. Some commentators take a coarse-grained 

approach to such cognates. Krishnan (2020), for example, takes them as negligibly different, 

arguing that these terms all define one another in a circular fashion that does little to clarify 

imprecise concepts. Others take a more fine-grained approach. Tsamados et al. (2021) emphasise 

a difference between explainability and interpretability. The former applies to experts and non-

experts alike, for example, the expert data scientist practitioner might need to explain the 

mechanics of some algorithm to their non-expert client. In contrast, the latter is restricted to 

experts (interpretability as interpretability-in-principle). Thus, in their view, explainability 

presupposes interpretability but not vice versa.  

5.2 Non-conceptual problems 

Non-conceptual problems and their solutions do not address deficiencies in representations 

themselves. In this section, we will discuss four epistemological problems that have received less 

attention.  

Ratti and López-Rubio (2018) have argued that interpretability is crucial to distil causal 

explanations from the correlations identified by data science techniques, as may be the case in a 

data-rich scientific context. Through the paradigm of mechanistic biological models, they observe 

that for biologists to turn data-scientific correlative models into causal models with explanatory 

power, the correlative models must be interpretable. This stems from a general trade-off: the more 

complex a model is, the less explanatory it is. Since the predictive powers of data-scientific models 

are positively correlated with their complexity, they conclude that there is a genuine 

epistemological black box problem.  

Watson and Floridi (2020) have construed overfitting as a different kind of epistemological 

black box problem, as a kind of algorithmic Gettier case. Overfitting occurs when a machine 

learning model makes correct predictions in the training corpus but fails to predict correctly in 

testing data. They cite the results of Lapushkin et al. (2016), in which pictures of a horse shared a 

subtle, distinctive watermark. The resultant image classifier strongly associated that watermark with 

the label “horse”, and thus could not correctly classify horses in a test set when the watermark was 

absent. This, Watson and Floridi propose, is similar to Gettier cases, where one forms an 

accidentally true belief through unreliable knowledge-generating mechanisms. They argue that a 

framework for interpreting black boxes will reduce overfitting. 
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Krishnan (2020) has remarked on the broader epistemological point that, insofar as 

machine learning algorithms might have a pedagogical dimension (that we can learn from the 

mistakes that algorithms might make), they must be interpretable or understandable for us to learn 

anything at all. Lipton (2018, section 2.4) (citing Kim et al., 2015 and Huysmans et al., 2011) makes 

a similar remark on the informativeness of algorithms. Thus, there are significant epistemic 

benefits to greater algorithmic transparency. 

 The discussion above gives the impression that these problems are substantial and worth 

solving. However, not all commentators agree. There are two main kinds of objections. Some 

concede that black boxes are opaque but deny that the correct way to proceed is to try to explain 

or interpret their inner workings. Instead, they argue that black boxes should be replaced altogether 

by equally capable non-black boxes. Others deny that black boxes are problematic at all. We will 

present both sorts in turn.  

Rudin (2019) has expressed an objection of the first kind. She agrees that the lack of 

interpretability of machine learning algorithms is a problem. However, she takes this not as 

motivation to construct better post hoc interpretability methods, but instead as a reason to reject 

opaque models altogether. She rejects the commonplace assumption that accuracy and 

interpretability are inversely related. In her view, black box problems are to be dissolved (rather 

than solved) by globally transparent models that perform comparably to black box competitors.  

Zerelli et al. (2019) have expressed an objection of the second kind, arguing that the opacity 

of black boxes is not a genuine problem at all. They see the explainability debate as evidence of a 

pernicious double standard. They point out that we do not demand explicit, transparent 

explanations from human judges, doctors, military generals, or bankers. Rather, justification is 

found simply in past reliability: demonstrated and sustained accuracy and success. If we impose 

the same norms on algorithms, then the explainability problem is once again dissolved.  

Along similar lines, Krishnan (2020) has argued that our concerns about interpretability 

and its cognates are unnecessarily inflated. The inherent imprecision of these terms prevents them 

from doing the work required of them: “Interpretability and its cognates are unclear notions… We 

do not yet have a grasp of what concept(s) any technical definitions are supposed to capture — or 

indeed, whether there is any concept of interpretation or interpretability to be technically captured 

at all” (Krishnan, 2020, p. 490). But unlike Doshi-Velez and Kim, Krishnan does not take this as 

motivation to sharpen such concepts for subsequent progress, for worrying about them distracts 

from our real needs. Krishnan contends that most of the de facto motivations for treating 

interpretability as an epistemological problem in the first place are due to other ends (e.g., social, 

political, etc.). For example, algorithmic bias audits use explainability as a means to avoid unethical 

consequences.  

We are sympathetic to Krishnan’s overall project. Many authors uncritically assume that 

black box problems are necessarily important, and epistemological concerns about concepts like 

interpretability are often in practice means to other ends. However, we disagree that these exhaust 

the epistemological utility of such concepts, as the examples from Section 5.2 attest. It might be 

the case that worrying about black box problems is an inefficient and suboptimal use of 

philosophical effort (particularly in the hyper-pragmatic context in which data science methods are 

mostly deployed). However, black box problems qua objects of epistemological interest remain 

relevant to at least some parts of a complete philosophy of data science.  
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6. Normal science in a data-intensive paradigm 

Having so far considered foundational issues in the philosophy of data science, we may now 

broaden the investigation to consider how data science might shape science and the philosophy of 

science in general. Kuhn (1970) famously proposed that science goes through cycles of normality, 

crisis, and ultimately revolution. The normal phase features practitioners engaged in the gnostic 

pursuit of puzzle-solving using the tools of the prevailing paradigm. However, it has recently been 

proposed that the proliferation of data has inaugurated a new era of agnostic science. Here, 

scientific knowledge can be generated, and mathematical and data-scientific methods deployed, 

without any prior knowledge or understanding of phenomena or their interrelations. Kitchin 

(2014) has compiled Gray’s work (found in Hey et al. (2009)) to elucidate the nature of this new 

paradigm and locate it in the history of science (see Table 1). This section explores the extent and 

the implications of agnostic science. 

 

 
Table 1. Scientific paradigms (taken from Kitchen (2014, p. 3), compiled from Hey et al. 2009) 

 

6.1. Agnosticism about the application of mathematics 

One identification of agnosticism is provided by Napoletani et al. (2018), who observe that the de 

facto application of mathematical techniques in science is undergoing an agnostic transformation. 

They remark that classical methods required both the prior understanding of phenomena and 

interconnections between elements in datasets. This is the case, for example, if one wishes to 

model some biological population using differential equations. The nature of the models one uses, 

which parameters to include, and so on, require the scientist to have antecedent knowledge and 

understanding about population biology, multivariate calculus, etc. They also need the scientist to 

know the basic structure of the dataset. Matters are very different in contemporary data analysis. 

There, the scientist can remain to a great extent agnostic or uninformed about any underlying 

scientific theory and the structure of their data. With the tools of contemporary data science, raw 

data can be parsed, and structure exploited more or less automatically.  

After observing that this appears to be an important direction in scientific practice, 

Napoletani et al. raise the second-order question of why mathematics and data have such an 

effective synergy. They claim that a common response is to appeal to a Wignerian-like resignation 

to “unreasonable effectiveness” (Wigner, 1960). On this view, big data has a sort of omnipotence 

that grants unreasonable success to disparate and heterogenous data-scientific tools. However, 

Napoletani et al. reject this response, arguing that the question can be reformulated into the more 

general question of whether the success of mathematical methods in an agnostic normal science is 

due to a similarity between the structure of those methods and the structure of the phenomena 

 

1 

 

Paradigm Nature Form When 

First Experimental  Empiricism; describing natural phenomena pre-Renaissance 

Second Theoretical  Modelling and generalisation pre-computers 

Third Computational  Simulation of complex phenomena pre-Big Data 

Fourth Exploratory  Data-intensive; statistical exploration and 

data mining 

Now 
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themselves captured in data corpora. This is a question that deserves further attention in the 

debate. 

 

6.2. Theory-free science  

While Napoletani et al. observe the increasing possibility of employing mathematical techniques 

agnostically, others have engaged in a more radical debate about whether this agnosticism heralds 

the end of theory choice in science altogether. Anderson (2008) has argued that classical theory-

driven science is becoming obsolete. In his view, the density and plurality of correlations yielded 

by the analysis of extraordinary large amounts of data will become more useful than the causal 

generalisations provided by classical science. Other authors have made similar remarks (Prensky, 

2009; Steadman, 2013). Kitchin (2014) provides a more formal characterisation of this view, which 

he calls a new type of empiricism. Schmidt and Lipson’s (2009) aforementioned reconstruction of 

classical mechanics via machine learning is a provocative example of theory-free science in action. 

Critics object that this is sensationalist, over-optimistic and inflated. Kitchin (2014) 

presents a fourfold attack on Schmidt and Lipson’s (2009) analysis. His first contention is that, as 

much as large data corpora can try to exhaust information in a whole domain, they are nonetheless 

coloured by the technology used in their generation and manipulation, the data ontology in which 

they exist, and the possibility of sampling bias. Indeed, “all data provide oligoptic views of the 

world” (Kitchin, 2014). Second, following Leonelli (2012), he remarks that even the agnostic 

distillation of structure and patterns from data cannot occur in vacuo from all scientific theory. 

Due to their deep embedding in society, scientific theories and training always provide the 

scaffolding around data collection and analysis. Third, insofar as normal science is cumulative, he 

argues that the individual results of data-scientific investigations will always require interpretation 

and framing by scientists who themselves are equipped with knowledge of scientific theories. And 

fourth, if data and the results of its analysis are interpreted free of any background theory, they 

risk becoming fruitless. It will be difficult for them to contribute to any fundamental understanding 

of the nature of phenomena since it “lacks embedding in wider … knowledge” (Kitchin, 2014). 

Frické (2015) presents a similar view against this extreme kind of agnosticism. He objects that one 

needs antecedent theoretical insight to decide which data to provide inductive algorithms in the 

first place. Theory cannot be removed from science, even in a data-driven paradigm. 

We believe that these arguments can be supplemented with two further reasons against 

total agnosticism. The first relates to the critical issue in the philosophy of science of the theory-

ladenness of observation, which holds that what one observes is influenced by one’s theoretical 

and pre-theoretical commitments. This is doubly true for data science, where observations are 

gathered, labelled, and processed according to pre-existing categories and analysis routines. 

Second, it is plausible that Anderson’s claim that correlations will be sufficient for the future of 

science is too naïve a conception of the scientific enterprise. It reminds one of Francis Bacon’s 

untenable view that Nature would speak by itself if adequately interrogated. Agnostic data science 

may indeed generate a predictive science without knowledge of any underlying natural laws or 

causal mechanisms. But prediction is not the only goal of the scientific enterprise — another is to 

explain phenomena through coming to know the underlying causal structure of the world, which 

helps to plan and intervene.  

 Total agnosticism, therefore, seems too extreme. The task then is how to integrate agnostic 

data-scientific practices into scientific methodology. Kitchin (2014) proposes a humbler account 

of this integration. He calls it “data driven science”, and it takes the form of a rebalancing of the 
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three modes of inference discussed in Section 4.1. He argues that contemporary normal science 

has an experimental-deductive dimension in which hypotheses are deduced from more 

fundamental hypotheses and then offered up for confirmation or refutation by experiment. In 

contrast, science in a data-driven paradigm elevates the status of inductive logic in this process of 

hypothesis formation, with experimental hypotheses generated from correlations identified by 

data-scientific methods rather than by deduction from parent hypotheses. However, in contrast to 

the naïve empiricist, Kitchin’s data-driven science does not involve the absolute primacy of 

induction. Theories and their deductions play an essential role, for example, in framing data, 

directing which data-scientific processes to deploy, embedding results in wider knowledge, 

generating causal explanations, and so on. A picture of a new science emerges, involving a shift 

towards a more inductive enterprise, while maintaining many paradigmatic and realistic similarities 

to our current model of normal science.  

There have been further remarks about the introduction of data-scientific methods into 

the social sciences. Lazer et al. (2009) stress the emergence of “computational social science”, and 

Miller (2010) observes the proliferation of data in the context of regional and urban science. In 

both cases, the potential for data to reshape social-scientific practices is acknowledged. However, 

authors have noted the dissimilarities between natural and social sciences, which likely mean that 

the impact of data on the two categories will differ.  

 It is likely that the future of data-intensive science will still be theory-based, though 

sometimes agnostic and data-scientific methods to assist in theory-generation will be used. Since 

Reichenbach (1938), there has been a popular distinction made in the philosophy of science 

between the context of discovery and the context of justification: where a theory came from is 

irrelevant to whether the theory is sound. Consequently, it has become orthodox to consider 

scientific theories only for their own content, independent of their origins. The genealogy of our 

scientific knowledge has, classically, never been of epistemic relevance.  

This distinction may be brought into question with the possibility of agnostic science in a 

data-intensive paradigm. For now, the genealogy of such agnostic knowledge that is generated 

autonomously from data is important: its epistemic standing is supervenient on the tools and 

algorithms of data science that generated it and on the quality of the antecedent data. Thus, the 

reliability of automated inferences depends on the quality of the underlying data and the 

algorithm(s) used to extract information from them. Such questions about theory genealogy are 

perhaps too often ignored by modern philosophies of science that inform “gnostic” paradigms. A 

philosophy of science in a data-intensive paradigm may be forced to address them more directly. 

7. Conclusion 

In this article, we provide a systematic and integrated analysis of the current landscape of the 

epistemology of data science. We have focused on its critical evaluation and identifying and 

characterising some of its pressing or obvious gaps wherein philosophical interest lies. We have 

structured this reconstruction into five areas: descriptive and normative accounts of the 

composition of data science; reflections upon the kind of enquiry that data science is; the nature 

and genealogy of the knowledge that data science produces; “black box” problems; and the nature 

and standing of a new frontier within the philosophy of science that is raised by data science. Each 

of these areas is home to a variety of important issues and active debates, and each area interacts 

with the others. The resulting picture is a rich, interconnected, and flourishing epistemology, which 
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will doubtlessly continue to expand as both philosophical and technological progress is made, and 

possibly influence other interconnected views about the nature of science and its foundations. 

 

 
Appendix: Details of literature search 
The literature search for the present work was conducted as described by the following Table 2: 

 

 
Table 2. Scheme of literature search  

 

Literature was restricted exclusively to papers written in English. The impact of this choice on the 

analysis is likely minimal as we do not expect a considerable geographic, cultural, or linguistic 

variation in foundational questions in data science, given the global, highly interdisciplinary, and 

contemporary nature of the discipline. This is, perhaps, unlike other philosophical issues (e.g., 

those ethical), which may be more sensitive to such variation in genealogy or circumstance.  
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Figure 3. Table of search queries 
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