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1 Introduction 
 
The philosophy of probability is a “hot field” (Eagle [2006], p. 773) where the different 
philosophical arguments are sharply contrasted. In spite of this, there is a remarkable 
consensus about the mathematical aspects of probability. The philosophical concept of 
probability has indeed a mathematical hallmark that echoes the success of probability theory. 
Undeniably, mathematics is the background of most current philosophical debates in this 
field, but its role as such has not yet been conceptualised. In this paper, we recount the 
evolution of the theory of probability from Pascal and Fermat to Kolmogorov in order to 
analyse the evolving status of the mathematical concept of probability.  This area is  often 
overlooked by the current interpretations of probability.  
 
Language tells us that probability can describe very different events. Some authors (e.g., van 
Brakel [1976], pp. 120-1 or Kneale [1949], pp. 1-2) present a profusion of sentences that 
illustrate the different meanings of the term “probability”:  
 

- It will probably rain tomorrow.  
- Yesterday, it probably rained in Paris.  
- It is probably raining in London.  
- The probability is weak that a twenty-year-old man dies within a year. 
- The probability that a twenty-year-old man dies within a year is statistically 0,004. 
- My game opponent is winning so much that he is probably cheating. 
- This statue probably represents Cromwell.  
- The probability that the speed of a hydrogen molecule happens to be between v and w 

is p.  
- The probability to win at the lottery is virtually zero.  
- The probability that a random chosen integer is even is 1/2.  
- The probability to get a double six with two fair dices is 1/36. 
- The probability to get a double six with two particular dices is 1/36. 

 
 
Clearly, this diversity in the use of probabilistic terms is unchallenged in everyday language: 
Probability relates to the past, the present or the future, to single or collective events, it is 
objective or subjective, ex ante or ex post, numerical or not, and it depends on our knowledge, 
or, on our ignorance or indeed our knowledge of our ignorance. Gillies ([2000], p. 2) observes 
that most philosophers of probability agree that the various interpretations of probability can 
be divided into two broad groups, without agreeing on how these groups should be named. 
Yet, in philosophy, whatever the terminology, probability boils down to a single alternative: It 
is either epistemic or objective, in a physical non-platonic sense (Howson [1995]). 
Admittedly, this distinction is not absolute but it remains of crucial importance for 
understanding the various philosophical theories of probability, which all originate in one or 
the other aspect of probability (see Gillies [2000]; Galavotti [2005];  Mellor [2005]).  
 
From a mathematical perspective, the dual character of probability – the “Janus-face” of 
probability, as Hacking ([1975], p. 12) refers to it – is also blatant and it is best characterized 
as a priori versus a posteriori. The alternative that has lead to the emergence of the 
philosophy of probability may not be the same as the one that underpinned the parallel 
mathematical developments. This nuance implies that the mathematical and  philosophical 
concepts are different. However,  the nature of this difference remains to be analysed. In the 
rest of the paper we examine more precisely, how the mathematical concept of probability 
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tackles the difficult question of the ultimate nature of probability, and the resulting 
consequences on the relations between the theory, the applications and the philosophy of 
probability. 
 
In the literature, there are different perspectives on the relation between mathematics and the 
concept of probability. Occasionally, probability is deemed ‘to occupy a peculiar position 
between the purely mathematical and the obviously scientific’, the subject matter of the 
theory being ‘among other things, finite class frequencies, rational degree of belief, limiting 
relative frequencies, propensities, degrees of logical confirmation and measure on abstract 
spaces, to name only some of the most important’ (Humphreys [1985], p.568). From that 
angle, the mathematical concept is just another interpretation. More often, the mathematics is 
implicitly assumed and only referred to as an empty structure waiting for a philosophical 
interpretation, as it happens paradigmatically (and pragmatically!) in the subjective theory. 
Some authors also look for the philosophical interpretation that underlies the mathematical 
theory (e.g., Shafer and Vovk [2006]). However, the mathematical concept of probability is 
barely considered, and the way it differs from its philosophical counterpart is not explicitly 
dealt with.  
 
We therefore aim at clarifying the status of the mathematical concept of probability regarding 
philosophical considerations and emphasize the contrast between, a fruitful and consensual 
mathematical view, on the one hand, and, its highly controversial epistemological counterpart, 
on the other.  
 
Section 2 presents the evolution of the mathematical concept of probability from Pascal and 
Fermat to Laplace. Special emphasis is placed on the various connections between the a priori 
and the a posteriori definitions of probability and on the contribution of Bernoulli’s theorem. 
Section 3 displays the divergences between Kolmogorov’s and von Mises’s axiomatic 
approaches and the reasons for Kolmogorov’s dominance. Section 4 relates this conceptual 
evolution to the philosophical concept of probability. It suggests that probability theory has 
the peculiarity of requiring transition hypotheses or bridging principles that match the 
structure of practical problems and that of the abstract theory. Section 5 provides conclusions. 
 

 
2 From Pascal to Laplace 

 
The historical origin of probability calculus traces back to the correspondence between Pascal 
and Fermat in 16541. These two mathematicians analysed some gambling problems according 
to a general principle: the odds of a game depend on the total number of possible alternatives, 
which divided into favourable and unfavourable outcomes. In order to count these different 
outcomes in a practical way, Pascal and Fermat developed what is known today as 
combinatorial analysis – with Pascal triangle at its centre.  
 
After Pascal and Fermat, some mathematicians like Huygens, Wallis or Schooten further 
developed the study of gambling games by means of combinatorial calculus, which lead to the 
advent of Laplace’s theory in the 18th century.  
 

                                                 
1 Concededly, there were other predecessors such as Cardan, Kepler or Galileo, but most authors agree on the 
fact that the work of these scientists did not lead to the systematic study and the development of the 
mathematical theory of probability (see Todhunter, 1865, Hacking, 1975, Szafarz, 1985, Gillies, 2000). 
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Yet, to understand fully the import of the mathematical concept of probability, another 
empirically grounded standpoint, must be taken into consideration: the statistical approach, 
driven by material motives. Statistics about births and deaths, based on population registers, 
were collected by scientists in mortality tables, so as to measure the damage caused by the 
plague, death probabilities at each age, life annuities, etc. 
 
This mathematically naïve research provided a first non-idealized field of application for the 
nascent theory of probability. Indeed, a “demographic” approach to probability necessarily 
implies the need to count empirically a certain number of events in order to derive statistics. 
On the contrary, the study of gambling games does not need to refer to any empirical 
experience for what matters are completely idealized situations.  
 
Interestingly, Pascal’s works, Traité du triangle arithmétique or Des combinaisons, never 
explicitly mentions the term ‘probability’, speaking instead of ‘chance’ or ‘hazard’. After 
Pascal, probabilistic terminology became increasingly rooted in both mathematical and 
demographical research. There was no explicit preliminary to the various theoretical and 
empirical results, even if two definitions were implicitly used. On the one hand, the a priori 
probability referred to the ratio (the fraction) of the number of favourable outcomes to the 
total number of possible outcomes, as long as these are equi-possible. This definition was 
latent from the time of Pascal and Fermat, but Laplace first expressed it unequivocally. 
D’Alembert, in an article of the 1754 Encyclopedia, ‘Croix ou Pile’, firmly criticized this 
formulation, which was already apparent in de Moivre’s work in 1718, but only as a property 
of the probability concept, itself undefined. On the other hand, the a posteriori probability of 
an event referred to the ratio of the number of realizations to the total number of observations.  
 
At first sight, these definitions each have their respective domains of application and they do 
not share more than a syntactical similitude through the term ‘probability’. This separation 
would have been effective only if theory had been limited to the study of idealized situations 
(such as gambling games) and only if empirical measures had not been concurrently 
extrapolated beyond observation. However, this was not the case.  In fact quite the reverse 
situation held. As a result, confusion emerged between both definitions, reinforced by the 
introduction of probabilistic reasoning in other fields such as astronomy or sociology. Both 
theorists and practitioners then began to search for a unified concept of probability.  
 
This mission was accomplished in 1713 by the theoretician, Jacques Bernoulli, in a 
posthumous unfinished work, Ars Conjectandi. Bernoulli provided a theorem (the “law of 
large numbers”, as Poisson later called it) that specifies the relation between both approaches. 
The law of large numbers states the terms in which the a posteriori probability can be 
considered as an approximation of the a priori probability2. These terms are clear: firstly, the 
considered event must intrinsically have an a priori probability; secondly, the distance 
between the observed frequency and this a priori probability is itself expressed as an a priori 
probability.  
 
The legitimacy of the theorem is precisely delimited. In the case of gambling games, it offers 
a theoretical justification of the link between a priori probabilities and the players’ 
observations of events. Nevertheless, the rapid spreading of the mathematical theory of 
probability after the publication of Ars Conjectandi is to some extent attributable to what is 
                                                 
2 In modern mathematical language, one would say that the law is about convergence in probability of the 
relative frequency to the a priori probability as the number of trials tends to infinity, but a formulation in terms 
of limit contravenes the author’s original intentions. 
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called the inverse use of Bernoulli’s theorem. This inverse use, or misuse, consists of starting 
from the thesis – proximity between the a priori and a posteriori probabilities – and deducing 
the hypothesis – the value of the a priori probability – by extrapolation with respect to 
experimental measurements. This inverse use was highly successful among mathematicians 
for it made it possible to apply combinatorial calculus in much broader fields than the study of 
gambling games. This move can also be seen as a appropriation of practice by theory: not 
only does the theorem state that relative frequency is an approximation of the a priori 
probability, it also allows its inverse use where theoretical results are applied to events where 
the total number of equi-possible outcomes cannot be evaluated.    
 
Bernoulli’s theorem constituted a major historical step. Indeed, it reconciled the different 
meanings of probability within a unified mathematical structure (see Shafer [1996]). Further, 
the inverse use of the theorem considerably enlarged the field of applications of probability 
theory to all repeatable events. This sweeping process started from Pascal and ended up with 
Laplace. 
 
Accordingly, in the 18th century, many theoretical works – sometimes combining 
mathematical improvements and metaphysical considerations – developed combinatorial 
methods in game theory and their applications. Besides Bernoulli, the works of de Moivre, 
Euler, Lagrange, Condorcet, etc., extended the early contributions of Pascal and Fermat while 
expanding the application field to the case of infinite equi-possible outcomes. 
 
The Théorie analytique des probabilities of Laplace published in 1812 represents the 
highlight of classical probability theory. For a long time, it embodied the most detailed and 
complete mathematical and practical exposition. The introduction of the book – later 
published independently as the Essai philosophique sur les probabilités – presents the 
author’s philosophical considerations. Laplace defines probability in terms of equi-possible 
outcomes and claims that the probabilistic view of the world is only due to our human 
condition: 
 

La théorie des hasards consiste à réduire tous les événements d’un même genre à un 
certain nombre de cas également possibles, c’est-à-dire tels que nous soyons également 
indécis sur leur existence, et à déterminer le nombre de cas favorables à l’événement 
dont on cherche la probabilité (Laplace [1840], p. 7). 

 
In this framework, equi-possibility means equi-ignorance and the concept of probability is 
extended to all imaginable events. Gambling games become a simple example of application 
to be considered among others. Nevertheless, such games are frequently3 mentioned in the 
first part of the book, which is dedicated to the principles. Other practical cases rely on the 
inverse use of Bernoulli’s theorem or even on very different considerations, where it is 
impossible to determine a priori equi-possible outcomes (Laplace, 1840, p. 158). In these 
situations, Laplace appeals to personal intuition rather than to mathematical rigor. The 
ambiguity of the term “probability” is critical to Laplace’s process for it enabled him to leave 
out the nature of the probability that is referred to – a priori, a posteriori or else. This 
fundamental imprecision was later noted by von Mises ([1938], p. 61). 
 

                                                 
3 The game “croix ou pile” appears at pages 12, 16, 18, 19, 23 and 25 of Laplace (1840) and other games 
(lottery, dices, urns) at pages 7, 9, 13, 15, 19 and 20.  
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From Pascal to Laplace, probability theory experienced a constant expansion of its fields of 
application: first, gambling games with Pascal and Fermat, then repeatable events, thanks to 
the inverse use of Bernoulli’s theorem, and finally, according to Laplace, all phenomena that 
science can study. The following theoreticians not only picked out Laplace’s formal errors, 
but also aspired to strict delimitation of the range of probabilistic events. This ambition was 
met by the axiomatization process of probability theory. 
 
 

3 Competing Axiomatic theories 
 
Since the mid-19th century, several mathematicians had been denouncing the pitfalls of 
Laplace’s formalisation. Firstly, the a priori nature of his definition confines the legitimate 
sphere of application to idealized conditions. Secondly, a definition based on the notion of 
equi-possibility is circular because Laplace appears to use with indifference the terms “equi-
possible” and “equi-probable”. This criticism was prominently formulated by Reichenbach 
([1949], p.353):  
 

Some authors present the argument in a disguise provided by the concept of 
equipossibility: cases that satisfy the principle of “no reason to the contrary” are said to 
be equipossible and therefore equiprobable. This addition certainly does not improve the 
argument, even if it originates with a mathematician as eminent as Laplace, since it 
obviously represents a vicious circle. Equipossible is equivalent to equiprobable. […] 
Even if the degree of probability can be reduced to equiprobability, the problem is only 
shifted to this concept. All the difficulties of the so-called a priori determination of 
probability therefore, centre on this issue. 

 
 
However, equi-possibility was not unanimously rejected. For example, Borel ([1909], p. 16) 
argues that such circularity is not vicious and that the tautological nature of the term “equi-
possibility” does not threaten the definition of probability. Hacking ([1971]) suggests that the 
confusion originates in the dual nature of probability, which can be objective (physical) or 
epistemic. The equivocal character of the definition is precisely necessary in the sense that it 
overlaps with the ambiguous character of probability. Similarly, the axiomatization process of 
probability theory ended up avoiding the choice of a particular interpretation of probability. 
 
Another objection to Laplace’s theory is that the mere formation of equi-possible cases gives 
rise to problems. According to Laplace, equi-possible outcomes are such that we are in the 
same state of ignorance concerning their realization. This principle traces back to Pascal, who 
already remarked that ‘hazard is equal’ (‘Le hasard est égal’, cited by du Pasquier   1926]). 
But if probability depends on knowledge, it must be subjective to some extent, as the 
subjectivists later argued (Ramsey [1931]; de Finetti [1937], and more recently, Jeffrey 
[2004]).  
 
Additionally, as Kneale ([1949]) repeatedly observes, Laplace’s definition requires that we 
determine with precision the degree of ignorance about an event that we ignore, which is 
absurd. This conundrum provides the rationale that underlies the various paradoxes of the 
principle of indifference, and which seriously undermine the logical theory advocated by 
Keynes ([1921]) and Carnap ([1950]), among others (see Bertrand [1888]; Gillies [2000]).  
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Facing the drawbacks of classical theory, Hilbert ([1902]) insisted on the necessity of an 
axiomatization of probability theory. At the same time, a broad Anglo-Saxon empiricist 
“biometrical” stream was developing, devoted to the elaboration of proper statistical 
techniques in data analysis. Biometricians were primarily guided by experimental 
preoccupations (in biology, for example). Even if they did not break the connection between 
probability theory and statistical applications, a serious shift appeared between their technical 
considerations and the existing theoretical foundations of probablity.  
 
A new paradigm for probability theory became necessary. Research in that direction ended up 
in two competing axiomatic systems. One, elaborated by von Mises and enhanced by Wald, 
was intrinsically descriptive and empirically based, whereas the other, due to Kolmogorov (in 
the line of Borel’s and Frechet’s works), was exclusively mathematical by nature.  
 
The theory presented by von Mises ([1919]) leans on the concept of “collective”, defined by 
two axioms. Any series of observations of the same event – or of a mass phenomenon – is a 
collective if:  
 

I. The relative frequency of that event has a limit value.  
II. This limit value remains unchanged if the initial series is replaced by any sub 

series.   
 
The second axiom enabled von Mises to get rid of deterministic phenomena. It is a definition 
of randomness, which was later restricted by Wald4 ([1937]) to a countable number of sub 
series for consistency. 

 
Starting from the notion of collective, von Mises defines the probability of an event with 
respect to a collective as the fixed limit of the relative frequency of this event within the 
collective. This probability is a posteriori in the sense that it comes out of an (infinite) 
number of experiences.  

 
Von Mises’ theory was forcefully criticized; in particular during the 1938 colloquium chaired 
by Fréchet (see Szafarz [1984]). The modification by Wald of the second axiom contributed 
to a theoretical consolidation as well as to a putting in perspective of the concept of 
probability (Ville [1939]). As a consequence, a significant part of the empirical roots of von 
Mises’ approach was sacrificed for mathematical rigour.   
 
Furthermore, the first axiom postulates the existence of a fixed limit for the relative 
frequency, which looks logically embarrassing in some respects. What is the meaning of an 
infinite sequence of observations regarding the fact that experimental observation is per se 
finite? How should such theoretical results be applied empirically? 
 
In the 17th century, practitioners like Graunt, van Hudden, de Witt or Halley were already 
using a definition of probability in terms of the observed relative frequency. This approach 
had the virtue of tackling directly empirical reality. Nevertheless, such a direct and empirical 
identification destroyed any possibility to establish a proper theory of probability. As a matter 
of fact, von Mises was well aware of the difficulty to build an axiomatic system on observed 

                                                 
4 Wald’s theory includes as particular cases other axiomatic systems due to Popper, Copeland and Reichenbach. 
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relative frequencies. Therefore, he proposed an idealization in the form of a limit. Wishing to 
maintain of sound empirical ground5, he ended up with a bald mathematical theory.  
 
Aiming at offering to practitioner a tailor-made axiomatic system by using their language 
(“sequence of observations”), von Mises found himself in a vicious circle. His system 
prevents dissociating applications from mathematical formalization because any set of 
observations de facto constitutes the first elements of an infinite series (a collective). 
Paradoxically, in this setting, the empiricist appears intrinsically dependent on the theory. 
Moreover, at that time, well-developed statistical research provided accurate techniques for 
descriptive data analysis. As von Mises concedes, these considerations do not need any 
axiomatic support. So, he claims to interpret the statistician’s preliminary results in the light 
of his own theory while staying true to the idea that statistics is a well-delimited autonomous 
field (von Mises [1957], p. 167). For all these reasons, practitioners did not take much interest 
in the frequentist axiomatization.  
 
In addition, since the early 20th century there was a mathematical alternative to von Mises’ 
theory. From Borel and Fréchet to Kolmogorov, a powerful probability theory was developed 
along the line of the (mathematical) measure theory, able to address a large range of 
probabilistic issues and containing Laplace’s theory as a particular case (Barone and Novikov 
[1978]; Shafer and Vovk [2006]). Because of its frequentist foundations, von Mises and 
Wald’s theory, on the contrary, could not encompass their classical definition. Indeed, in their 
setting any a priori structure consideration is prohibited, and only an infinite sequence of 
observations could justify that, for instance, when throwing a dice the probability to get a 6 is 
1/6.  
 
Beyond the fact that an infinite sequence is pure idealization, frequentist probability 
exclusively applies to trials repeatable ad infinitum in identical conditions. Moreover, if the 
frequency does not converge – which is possible – one cannot attribute a probability to the 
event. Several mathematicians mentioned this limitation regarding the applicability of the 
frequentist theory, as a consequence of the first axiom: 
 

 Nul probabiliste ne se refusera à admettre que les collectifs définis par M. de Mises sont 
des suites particulièrement intéressantes, qui méritent à ce titre d’attirer très 
particulièrement l’attention. De même dans la théorie des fonctions, il est bien légitime 
de s’intéresser surtout aux fonctions dérivables pourvu qu’on ne suppose pas que toute 
fonction est dérivable (Fréchet [1938], p. 27).  

 
Another drawback of von Mises’ system is that it only takes into account ordered 
observations. But there are always different ways to order one set. Therefore, a given set of 
observations, ordered in different ways, may lead to different collectives. Kolmogorov’s 
theory does not suffer from any of these problems. 
 
In summary, von Mises’ theory was neither descriptive enough for the statisticians, nor 
powerful enough for the mathematicians. For the practitioners, the combination of 
mathematical convergence and physical randomness came out onto the impossibility to test 
experimentally the theoretical results: these cannot be verified a priori, because of axiom I, 
and nor can they be verified a posteriori, because of axiom II. From a theoretical perspective, 
von Mises’ axiomatic system, though coherent, had to face a rival which was in the line of 
                                                 
5 His goal was to elevate probability theory to the level of theoretical physics, as testified by his numerous 
references to rational mechanics. 
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Laplace while scrupulously respecting the logico-mathematical standards and which, in 
addition, came within the scope of a more general formalism. 
 
In 1933, Kolmogorov came up with a fully axiomatic theory in which a probability is simply a 
normalized measure. This theory reduces, as a particular case, to Laplace’s definitions and 
theorems. It can be seen, according to Fréchet ([1938], p.54) as a ‘modernized classical 
theory’. However, Kolmogorov’s axioms do not have the same disadvantages as Laplace’s 
theory concerning, for example, the notion of equi-possible outcomes. Quite the opposite, the 
analytical nature of Kolmogorov’s formalism goes beyond any interpretation.  
 
From a theoretical point of view, Kolmogorov’s system was highly satisfactory. It was not 
only a generalization of the classical theory, but also the source of numerous compelling 
theorems, which were behind the notions of conditional probability, probability distribution, 
and stochastic process.  
 
For a long time, statistics remained the leading sphere of application for probability theory. 
Yet, progressively, Kolmogorov’s formalism entered more fields, including quantum theory 
and economics. Probability theory is now part of many different disciplines, and its status 
within these has been the subject of important research for the philosophy of probability – 
consider for example the difference between the concept of probability in quantum physics 
and in mathematical finance (see De Scheemaekere [2007]). Kolmogorov’s mathematical 
probability has exhibited a remarkable robustness with regard to this enlarged realm of 
application. This  contributed to its success. 
 
However, from a philosophical viewpoint, the relation between this formalism and reality is 
questionable. Most textbooks on the theory of probability refer to one or the other concept of 
probability – a priori or a posteriori – so as to illustrate the reasonableness of the initial 
axioms. Kolmogorov ([1950], pp. 3-5) himself mentions von Mises’ approach as a possible 
justification for the link between his theory and reality.  
 
Waismann ([1930]) criticizes von Mises for completely misjudging the role of idealization in 
taking an empirical sequence as a mathematical series and an observed relative frequency as 
an ideal infinite limit. Unlike von Mises, Kolmogorov does not misjudge the role of 
idealization, as he establishes a theory, which relies on an axiomatic system that is ‘sovereign 
from a logical perspective and free from any contingency’ (Fréchet [1938], p. 45). On the 
contrary, Kolmogorv’s definition is purely mathematical and, hence, independent of any 
interpretation. In his formalism, empirical verification cannot jeopardize the initial axioms; it 
can only question the hypotheses (such as independence of the observations) that are assumed 
by the practitioner so that he can draw on theoretical results.   
 
In brief, Kolmogorov’s theory is purely mathematical and it is consequently devoid of 
immediate descriptive pretensions6. As such, it is also beyond the reach of empirical 
objections and philosophical interpretations. While providing for a large scope of 
applications, it is fully compatible with modern mathematics, mainly algebra and calculus. 

                                                 
6 Interestingly, von Mises stigmatized the rival theory as follows: ‘Il s’agit d’une sorte de probabilités purement 
mathématiques, c’est-à-dire des probabilités dont l’objet n’appartient pas au monde physique […] mais à 
l’arithmétique même’. 
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Together with the criticisms vis-à-vis von Mises’s theory, this adequacy explains the success7 
of Kolmogorov’s approach and the subsequent abandoning of the frequentist formalism.  
 
 

4 Mathematical and philosophical probability 
 
In this section, we analyse the difference between the mathematical and the philosophical 
concepts of probability in the light of the relation between theory and practice. 
 
In experimental sciences, theoretical results can be tested empirically. This is not the case for 
probability theory. Indeed, experiments never investigate the same object as the theory. In 
other terms, probability theory is particular in the sense that applying it does not mean testing 
it. The practitioner’s main goal is to discover bridging principles that enable him to appeal to 
theoretical results; it is not used to test an abstract axiomatic system. As stated by Shafer 
([1996], p. 22): 
 

 We should give back to practical problems their own logic, and we should see the task 
of application [in probability] as one of bridging, in any of many different ways, the 
logic of practical problems and the logic of the abstract theory.  

 
Originally, two different concepts of probability coexisted – one a priori and the other a 
posteriori. Contemporary probability theory is inspired by the first one and is formulated in a 
very general mathematical framework, independent of any practical or philosophical 
interpretation. In order to bridge the gap between theory and practice, one must consequently 
make “transition” hypotheses with respect to the initial axioms, so as to apply theoretical 
results. In this perspective, only these transitions hypotheses can be empirically refuted, not 
the axioms themselves. Moreover, this necessity for filling the gap applies not only to 
statistics and frequency-related applications but also to any field making use of probability 
theory, such as financial valuation and quantum physics: 
 

New applications of probability are stretching the received understandings and making 
increasingly awkward the inability of these understandings to deal with the quality of 
application (Shafer [1996], pp. 23-4). 

 
 
The central issue here is the relation between mathematical probability and its different 
philosophical counterparts. Actually, Kolmogorov’s definition is to be viewed as an empty 
structure open to philosophical conceptualisation. Potential interpretations are multiple: 
frequentist, logical, subjective or propensity. As common language does not provide clear 
delimitation of what probability ultimately means, an explicit semantic bridge is required. 
Therefore, transition hypotheses are key concepts concerning not only the relation between 
probability theory and practice but also concerning each philosophical interpretation which, in 
its own way, relates to the abstract structure of the mathematical theory.  
 
The specificity of a given philosophical theory of probability originates from the bridge 
linking it to the mathematical definition. In the subjective theory, the correspondence 
principle with the mathematical theory is provided by the notion of coherence. In a more 
loose way, the logical theory relates to probability theory via the concept of rationality. The 
                                                 
7 The success was, however, not immediate. On the reception and acceptance of Kolmogorov’s Grundbegriffe, 
see Shafer and Vovk ([2005]).   
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propension theory (advocated by Popper [1959] and Mellor [2005]) and the frequency theory 
of probability link with mathematical abstractions through the idea of propension and relative 
frequency, respectively. These connections are sometimes tight and rigorous, sometimes more 
intuitive, depending on the philosophy on which they are founded.   
 
Philosophical theories of probability are therefore frequently envisaged as foundational with 
respect to the mathematical theory. Simultaneously, the concept of probability underlying 
most philosophical analysis obeys implicitly Kolmogorov’s mathematical concept. Hence, for 
most philosophers avoid this circularity probability theory is treated as an issue in the 
foundations of statistics8. Therefore, in this treatment they miss the need for transition 
hypotheses that relate the mathematical structures to practical and philosophical matters. 
 
 

5 Conclusions 
 
Two fundamental movements characterize the history of probability. Firstly, its field of 
application expanded from Pascal’s and Fermat’s gambling games to Laplace’s all-including 
phenomena. Secondly, and consequently, an axiomatization process became necessary. Two 
radically different systems were proposed. One, due to von Mises, was an attempt to define 
randomness from a frequentist point of view. The other, developed by Kolmogorov, stemmed 
from a pure mathematical perspective: it came up as a particular case of measure theory.  
 
Paradoxically, the absence of any direct link to reality provided Kolmogorov’s axiomatization 
supremacy over its competitor within the mathematical world as well as establishing this 
approach as the one and only reference in all fields of application of probability theory. By 
deliberately refusing to grapple with non-formal considerations, Kolmogorov avoided the 
delicate question of the ultimate signification of probability. 
 
The history of probability theory demonstrates how researchers struggled to get round the 
semantics of the concept of probability: is it a priori or a posteriori? Each of them came to 
grip with the problem in their own way – except, maybe, Pascal and Fermat, who were not 
explicitly dealing with the notion of probability. Yet, all the definitions can be seriously 
criticized, with the exception of Kolmogorov’s.  
 
In that perspective, probability theory has a special status among scientific disciplines. It 
benefits from a large spectrum of real-life applications but, unlike other experimental 
sciences, it cannot be directly tested empirically. It does relate to practical matters by means 
of transition hypotheses that match the structure of practical problems in relation to the 
abstract theory. Similarly, philosophical interpretations of probability each relate to the 
mathematical theory via specific bridging principles, such as rationality, coherence, 
propension, and so on. As such, the mathematical concept of probability is beyond any 
practical or philosophical interpretation. The task of applying it practically or interpreting it 
philosophically by means of bridging principles lies beyond the mathematicians’ scope. 
 
Kolmogorov’s probability theory can thus be seen as the optimal solution a mathematician 
can provide to formalize a complex and vaguely delimited object. Whether such phenomenon 
is observable in other fields of knowledge remains an open question. In any field, 
mathematicians are driven to more abstraction by the nature of their discipline while 
                                                 
8 Out of five recent books on the introduction to the philosophy of probability  (Gillies [2000]; Hacking [2001]; 
Jeffrey [2004]; Galavotti [2005]; Mellor [2005]), only the last one provides a global philosophical perspective. 
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practitioners call for concrete application possibilities. The resulting trade-off can turn in 
favour of either side, but a situation without any trade-off, as regards probability theory, is 
certainly rare.  
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