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1 Introduction

Recently, philosophy of mathematics has broadened the scope of its inquiry, by
paying closer attention to the actual work of mathematicians belonging to particular
scientific communities. Accordingly, it is common today to refer to a shift in the
philosophy of mathematics towards ‘the philosophy of mathematical practice’
(Mancosu 2008). In this perspective, mathematics is not seen as a timeless science
dealing with immutable truths, but as a human enterprise embedded in history. In
line with this practice-based approach, mathematics, as well as any other human
enterprise, is not immutable but subject to change: refutations are part of it as well
as proofs.1 This point of view on mathematics has developed out of a dissatisfaction
with the approaches typical of the philosophy of mathematics of the 20th century,
mainly focusing on formal arguments and logical issues and whose principal aim
was to provide mathematics with solid foundations. According to this view, phi-
losophy of mathematics should not account for the production of mathematical
knowledge but its sole concern is its ‘final’ justification. It is a logic-based
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philosophy of mathematics, devoted to the analysis of rigorous argumentation and
to the definition of appropriate axiomatic systems.

To illustrate the limits of such an approach, Corfield has introduced the term
“foundational filter” to describe how the exclusive focus on foundational issues has
obscured many interesting features of the practice of mathematics: “But it is an
unhappy idea. Not only does the foundational filter fail to detect the pulse of
contemporary mathematics, it also screens off the past to us as not-yet-achieved”
(Corfield 2003 p. 8). In Corfield’s view, behind all forms of neo-logicism there is
the (unhappy) assumption that such a filter must be applied if the aim is to see
mathematics through the lens of philosophy. As a consequence, philosophy of
mathematics has missed what should be one of its main targets, that is, contem-
porary mathematics as well as the history of mathematics. The task of the
philosopher today should thus be precisely to dismantle the foundational filter.
Once this is done, then mathematics appears as a complex object of research.
Moreover, the way is paved for scholars who want to consider not only Western
mathematics but also other forms of mathematics and mathematical cultures.2

In 2005 and 2008, Mancosu edited two volumes collecting essays that would
challenge the logic-based approach to mathematics (Mancosu 2008; Mancosu et al.
2005). In his Introduction to the 2008 volume, he pointed out how philosophy of
mathematics calls for a renovation: Lakatos was maybe the first scholar to react to
the idea that philosophy of mathematics had to be considered as a foundation for
mathematics, and he was followed by other “maverick” philosophers, such as
Kitcher with his naturalism (Kitcher 1984).3 According to Mancosu, the logic-based
and the practice-based philosophies of mathematics are not opposed but comple-
mentary, the second leading to new analyses of the practice of mathematics through
case studies.

However, as Larvor has pointed out in a recent article, the philosophy of
mathematical practice

remains somewhat under-theorized. Answers to the questions ‘What is the philosophy of
mathematical practice?’ and ‘How does one do it?’ do not usually go far beyond the
aspiration to study ‘actual’ mathematical activity and some now familiar complaints about
other, better-established approaches to the philosophy of mathematics that employ formal
models of mathematics and mathematical argument. […] It is not yet clear how the his-
torical, sociological and psychological studies presented at conferences on the philosophy
of mathematical practice can generate a significant challenge to the approaches that assume
that formal logic can provide a philosophically adequate model of mathematical proof.
(Larvor 2012, p. 2)

Larvor identifies here two conceptual gaps concerning the philosophy of
mathematical practice. First, it is not clear what a philosophy of mathematical
practice could be and how it is supposed to be pursued. If we assume that the object

2See for reference the works of Chemla (2005) or Høyrup (2005).
3The term “maverick” is taken from the Introduction of Aspray and Kitcher (1988).
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of such an approach is the work of the mathematicians, what kind of object is it?
Which activities, among the many mathematicians are involved in everyday should
be considered as relevant? By which methods should they be studied? Second, it
should be specified how historical, sociological and psychological investigations
generate a significant challenge to the standard view that sees formal logic as an
adequate model of mathematical proof.

We share Larvor’s worries, and in this article we aim to give a tentative reply to
both of them. Our first goal is to show how a new methodological approach to
mathematics, based on the consideration of specific features of mathematical
practice, will make interesting philosophical problems emerge from the consider-
ation of the heterogeneous work of mathematicians. We will specify some possible
objects of inquiry for a philosophy of mathematical practice. Considering these
elements simultaneously would allow us to define the philosophy of mathematical
practice as the analysis of the mathematicians’ use of various available represen-
tations. This move would answer to the first conceptual gap that Larvor identifies.
Moreover, we will also try to challenge the model of formal logic as adequate to
account for proof in the particular case of topology and hint at a different one. We
will claim that the practice of proving in topology is based on envisioning trans-
formations on the appropriate representations of the objects of topology and
manipulating them. In our view, this model for proof is different from the one
proposed by the logic-based approach and far more consistent with the peculiarity
of this field. As a case study, we will present the proof of Alexander’s theorem, an
important result in knot theory, which states that any link can be transformed in a
braid.4 The analysis of this case study will focus on the role played by the repre-
sentations and on the cognitive work with and on them: justifications will be based
essentially on visualizations and the control for rigor will be given by local criteria
of validity established within the practice.

In Sect. 2, we will present the elements of the practice that in our view are the
possible targets for the philosophy of mathematical practice. In Sect. 3, we will first
introduce the main mathematical tools and then give a proof of Alexander’s the-
orem. In Sect. 4, we will discuss the case study, and more generally the issue of
what counts as a proof in topology. Finally, in Sect. 5, we will sum up our con-
clusion and hint at possible ways to further develop our research.

4Larvor mentions Alexander’s theorem as an example of informal argument (Larvor 2012, p. 727),
referring to Jones’ presentation (Jones 1998, pp. 209–213). We will expand on that and present the
case in detail relating it to our general framework. Elsewhere, we have defended an analogous
approach to diagrammatic reasoning in mathematics by offering other case studies such as knot
theory (De Toffoli and Giardino 2014) and low-dimensional topology (De Toffoli and Giardino
2015).
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2 Defining the Target of the Philosophy of Mathematical
Practice

In order to specify the object of inquiry of the philosophy of mathematical practice,
we will identify the following three key possible targets. In our view, the philos-
ophy of the mathematical practice should consider: (1) the collective dimension of
the mathematical practice; (2) the influence on the mathematical practice of
pre-existing cognitive capacities that get enhanced by expertise; and (3) the use of
heterogeneous material representations. In the following, we will first discuss these
three features separately, and then connect them to the notion of “permissible
action”, which has been proposed by Larvor (2012) as a new way of looking at
inferences in the more general context of argumentation theory. This notion will be
helpful to connect these three elements and better define the goal of our research.

2.1 The Collective Dimension of the Mathematical Practice

The first element is an apparently trivial one: the consideration of the practice of
mathematics refers to a specific ‘mathematical culture’, which has a collective
dimension.5 To analyze the work of the mathematicians implies in particular to look
at the representational practices they share and the criteria of validity they adopt.
Surprisingly enough, contrary to what has occurred in the philosophy of natural
sciences, not much has been done to understand the collaborative aspects of the
mathematical enterprise. The romantic and popular image of the mathematician as
genius solving problems and proving theorems in isolation from the rest of the
world does not reflect the actual practices of mathematics.6 Mathematicians do not
generally work independently from each other, discovering theorems in the solitude
of their room. Especially nowadays, most of them pursue their research in labo-
ratories and are part of communities, and as a community they share a set of ideas
and assumptions and aim at finding results for a common set of open problems.7 As
Kitcher has proposed, a mathematical practice is formed by a quintuple consisting
of the following components: (i) a language; (ii) a set of accepted statements; (iii) a
set of accepted methods of reasoning; (iv) a set of questions to find answers to; and
(v) a set of meta-mathematical views (Kitcher 1984). Very recently, Ferreiros has
proposed to go beyond Kitcher’s rather abstract framework, and focus on the
obvious fact that there is no practice without practitioners (Ferreiros 2015). In order
to provide an appropriate analysis of what regulates a mathematical practice, we
need to include the resources and the abilities of a single mathematician in her or his

5The cycle of conferences that brought to this collection of essays was precisely devoted to
pinpoint such a notion.
6See (Lawrence this volume) in this volume for a description of such a stereotype.
7This communities do not have necessarily to share the same location: contemporary technology
allows for communities to form even if the experts are geographically apart.
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interactions with her or his peers being part of the community. As Ferreiros sums
up, nothing is gained by trying to study epistemology without a community of
agents. In a similar fashion, Thurston, a Field medalist and one of the most
influential low-dimensional topologists of the 20th century and therefore a practi-
tioner himself, explained how the language and the culture of mathematics is
divided into sub-fields, and each of these sub-fields—each of these groups of
mathematicians—has its own jargon, a particular collection of mathematical ideas,
and consequently a particular set of problems that are considered as relevant and in
need for a solution (Thurston 1994). In Thurston’s view, mathematicians pertaining
to the same community share a “mental model”. Should this “mental model” be the
object of inquiry for the philosophy of mathematical practice? We will come back
to this issue in the following section.

2.2 Pre-existing Cognitive Capacities and Expertise

As Ferreiros suggests, the practice of mathematics cannot be considered without the
practitioners, that is, the community of mathematicians. But then, what kind of
cognitive agents are they? What cognitive processes characterize the practice of
mathematics? The label ‘cognitive’ is used in the literature in very different con-
texts, often with different meanings. According to part of the literature in cognitive
science, human cognition refers to a few number of separable ‘core-systems’ that
exist in our brain and activate very spontaneously in the interaction with the world,
across tasks, ages, species and human cultures.8 One of these systems would be
related to sets, and to the numerical relationships of ordering, addition and sub-
traction.9 However, this view of cognition as core knowledge contrasts with another
approach to cognition that aims at considering the extent to which history and
culture have shaped and modulated these systems of interactions. We argue that it is
only at this level that it is possible to appreciate how the different sciences have
developed out of pre-existing cognitive capacities. In the same spirit of Giaquinto’s
work, we agree that the epistemology of mathematics has to be constrained by
results of research in cognitive science and mathematics education: a practice-based
philosophy of mathematics must have “interdisciplinary roots” (Giaquinto 2007,
p. v). In our view, a cognitive account of complex human activities such as
mathematics involving high-level reasoning as well as elaborated systems of

8Empirical studies would provide evidence for four of these ‘core’ systems and hint at a fifth one:
these systems work to represent (i) inanimate objects and their mechanical interactions, (ii) agents
and their goal-directed actions, (iii) sets and their numerical relationships of ordering, addition, and
subtraction, (iv) places in the spatial layout and their geometrical relationships, and possibly
(v) members of one's own social group in relation to members of other groups thus guiding social
interactions (see (Kinzler and Spelke 2007) for reference).
9We align with the literature by using the term ‘set’, but we specify that it should be intended in an
informal sense. In our opinion, ‘collection’ would be a more appropriate term, but cognitive
scientists do not seem to differentiate between the two. We thank José Ferreiros for having pointed
out this terminological problem to us.
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representation, cannot neglect the role of training and expertise with the various
systems of representations. If we consider the cognitive aspects in the practice, then
we will focus on two elements: (i) the cognitive capacities of mathematicians that
come before mathematical education and (ii) the “mental models”—to use Thur-
ston’s expression again—that mathematicians build up in their training, in their
collective enterprise. The challenge is then to understand on the one hand how
expertise is built out of these pre-existing cognitive abilities, and on the other hand
whether these latter might still have an influence on the mathematical practice.
Nonetheless, to talk about mental models might be misleading because it risks
overshadowing the role of systems of representation. What Thurston means by
using this expression is not that these models are ‘mental’ because they do not need
any kind of externalizations. As he claims, mathematicians “use wide channels of
communication that go far beyond formal mathematical language. They use ges-
tures, they draw pictures and diagrams, they make sound effects and use body
language.” (Thurston 1994, p. 166). Only some of these externalizations are also
material, and therefore easily shared, inspected and reproduced. A selection of these
channels of communication become stable and get organized in systems of repre-
sentation whose use is controlled by the practitioners. This is what characterizes
another possible target of research for the philosophy of mathematical practice that
we will discuss in the following section.

2.3 Representations in and Across the Mathematical Practice

Practitioners are cognitive agents. We defend here the idea of cognition as ‘dis-
tributed’: cognitive processes are to be understood in terms of the propagation and
transformations of representations, and cognitive events are not necessarily
encompassed by the skin or skull of an individual.10 They may be distributed in at
least three senses: (i) across the members of a social group; (ii) because the oper-
ation of the cognitive system involves the coordination between internal and
external (material or environmental) structure; (iii) through time in such a way that
the products of earlier events can transform the nature of later events. This brings us
to another crucial target for the study of the practice of mathematics, that is, the
introduction and development of systems of representation that are indispensable
for the practice, such as, symbols, notations and diagrams. The reference to a
specific system of representation might in fact have an influence on the develop-
ment of specific mental models. Material representations are introduced in a specific
practice and, once they enter into the set of the available tools, they in turn influence
the practice itself: they originate from the mathematicians’ mental models and at the
same time play a role in shaping them. Representations are cognitive tools, whose
functioning depends in part from pre-existing cognitive abilities and in part from
specific training.

10See for reference (Hutchins 2001).
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For example, consider two alternative notational conventions to indicate a
crossing in a knot diagram, as in Fig. 1.11 The two representations express the same
information, but the first seems preferable, and in fact it is widely used while the
second one is not. Why? Note that one of the segment in the first diagram is not
continuous, since it breaks at the crossing and starts again after it. This break is very
useful to suggest tridimensionality: the segment is perceived as continuous, going
‘under’ the other segment.12 This interpretation is in fact consistent with the active
grouping laws which have been investigated by Gestaltpsychology in visual per-
ception. We have here a phenomenon that recalls the so-called Kanizsa’s triangle
(Kanizsa 1986), see Fig. 2.13

The notation thus exploits good continuation, one of the grouping laws
belonging in Kanizsa’s view to the primary process in visual perception, which is
opposed to a more cognitive secondary process.14 It is then thanks to grouping laws
that, despite their ‘skeletal nature’, knot diagrams evoke the presence of the knot,

Fig. 1 Two examples of diagrams conventions displaying a crossing

Fig. 2 Kanizsa’s triangle

11The convention of indicating crossings by double points was used by early knot theorists, see for
example (Alexander 1928).
12However, the second one has the advantage that when drawing a knot diagram, we can start with
the associated planar graph and only later decide which strand goes under and which over.
13The figure is taken from Wikimedia Commons, the free media repository.
14Other grouping laws belonging to the primary process are the following: vicinity, same attribute
(like color, shape, size or orientation), alignment, symmetry, parallelism, convexity, closure,
constant width, amodal completion, T-junctions, X-junctions, Y-junctions. See for reference
(Kanizsa 1986).
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and furthermore trigger our imagination in finding ways of modifying it.15 This
example shows how we can have different presentations of the same mathematical
content, and that certain of them trigger visual capacities which are available even
before mathematical training. Our view is that much more philosophical work needs
to be done from this perspective on the role of alternative representations and
notations, a topic that has been neglected by the logic-based approaches. We will
return to this issue in the discussion of our case study.

2.4 One Useful Strategy: Tracking Permissible Actions

To sum up, the objects of inquiry we propose for the philosophy of mathematical
practice are the following: (1) the collective dimension of mathematical practice;
(2) the cognitive capacities of the practitioners deriving from pre-existing abilities
but nurtured by expertise; (3) the use of material representations.

Consider now what Jones, a Field medalist, claims about mathematicians’
confidence in their results, despite the well known foundational problems: “I
remember being worried by Russell’s paradox as a youngster, and am still worried
by it, but I hope to demonstrate […] that it is not at all difficult to live with that
worry while having complete confidence in one’s mathematics (Jones 1998,
p. 203). Therefore, the question for the philosophy of mathematical practice is the
following: if it is true that from the point of view of the practitioners the confidence
on one’s mathematics is not based on ‘logic’ or foundations, what grounds does one
have for it? How can this confidence be based on the ‘practice’? Our suggestion is
that the collective dimension of mathematical practice plays a crucial role in con-
trolling the permissible actions in a particular domain. As we will see, this brings to
the definition of new (local) criteria of validity, which calls for a reformulation of
our inherited notion of mathematical rigor. In Larvor’s view, it is possible to
interpret inferences as actions. If this is the case, then we do not have to consider
abstract categories, the form and the content of an argument, but a list of many and
various concrete objects of inferential actions: diagrams, models, expressions in
special notations, and so on (Larvor 2012, p. 723). As he explains, “we can say
something in the direction of explaining how informal arguments work as argu-
ments: they are rigorous if they conform to the controls on permissible actions in
that domain” (Larvor 2012, p. 724, emphasis added). We will adopt the notion of
permissible action to define how inferential and epistemic actions in topology are
controlled by the practice. Permissible actions help in defining what counts as
mathematical practice, because: (i) they are accepted in a collective dimension;
(ii) they rely on the cognitive abilities of the practitioners and finally (iii) they refer
to the use of stable systems of representations. This notion seems thus to encompass

15Choosing among different possible notations is a very deep and complex matter in the practice of
mathematics. In knot theory, many different notations are needed and there are no ‘more natural’
ones. See for reference (Brown 1999) as a starting point and our previous study on knot diagrams
(De Toffoli and Giardino 2014).
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the three elements of the mathematical practice that we have defined above and that
are in our view of philosophical interest. To become a practitioner means to learn to
operate correctly on the representations, that is, to perform the appropriate actions.
In previous works we focused on the use of diagrams and pictures in particular
mathematical domains—knot theory and low-dimensional topology—by analyzing
their forms and epistemic roles (De Toffoli and Giardino 2014, 2015). In the present
article, we introduce mathematical braids and present the proof of Alexander’s
theorem, a deep result connecting braids to knots. Braids have been very important
for the study knots but are also theoretically interesting in themselves, since their
investigation encompasses geometry, topology and abstract algebra.

3 Case Study

In order to present Alexander’s theorem we first introduce some mathematical
preliminary concepts. The aim is to convey the mathematical results without
entering in too technical details. Then, we will present the proof, which connects
two mathematical domains: knot theory and braid theory.16 In order to take full
advantage of the case study it would be useful to keep in mind the points we
identified above as characterizing the philosophically relevant aspects of the
practice of mathematics.

3.1 Braids and Braid Groups

Since we will be interested in connecting braids to knots, let us first briefly intro-
duce knots.17

Definition 1 A knot is a closed simple curve in space. A link is a collection of
knots.

In Fig. 3 you can see an example of a knot and of a link. Note that knots are a
particular kind of links, i.e., links with just one component. Aligning to the typical
jargon of knot theorists, we will from now on talk generally about knots to refer to
both knots and links, unless the difference between knots and links is at issue.

Knots are considered up to ambient isotopies: we are not interested in the
particular geometric form of a knot but on how it is knotted. An important result is
that every knot (and every link) has a diagram, a two dimensional projection of it

16A good reference for the study of mathematical knots is (Adams 1994) and one for the study of
braids is (Murasugi and Kurpita 1999).
17See (De Toffoli and Giardino 2014) for a philosophical discussion on knot theory and knot
diagrams.
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with some regularity constraints (examples of diagrams are in Fig. 3).18 As men-
tioned before, specific conventions are used for knot diagrams, in particular broken
lines suggest crossings (see Fig. 1) so as to indicate which strand goes under and
which goes over. These conventions are important because they allow us to effi-
ciently manipulate knot diagrams.19

Alexander’s theorem is a famous result that connects mathematical knots to
braids. Braids were introduced by Artin around 1930 and have been studied in
relation to knots. Around 1984 Jones discovered by using braids the now famous
Jones polynomial, a knot invariant.20 Jones arrived at defining his polynomial for
knots in a purely algebraic fashion, by studying specific algebraic structures form a
statistical mechanical point of view. It is only through the presentation of braid
groups (as we will define them) that he later realized the possibility of applying his
results to braids and then to knots (Jones 1985).

As knots are abstractions of physical knots, braids are abstractions of physical
braids made with hair or strings. We can imagine a braid as formed by n strings
starting at a horizontal line and going down, maybe tangling, until they reach
another horizontal line. For example, in Fig. 4 a braid with 3 strings is represented.
The representation is actually a braid diagram, i.e., a projection of a braid in a plane
with certain clarity restrictions. A braid (or knot) diagram is straightforwardly
interpreted as representing a three-dimensional set of curves. In fact, as seen in the
case of knots, the convention at crossings makes it intuitive which strand goes
under and which over.

Fig. 4 A braid diagram

(a) (b)

Fig. 3 Knots and links

18See (Cromwell 2004, p. 52).
19See (De Toffoli and Giardino 2014).
20For this result, Jones was awarded the Field medal in 1990.
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Note that the strings have to go down monotonically: they never have a tangent
vector that is parallel to the horizontal lines.

As for knots, braids are considered up to ambient isotopies. We are not doing
metric geometry but topology: quantitative considerations are not relevant here. In
order to identify a braid we just need to know how its strings are tangled together. So,
for example the braids in Fig. 5 are equivalent, we say that they are the same braid.

From a braid we can consider its closure which will be a link: we just connect
the points in the upper horizontal line with the ones in the lower horizontal line, as
in Fig. 6.21 Closing a braid as above we obtain a link with a certain number of
components; only in specific cases will we obtain a knot (only if after the closure,
all the strands are connected).

The main difference between knots and braids is that these latter allow for a
straightforward algebraic interpretation. First of all, we can distinguish braids
according to their number of strings (and thus of starting and ending points): a n-
braid is a braid formed by n strings. Braids with a certain number of strings can be

Fig. 5 Equivalent braids

Fig. 6 The closure of a braid

21It is possible to close the braids in other ways so that we can obtain different knots, but this is not
relevant here.
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composed, i.e., we can consider to join two braids, just by identifying the end points
of the first with the starting points of the second, in order to form a new one. With
this operation, the n-braids form a group.

First of all, let us recall what an abstract group is.

Definition 2 A group ðG; "Þ is a set G with an operation " that sends two elements
a; b 2 G to their composition a " b. The following axioms must be satisfied:

1. Closure 8 a; b 2 G; a " b 2 G:
2. Associativity 8 a; b; c 2 G; ða " bÞ " c ¼ a " ðb " cÞ:
3. Identity Element 9 id 2 G such that 8 a 2 G; a " id ¼ id " a ¼ a:
4. Inverse Element 8 a 2 G; 9 a%1 2 G such that a " a%1 ¼ a%1 " a ¼ id:

So, a crucial aspect of braids, as mentioned, is that they form an algebraic
structure:

Theorem 1 The n-braids form a group, for all n. This is Bn, the braid group of
order n.

Intuitively, it is very easy to see that all the braids with a fixed number of strings
form a group. In fact, we can take as set all the n-braids and as the operation the one
consisting in attaching a braid on the bottom of another, as in Fig. 6. In truth, we
have to slightly modify the operation defined above. In fact, we defined the com-
position on diagrams and not on braids, which are equivalent classes of diagrams.
But it is easy to extend the operation to braids as well.22

In order to check that Bn is actually a group we need to check that all the group
axioms are satisfied. This is readily done:

1. Closure The composition of two braids with n strings is certainly another braid
with n strings.

2. Associativity From the definition of our braid operation, its associativity follows.

(a) (b) (c)

Fig. 7 The braid group

22In order to extend the operation to braids we would need to verify that by composing different
diagrams of the same braid, we obtain the same braid (which is a straightforward result, which is
omitted here).
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3. Identity Element The identity, as in Fig. 7b, is just the trivial braid where all the
strands are straight and untangled.

4. Inverse Element The inverse of a given braid is its mirror image. In Fig. 7c the
inverse of the braid in Fig. 4 is represented. It is clear that combining the two we
obtain the trivial braid, see Fig. 8.

The fact that Bn is a group is a deep result, in particular because it implies that
each braid is an element of this group. We can present Bn with a set of generators
and relations. Then, it will be possible to decompose any n-braid as a composition
of the generators and their inverses. We can identify n − 1 generating braids:
r1; . . .rn%1, where ri is the braid with only a simple twist of the ith strand on the
(i + 1)th strand. In Fig. 9 are represented r1 and r2 as generators of B3. It is
straightforward that these braids actually generate all the braid group. In fact, all
braids can be decomposed into single twists. Therefore, by composing the ris and
their inverse we can create any braid. The generators and their inverses are the
atomic building blocks with which we can build any braid.

Figure 10 represents the braid in Fig. 4 as the composition of the generator r1
and the inverse of the generator r2.

So, Bn, the braid group in n strands, is generated by n-1 simple braids. Never-
theless, Bn is not a free group: some relations have to be satisfied. These are of two
kinds:

Fig. 8 The composition of an element and its inverse

(a) (b)

Fig. 9 The two generators of B3
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1. rirk ¼ rkri if ji% kj& 2:
2. ririþ 1ri ¼ riþ 1ririþ 1 if 1( i( n% 2:

These relations are easily interpreted geometrically. In Fig. 11 we see that if the
strands do not tangle each other, it is the same if one generating twist comes before
or after another. In particular, we observe that in B4 the following relation holds:
r1r3 ¼ r3r1. It is intuitive to see that the transformation that connects the diagram
in Fig. 11a to the one in Fig. 11b does not alter the type of the braid, i.e., how it is
tangled.

In Fig. 12 we see that r1r2r1 ¼ r2r1r2: in the diagram of Fig. 12a, imagine
moving down the first strand and up the second in order to transform it into the
diagram in Fig. 12b. Note that this kind of transformations are easily captured in a

(a) (b)

Fig. 12 Equivalent braids

Fig. 10 The braid r1r%1
2

(a) (b)

Fig. 11 Equivalent braids
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video. In fact, in order to see that two braids are equivalent we have to imagine a
continuous deformation taking one into the other.23

In conclusion, we have:

Bn ¼ hr1; . . .rn%1j rirk ¼ rkri if ji% kj& 2; ririþ 1ri
¼ riþ 1ririþ 1 if 1( i( n% 2i:

It is clear that this algebraic treatment of braids opens the door to a series of
results. We can do algebra and get results on braids. For example, the question
whether two braids are equivalent is translated into the algebraic language as
whether two words, i.e., two formal expressions on the generators and their
inverses, represent the same element in a group. This does not mean that the latter
question is easier, but we are offered another possible way to look for an answer.
Note that for knots, nothing of this sort is given. Intuitively, a knot diagram is more
chaotic than a braid diagram. In fact, it is hard to give a syntactic description of
knots and this will be unavoidably dependent on arbitrary decisions (for example, if
we want to decode a knot diagram we have to choose a starting point). That is one
of the reasons for the importance of the theorem that we will present in the fol-
lowing section.

Moreover, as we have seen, braids form a group with the composition of braids
as operation. For knots, this is not the case. We can still define an operation on
knots: connected sum. This operation allows us to join two knots together as in
Fig. 13, but it does not have an inverse.24 With the connected sum, knots form a
monoid, which is a ‘poorer’ structure compared to the one formed by a group.

3.2 Alexander’s Theorem

We introduce now Alexander’s theorem and give a proof that follows the original
one, which can be found in (Alexander 1923). In order to make the proof more

Fig. 13 Connected sum of
two trefoil knots

23A video would be very effective to show this isotopy. In the discussion, we will assess the
informative value of videos for mathematics and for topology.
24See (Lickorish 1997, Chap. 2) for reference.
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accessible we have introduced some illustrations. Moreover, we complete
Alexander’s proof with the visual strategy developed by Dalvit (2011). Some
images are still frames taken from her video about braids (Dalvit 2013). Note that
the original proof contains no pictures. We will come back to this issue in the
discussion.

Theorem 2 (Alexander) Every knot can be represented (not uniquely) as a closed
braid.

Proof First we start with a knot K. The original proof deals more generally with
links, but the gist of it remains if we consider only links of one component, i.e.,
knots. Then we assume that K is well-behaved, it has a finite diagram, that is, we
exclude pathological cases of wild links, i.e., links whose diagrams would have an
infinite number of crossings (this is a standard procedure.)

We want to prove that K is ambient isotopic, i.e., equivalent, to a closed braid
B. Remember that in this context ambient isotopic knots are considered equal.

A crucial passage in the proof consists in noticing that B can be described as a
knot such that there exists an axis around which the knot always goes in the same
direction (clockwise or anticlockwise) (see for example Fig. 15a). More generally,
if such an axis exists for an arbitrary knot, then we can consider a half plane with
the axis as boundary and intersecting the knot in just n points. Afterwards, cutting
along the plane we form a braid, as in the sequence of figures displayed in Fig. 14.25

This shows that given a knot, if we find such an axis, then it is possible to transform
it to a braid without changing its knot type, i.e., how it is knotted.

Fig. 14 Opening a knot

25We thank Ester Dalvit for having given us permission to reproduce the images in Figs. 14 and 17
from (Dalvit 2013).
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Therefore, we need to prove that such an axis exists for any knot. In fact, given
such an axis, we can always put the knot in the form of a closed braid, as in Fig. 15.

Now, consider the problem at a diagrammatic level. Let DK be a diagram for
K and DB be a diagram for B. We want to show that they are equivalent, i.e., there
exists a series of diagrammatic transformations that do not alter the underlying knot
type and that convert one into the other—in Alexander’s words, these are “legiti-
mate operations” (Alexander 1923, p. 94, emphasis added).

Choose a point O in the plane of DK , so that O is not collinear with any segment
of DK (we can consider the diagram DK to be formed by little straight segments,
i.e., piece-wise linear). This point is the projection of the axis that we defined

above. Consider now another point P moving on DK and the vector v ¼ OP
!!

(see
Fig. 14). When P goes through it, v will turn sometimes in one direction around
O and sometimes around the other direction. If we transform DK so that P will turn
only around one direction, then we are done.

So, let us consider a portion s of DK , not containing more than a crossing, that
goes in the opposite direction. Let us call A and B the endpoint of s, then we can
choose a point C such that the point O lays inside the triangle ABC. Now replace AB
with the two segments AC and CB (of course keeping the crossings information).
Using this move, we transform all the portions of the knot going in the wrong
direction by “throwing them over one’s shoulder” (Jones 1998, p. 211). We can
imagine a similar move on smooth curves, and not straight segments.26 Basically,
we have to identify a portion of the knot that is turning in the wrong way and throw
it to the other side of the axis. For example, in Fig. 16 is depicted a diagram that has
just one piece going in the wrong direction.27 After this move, all the portions of the
diagram in Fig. 16 go in the same direction around the point O.

Similar moves are better visualized through a video. In fact, we can isolate the
portions of the knot that turn in the wrong direction and modify it continuously so
that they will turn in the right direction. In Fig. 17 you can see some still shots from
the video Braids. A movie. by Dalvit (2013): some portions of the knot are turning
in the wrong direction. Intuitively, the move consists in replacing a portion of the

(a) (b) (c)

Fig. 15 The trefoil knot as a 2-braid

26It is a deep result that for knot theory working on the category of smooth curves is equivalent to
working in the PL category of piece-wise linear segments.
27This example is taken from (Jones 1998, p. 211) with some modifications.
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knot that goes in the opposite direction by throwing it in the other side of the point
O so that it goes in the right direction. This has to be done carefully, without
introducing new entanglements.

In Alexander’s words: “the transformation of DK obviously corresponds to an
isotopic transformation of the space curve L” (Alexander 1923, p. 94, emphasis
added and notation changed). Repeating the process, we can eliminate each seg-
ment that was going in the wrong direction. At one point we reach a projection with
the desired property. Therefore the diagram of our knot K is transformed in a
diagram of a braid B. Note that it is quite straightforward to extend this result to a
link L. In fact, we do the same procedure for each of the components of L, and of
course we make them all turn around the axis in the same direction. QED.

It is easy to check that starting with two different knots, we obtain different
braids. In fact, the main point in Alexander’s proof is to apply transformations that
do not alter the knot type. Nevertheless, different braids can give the same knot.

(a)
(b)

Fig. 16 Alexander’s move

Fig. 17 Transforming the knot
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Another important theorem due to Markov28 defines moves on braids which tell
exactly which braids give the same knot. Alexander’s result becomes even stronger
in the light of Markov’s theorem. In fact, joining these two theorems not only do we
know how to transform any knot in a braid but also how to ‘move’ exactly from
knots to braids and back.

4 Discussion of the Case Study

Following Alexander’s proof, many issues arise. We will apply the methodological
guidelines we outlined in Sect. 2 to address the following questions in relation to
our case study. What is the role of the community of practitioners in defining the
criteria of validity for the proof? How is rigor assured? We might also ask what
cognitive abilities contribute to the efficacy of the informal setting of the proof, in
particular in relation to the specific role assumed by visualization. As mentioned
before, the original proof published by Alexander does not present any picture but
at the same time it is considered a ‘visual’ proof. Why is it so? Moreover, the
material pictures play a crucial ‘role, but one objection could be that experts are
able to exploit their visualization capacities without drawing them. What is then the
role of material specific representations? How much do topologists rely on them to
reason about the topological objects? In the following sections, we will discuss
these issues.

4.1 Revising the Criteria of Validity

In the first part of the article, we addressed the first of Larvor’s worries and
proposed a methodological framework with three possible targets for the philoso-
phy of mathematical practice. At this point, we have to address the second of his
worries and assess how the study of a specific mathematical practice can provide
new insights in the practice of proving that would go against the standard notion of
proof as inherited from the logic-based approach to mathematics. It is easy to see
that the practice of topology presents many examples of proofs that cannot easily be
reconciled with the notion of proof as a syntactic object constituted by a sequence
of sentences. For example, consider Alexander’s proof and in particular the way
one transforms a link into a braid. This transformation requires envisioning mod-
ifications on the representations used (or imagined). In Alexander’s words, these
transformations “obviously” correspond to isotopic transformations: as part of the
proving process, instead of taking into account a sequence of sentences, one has to
envisage a sequence of continuous transformations. Therefore, the reasoning
involved in this specific proof cannot be identified exclusively with propositional
reasoning, and even less with formal reasoning.

28See (Murasugi and Kurpita 1999, Chap. 9).
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It could be suggested that if this proof is not based on formal reasoning, then it is
based on visualization. In fact, the proof is recognized as ‘visual’: the topologist
needs to ‘see’ the transformations in order to understand it. We partly agree with
this claim, but we find it potentially misleading. In our view, the appeal to vision is
not enough to characterize Alexander’s proof in relation to standard proofs in the
logic-based approach. In fact, the relevant reasoning is rather based on some form
of imagination that exploits pre-existing cognitive capacities related to the
manipulation of concrete spatio-temporal objects and is enhanced by mathematical
expertise. In cases such as this, topologists are required to imagine a series of
possible transformations on the relevant representations. The rules for such
manipulations are given by the appropriate interpretation. For example, in the case
of Alexander’s proof, a correct interpretation of knot diagrams will allow practi-
tioners to manipulate these diagrams in order to find an axis around which the knot
goes in the same direction, that is, to perform the appropriate continuous trans-
formations. In particular, it will be possible to operate the “throw over the shoulder”
trick, as described above. The practitioners share this form of reasoning and teach it
to students. Of course, it is epistemologically relevant to envision transformations
on the representations, since these transformations can count as reasons for reaching
new valid conclusions. The “mental model” Thurston refers to should be under-
stood in such a context, as familiarity with transforming the material representations
and at the same time as control on the mathematical meaning and the inferential
weight of each of these “legitimate operations”, to use Alexander’s term.

In our reconstruction, Alexander’s proof is characterized by the the following
features. First, it counts as justification. Of course, as in any other proof, not all
passages have to be justified. As mentioned in the previous sections, the community
to which the proof is addressed shares some background knowledge concerning the
use of the available systems of representation. Moreover, standards of justifications
are assumed as well: the community defines the ‘permissible actions’ on the rep-
resentations. We will go back to this issue in the next section. Second, in order to
follow the proof, mathematicians envisage transformations of and on the diagrams.
Their interaction with the representations is essential: the figures are not static, they
have to be used dynamically so as to trigger a form of imagination that allows
mathematicians to draw inferences. Elsewhere, we have defined this cognitive
capacity manipulative imagination (De Toffoli and Giardino 2014). This form of
imagination is based on a widening of our spatial perception together with our
physical intuitions of space, but needs to be trained in the specific collective
practice. For Alexander’s theorem, the crux of the proof consists in identifying the
right transformations that allow us to find an axis around which the knot turns in
just one direction. It is only through visualization that we know that this trans-
formation gives us an isotopic knot, and it is left to our intuition to prove that this
transformation is always possible and that it is not an infinite process. Alexander
does not really gives us any other justification: this reasoning plays an epistemic
role. His proof is not an isolated case in topology, so we conjecture that other proofs
in the same sub-field or neighboring ones can be characterized by similar features.
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4.2 Operating (Legitimately) on the Notation

Let us now focus on what we mean here by claiming that the key to the proof is to
envisage transformations on some material (or mental, if the topologist is trained
enough) representations. Jones (1998) compares Alexander’s theorem to a very
technical and abstract result in algebra, von Neumann’s density theorem. Alexan-
der’s theorem (Theorem A) is accessible to a non-technical audience; on the con-
trary, von Neumann’s theorem (Theorem vN) requires a substantive technical
background even only to understand its claim. According to Jones, this contrast is
due to the inevitably different role of formalism in each of the two theorems. In his
description, a careful analysis of these two proofs reveals that the proof of Theo-
rem A, if properly formalized, would be much longer than that of Theorem vN. This
is because one would have to be precise about the kinds of continuous deformations
allowed, and to construct the functions required for the transformation described by
Alexander and exemplified in Fig. 16 would be a hard task. Nonetheless, Theo-
rem A is easier because it concerns a very concrete situation, and we can rely on our
full intuition about three-dimensional space. This claim is crucial and in line with
our discussion. The method of proving consisting in manipulating representations
in order to learn something new about the topological objects clashes with the
standard notion of mathematical argument: we are not used to think about math-
ematics in this way. Nonetheless, the proof is accepted as valid by the community
of practitioners. The practice of proving that is common in this branch of mathe-
matics is in fact quite distant from almost that of every other area because it largely
relies on ‘seeing’ topological objects, which amounts to envisaging transformations
on the representations available for them. In this framework, to convey such
visualizations counts already as justification.

But if this is true, then what kind of informal arguments count as reasons and
what kind of proofs are accepted? As suggested in the previous section, and by
adopting the methodological framework presented above, we will focus on what
Alexander defines as “legitimate operations” (Alexander 1923, p. 94). This notion
is close to that of Larvor’s “permissible actions”. The main point is that it is
necessary to identify for each practice the inferential steps in the relevant argu-
ments. In the case of the practice of proving in which Alexander’s proof is
embedded, the inferential steps are made by manipulating the representations. More
generally, they are epistemic actions performed or imagined on the available rep-
resentations. Of course, this is done under the constant control of the practitioners.
The legitimate operations are parts of their mental model, and can be considered as
reliable to gain new knowledge about the object of research. Moreover, this leads us
to consider the representations used as a very peculiar sort of notation, which allows
performing permissible actions.

To illustrate this point, let us consider again the video Braids (Dalvit 2013),
which has been recently produced to allow understanding Alexander’s theorem and,
more generally, some basic notions about braids. We have used some still images
from it in presenting Alexander’s proof. Videos for other kinds of mathematical
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practices would risk obscuring the relevant passages in the proof. Think for
example of a proof in Euclidean geometry: one should understand how to construct
a figure from the previous one, and a sequences of figures would probably serve this
purpose better.29 In contrast, in the case of Alexander’s theorem and more generally
of low-dimensional topology, videos can be very informative and effective, pre-
cisely because they easily convey continuous transformations.30

Nonetheless, by claiming that it is crucial to envisage transformations on the
available material representations, we do not have to mistaken the material figures
for the imagination process. Actual pictures trigger our imagination and help us see
modifications on them, but for the people who are already acquainted with a
practice on pictures of a certain type (e.g., links or braids) it is perhaps not nec-
essary any more to actually draw all the pictures. As previously mentioned, the
original proof by Alexander did not contain any single figure (Alexander 1923). For
the experts, what matters is the spatial configurations that are displayed by the
figures and not their appearances. This is not in contrast with our interpretation of
the proving process in Alexander’s proof. Any trained topologist reading it would
find no difficulties in imagining the appropriate representations and envisaging the
required transformations on them. When a mental model is stable, there is no need
to draw explicitly all the figures that are part of it—as well as there is no need to
make all the background (propositional) knowledge explicit.

4.3 Moving from One Representation to Another

Another important aspect of Alexander’s theorem is that it allows interpreting the
same mathematical information in different contexts. In most cases, the ‘translation’
from one mathematical representation to another coming from a different field
enhances our knowledge of the mathematical subject. Mathematicians indeed move
between various systems of representation and various notations, that is, between
different ‘mathematical languages’. As we know, Alexander’s theorem shows that
every knot can be put in braid form. This is a strong result because, as we have
seen, braids allow for a straightforward algebraic treatment. For example, as we
have already mentioned, the introduction of Jones polynomials has developed out
of this ‘translation’ of knots into braids.

Other similar cases can be given. Carter has recently shown the interest of
working on a kind of ‘semiotics’ of mathematics, by relying on the work of Peirce
(Carter 2010). She takes into account the role of diagrams in the practice of proving
in free probability theory. In her case study, she proposes to consider diagrams as
“iconic”, because they display properties that can be used to formulate algebraic
analogues. Thanks to the diagrams, a practitioner is allowed to go from them to an

29There are actually exceptions, but we have no time to discuss them here.
30Another example is Sullivan, Francis, and Levy’s video The Optiverse (Sullivan et al. 1998).
Through the video, one can concretely see a sphere eversion that is geometrically optimal in the
sense that it minimizes the elastic bending energy (see for reference Sullivan (1999)).
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algebraic description and back. This move allows the practitioners to make
experiments on the available diagrams and then calculate algebraically their results.
It is interesting to notice that in Carter’s case as well the diagrams do not appear in
the ‘official’ published version of the article, despite their crucial contribution.
Nevertheless, in Carter’s case, the diagrams are not part of the ‘mental model’ of a
mathematician working in free probability theory. In particular, they are visual tools
which are contributing in suggesting definitions and proof strategies and they
function as “frameworks” in parts of the proofs (Carter 2010). On the contrary, the
diagrams in Alexander’s proof are part and parcel of the reasoning and they are
indispensable for understanding.

Starikova has analyzed another case study from contemporary mathematics from
a relatively recent mathematical subject: geometric group theory. She discusses how
the representation of groups by using Cayley graphs made it possible to discover
new geometric properties of groups (Starikova 2010, 2012). In her case study,
groups are represented as graphs. Thanks to the consideration of the graphs as
metric spaces, many geometric properties of groups are revealed. As a result, it is
shown that many combinatorial problems can be solved through the application of
geometry and topology to the graphs and by their means to groups.

It is helpful here to refer to an unpublished paper of Manders that is also behind
Starikova’s analysis (Manders et al. 1999). In this article, Manders takes into
account the contribution of Descartes’ Géométrie compared to Euclid’s plane
geometry. He gives particular stress to the introduction of the algebraic notation.
More generally, in his view, the practitioners often produce and respond to artifacts,
which can be of different sorts: natural language expressions, Euclidean diagrams,
and algebraic or logical formulas. Mathematical practice can thus be defined as the
control of the “selective responses” to given information, where response is meant
to be “emphasizing” some properties of an object while “neglecting” others.
According to Manders, artifacts help implementing and controlling these selective
responses, and therefore their analysis is crucial if the target is the practice of
mathematics in question. Moreover, selective responses are often applied from
other domains. Think of the introduction of algebraic notation to apply algebraic
methods to geometry. In Descartes’ geometry, geometric problems are solved
through solving algebraic equations, which represent the geometric curves. Also in
this case, the idea is that by using different representations of the same content, new
properties might be appreciated.

The potential advantage of moving from one representation to another clarifies
the importance of notation, which is a crucial feature characterizing the mathe-
matical practice and deserves philosophical attention. In his recent introduction to
philosophy of mathematics, Colyvan devotes one whole chapter to notation, and
explains that we could think of mathematics as a language (Colyvan 2012); if we do
that, then we easily realize that “good notation is far from trivial” (Colyvan 2012,
p. 156). Colyvan criticizes the standard approaches by claiming that one cannot
dismiss the idea that notation can help to reveal unknown mathematical facts. In his
view, discovery can be notation-driven. We are inclined to agree with Colyvan and,
as mentioned in the previous section, to consider notation in a very broad sense. In
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our view, we can think of the diagrams in free probability theory as well as of Caley
graphs as particular notations, once the legitimate operations that can be applied on
them are taken into account. These diagrams are of course not simply useful
sketches, but the very elements of a system of representations in which manipu-
lations rules are more or less explicitly defined. Moving from one notation to
another for the same mathematical content is indeed a good strategy to discover
new relations. The effectiveness of applying such a strategy reveals the richness of
mathematics as “the theory of formal patterns”, as Thurston among others has
proposed to define it (Thurston 1994, p. 162). Mathematicians are in a constant
negotiation between the introduction of a specific notation and the definition of their
abstract objects, some properties of which do not seem to emerge before a good
notation for them is introduced.

5 Conclusions

In this article, we have proposed to consider the philosophy of mathematical
practice as an inquiry concerning the community of mathematicians as cognitive
agents who share specific systems of representations on which operations (per-
missible actions) are performed. In our case study, we showed how the actual
practice of proving in braid theory can involve a form of reasoning that cannot be
reduced to formal statements without completely altering the proof. Reasoning in
this field is based on pre-existing cognitive capacities—mathematicians imagine a
series of possible manipulations on the representations they use—and is modulated
by expertise. This form of reasoning is shared by the experts: it is the kind of
reasoning that one has to master to become a practitioner. Moreover, the actions
allowed on the representations—what Alexander calls “legitimate operations”—as
well as the representations themselves, are epistemologically relevant, since they
are integral parts both of the reasoning and of the justification provided. This is in
line with the idea that cognition is distributed among the practitioners of a sub-field
and that there is a constant feedback between their mental models and the repre-
sentations they use. Moreover, this example shows how the interplay between
different disciplines—knot theory, braid theory and algebra—through the consid-
eration of the relations between alternative systems of representation enhances
understanding and help to clarify the mathematical meaning. We are moving in a
framework consistent with Kitcher’s naturalism, which considers also the role of
the human cognitive agents and the artifacts they produce, as recommended by
Ferreiros.

Our suggestion is that such a framework, based on the consideration of the
permissible actions, can be applied to other areas of mathematics and other prac-
tices of proving as well. We hypothesize that the ability to envision transformations
on the representations can be recognized as a characteristic feature of other and
even more algebraic areas of mathematics. Consider for example dealing with an
algebraic equation. It would certainly be possible to envisage some permissible
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actions on it as well, for example by taking a part of the right-hand side of the
equation to the left-hand side, thus applying appropriate and legitimate operations.
Our proposal for further research is to explore other proving practices in such a
dynamic framework for mathematical inference and proof, with the aim of identi-
fying analogies and differences. Of course, this would bring us far from the
logic-based approach to mathematics, which is not concerned with mathematics as
it is actually done by experts, but with possible axiomatizations or rational
reconstructions for it.

Logic is not the unique core of mathematics and other systems of representations
—such as the ones based on figures—are not only heuristically relevant but can
have an epistemic role. Therefore, they deserve philosophical attention. One con-
sequence is that mathematical rigor will be achieved via different criteria of validity
and not through an universal logic-based criterion. To be able to appreciate these
different local criteria of validity it is then necessary to consider many different
practices, each having its own dynamics, with the risk of ending up with an
explosion of studies. As Larvor suggests for informal proofs, it is possible that the
list of objects of inferential actions is very long and very varied. However, this
inversion of route should not be perceived as a methodological limit: on the con-
trary, the bright side is that the philosophy of mathematical practice would aim at
adhering as much as possible to the real observable practices and would work
towards the appreciation of the astonishing richness of forms that the mathematical
practice can assume. The philosophy of mathematical practice can thus lead to new
and mostly unexplored territories of research.
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