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PROOFS FOR A PRICE:

TOMORROW’S ULTRA-RIGOROUS MATHEMATICAL CULTURE

SILVIA DE TOFFOLI

Abstract. Computational tools might tempt us to renounce complete cer-
tainty. By forgoing of rigorous proof, we could get (very) probable results for
a fraction of the cost. But is it really true that proofs (as we know and love
them) can lead us to certainty? Maybe not. Proofs do not wear their correct-
ness on their sleeve, and we are not infallible in checking them. This suggests
that we need help to check our results. When our fellow mathematicians will
be too tired or too busy to scrutinize our putative proofs, computer proof
assistants could help. But feeding a mathematical argument to a computer
is hard. Still, we might be willing to undertake the endeavor in view of the
extra perks that formalization may bring—chiefly among them, an enhanced

mathematical understanding.

1. The commandment of rigor

In a provocative essay, “Theorems for a price: tomorrow’s semi-rigorous math-
ematical culture,” Doron Zeilberger [Zei94] envisages a future in which mathe-
maticians will renounce “absolute certainty” and content themselves with “almost
certainty.” Mathematicians of (the day after) tomorrow will rebel against the com-
mandment thou shalt prove everything rigorously that regulates today’s mathemat-
ical practice.1 They will work with new computational tools to establish results
forgoing the deductive method, or so predicts Zeilberger. Why insist on absolute
certainty in cases in which we can get very close to it for a fraction of the cost? In
his words,

we might witness many results for which we would know how to find
a proof (or refutation), but we would be unable, or unwilling, to pay
for finding such proofs, since “almost certainty” can be bought so
much cheaper. I can envision an abstract of a paper, c. 2100, that
reads: “We show, in a certain precise sense, that the Goldbach
conjecture is true with probability larger than 0.99999, and that
its complete truth could be determined with a budget of $10B.”
[Zei94, p. 14]
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Zeilberger gives a few examples of how new technologies could potentially change
mathematical practice dramatically. And he was writing in the early nineties!
Nowadays, computational methods are commonly used—but not merely in the
way envisaged by Zeilberger. Machines can surely help us attain (very) probable
results, but they can also help us solve mathematical problems in the good old-
fashioned way: through rigorous proofs. As a matter of fact, machines are giving
us access to a whole new class of computationally heavy proofs. For example,
in the field of discrete geometry, it is common to discover and prove results by
deploying heterogeneous computational methods such as “optimization techniques,
combinatorial enumeration, validated numerical computation, linear programming
methods, Monte Carlo simulation, search techniques, propositional satisfiability
algorithms, and computer algebra” [Avi22, p. 108]. And artificial intelligence is
bringing in a whole new range of possibilities.

It is a fact that machines help us reach new results, keeping or not the com-
mandment of rigor. Mostly keeping it: technology is not (at least not yet) urging
us to let go of complete certainty. That is why Zeilberger’s claims still sound
very controversial today. His assumptions do not sound controversial at all, how-
ever. “In the future, not all mathematicians will care about absolute certainty”
[Zei94, p. 11], says Zeilberger. This claim suggests that now all (or at least the
majority of) mathematicians care about absolute certainty. This seems right. But
can mathematicians really get what they care for?

Although mathematicians can’t always get what they want (who can?), it is
plausible to think that at times they can. They don’t always manage to produce
proofs, but when they do, it is reasonable to think that they can be certain of
their results. After all, according to the traditional story, it takes a proof to truly
justify a mathematical claim. And genuine proofs are rigorous. Nothing new under
the sun. Already in 1900, before listing his famous twenty-three problems, David
Hilbert clarified what would count as a solution:

It remains to discuss briefly what general requirements may be
justly laid down for the solution. . . This requirement of logical de-
duction by means of a finite number of processes is simply the re-
quirement of rigor in reasoning. Indeed the requirement of rigor. . .
has become proverbial in mathematics. [Hil02, p. 409]

A mathematical claim is fully justified only through a (rigorous) proof. Since
proofs are correct deductive arguments in which the premises entail the conclusion,
they can provide absolute certainty. But there is a caveat. Proofs must start some-
where, and foundations can be shaky. This should not make us tremble, however.
Even if we cannot be sure of the unqualified truth of the stated conclusions of our
theorems, at least we can be certain of the conditional claims that the premises
(which often are left implicit) imply the conclusions, or so it seems. That is, if we
stay put and resist the temptation of tomorrow’s semi-rigorous methods, we may
get what we really want: certainty.

But the story is not so simple, and the price to pay might be even higher than
the one envisioned by Zeilberger. To see this, let me first say something about the
nature of proofs and something about the nature of our grasp of proofs.

First remark: proof is a success term. This means that there is no such thing
as a fallacious proof: if we find a substantial error in a putative proof, then we
establish that our putative proof was no proof at all. It wasn’t a real proof, and
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things that aren’t real proofs, even if they look like proofs, are no proofs. It is
true that in mathematical practice the term proof is used loosely, but on close
scrutiny it makes sense to say that proof is a success term. Here is a qualification.
Saying that fallacious putative proofs aren’t proofs at all cannot mean that putative
proofs containing minor mistakes are no proofs because those are ubiquitous in
mathematics; banning them would lead to excluding too many of the things that
mathematicians are happy to call proofs. That is why essentially correct putative
proofs are proofs. A putative proof that is essentially correct may contain minor
errors, but may neither contain errors that would invalidate its conclusion, nor
errors that would be too hard to fix.

Here is a case that will help motivate this first remark. What Andrew Wiles had
when he first announced to have proven Fermat’s last theorem in 1993 was not a
proof. He thought he had a proof, but he did not—this much seems uncontroversial.
With his usual pungency, André Weil observed:

to some extent, proving Fermat’s theorem is like climbing Everest.
If a man wants to climb Everest and falls short of it by 100 yards,
he has not climbed Everest. (Reported in [Hor94, p. 33].)

But surely, we can fall short of 1 yard (in fact, it should not count as falling short
at all)—that is why essentially correct putative proofs are proofs. About a year
after his first announcement, collaborating with his former student Richard Taylor,
Wiles finally managed to come up with a proof (or at least we have a lot of evidence
to think that his final argument is a proof). Most likely, this proof contains minor
errors and imperfections. Again, having a proof does not require complete formal
precision.

To be sure, it is hard to spell out what essential correctness amounts to, but for
now, a rough idea will do. For the sake of ease of expression, I will simply talk of
proofs to mean essentially correct putative proofs.2 As an aside: this problem is
linked to that of articulating criteria of identity for proofs—a very hard problem
that plausibly does not admit of a context-independent solution.3

Second remark: proofs don’t wear their correctness on their sleeve. Checking the
correctness of a putative proof can be tough, and mathematicians are not infallible
in discerning genuine proofs from erroneous putative proofs. And this matters. A
lot. This seemingly obvious fact puts pressure on the idea that we can actually get
what we care for, certainty.

Although Weil’s mountaineering analogy is evocative, proving a theorem in prac-
tice is not like climbing a mountain. It is instead like simulating climbing a moun-
tain. Let me explain. When we climb a mountain, if the road is blocked or we meet
a gorge, we cannot continue in the way we envisaged. We simply cannot. If we are
good mountaineers, we might find alternative routes. Still, we cannot pretend that
the obstructions we encounter are not there. Moreover, mistakes in climbing can
lead to death, and there is an unflinching, all-knowing “adversary,” the mountain,
which determines if one truly reached the peak or not.

2This is quite commonsensical among mathematicians. Avigad puts it as follows: “an informal
proof can have small mistakes and yet still reasonably lead us to believe in the correctness of its
conclusion” [Avi21, p. 7385].

3This is an issue that also invests other topics in the philosophy of mathematics, such as the
epistemology of diagrams and visualization [DT23].
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When we simulate climbing a mountain, and the road is blocked, most likely
we realize that it is blocked and that we cannot proceed. However, sometimes we
misperceive, we do not see the obstruction, and we keep going as if it wasn’t there.
Wiles at first kept going right through a gorge, and only when his putative proof
underwent scrutiny from other experts, did the gap became visible. And this is by
no means an isolated case. It is precisely through the self-checking activity that the
community of mathematicians operates on itself that the simulations are usually so
good.

Nothing surprising so far. Nobody doubts that we make mistakes. This is just
a fact of life. However, taking this fact seriously obliges us to think hard about
what really justifies a mathematical claim. Do philosophers (or mathematicians)
still want to hold on to the claim that only genuine proofs can provide us with
mathematical justification? To answer this question, we should first get a sense of
what epistemic justification is in general.

2. Mathematical justification

One way to think about epistemic justification is to link it to (theoretical) ratio-
nality. I am justified in believing a certain proposition if and only if it is rational
for me to believe it.

By way of example, I am justified in believing that the optimal way to pack
spheres is the face-centered cubic packing that is commonly used in fruit stands to
display oranges, (i.e., that the Kepler conjecture is true) because Tom Hales proved
it (and later formalized with a team of collaborators). More mundanely, I am
justified in believing that in my fruit basket there are four oranges since I bought
four this morning and ate none. Both beliefs are rational since they are based on
good reasons. But I could go wrong, like in the following case. Unbeknown to me,
my friend Agnese sneakily took an orange an hour ago, and so now there are only
three oranges in my fruit basket. In this case, I have a false but justified belief.

This implies that justification in general is not factive. That is, it does not entail
truth. On the other hand, knowledge is factive. That is why justification alone is
not enough for knowledge. Still, justification is an essential ingredient of knowledge.
Consider a second variation on the oranges’ example. I am not justified in thinking
that there are eight oranges in my fruit basket just because I am absent-minded
and a bit of a wishful thinker. Suppose however I believe it, irrationally. Further
suppose that my friend Agense, instead of taking an orange, put in four extra
oranges as a kind gesture. In this case, I have a true belief, but it is not knowledge
because it is not justified—it is not based on a good reason.

We saw that one way to think about epistemic justification is to link it to having
good reasons. For instance, if I believe that p, a certain mathematical proposition,
is true because I have a good argument for it, then I am justified in believing it.
Another good source of justification is testimony or authority. If I read in the
Annals of Mathematics that a certain theorem has been proven, then I acquire a
good reason to believe that the theorem holds.

According to the received view in the philosophy of mathematics, good first-hand
(that is, nontestimonial) reasons for mathematical propositions that are not axioms
are genuine proofs. To be sure, we can be justified in believing that the Riemann
hypothesis is true by virtue of nondeductive arguments. That is all fine and good,
but the Riemann hypothesis does not deserve the status of theorem because it is
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not established through a proof. This suggests that genuine first-hand mathematical
justification, the one aspired by mathematicians, is only given by proofs.

But I can believe mathematical propositions for a host of different reasons. For
example, if I believe p because of wishful thinking, p might be true, but I would not
be justified in believing it. Wishing that p is true is not a good reason to believe
that p is true. Moreover, the good reasons must be epistemic. That is, they must
be related to the truth of the proposition in question. If someone points a gun
at my temple and tells me either to believe p or to prepare to die, I might have
very good prudential reasons to believe p (and should believe it, if I can somehow
find a way to force myself to), but still no epistemic reason. Epistemic justification
(differently than practical justification) is by its nature truth-conducive. That is,
justified beliefs tend to be true.

Another influential way of thinking about (epistemic) justification of beliefs is
considering the processes that formed such beliefs rather than the reasons one might
have for them. If these processes are reliable, then the belief is justified, otherwise
it is not; see [Gol79].

Justification is important for epistemologists because, as I mentioned above, it
is thought to be the central component of knowledge. A belief that is not justified
cannot constitute knowledge. If I form a true mathematical belief by flipping a
coin, I might get it right, but I won’t have knowledge since I did not have a good
reason (and in fact my belief-forming process was utterly unreliable).

Thinking that knowledge requires justification goes all the way back to Plato.
It is from the Theaetetus [Pla92] that we get the account of knowledge as Justified
True Belief (JTB). According to the JTB story, a subject S knows proposition p if
and only if S is justified in believing p, p is true, and S believes p.

Intuitively, knowledge requires belief: I cannot know something I don’t believe.
It requires truth as well: I cannot know something false. Finally, it requires justifi-
cation: there must be some sort of connection between a true belief and its truth for
it to constitute knowledge. While justification is truth-conducive, it is not factive:
I can be justified in believing false propositions. Philosophers accepted the JTB
account basically from Plato until 1964—more on this soon. Let us first consider
some additional examples.

I am justified in believing that tomorrow will be sunny because my weather app,
which is quite reliable, predicts so. However, it turns out that tomorrow will rain.
This is a mundane example of a false but justified belief. Weather forecasts are
pretty good, but far from being infallible. What about mathematics? Differently
than in other domains, in mathematics (as well as in other areas usually considered
to be within the domain of the a priori),4 first-hand justification has often been
considered by philosophers to be factive. This is because it has been associated
with proofs. If a subject S is mathematically justified in believing p, then S has a
proof for p, and this means that p is true—at least if we take p modulo the starting
point and the logical principles.

This is remarkable and would set mathematical justification apart from other
types of justification. As we just saw, I could be wrong in believing empirical

4A priori propositions are propositions that can be justified independently of experience. This
is a general definition that can be understood in many different ways—but it will do for the present
context.
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propositions about oranges, the weather, or other natural phenomena. Yet in math-
ematics, if I am rational, it seems I cannot end up believing something false, at least
for beliefs based on putative proofs. If I go wrong, it means I did not think hard
enough, and thus, plausibly, I was not rational. This is why, in mathematics, justi-
fication and knowledge have traditionally been conflated. If there is no gap between
truth and justification and the belief condition is in place, then justification entails
knowledge.

This is connected with the a priori nature of mathematics. There is no exter-
nal experience that can mess up my justification. Think about a different case,
perception. Perceptual beliefs are very common and (assuming we are not in a
skeptical scenario—that is, that we are not in The Matrix or similar weird places)
are reliable. Still, I could misperceive. For instance, I could very well be justified
in believing that there is a sheep in the field while in fact there is none. Perhaps
what I am seeing is a dog, say a Cockapoo—from afar, it really looks like a sheep!
I have a good reason supporting my false belief.

In mathematics, it looks like these cases cannot happen—accordingly, misper-
ceiving in mathematics would not confer good reasons on us. If the only good
first-hand reasons to believe a mathematical claim are proofs, then only true beliefs
can be justified. But this is in stark contrast with mathematical practice! From the
perspective of the working mathematician, it seems that we can also be justified
in the absence of a proof. And this is not only in cases in which we openly use
semi-rigorous methods. This also holds when we think we are dealing with rigorous
proofs.

2.1. Simil-proofs. Here is a case in point. Vladimir Voevodsky was awarded the
Fields medal in 2002. In two different cases, he found errors in results he had
previously published. First, there were some issues in his work for which he was
awarded the Fields medal—the theorems held, but a particular Lemma needed to
be replaced by a more complicated one.5 Second and more interesting, he found
a significant error in a work in a different area. In this case, a result he thought
he had established was outright false. He discovered the problem with his putative
proof much later than when he had published it, to be precise, more than ten years
later, in 2013.6

It is plausible to think that before he found the errors, Voevodsky was justi-
fied in believing his results. After all, on pain of skepticism, we must accept that
mathematicians providing careful arguments for their results are justified, espe-
cially if their putative proofs have been checked and vouched for by their fellow
practitioners—even more so if said mathematicians are awarded prestigious prices.
But this implies that contrary to the received view, mathematical justification, like
other types of epistemic justification, is not factive. That is, it is possible to hold a
justified false belief in mathematics, one that is based on something that looks like
a proof but it is not.

Mathematical justification should therefore not be connected with proofs, but
with what in previous work I called simil-proofs [DT21]. These are arguments
that look like proofs to the relevant subjects but may contain significant errors.

5He found an error in 1999–2000 (before the Fields Medal), which he corrected in a paper
published in 2006.

6See [Voe14]. The story is further complicated by the presence of what some thought to be a
counterexample to his results, but the details are beyond the scope of this paper.
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Crucially, not any argument can be a simil-proof, however. Arguments containing
blatant mistakes are excluded. Here is a working definition:

SIMIL-PROOF: A mathematical argument that is taken to be a
genuine proof by at least one (or a group of) appropriately trained
subject(s), but that might not be. Moreover, it satisfies the stan-
dard of acceptability of the mathematical community to which it is
addressed, and it has not been the object of serious criticism.

To be sure, this is a loose definition, but it will do for the present context.
Linking mathematical justification to simil-proofs instead of genuine proofs goes
along the lines of thinking of proofs as convincing mathematical arguments. Akshay
Venkatesh characterizes proofs thus:

(proofs) which are defined by the fact that they should induce uni-
form agreement about their validity, without any need for replica-
tion. [Ven24, p. 205]

And indeed, in mathematical practice, it is common to call “proof” also arguments
that are not (genuine) proofs. For example, Leslie Lamport introduces his influen-
tial guidelines on how to write (simil-)proofs as follows:

A method of writing proofs is described that makes it harder to
prove things that are not true. [Lam11, p. i, emphasis added]

In my view, the ambiguity of the term proof, which sometimes is used to refer
to proofs and sometimes to refer to simil-proofs (which may or may not be proofs),
has created much confusion in the epistemology of mathematics. That is why it is
helpful to disambiguate the term. It might be fine to use the word proof loosely in
mathematics, but in order to pursue an epistemological inquiry into mathematics,
disambiguation is called for.

To recap, at a given time, simil-proofs are phenomenologically indistinguishable
from proofs, but they might contain substantial mistakes. This means that not all
simil-proofs are proofs. However, if a simil-proof contains a substantial mistake,
this must be a subtle mistake that the mathematical community is blind to—at
least for some time. The idea is that by performing a self-monitoring activity on
itself, the mathematical community gradually filters out all erroneous simil-proofs
so that only correct simil-proofs (which, therefore, are proofs) remain.

We saw that not all simil-proofs are proofs. The reverse holds as well: not all
proofs are simil-proofs. An example is given by an argument that is a proof, but,
for some reason, no mathematician recognizes it as a proof. This could be because
of the fact that the argument looks fallacious even if it is not, or, if we endorse an
abstract definition of proof, that it has not been considered by any mathematician
at all.

At the cost of being pedantic, from now on I will stick to the new term simil-proof
to refer to accepted mathematical arguments put forward as proofs and generally
referred to simply as proofs by mathematicians—bear with me.

The philosophical moral of the story is that, like in the case of perception in
which I can justifiably believe that there is a sheep in the field while I am looking
at something that looks like a sheep (a Cockapoo) but is not, so in mathematics, I
can justifiably believe that a result holds in virtue of a something that looks like a
proof (a simil-proof containing a major error), but it is not. That is, as Voevodsky’s
case suggests, beliefs based on fallacious simil-proof are justified.
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2.2. Gettier. Let’s get back to the general epistemological story. Philosophers
went along with the JTB account from Plato all the way until the 1960s, when
Edmund Gettier unhinged the tradition. Offering a couple of compelling coun-
terexamples, he showed that the three conditions (justification, truth, and belief)
are not jointly sufficient for knowledge.

Actually, a Gettier case (as they are called nowadays) was already concocted by
Bertrand Russell [Rus09, p. 91]. It goes along the following lines. It is four o’clock
in the morning, and you wake up and look at your analog clock. You thus form the
true justified belief that it is four in the morning. However, your clock’s batteries
are dead—as a matter of fact, the clock stopped working yesterday precisely at
four in the afternoon! So, you have a belief that is true and justified (you do not
have any reason to think the clock is not working), but intuitively you don’t know
that it is four o’clock in the morning because your justification is severed from the
truth of your belief. Some sort of epistemic luck—incompatible with knowledge—is
involved.

Here is another case. As before, you are looking at a dog in a field, and you
believe it is a sheep. You form the justified belief that there is a sheep in the
field. Unbeknownst to you, there is indeed a sheep in the field, but it is outside
your field of vision. Again, you have a justified true belief that does not constitute
knowledge.7

In the wake of such counterexamples, epistemologists embarked on the quest
of finding a fourth condition for knowledge (which they did not find—eventually
abandoning the enterprise). What matters for us is that they generally did not
question that the traditional analysis (the JTB story) would be perfectly fine for
the case of mathematics. Here is Alvin Goldman, a very influential epistemologist,
on the matter:

My concern will be with knowledge of empirical propositions only,
since I think that the traditional analysis is adequate for knowledge
of nonempirical truths. [Gol67, p. 357]

But in fact, if there is a gap between justification and knowledge—and Voevod-
sky’s case suggests that there is—then counterexamples to the JBT account are
possible in mathematics as well. Here is one. It has to do with the 4-color theorem.
Alfred B. Kempe was the first to publish a simil-proof for it in 1869. Kempe’s was
a careful argument by induction that was accepted by the mathematical commu-
nity. However, it was not a genuine proof! After eleven years, a significant gap
was unearthed. The story is well known; it took more than a century before Apple
and Haken came up with a simil-proof that is still accepted today (which is often
considered to be the very first computer-assisted (simil-)proof). So, it is plausible
to think that Kempe had a justified true belief that did not amount to knowledge
since, contrary to what he thought, his simil-proof was not a proof.

It is particularly compelling to think that Kempe was justified because, like
Voevodsky, not only he had a careful argument of which he was convinced, but he
also had additional evidence that his argument was correct given by the acceptance
of it by his mathematical community. It is because we are fallible and know that
we are, that this additional evidence is particularly important.

7A similar example was proposed in [Chi66].
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2.3. Shareability. I hinted at the fact that part of the success of mathematics rests
on the possibility that the mathematical community performs a self-monitoring
activity. Without invoking mathematical arguments that can be shared among
our fellow mathematicians, we cannot overcome our individual shortcomings. It
is because it underwent scrutiny from other mathematicians that Wiles’s original
proof was found wanting. But as Kempe and Voevodsky’s cases make it clear,
errors are not always spotted so quickly—still, ideally, sooner or later they are
indeed spotted.

It is because of this reason that if simil-proofs are to provide justification, they
might contain errors, but they cannot be idiosyncratic arguments that nobody ex-
cept a single subject could, in principle, grasp. They must have the potential to be
understood by multiple mathematicians. That is, they must be shareable. And if
they are arguments that satisfy the standards of acceptability of a legitimate math-
ematical community, they are indeed shareable. Note that a shareable argument
might not be the kind of thing that a single mathematician can grasp; excluding
large proofs like the ones involving automated computations or large collaborations
would be too restrictive.

However, if proofs are defined simply as valid deductive arguments (from some
accepted starting points), there might be proofs that are not shareable at all. This
is counterintuitive. A valid deductive argument could have as many inferential steps
as there are atoms in the universe. Suppose an extraterrestrial creature sufficiently
similar to us (but having a far greater ability to process and keep track of inferential
steps) can quickly grasp such an argument. At least in some cases, such a creature
will not be able to share its grasp of the argument with us. Consequently, we would
not be able to form justified beliefs based on such an argument. It is for this reason
that, in my view, not all valid deductive arguments are proofs. This reveals that,
like simil-proofs, proofs must be shareable as well.8

Requiring proofs and simil-proofs to be shareable restricts their domain to hu-
manly accessible arguments. Shareability is naturally a graded notion that presents
several distinct dimensions of evaluation. It measures not only how good of a reason
a simil-proof is for our belief but also what it would take to share such a reason
with other appropriately trained subjects. It is natural that different simil-proofs
present different degrees of shareability.

One worry brought about by the development of ever more sophisticated com-
putational tools is that in the future, there will be more and more simil-proofs that
are hard to share, that is, that are hard to grasp from human practitioners. In
these cases, we might have to resort to extra help for checking our results.

3. A price we might want to pay

When Voevodsky found out that his results were erroneous, he started to worry.
Those were important and widely circulated results. He thought that mathematics
(or some of it anyway) was extending into an arduous territory that was just not
suited to the human mind. Michael Harris explains:

Voevodsky obtained his prestigious position at the IAS and his
Fields Medal for his work in a field in which “too-long [simil-]proofs”
are common and in which the relatively small number of competent

8For more details, see [DT21].
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potential referees typically spend much of their time writing “too-
long [simil-]proofs” of their own, so he might understandably be
concerned that [simil-]proofs are not being read as carefully as they
should. [Har15, p. 58]

Too-long simil-proofs are more and more customary in mathematics. Until now,
we have mostly relied on each other to check the correctness of our simil-proofs.
But in the future, we might need to be obliged to ask for help elsewhere. Computer
proof assistants9 are tools that allow us to create formal counterparts of our informal
simil-proof and formally verify them if they are indeed correct. These tools could
therefore help us implement a more thorough check on our simil-proofs.10 And
Voevodsky thought that in the future, these tools would be used as a matter of
routine:

Voevodsky predicted it would soon be possible to design proof
checkers based on univalent foundations that could effectively verify
correctness of mathematical [simil-]proofs written in the appropri-
ate machine-readable language. In a few years, he added, journals
will only accept articles accompanied by their machine-verifiable
equivalents. [Har15, p. 60]

Although the few years might end up being substantially more, computer proof
assistants are indeed gaining terrain in mathematics, especially in some parts of it.
Obvious candidates for formal verification are computer-assisted simil-proofs. This
is because they are sometimes accepted only with reservation by the mathematical
community (precisely because they tend to score low on shareability). A famous
case is the one of the 4-color theorem mentioned above. A formally verified simil-
proof was produced in 2005 by Georges Gonthier.

Another case involves Tom Hales’s 2005 simil-proof of the Kepler conjecture
(remember the oranges?). After years of work for the twelve referees, the simil-
proof was finally published in the Annals of Mathematics. However, the simil-proof
involved computer-assisted calculations, and the referees admitted they were only
99% sure of its correctness. The ambiguous status of his simil-proof led Hales and
collaborators to embark on the Flyspeck project, the massive enterprise of formally
verifying the simil-proof, which was achieved in 2014.11

Even traditional simil-proofs from core areas of mathematics might call for formal
verification. A recent case involves Peter Scholze and Dustin Clausen’s work on
condensed mathematics [Sch19]—their goal is to propose a new framework in which

9In the current context, a more appropriate, albeit more pedantic, name for these tools would
be computer simil-proof assistants. However, for the sake of simplicity, I will keep adopting the
usual terminology.

10One thorny issue I will gloss over is what exactly computer proof assistants are supposed
to do. Are they used to check the correctness of our simil-proofs (and thus to find out whether
they are proofs or not) or are they used to check whether the conclusions of our simil-proofs are
indeed implied by their premises? Surely, these are related questions. They are not, however,
the same question. This issue has to do with the (hard) problem already mentioned of simil-
proofs individuation. Without dwelling on this problem, I endorse the seemingly uncontroversial
assumption that at least in some cases, computer proof assistants are indeed used to check the
correctness of our simil-proofs (one such case is Scholze’s—see below).

11[HAB+17]. See [Avi18] for a survey of recent developments in the domain of formal
mathematics.
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topological spaces are replaced by condensed sets, which would make it possible to
apply techniques from homological algebra to algebraic geometry. The material is
online and has been widely circulated. But Scholze was unsure of some of the key
details, and apparently his fellow mathematicians did not help him put his worries
to rest. Kevin Buzzard recalls his personal interaction with Scholze:

At the end of 2020, Scholze approached me and asked if we had had
a study group on the work at Imperial; I answered that we had.
Scholze then asked whether we had looked through all the details of
the [simil-]proof of Theorem 9.1 of [Schb]; I answered that we had
not. Scholze then remarked that he had had the same response
from other mathematicians, and raised the possibility that perhaps
nobody other than himself and Clausen had ever read the [simil-
]proof carefully. Furthermore he suggested that perhaps this might
remain true even after the refereeing process. The reason he was
concerned about this was that, for Scholze, this was the theorem
that the entire theory stood upon. [Buz21, p. 12]

At the time, the simil-proof of Theorem 9.1 was a result that, although in prin-
ciple shareable, nobody except its authors took the time to check in detail. It is
for this reason, and for its foundational role within the condensed sets framework,
that Scholze decided to address the community of mathematicians that had been
playing with computer proof assistants. Buzzard and other members of the Lean
community took on the challenge and embarked on what they called the Liquid
Tensor Experiment.12 It is extraordinary that the team members (among which
Johan Commelin and Patrick Massot played major roles) managed to formalize the
bulk of the simil-proof in just six months! This shows that, contrary to prior ex-
pectations, computer proof assistants can indeed tackle cutting-edge mathematics
in a reasonable amount of time.

In this case, Scholze could not find human checkers, so to speak. But even when
other mathematicians are willing to verify our results, they are fallible and are
likely to share the same cognitive shortcomings. Computer proof assistant might
offer us a whole new level of confidence because, with them, we can subject our
simil-proofs to a more rigid scrutiny, one that is more reliable in detecting errors.
Or, at least, this is what some mathematicians involved in the computer proof
assistant community think. One of them is Massot. He puts it as follows:

The most obvious benefit of formalized mathematics is super-human
certainty that a [simil-]proof is correct when it has been checked by
a computer. [Mas21, p. 1]

It is plausible to think, along with Massot, that computer proof assistants can
greatly amplify our confidence in the correctness of our simil-proofs. However, we
might still fall short of getting a 100% guarantee. Why is complete certainty still
eluding us? Because two types of problems lurk in the background. The first is the
potential presence of bugs in the kernel or compiler of the proof assistant—this is
a remote (but still existent) possibility due to the limited size and simplicity of the
software. The second type of problem is trickier. It has to do with the faithfulness
of the translation of informal results into formal statements. How can we be sure

12Lean is a computer proof assistant that is gaining momentum in the mathematical
community.
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that what we formalize is indeed what we started with in the first place? This
suggests that we can verify our results using computer proof assistants to reach
“super-human certainty” of their truth, but that super-human is still less than
absolute.

Still, verification, although a major benefit of ultra-rigorous mathematics, is not
the only one. Before winding up, I will briefly discuss how shareability could be
enhanced through formalizations. This might sound surprising since, as I hinted at
before, sharability is often lowered by the use of computational tools. In particular,
computer-assisted simil-proofs tend to be rather opaque and thus hard to grasp,
thus scoring low on shareability.

3.1. Shareability on steroids. Another promise of computer proof assistants is
that they will make available a new type of mathematical writing. As we discussed,
we want our simil-proofs to be shareable because we want our fellow mathematicians
to be able to check them. But shareability is not only in place to check which simil-
proofs actually amount to proofs. It is also crucial for providing mathematical
understanding.

To be sure, it is notoriously hard to articulate a sharp characterization of what
understanding is.13 In the case of mathematics, this is partly due to the fact that un-
derstanding is a multi-dimensional phenomenon involving diverse cognitive abilities
spanning from symbolic to visual. But this is also due to the fluid, ever-changing na-
ture of mathematical understanding. For example, in a recent contribution, Jeremy
Avigad [Avi22] points out how computers in mathematics opened up the possibility
of new forms of understanding.

At any rate, the importance of understanding in mathematics is unquestionable.
According to a popular article by Bill Thurston, in their activity of finding new
results, mathematicians “discover. . . that what they really want is usually not some
collection of “answers”—what they want is understanding” [Thu94, p. 162], and
goes as far as to suggests that understanding is the ultimate goal of the mathemat-
ical activity.

In usual mathematical practice, simil-proofs are presented at specific levels of
detail to facilitate a particular audience’s understanding. However, it is often hard
to choose just the right level, and the possibility of expanding and hiding the
details on the fly would be a great feature, one that could help hit the target of
understanding. This is another respect in which computer proof assistants could
help:

I think the most the promising application of formalized mathe-
matics is the dream of producing mathematical documents allow-
ing readers to dynamically choose the detail level and access back-
ground knowledge on demand. [Mas21, p. 3]

This type of technology could have a great impact on the way we understand simil-
proofs. Moreover, Buzzard explains that computer proof assistants can be coupled
with tools that produce dynamic web pages, enhancing even more the dynamicity
of mathematical texts:

13For the present context, it is important to note that understanding does not have to be
factive—that is, that we can understand things are are not true. A non-factive account of under-
standing has been championed by Catherine Elgin [Elg07].
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Tools like Alectryon will enable us to make documents which will
allow links to dynamic web pages displaying anything from math-
ematical details to interactive pictures, in a human-readable form,
and which will allow one to keep digging right down to the axioms,
although of course it is unlikely that anyone would like to go down
this far. [Buz21, p. 21]

Such dynamicity could have a terrific pedagogical impact as well:

One could also imagine error-free undergraduate textbooks also
written in this way, where statements which a student cannot un-
derstand (perhaps because they are ambiguous) can be inspected
in more details until difficulties are resolved. [Buz21, p. 21]

All these considerations show that computer proof assistants like Lean could help
us come up with better, more shareable simil-proofs that can be accessed in a
personalized way.

This is a reward that goes beyond the particular type of mathematical under-
standing that is gained in the process of formalizing. As a matter of fact, the very
process of feeding a simil-proof to a computer requires thinking hard about the
structure and the details of the original simil-proofs, thus helping us gain addi-
tional understanding. This became clear in the Liquid Tensor Experiment. Scholze
observed that during the process of formalizing his simil-proof, Commelin, one of
the leaders of the project, came up with a better (more explicit and more elemen-
tary) version of the original argument. More generally, the formalization process
gave him a clearer picture of

[w]hat actually makes the [simil-]proof work! When I wrote the
blog post half a year ago, I did not understand why the argument
worked, and why we had to move from the reals to a certain ring
of arithmetic Laurent series. But during the formalization, a sig-
nificant amount of convex geometry had to be formalized (in order
to prove a well-known lemma known as Gordan’s lemma), and this
made me realize that actually the key thing happening is a reduc-
tion from a non-convex problem over the reals to a convex problem
over the integers.14

Computer proof assistants could also help us better access already available
results by making new searchable databases possible. Moreover, with the develop-
ment of AI, they will become better and better at suggesting proof strategies, thus
aiding us in finding new simil-proofs. This means that they will likely also be tools
for the discovery of new mathematics, and not just tools for the verification of old
mathematics.

These are great promises. But it is not all puppies and rainbows. Computer
proof assistants are only in their infancy, and they are still too clunky to be used
by most mathematicians. The learning curve is very steep. Moreover, it is true that
computer proof assistants might help increase the shareability of our simil-proofs,
but only along specific dimensions. They might also lower it along other dimensions.
For example, current proof assistants are not very good at handling diagrams and
other types of visual information, which is another way practicing mathematicians

14From Buzzard’s Xena Blog of June 5, 2021: https://xenaproject.wordpress.com/2021/

06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/

https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
https://xenaproject.wordpress.com/2021/06/05/half-a-year-of-the-liquid-tensor-experiment-amazing-developments/
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use to amplify their understanding and thus increase the shareability of their simil-
proofs. Another problem is that there are many competing systems (e.g., Coq, HOL
Light, Isabelle, and Lean), which are often incompatible, and importing results from
one to the other is no easy task—it is like having a bunch of different, incompatible
operating systems and having to develop separate apps for all of them.

Still, this should not dishearten us. Nobody said that transitioning to a new
ultra-rigorous formalized mathematics would be easy or that it would be quick. We
might just have to wait some time until these tools become more flexible and more
user-friendly.

4. Conclusion

Philosophers have traditionally thought that first-hand mathematical justifica-
tion of propositions (that are not axioms) is provided by proofs exclusively—but
this is a mistake. Looking at the practice of mathematics, we soon realize that
there are compelling cases in which a subject can be justified in believing a false
mathematical proposition (as in Voevodsky’s case) or a true mathematical proposi-
tion in virtue of a fallacious argument (as in Kempe’s case). Being associated with
simil-proofs rather than proofs, mathematical justification is fallible.

But our individual fallibility can be partially overcome by working together and
checking each other’s results. Problems arise, however, when our simil-proofs are
too long or too technical: our fellow mathematicians might be too busy or just
unable to scrutinize them.

Weil compared proving a theorem to climbing a mountain. With the terminology
introduced, we can now say that in practice we do not always produce proofs; what
we produce are simil-proofs (that, to be sure, often are indeed proofs). That is why
rather than climbing a mountain, we simulate climbing a mountain. According to
some, however, computer proof assistant might get us the real thing:

Having the ability to check partial progress with absolute certainty
can be extremely useful to increase confidence and determination.
[Mas21, p. 6]

That is, with computer proof assistants, we cannot proceed unless the terrain is
really cleared. So, they might get us what we really wanted in the first place,
certainty. Or at least, given that there is still the possibility of bugs or mismatches
between informal and formal statements, to something closer to it compared to
what we generally get relying exclusively on our human abilities.

After all, computers may indeed change the way in which we do mathematics.
But it looks like they might lead us in the antipodal direction compared to the one
indicated by Zeilberger. A counterpart of his prediction would go like this:

We might witness many results for which we would have found
a simil-proof, but we would be unable, or unwilling, to pay for
formalizing it, since “almost certainty” will suffice. I can envision
an abstract of a paper, c. 2050, that reads: “We show, in a certain
precise sense, that the Goldbach conjecture is true (we checked our
simil-proof thoroughly), and that formally verifying our simil-proof
could be done with a budget of $1M.”

Notice that the time is closer, and the price is lower than in the original quotation.
Indeed, the main hurdle still consists in finding a simil-proof in the first place.
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Besides, the more computer assistants are going to be used, the easier it will become
to formalize new mathematics—they will become more flexible, and the libraries
will grow. It might become, at some point, a price we will be willing to pay. This is
more so because the dream is to use these tools not only as verification devices but
also as amplifiers of human understanding—after all, mathematical understanding
is what we might really need.
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