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Abstract
Criteria of acceptability for mathematical proofs are field-dependent. In topology, 
though not in most other domains, it is sometimes acceptable to appeal to visual 
intuition to support inferential steps. In previous work (De Toffoli and Giardino in 
Erkenntnis 79(3):829–842, 2014; Lolli, Panza, Venturi (eds) From logic to practice, 
Springer, Berlin, 2015; Larvor (ed) Mathematical cultures, Springer, Berlin, 2016) 
my co-author and I aimed at spelling out how topological proofs work on their own 
terms, without appealing to formal proofs which might be associated with them. In 
this article, I address two criticisms that have been raised in Tatton-Brown (Erkennt-
nis, 2019. https ://doi.org/10.1007/s1067 0-019-00180 -92019 ) against our approach: 
(1) that it leads to a form of relativism according to which validity is equated with 
social agreement and (2) that it implies an antiformalizability thesis according to 
which it is not the case that all rigorous mathematical proofs can be formalized. I 
reject both criticisms and suggest that our previous case studies provide insight into 
the plausibility of two related but quite different theses.

1 Introduction

Mathematics is very successful. We are proving more and more sophisticated propo-
sitions with an ever-increasing cornucopia of techniques, notations, methods, and 
abstract concepts linking separate areas of the discipline. Certain achievements even 
reach the ears of non-specialists: Wiles’ proof of Fermat’s Last Theorem and Perel-
man’s proof of the Poincaré Conjecture are two examples. The number of informal 
proofs is vastly greater than that of formal proofs and as a result restricting math-
ematics to what has been formally proven would strip it of many of its exciting suc-
cesses. As Tom Hales (2008) explains,
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proofs are written in a way to make them easily understood by mathematicians. 
Routine logical steps are omitted. An enormous amount of context is assumed 
on the part of the reader. (p. 1371)

Proofs1 are enthymematic valid deductive arguments—it is because they contain 
all sorts of shortcuts that the reader must be appropriately trained to check their cor-
rectness. Formal proofs, whose steps are either axioms or derived from previous 
steps with the aid of explicit inference rules, can instead be mechanically checked. 
Formal proofs were first defined at the end of the 19th century by the fathers of 
modern logic, Frege, Russell, Hilbert, and others. Moreover, after a turbulent period 
of foundational uncertainties, in the first half of the 20th century, set theory became 
widely recognized as able to provide foundations for all mathematics, that is, all 
provable results should be in principle provable in the language of set theory,2 even 
if Gödel showed that no single formal system would suffice.3 In practice, Bourbaki’s 
encyclopedic enterprise is an ambitious example of how to organize standard math-
ematics starting with set theoretic notions.

Oliver Tatton-Brown (2019)4 argues that formalizability is the mark of rigor and 
criticizes recent literature that emphasizes how mathematical proofs are accepted 
in practice without discussing formal proofs. The main target is a paper Valeria 
Giardino and I (2016)5 coauthored that is centered around Alexander’s theorem, a 
topological result connecting knots to braids. According to Tatton-Brown, we over-
emphasize the role of intuition in mathematics and put forward some sort of anti-
formalizability claim. Tatton-Brown’s worries have some legitimacy. Putting our 
previous work into context and disambiguating some of the terminology, however, I 
will show that our previous work did not make the claims that Tatton-Brown takes it 
to make. When our work is understood in context, it becomes clear (or so I will sug-
gest) that our project was not in opposition, but rather orthogonal to his.

It is worth noting right away that I agree with (TB19) that while informal proofs 
are much more common and much more elusive than formal proofs, the two are 
related. Consider the role of independence results in mathematical practice. After 
Cohen’s 1963 proof of the independence of the Continuum Hypothesis (CH) from 
ZFC, a reasonable mathematician would have known better than spend any effort 
to prove CH in standard mathematics.6 That is, the existence of a formal proof (i.e., 
in principle formal provability) is a sine qua non condition for the existence of an 

1 As it is customary, I use the term ‘proof’ as a success term. If not specified otherwise, I will use the 
term ‘proof’ to mean ‘informal proof.’
2 I am here focusing on classical logic and leaving aside issues raised by rejection of the law of excluded 
middle or of other non-classical logical choices.
3 The issue is however by no means settled. For example, the acceptance of large cardinal axioms is 
still a matter of debate. Moreover, nowadays category theory and homotopy type theory offer alternative 
foundations.
4 From now referred to as (TB19).
5 From now referred to as (DG16).
6 Note that not all mathematicians are reasonable. Some did actually try the impossible and proposed 
arguments doomed to be refuted. (TB19, p. 8) also mentions independence results. Thanks to John Bur-
gess for conversations about this issue.
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informal proof (i.e., provability)—nobody would disagree with this. A locus of 
disagreement is instead the type of relation that holds between formal and infor-
mal proofs: is this a structured relation? Is it helpful to understand mathematical 
practice?7

In what follows, I will first clarify the difference between an abstract overarching 
criterion of rigor and context-dependent criteria governing which arguments math-
ematicians accept in practice. I consider cases in which a special type of intuition is 
accepted in professional contexts because it does not threaten the reliability of the 
arguments in question. In Sect. 2, I will briefly go through the issues that (TB19) 
raises in relation to Alexander’s theorem. Afterward, I will address his particular 
worries about anti-formalizability and relativism and give a positive proposal about 
how to resolve them. The considerations to follow will not only respond to the con-
cerns raised in (TB19), but have also a more general breadth, contributing to clarify-
ing the terms at play in the formalizability debate in the philosophy of mathematics.

1.1  Rigor

The majority of mathematicians pay scant, if any, attention to foundational issues 
and probably never entered the thickets of set theory. Fields medalist Vaughan F. R. 
Jones (1998, p. 205) confesses: “my own notion of set is very primitive, certainly 
not going beyond ‘naïve set theory.’” Mathematicians are to logicians as physi-
cists are to mathematicians, claims Jones: both groups push the worry to the other 
camp when made aware that their proofs are “riddled with holes.” “Let the logician 
worry about it,” replies the mathematician. Fine, but for rigorous proofs the logi-
cian should be able to satisfy her concerns. The logician will not able to fill the gaps 
all by herself, she will need the help of a mathematician to access the “enormous 
amount of context” that is assumed in the proof. This context is what mathematical 
communities share8: background propositional knowledge, knowledge-how, and the 
available representational resources.

Mark Steiner (1975, p. 100), inquiring about what it takes to achieve mathemati-
cal knowledge, considers a mathematician with a proof and a logician posing ques-
tions. Prompted by the logician, the mathematician will draw from her expertise 
unstated premises and enough details to convert the proof into something that the 
scrupulous logician could in turn convert into a formal proof. According to Steiner, 
the logician plays the role of a Socratic midwife:

I am so far like the midwife that I cannot myself give birth to wisdom […] 
Those who frequent my company at first appear, some of them, quite unintelli-
gent, but, as we go further with our discussions, all who are favored by heaven 
make progress at a rate that seems surprising to others as well as to them-
selves, although it is clear that they have never learned anything from me. The 

7 For arguments against the existence of a relation with such properties see Rav (1999), Leitgeb (2009), 
and Tanswell (2015). For arguments in favor see Azzouni (2004).
8 See Ferreirós (2016, Ch. 2) for a discussion of mathematical communities.
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many admirable truths they bring to birth have been discovered by themselves 
from within. But the delivery is heaven’s work and mine. (Theaetetus, 150c-d)9

In our context, the logician’s lack of wisdom is her lack of knowledge of the rel-
evant mathematical area, and the mathematician’s apparent unintelligence derives 
from her gappy proof. If the logician succeeds in delivering a formal proof from the 
mind of the mathematician, the latter had knowledge all along, and this implies that 
her proof was rigorous.

Bourbaki, Mac Lane, and others characterized rigor with a variation on the same 
theme. I will not quibble with this standard characterization; my aim here is not to 
provide yet another definition of rigor.10 I will work with Burgess’ (2015) charac-
terization, a version of which is endorsed and further detailed by Tatton-Brown. In 
short, according to Burgess, a rigorous proof is a proof that contains enough detail 
to convince (for the right reasons) the relevant audience that a formal proof exists. 
Moreover, it has to convince for first-order reasons; testimony or higher-order evi-
dence are not relevant. This is a clear and general definition. However, it implies that 
in order to evaluate whether a proof is acceptable as rigorous, we have to wade into 
its context and clear the murky waters by asking who is the “relevant audience” and 
what is “enough” to convince such relevant audience for the right reasons. This is 
the task I have been pursuing.

1.2  Criteria of Acceptability

As Burgess acknowledges, his characterization of rigor can “provide some guid-
ance” but is inadequate to analyze specific cases:

Lots of room for disagreement, even among experts, is contained in that word 
“enough,” as is room for recognition that what is enough for one audience may 
not be enough for another. (pp. 97–98)

Basically, for Burgess, the relevant details are giving the reader steps of the pur-
ported formal proof. That is why he does not admit diagrams into rigorous proofs—
but this is not essential for his view, and I claim that in fact some types of diagrams 
meet his desiderata.

In previous work in collaboration with Valeria Giardino, (DG15) and (DG16),11 
I aimed to show that diagrams and visualizations may be sufficient to convince the 
relevant audience that an inferential step in a proof is correct. This is not because 
diagrams can be understood as steps of a formal proof,12 but because they support 

11 De Toffoli and Giardino (2014, 2015, 2016) are here labelled (DG14), (DG15), and (DG16). After 
publishing a paper on knot diagrams in Erkenntnis in 2014, Giardino and I wrote an initial draft on the 
topic of low-dimensional topology for two conferences which later was developed and split into two 
papers, then published in 2015 and 2016 as chapters in the two conference proceedings.
12 Although they could be—as in formal diagrammatic proofs.

9 Translated by Cornford.
10 See Hamami (2019) for a meticulous analysis of mathematical rigor and the historical underpinning 
of the present account.
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high-level inferences that the relevant readers recognize as correct—and since cor-
rectness implies formalizability, the readers further infer that they are formalizable.

This is key. In some cases, mathematicians don’t accept a proof because it is for-
malizable; they accept a proof for other reasons (e.g., visualizations they know to be 
reliable), and then they infer that it is formalizable. The order of explanation is thus 
reversed when compared to Burgess’ and Tatton-Brown’s accounts. More generally, 
Giardino and I aimed to determine how the contours of enough detail are drawn in 
specific mathematical practices.13

A natural concern with such a project is that criteria of acceptability do not admit 
of a principled philosophical analysis and, even if they do, they are not of interest for 
philosophy, but only for sociology or psychology. I will dispel this concern by show-
ing that a philosophical analysis is not only possible, but critical for understanding 
actual mathematical practice. It is however true that acceptability, unlike rigor, is 
a context-dependent notion. This does not imply that criteria of acceptability are 
subjective or socially constructed, however. To clarify terminology and avoid verbal 
quarrels14 we can distinguish between:

1. the criterion of rigor

and

2. criteria of acceptability for rigorous proofs.

(1) Rigor is a very general and context-independent criterion. It is factual: rigor 
implies correctness. A proof is rigorous only if it can be formalized and the rel-
evant audience can be convinced of it (for the right reasons). This is a relatively 
uncontroversial criterion: reasonable mathematicians do not waste their time trying 
to prove mathematical propositions that have been shown to be independent from 
their assumptions—such as CH. This is a neat criterion, but it is too general to be 
implemented in actual mathematical practice.

(2) Criteria of acceptability for rigorous proofs are the criteria that determine 
whether an argument is suitable for publication and for acceptance in a particu-
lar context. These criteria depend on the mathematical community to which the 

13 In a similar vein, Jeremy Avigad (2020) proposes an account of how traditional proofs are reliable, 
tracking existence of formal proofs.
14 As one referee pointed out, part of the disagreement with Tatton-Brown derives from the fact that we 
talked past each other.
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proof is addressed. While some communities accept proofs as rigorous only if 
they are very close to formal proofs, others are more permissive. While topolo-
gists tend to accept some specific appeal to intuition, others (e.g., von Neumann 
algebras specialists15) don’t.16 Moreover, criteria of acceptability can be applied, 
for example, to Gauss’ proofs and to all other pre-19th century mathematical 
proofs, which were developed in a time when the notion of formal systems was 
not yet delineated.

By considering proofs in practice, it quickly becomes evident that the norma-
tive dimension at play for accepting rigorous proofs is more variegated and com-
plex than the one involved in assessing formal proofs alone and cannot be spelled 
out adequately without entering into the details of the various cases. The criteria 
of acceptability for rigorous proofs—arising from the experience of mathematicians 
in recognizing what types of inferences are reliable—are going to determine what 
types of gaps are acceptable, and what types of high-level inferences are permissible 
in a specific context17,18.

The criteria of acceptability for (rigorous) proofs are supposed to track correct-
ness; however, unlike rigor, they are not a guarantee. There are clear historical cases 
in which the criteria of acceptability for proofs, even in professional contexts, were 
shown to be inadequate and required revision. As observed in (TB19), in the 17th 
century, when Leibniz and Newton introduced infinitesimals, their method was more 
or less acceptable by period mathematicians. With the work of Cauchy and culmi-
nating with Weierstraß, the method of infinitesimals was banned and replaced by 
early versions of ε-δ calculus.19 Moreover, nowadays, Weierstraß’ proofs are also 
not accepted as rigorous.

Another example is the Italian school of algebraic geometry whose work strad-
dled the end of the 19th century and the first three decades of the 20th century. It 
produced many fruitful ideas, but it was too speculative for its methods to be accept-
able. Only with the later work of Oscar Zariski, a student of Guido Castelnuovo, 
were its intuitive ideas given an acceptable form.20

This is the past, one might think: now we have a clear definition of rigor, and the 
criteria involved in accepting rigorous proofs cannot lead us astray anymore. But 
is this really so? Unfortunately not. There are always developments requiring new 
criteria, and new discoveries challenging current ones. For example, in the recent 
and fast-growing sub-field of symplectic geometry, the criteria of acceptability are a 
matter of controversy between the experts. As Kevin Hartnett (2017) explains:

15 Von Neumann’s density theorem is the example that Jones (1998) uses to contrast Alexander’s theo-
rem.
16 I am putting aside the (interesting) phenomenon of computer-assisted proofs or proofs requiring col-
laborations to focus on the phenomenon of proof that can be grasped by a single mathematician.
17 Don Fallis (2003) proposes a taxonomy and analysis of different gaps in mathematical proofs.
18 This is in line with Tatton-Brown. However, he takes the criteria of acceptability to be the criteria of 
rigor; this is where our projects take different directions.
19 Still, not by sheer chance infinitesimal worked pretty well in practice and in the right hands and this 
has been partially revindicated by Robinson’s non-standard analysis.
20 See Parikh (2009).
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Research developed rapidly, but without the shared background knowledge 
typically found in mature areas of mathematics. This made it hard for math-
ematicians to tell when new results were completely correct.

Dusa McDuff and Katrin Wehrheim, two prominent mathematicians, started 
questioning published results and criticizing methodological choices of Kenji 
Fukaya and collaborators.21

We have not removed criticisms of the arguments in [FO, FOOO],22 since for 
many years these have been the only available references on this topic (and 
still are the only published sources). So we think it important to give a coher-
ent account of the construction in the simplest possible case, showing where 
arguments have been lacking and how one might hope to fill them. (McDuff 
and Wehrheim 2015, p. 169)

The criticized party disagrees, maintaining that the charges are unfair. Hartnett 
summarizes the gist of the discussion:

Wehrheim and McDuff would raise questions about Fukaya’s work. Fukaya 
and his collaborators would then write long, detailed answers. Whether those 
answers were satisfying depended on who was reading them. From Fukaya’s 
perspective, his work on Kuranishi structures was complete and correct from 
the start. “In a math paper you cannot write everything, and in my opinion 
this 1996 paper contained a usual amount of detail. I don’t think there was 
anything missing,” he said. Others disagree. (Hartnett 2017, emphasis added)

It could very well be that in the not so distant future, formal verification will be 
required for proofs to be accepted as rigorous, at least for some areas of mathematics 
or for some types of proofs.23 This was the vision of Vladimir Voevodsky, who real-
ized that part of what is now acceptable as rigorous mathematics should perhaps not 
be acceptable after all (sometimes is even straightforwardly wrong)—starting with 
his results leading to his Fields medal in 2002.24

Criteria of acceptability for rigorous proofs are not carved in stone (as the cri-
terion for rigor might be), but they are indexed to a mathematical community in a 
particular time. Often, such criteria are stable for fields in which the background 
knowledge has solidified and more volatile for recent areas. They reliably—but not 
perfectly—track rigorous proofs. There is a trade-off between reliability and effort. 

21 Thanks to Kevin Buzzard for discussions on the shortcomings of contemporary standard of accept-
ability for rigorous proofs and to Patrick Massot for pointing me to this specific controversy.
22 These are papers by Fukaya and co-authors published in main mathematical journals: K. Fukaya 
and K. Ono, Arnold conjecture and Gromov–Witten invariants, Topology 38 (1999), 933–1048, and K. 
Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Lagrangian Intersection Theory, Anomaly and Obstruction, 
Parts I and II, AMS/IP Studies in Advanced Mathematics, Amer. Math. Soc. and Internat. Press.
23 See Avigad and Harrison (2014). Computer assisted proofs are among the first proof candidates for 
formal verification. Great achievements have already been obtained; among the most pathbreaking are 
the formalizations of the Four-Color Theorem by Georges Gonthier in 2004 and of the proof of the 
Kepler Conjecture by Tom Hales and his collaborators of the Flyspek project in 2017.
24 After ten years and various vicissitudes, he found a mistake in his previous work.
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We can always perform additional checks, but only at the cost of hindering the pro-
gress of mathematics. When mathematicians can simplify their lives by using cogni-
tive abilities to perform high-level mathematical inferences reliably, they will just do 
so. Shortcuts can be dangerous, but they are indispensable for mathematical growth.

1.3  Topological Intuition

One type of shortcut frequently chosen in topology is made possible by spatio-tem-
poral and kinesthetic intuition. Differently than flatlanders, when inquiring in low-
dimensional topology we can appeal to our intuition of three-dimensional space:25

If we were two-dimensional creatures, then proving this theorem [Alexander’s 
theorem] would be another story entirely and would require much more formal 
argument. (Jones 1998, p. 212)

Giardino and I started with the observation that some proofs accepted as rigorous 
in topology include inferential steps appealing to intuition. Not all appeals to intui-
tion are, however, admissible. Hans Hahn’s (1931/1980) lecture Crisis in Intuition 
offers plenty of cautionary tales. Our goal was exactly to explain when and why 
intuition can be reliable and thus acceptable in specific contexts. Intuition can be 
invoked in rigorous proofs only if it is shared by mathematicians with the appro-
priate training and is systematically linked to precise mathematical concepts and 
operations.

When high-level inferences rely on idiosyncratic appeals of intuition, they are not 
acceptable as rigorous. The work of William Thurston the Hyperbolization Theo-
rem26 and much before the works of Henri Poincaré that triggered the Bourbaki pro-
ject27 are well-documented examples.

A specific type of intuition at play in topological proofs is what Giardino and I 
labeled enhanced manipulative imagination in a study of knot diagrams (DG14). 
This intuition develops via ordinary human interaction with concrete objects as well 
as specific training; it is then redeployed in mathematics when practitioners imagine 
spatial transformations and perform manipulations on diagrams that are easily inter-
preted as well-defined mathematical operations (e.g., ambient isotopies). The use of 
enhanced manipulative imagination is subject to specific norms. Referring to a topo-
logical proof showing the equivalence of different presentations of a 3-manifold, we 
wrote:

25 I use the term ‘intuition’ in sense of the German word ‘Anschauung.’ There are other types of intui-
tion that play a role in mathematics. For example, mathematical intuition á la Gödel is what leads us to 
the justification of the axioms of set theory. Thanks to one of the anonymous referees for this point.
26 “A grand insight delivered with beautiful but insufficient hints, the proof was never fully published” 
(Jaffe and Quinn 1993, p. 7).
27 “Poincaré claimed too much, proved too little, and his “reckless” methods could not be imitated. […] 
Dieudonné suggests that casual reasoning is a childhood disease of mathematical areas and says, “…after 
1910… uniform standards of what constitutes a correct proof became universally accepted in topology… 
this standard has remained unchanged ever since.” But in fact, there have been many further episodes.” 
(Jaffe and Quinn 1993, p. 8).
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In order to understand the proof and check its validity, practitioners have to 
use their ability to imagine topological transformations correctly. For example, 
they have to interpret the transitions between the pictures as homeomorphisms. 
(DG15, p. 331, emphasis added)

Another example has to do with how topologists imagine manipulating knot 
diagrams in a way that is accurately cashed out in terms of Reidemeister moves 
(DG14). We concluded that the processes for checking the correctness of proofs

are context-dependent processes that in low-dimensional topology rely on our 
manipulative imagination and more generally on our intuition of three-dimen-
sional space, duly trained according to the specific practice. (DG15, p. 333, 
emphasis added)

Although intuition is linked by training to precise mathematical operations, it is 
not in virtue of this fact alone dispensable. In practice, arguments relying on dia-
grams and intuition are cognitively manageable and are reliable alternatives to argu-
ments that do not rely on them—I will later suggest that in some cases eliminating 
the appeal to intuition in a proof would relevantly change the proof at issue.

Mathematicians are certainly convinced that they can link widely acceptable vis-
ualizations to precise mathematical concepts, which in turn are convertible (with the 
help of the patient logician) into formal arguments. Seldom is this actually tested in 
practice, however. And even with the proof assistant technology available today, for-
malizing a proof remains a “major undertaking,” (Hales, p. 1372) often unfeasible in 
practice.28 Thanks to their experience, mathematicians are good at picking out and 
relying on only those visualizations that are in fact correct (and thus convertible into 
formal steps). They are however indifferent with respect to the various choices that 
have to be taken for converting their proofs into formal ones.29

In (DG16), a paper presenting a case study in braid theory, we intended neither to 
argue that proofs cannot be formalized at all, nor to advocate social constructivism 
for mathematics; rather, we were analyzing the criteria of acceptability for proofs 
(and for rigorous proofs) by focusing on how proofs are situated in a specific socio-
cognitive setting. This approach was made clearer in (DG15), a previous, but deeply 
connected paper:30

Of course, it is still possible to translate visual arguments into formal ones. 
Nevertheless […] the formal version might be complete, but it remains inade-
quate. As a consequence, once we accept the existence of arguments structured 
in sequences of pictures, we realize that although there might be good reasons 
to reduce the reasoning to formal statements, this move would add nothing to 
the topological reasoning behind the argument. (p. 334, emphasis added)

28 For example, Hales estimated that the process of formalizing his proof of the Kepler Conjecture in 
HOL Light took 20 working years (distributed across many people) to complete.
29 This is in line with Burgess’ (2015) claim that mathematicians are indifferent to foundational choices.
30 As explained in footnote 11, there is continuity between (DG15) and (DG16).
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Our objective was precisely to analyze such topological reasoning and determine 
when it is acceptable in proofs and what the social, cognitive, and material condi-
tions are that make this possible. Tatton-Brown takes issue with (DG16), starting 
with the choice of case study. One apt consideration is that we interpreted Alexan-
der’s result as it is read today, rather than in 1923, when the criteria of acceptability 
for knot and braid theory were still fluid.31 Here, I aim to respond to the two main 
charges of (TB19). I will show that our views are consistent with most of Tatton-
Brown’s claims, but not with what he attributes to us. The two main charges are:

(REL) RELATIVISM Mathematicians’ agreement regarding the correctness 
of proofs is determined solely by social factors.

De Toffoli and Giardino write as though each community’s ways of reasoning 
are automatically accurate about the community’s chosen subject matter (p. 
10)

(AFT) ANTI-FORMALIZABILITY THESIS It is not the case that all rigor-
ous mathematical proofs can be formalized (in some sense).

They aim to use a case study to attack a version of the standard view of proof 
[…] in which the correctness of mathematical proofs is connected with their 
formalizability in some sense (p. 1)

In (DG16) we did not address the problem of how a proof can be connected with 
a formal proof, but this does not by itself imply that we endorsed AFT. Our attitude 
was similar to the one emerging from the Princeton Companion to Mathematics 
(Gowers 2008).32 Editor Timothy Gowers, starts by quoting a passage of Bertrand 
Russell’s The Principles of Mathematics in which pure mathematics is defined in 
strictly logical terms as

Pure Mathematics is the class of all propositions of the form p implies q, 
where p and q are propositions containing one or more variables, the same in 
the two propositions, and neither p nor q contains any constants except logical 
constants. And logical constants are all notions definable in terms of the fol-
lowing: Implication, the relation of a term to a class of which it is a member, 
the notion of such that, and any such further notions as may be involved in the 
general notion of propositions of the above form. In addition to these, math-
ematics uses a notion which is not a constituent of the propositions which it 
considers, namely the notion of truth. (p. ix)

Gowers goes on to explain that the Princeton Companion “is about everything 
that Russell’s definition leaves out.” Again, this does not imply AFT. It rather threat-
ens a sharper version of it, in which the connection between a proof and a formal 

31 For instance, in the second quarter of the 20th century, Artin, the father of braid theory, shows 
changes of mind with respect to his own methodology, particularly with the use of diagrams. See Fried-
man (2019) for a detailed historical account of the issue.
32 See Kennedy (2009) for a review emphasizing this point.
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proof is substantially defined, and the notion of formal proof is specified. In our 
work, we started with the assumptions, shared with Gowers, that (1) logical founda-
tions are not among the concerns of mainstream mathematics and (2) mathematics 
was practiced well before the introduction of ZFC and featured proofs that were cor-
rect even without reference to formal systems.

As stated in (TB19), the “standard view” is problematic from the foundational 
point of view. What formal system are we talking about?33 What does it mean to 
be formalizable (I will address this in Sect. 4)? Moreover, there are principled phil-
osophical arguments against the theoretical commitments of every formal system, 
even the widely accepted ZFC. For instance, the fact that mathematicians tend to 
prefer constructive proofs is a pushback against the law of excluded middle. Another 
example is the still controversial Axiom of Choice.

Tatton-Brown’s charges are raised in connection with what he takes to be a mis-
interpretation of Alexander’s theorem connecting knots to braids in (DG16). In the 
next section, I address a few crucial mathematical passages to clarify my own per-
spective as one of the two co-authors of the previous studies.34 This single-authored 
response will not employ the rhetoric of (DG16), nor answer Tatton-Brown’s related 
concerns.35 What I hope to do in the present context is respond to the two worries 
that he raises and conclude with some general remarks on the role of intuition in 
mathematics and a positive proposal regarding how to recover reasonable versions 
of REL and AFT.

2  Alexander’s Theorem

Alexander’s theorem states that every link (i.e., a disjoint union of knots) is the clo-
sure of a braid.36 The crux of the proof is to show that any knot is equivalent to a 
reel37—that is, a knot that progresses monotonically around an axis. This was first 
proven by the Princeton mathematician James W. Alexander (1923), to whom the 
theorem is now attributed.

Given the definition of braid and its closure, it is obvious that every reel is the 
closure of a braid. However, since (DG16) was addressed to non-mathematicians 
and this initial step already involves visualization, we took the time to explain it 
(DG16, p. 40). Our exposition did not aim at mathematical or historical precision 
but was rather meant to be suggestive of peculiar techniques used in topology. What 

36 See (DG16) and (TB19) for the details.
37 Alexander does not use such terminology, which is adopted in Dalvit (2011).

33 Of course, if any formal system is allowed, then this thesis is utterly trivial since we can always add 
more axioms.
34 For reasons of space, I cannot go into the mathematical details, but I limit myself to addressing some 
specific critiques.
35 See for example (DG16, p. 27). The strong criticism of a logic-based approach to mathematics was in 
line with early work in the philosophy of mathematical practice, and in particular with Lakatos’ (1963, 
p. X) discussion of the dangers of a formalist philosophy. This was a starting point in Giardino’s doctoral 
research.
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we presented was just a sketch, and not a full-fledged rigorous proof. Moreover, we 
departed from Alexander’s original proof since instead of working with polygonal 
knots up to elementary transformations (Fig. 1), we also worked with smooth knots 
up to ambient isotopies (Fig. 2). 

We chose smooth knots because they are easier to visualize (and to draw) than 
polygonal knots.38 We were inspired by the informal presentation of Alexander’s 
theorem by Jones (1998), who also aimed at illustrating to a broad audience the 
importance of intuition in topology.

The main idea in Alexander’s proof is to perform certain moves on polygonal 
knot diagrams to modify them into diagrams of reels. These moves correspond to 
elementary transformations in three dimensions (that crucially do not alter the knot 
type), such as complicated versions of the ones shown in Fig.  1. Echoing Jones, 
we instead performed the vivid “throw over the shoulder” move on smooth knots. 
Roughly, we imagine we (our body, standing straight) are an axis—corresponding to 
point O in (DG16, p. 42)—and have a huge physical knot around us that we want to 
wind around us all in the same direction. When we identify a portion of knot that is 
going the wrong way, we take it and throw it over our shoulders (or under our feet) 
so that it turns in the right direction (DG16, p. 42).39

This move is inspired by Alexander’s, but it diverges from it in important ways. 
The smooth setting introduces the delicate issue of limiting the portion of the knot 
to modify, which is unproblematic in the polygonal setting. Details can be filled in, 
but neither we nor Jones did so. Our goal was different:

I would like to illustrate [how intuition plays a role in knot theory] by giving a 
proof of a simple result due to Alexander […]. It was explained to me by Joan 
Birman within five minutes. (Jones 1994, p. 209)

As it is to be expected, in her influential monograph on braids, Birman (1974) 
explains a proof for such a “simple result” in far more than five minutes to her audi-
ence of specialists and addresses details that are left out even by Alexander.40

Birman presented a rigorous proof. Jones (and we, following him) reported a 
sketch of a proof in a different setting to a broad audience. What about Alexander’s 
original proof? It falls somewhere in between. The operations are well-defined, but 
it is laid out in just two pages and goes quickly. Note that Alexander published it in 
the PNAS (Proceedings on the National Academy of Sciences of the United States 
of America), a journal that does not aim at publishing rigorous proofs but instead 

38 Elsewhere, Alexander writes: “In the figures, we shall picture a knot by a smooth curve rather than 
by a polygon. A purist may think of the curve as a polygon consisting of so many tiny sides that it gives 
an impression of smoothness.” (Alexander 1928, 276). Admittedly, we could have taken this approach as 
well.
39 Jones’ illustration reported in (DG16, p. 42) is bad since it depicts the very simple case in which no 
extra crossings are created by performing the move (and seems to suggest that all cases are that simple–
but they are not).
40 If one counts the setting up of preliminary results, she takes six pages (pp. 39–44), but she proves a 
slightly more general result.
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publishes quick announcements.41 Different contexts call for different levels of 
detail.

2.1  Legitimate Operations

Alexander (1923) writes that his diagrammatic move is legitimate since it “obvi-
ously corresponds to an isotopic transformation of the space curve” (p. 94, emphasis 
added).42 Why is this obvious? What convinces us that such diagrammatic moves 
are legitimate is our visualization of the spatial arrangements that makes us even 
understand what these moves are.

Such diagrammatic moves correspond in space to elementary transformations. 
These are general and more complicated versions of the particular one depicted in 
Fig. 1 in which segment AB is replaced by two segments, AC and BC. Tatton-Brown 
claims that the only obstacle to performing such moves would be to find a point C 
up above or down below the rest of the knot (see his Figures 4, 5, pp. 17–18):

Fig. 1  Elementary transformation, polygonal case

Fig. 2  Ambient isotopies, smooth case

41 Thanks to Michael Barany for conversation on the policies of the PNAS at the time of Alexander’s 
publication.
42 Even if Alexander’s paper does not include diagrams of knots, the author asks the reader to imagine 
them.
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Does such a point [C] exist? Obviously yes. As we are visualizing it, the region 
vertically above [a, b] is free from obstructions, so if we take c to be enor-
mously high up then the triangle [a, b, c] will go almost straight up from the 
line segment [a, b], and will not hit anywhere in K[.] (emphasis added, p. 17)

But actually, if it is not already obvious that such three-dimensional moves can 
be performed and do not alter the knot type, and therefore project diagrammatically 
into legitimate operations, then the very possibility of performing a Reidemeister 
II move43 is questioned—which is not in line with actual practice.44 In the Reide-
meister II move (see Fig. 3), the two segments corresponding to the two branches in 
the diagram ending on points A and B could correspond to segments in space having 
different heights and different slopes. How do we know that point C in Fig. 3 exists? 
Of course, we could give some detailed explanation (similar to Tatton-Brown’s 
details), for instance by appealing to compactness arguments, to prove that some 
slope exists. However, in practice this is never required!

Visualizations of the kind that is needed to see that the local move in Fig. 3 is 
legitimate (that is, that it does not alter the knot type) enable us to perform clearly 
identifiable diagrammatic moves by exploiting our imagination of three-dimensional 
knots. Tatton-Brown agrees that topologists rely on visualization to understand and 
prove results. Our main point was that such moves are accepted by specific commu-
nities of mathematicians without further justification.

Brendan Larvor (2012) uses the notion of “permissible actions” to describe the 
type of high-level context-specific inferences that are acceptable in rigorous proofs. 
In (DG16) we used this notion to isolate those visualizations that are acceptable in 
topological contexts. We acknowledged that such permissible actions need to com-
ply with constraints since they correspond to well-defined mathematical operations. 
However, such constraints are not necessarily stated in advance and often form an 
open-ended list.45

Our account of diagrammatic moves suffers from another problem according to 
Tatton-Brown—namely, we

describe Alexander’s proof as based on the manipulation of concrete spatio-
temporal objects which is inaccurate as Alexander’s proof is based on knots 
being a finite union of straight line segments, which are not concrete and have 
zero width. (p. 21)

But the core point of Alexander’s proof is precisely to perform diagrammatic 
manipulations according to “legitimate operations.” Moreover, a diagram is not a 
concrete object, but a representation coming with an interpretation and rules of use 

43 The Reidemeister theorem establishes that all transformations on knot diagrams that leave invariant 
the represented knot type can be decomposed into a sequence of three simple local diagrammatic moves. 
In three dimensions, the second Reidemeister move consists in bringing a strand under or above another 
strand. Diagrammatically this leads to the introduction of two new crossings, as in Fig. 3.
44 Thanks to John Sullivan for this point.
45 This goes against Tatton-Brown’s (2019, p. 11) claim that in our framework the permissible actions 
form a “fixed list.”
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that are partially conventional. A concrete figure can be interpreted as a knot dia-
gram, which is a projection of a knot into a plane—and the interpretation obliges us 
to disregard some of the perceptual features of the figure, such as its color, the width 
of the lines, and even the specific geometric shape.46 In particular, we interpreted the 
perceptual segments of the figure as one-dimensional straight segments. Our point 
was similar to the one known to every student of Euclidean geometry: when we see 
that two lines intersect, what we actually perceive is a small two-dimensional region, 
and not a dimensionless mathematical point.

2.2  The Termination Problem

In contrast to Alexander’s terse style, Tatton-Brown’s methodical approach uncovers 
the structure of the proof. The problem here is not to find single permissible moves, 
but to show that a finite number of them is sufficient to transform the knot diagram 
we start with into a diagram of a reel—that is, that the process terminates. In the 
smooth setting we adopt, the situation is particularly delicate because, as explained 
above, the individual moves themselves are not precisely defined. However, even in 
the polygonal case, perhaps Alexander should have been more explicit about it—like 
Birman in her monograph.47 It is thus misleading to characterize Alexander’s proof 
as “perfectly rigorous” (p. 24). I would rather say that Alexander’s proof satisfied 
the acceptability criteria of the time and of the journal in which it was published.

Visualizing the spatial configuration, it is possible to realize that Alexander’s pro-
cedure can be chosen so that it terminates after a finite number of moves and that 
we could create a smooth analog of it inspired by the throw-over-the-shoulder move. 
However, as Tatton-Brown shows with a counterexample, there is no guarantee 
that it will. Moreover, the smooth setting is trickier to formalize than the (discrete) 
polygonal one, and thus Tatton-Brown is right to claim that in changing the setting 
we are changing the proof in a relevant way.

Fig. 3  Reidemeister II move for 
polygonal diagrams

46 See (DG14) for the case of knot diagrams and (De Toffoli 2019, Ch. 2–3) for general discussion of 
how only a subset of all perceptual features of a figure can be relevant for the corresponding diagram.
47 Birman is very clear in her own version of the proof and bypasses the problem completely, since her 
operation is done in parallel rather than sequentially.
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3  Local Criteria of Acceptability and the Relativism Worry

The high-level inferences (diagrammatic or not) that are acceptable in one sub-field 
might not be acceptable in another.48 Does this imply that “mathematicians [are] 
split into distinct communities, each […] with their own standards of correctness” 
(p. 10, emphasis added)? I stand by the claim that reasoning in different sub-fields 
can be radically different, exploiting heterogeneous representational systems ena-
bling the use of various cognitive abilities. However, the correctness of a deductive 
argument is a factual matter. What changes with context are not the “standard of 
correctness,” but the criteria of acceptability. Unfortunately in (DG15) and (DG16) 
we used the misleading expression “local criteria of validity.” This was intended to 
indicate that the criteria used to detect validity, or better, correctness (‘validity’ is 
in fact often conceived as a technical term applicable only to formal arguments) are 
local.49 The expression was inspired by Larvor (2012), who claimed that if we admit 
topic-specific inferential actions on different representations, such as diagrams, “the 
cost is that we have to abandon the hope of establishing a general test for validity” 
(p. 723).

Although to understand the pulse of mathematical practice it is useful to think in 
terms of local factors, I take issue with the idea that “standards of correctness” are 
“standards which each individual community defines, without any further justifica-
tion being supplied or called for” (p. 10). In the literature, similar claims are not 
unheard of. For example, Ruben Hersh writes that “what mathematicians at large 
sanction and accept is correct” (Hersh 2014, p. 149). I disagree with such a claim, as 
does Tatton-Brown. In my view, there is a relation between correctness and accept-
ance; but this is not a constitutive relation, it rather arises from the reliability of 
mathematicians to track correct proofs.50

Tatton-Brown’s charge of REL is implausible for a number of reasons. Two 
were explicit in the very work that Tatton-Brown is discussing: (1) because differ-
ent mathematical fields interact—a central point of the case study presented (DG16) 
where we discussed the relation between topology and abstract algebra and (2) 
because the moves on the diagrams are allowed only if they can be interpreted as 
specific mathematical operations (e.g., ambient isotopies).51

48 In (DG16) we used what Thurston calls “shared mental model[s]” (1994, p. 174) to characterize the 
context formed by a particular sub-field. However, this expression is infelicitous because mental models 
are generally considered as subjective representations (and therefore not “shared”).
49 This is clearer in (DG15).
50 Jeremy Avigad (2020) addresses exactly the question of where the reliability of mathematicians 
comes from. In his terminology, he wants to understand how the robustness of informal mathematical 
proofs (which is a condition for us to get knowledge from them) can be squared with the fragility of for-
mal proofs, in which a single tiny error invalidates the whole argument.
51 See also (De Toffoli 2017).
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4  The Role of Visualization and the Formalizability Worry

Different proofs can be given for the same proposition. Moreover, the same proof 
can be presented in different ways. Proofs can be defined as equivalence classes of 
proof presentations; but how do we choose the right equivalence relation? That is, 
how are proofs individuated? This question admits of different answers in different 
contexts.52 As Marcus Giaquinto (2008) explains:

There is no context-invariant answer to this, and even within a context there 
may be some indeterminacy. Usually mathematicians are happy to regard 
two presentations as presenting the same proof if the central idea is the same 
in both cases. But if one’s main concern is with what is involved in think-
ing through a proof, its central idea is not enough to individuate it: the overall 
structure, the sequence of steps and perhaps other factors affecting the cogni-
tive processes involved will be relevant. (p. 24)

For example, is Euclid’s proof that there are infinitely many primes a proof by 
contradiction? If we want to be historically accurate and able to detect the fine logi-
cal structure of proofs, then we should answer negatively. It is not a proof by con-
tradiction, but it contains one. However, if we are interested in the ‘main idea’ of 
the proof, then we can say that it is equivalent to a proof by contradiction. If we 
individuate proofs in a way that is sensitive to the particular reasoning that is needed 
to go through them and to regard them as correct, as we did in previous work, then 
converting a topological appeal to intuition, such as Alexander’s, into a formal proof 
would change it, since the properly topological reasoning would be lost:

the reasoning involved in this specific proof cannot be identified exclusively 
with propositional reasoning, and even less with formal reasoning. (DG16, p. 
43)

This statement does not imply that the proof cannot be formalized at all. Alexan-
der’s proof consists of performing transformations on an arbitrary knot diagram. 
Note that a specific diagram is a diagram of a particular knot, and thus the proof 
cannot just consist in transforming it via permissible moves, but must explain how 
similar moves would be applicable to all other relevant diagrams.53 In fact, the 
“legitimate operations” of Alexander’s algorithm can be defined without specifying 
the whole diagram.54

In general, any proof relying on diagrams could be converted into a combinato-
rial proof; for the latter it suffices to encode a knot diagram by a sequence or matrix 
of numbers, and then describe the diagrams in these terms. This is not far from 
Alexander’s own approach to knot theory. He belonged to a modernist trend among 

52 See (De Toffoli 2019, Ch. 1).
53 Clearly, this is the same generality problem that arises in the case of Euclidean diagrams.
54 Thanks to one of the referees for suggesting that I discuss this point.
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mathematicians that opted for more formal styles—a combinatorial approach—
compared to the previous generation of topologists.55

In (DG16) we aimed at understanding the nature of and the social, cognitive, and 
material conditions for topological understanding. Our problem was not whether a 
proof could in principle be formalized, or whether a diagrammatic proof could be 
converted into a diagram-free proof. Of course both are possible, but

phrasing the problem of diagrams in proofs in terms of the possibility of elimi-
nating them by translating the proof into a sequence of symbols misses the 
core of the issue. […] the fundamental problem is not whether a proof can 
contain diagrams or not, but whether it carries […] mathematical knowledge. 
(De Toffoli 2017, p. 183, emphasis added)

Even if we can provide a formalization, we should also explain how an argument 
is accepted in practice without appealing to any formalizations. After all, as Jones 
(1998) claims: “One is expected to ‘see’ results in this field, and once the result 
[…] has been ‘seen,’ it requires no further discussion” (p. 212). One way to explain 
this is to understand which types of visualizations can be used reliably. However, as 
mentioned above, our emphasis on visualization is not in the spirit of Alexander’s 
formalist tendencies.

In general, it is possible, but possibly very difficult, to formalize proofs relying 
on intuition. With respect to Alexander’s result, Jones himself does not question 
the possibility of formalizing even his vague argument in the smooth setting, but he 
thinks that doing so “would be a nightmare” (1998, p. 212).

5  Conclusion

I have argued that the analysis put forward by Giardino and myself in earlier work 
did not lead us to endorse either a form of relativism (REL) or an anti-formalizabil-
ity thesis (AFT), although it did include some ambiguous passages that lent them-
selves to readings along these lines. I have explained not only why we are not com-
mitted to these two theses, but also how more moderate versions of them might be 
made plausible. Here are the two amendments that I propose:

REL* The standards of acceptability of (rigorous) proofs depend on the shared 
background of the audience to whom the proof is addressed.

AFT* There is a reasonable way to individuate proofs such that if topologi-
cal proofs involving visualization are converted into formal proofs, they are 
thereby transformed into a different proof.56

Without visualizations the understanding of many topological proofs would be 
compromised, if not completely lost. Such visualizations are however not naïve or 

55 See Epple (2004), and Ashton (2020).
56 I plan to say more about this in future work.
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without constraints, but enabled by a specific form of intuition developed with spe-
cific training and applied to specific domains.

The fact that criteria of acceptability are local means that the correctness of 
proofs can be evaluated without direct reference to formal proofs. This does not con-
tradict the claim that formalizations of some kind are in principle possible or that 
partial and ad hoc formalizations would theoretically help solve instances of math-
ematical disagreement.57 It simply shows that formalizations are generally not useful 
for understanding how the actual practice of mathematics can produce stable results 
known by mathematicians via proofs involving intuition.

Far from denying the importance of logic in understanding mathematics, our pre-
vious work started with the assumption that logical analysis is not enough. We set 
ourselves among those philosophers who, to use José Ferreirós (2016) words,

have acknowledged the limits of logical analysis in understanding mathemati-
cal knowledge, and they have set out to introduce new types of theoretical dis-
course that complements or supplements logic. (p. 25)

It should be clear by now that my previous and current work is, to paraphrase Tim 
Gowers, about everything that formalization is not.
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