Skip to main content
Log in

The sociobiology of genes: the gene’s eye view as a unifying behavioural-ecological framework for biological evolution

  • Original Paper
  • Published:
History and Philosophy of the Life Sciences Aims and scope Submit manuscript

Abstract

Although classical evolutionary theory, i.e., population genetics and the Modern Synthesis, was already implicitly ‘gene-centred’, the organism was, in practice, still generally regarded as the individual unit of which a population is composed. The gene-centred approach to evolution only reached a logical conclusion with the advent of the gene-selectionist or gene’s eye view in the 1960s and 1970s. Whereas classical evolutionary theory can only work with (genotypically represented) fitness differences between individual organisms, gene-selectionism is capable of working with fitness differences among genes within the same organism and genome. Here, we explore the explanatory potential of ‘intra-organismic’ and ‘intra-genomic’ gene-selectionism, i.e., of a behavioural-ecological ‘gene’s eye view’ on genetic, genomic and organismal evolution. First, we give a general outline of the framework and how it complements the—to some extent—still ‘organism-centred’ approach of classical evolutionary theory. Secondly, we give a more in-depth assessment of its explanatory potential for biological evolution, i.e., for Darwin’s ‘common descent with modification’ or, more specifically, for ‘historical continuity or homology with modular evolutionary change’ as it has been studied by evolutionary developmental biology (evo-devo) during the last few decades. In contrast with classical evolutionary theory, evo-devo focuses on ‘within-organism’ developmental processes. Given the capacity of gene-selectionism to adopt an intra-organismal gene’s eye view, we outline the relevance of the latter model for evo-devo. Overall, we aim for the conceptual integration between the gene’s eye view on the one hand, and more organism-centred evolutionary models (both classical evolutionary theory and evo-devo) on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We return to the relevance of intra-organismic and intra-genomic conflict for evo-devo in Sect. 3.4.

References

  • Agren, J. A. (2013). Selfish genes and plant speciation. Evolutionary Biology, 40, 439–449.

    Article  Google Scholar 

  • Agren, J. A. (2016). Selfish genetic elements and the gene’s eye view of evolution. Current Zoology, 62, 659–665.

    Article  Google Scholar 

  • Alberch, P. (1982). The generative and regulatory roles of development in evolution. In D. Mossakowski & G. Roth (Eds.), Environmental adaptations and evolution (pp. 19–35). Stuttgart: Gustav Fisher.

    Google Scholar 

  • Alberch, P. (1991). From genes to phenotype: Dynamical systems and evolvability. Genetica, 84, 5–11.

    Article  Google Scholar 

  • Andersson, J. O. (2005). Lateral gene transfer in eukaryotes. CMLS Cellular and Molecular Life Sciences, 62, 1182–1197.

    Article  Google Scholar 

  • Avise, J. C. (2001). Evolving genomic metaphors: A new look at the language of DNA. Science, 294, 86–87.

    Article  Google Scholar 

  • Badyaev, A. V. (2009). Evolutionary significance of phenotypic accommodation in novel environments: An empirical test of the Baldwin effect. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364, 1125–1141.

    Article  Google Scholar 

  • Bateson, P. (2014). New thinking about biological evolution. Biological Journal of the Linnean Society, 112, 268–275.

    Article  Google Scholar 

  • Bohl, K., Hummert, S., Werner, S., Basanta, D., Deutsch, A., et al. (2014). Evolutionary game theory: Molecules as players. Molecular BioSystems, 10, 3066–3074.

    Article  Google Scholar 

  • Bourke, A. F. G. (2014). The gene’s-eye view, major transitions and the formal Darwinism project. Biology and Philosophy, 29, 241–248.

    Article  Google Scholar 

  • Braendle, C., & Flatt, T. (2006). A role for genetic accommodation in evolution? BioEssays, 28, 868–873.

    Article  Google Scholar 

  • Brigandt, I. (2007). Typology now: Homology and developmental constraints explain evolvability. Biology and Philosophy, 22, 709–725.

    Article  Google Scholar 

  • Brigandt, I., & Griffiths, P. E. (2007). The importance of homology for biology and philosophy. Biology and Philosophy, 22, 633–641.

    Article  Google Scholar 

  • Broom, M., & Rychtár, J. (2013). Game-theoretical models in biology. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Broom, M., & Rychtár, J. (2016). Nonlinear and multiplayer evolutionary games. In F. Thuijsman & F. Wagener (Eds.), Advances in dynamic and evolutionary games: Theory, applications, and numerical methods. Volume 14 of the series Annals of the International Society of Dynamic Games (pp. 95–115). Birkhäuser: Springer.

    Chapter  Google Scholar 

  • Burt, A., & Trivers, R. (2006). Genes in conflict: The biology of selfish genetic elements. Cambridge, MA: Belknap Harvard.

    Book  Google Scholar 

  • Cairns, J. (1975). The cancer problem. Scientific American, 233, 64–78.

    Article  Google Scholar 

  • Calcott, B., & Sterelny, K. (2011). The major transitions in evolution revisited. Cambridge: MIT Press.

    Book  Google Scholar 

  • Callebaut, W., Müller, G. B., & Newman, S. A. (2007). The organismic systems approach: EvoDevo and the streamlining of the naturalistic agenda. In R. Sansom & R. Brandon (Eds.), Integrating evolution and development: From theory to practice (pp. 25–92). Cambridge: MIT Press.

    Google Scholar 

  • Callebaut, W., & Rasskin-Gutman, D. (Eds.). (2005). Modularity: Understanding the development and evolution of natural complex systems. Cambridge: MIT Press.

    Google Scholar 

  • Carroll, S. B., Grenier, J. K., & Weatherbee, S. D. (2005). From DNA to diversity: Molecular genetics and the evolution of animal design. Malden, MA: Blackwell Publishing.

    Google Scholar 

  • Clune, J., Mouret, J.-P., & Lipson, H. (2013). The evolutionary origins of modularity. Proceedings of the Royal Society B, 280, 20122863.

    Article  Google Scholar 

  • Cosmides, L. M., & Tooby, J. (1981). Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology, 89, 83–129.

    Article  Google Scholar 

  • Cronin, H. (1991). The ant and the peacock: Altruism and sexual selection from Darwin to today. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cronin, H. (2005). Adaptation: “A critique of some current evolutionary thought”. The Quarterly Review of Biology, 80, 19–26.

    Article  Google Scholar 

  • Darwin, C. (1859). On the origin of species by means of natural selection. London: John Murray.

    Google Scholar 

  • Dawkins, R. (1976). The selfish gene. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1982). The extended phenotype. Oxford: Oxford University Press.

    Google Scholar 

  • Dawkins, R. (1986). The blind watchmaker. London: Longman.

    Google Scholar 

  • Dawkins, R. (1994). Burying the vehicle. Behavioral and Brain Sciences, 17, 616–617.

    Article  Google Scholar 

  • Dawkins, R. (2004). Extended phenotype—But not too extended. A reply to Laland, Turner and Jablonka. Biology and Philosophy, 19, 377–396.

    Article  Google Scholar 

  • De Tiège, A., Tanghe, K., Braeckman, J., & Van de Peer, Y. (2014). From DNA- to NA-centrism and the conditions for gene-centrism revisited. Biology and Philosophy, 29, 55–69.

    Article  Google Scholar 

  • Dobzhansky, T. (1937). Genetics and the origin of species. New York: Columbia University Press.

    Google Scholar 

  • Dobzhansky, T. (1964). Biology, molecular and organismic. American Zoologist, 4, 443–452.

    Article  Google Scholar 

  • Doolittle, W. F. (1989). Hierarchical approaches to genome evolution. Canadian Journal of Philosophy, 102, 101–133.

    Google Scholar 

  • Doolittle, W. F. (1999). Lateral genomics. Trends in Biochemical Sciences, 24, M5–M8.

    Article  Google Scholar 

  • Doolittle, W. F. (2013). Is junk DNA bunk? A critique of ENCODE. Proceedings of National Academy of Sciences, 110, 5294–5300.

    Article  Google Scholar 

  • Doolittle, W. F., & Sapienza, C. (1980). Selfish genes, the phenotypic paradigm and genome evolution. Nature, 284, 601–603.

    Article  Google Scholar 

  • Eberhard, W. G. (1980). Evolutionary consequences of intracellular organelle competition. The Quarterly Review of Biology, 55, 231–249.

    Article  Google Scholar 

  • Edwards, A. W. F. (2014). R.A. Fisher’s gene-centred view of evolution and the fundamental theorem of natural selection. Biological Reviews, 89, 135–147.

    Article  Google Scholar 

  • Fedoroff, N. V. (2012). Transposable elements, epigenetics, and genome evolution. Science, 338, 758–767.

    Article  Google Scholar 

  • Fisher, R. A. (1918). The correlation between relatives on the supposition of Mendelian inheritance. Transactions of the Royal Society of Edinburgh, 52, 399–433.

    Article  Google Scholar 

  • Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Gardner, A., & Grafen, A. (2009). Capturing the superorganism: A formal theory of group adaptation. Journal of Evolutionary Biology, 22, 659–671.

    Article  Google Scholar 

  • Gardner, A., & Welch, J. J. (2011). A formal theory of the selfish gene. Journal of Evolutionary Biology, 24, 1801–1813.

    Article  Google Scholar 

  • Gilbert, S. F., Opitz, J. M., & Raff, R. A. (1996). Resynthesizing evolutionary and developmental biology. Developmental Biology, 173, 357–372.

    Article  Google Scholar 

  • Gilbert, S. F., & Sarkar, S. (2000). Embracing complexity: Organicism for the 21st century. Developmental Dynamics, 219, 1–9.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. NY: Oxford University Press.

    Book  Google Scholar 

  • Gogarten, J. P., & Townsend, J. P. (2005). Horizontal gene transfer, genome innovation and evolution. Nature Reviews Microbiology, 3, 679–687.

    Article  Google Scholar 

  • Gokhale, C. S., & Traulsen, A. (2014). Evolutionary multiplayer games. Dynamic Games and Applications, 4, 468–488.

    Article  Google Scholar 

  • Goldenfeld, N., & Woese, C. (2011). Life is physics: Evolution as a collective phenomenon far from equilibrium. Annual Review of Condensed Matter Physics, 2, 375–399.

    Article  Google Scholar 

  • Goodwin, B. C. (1982). Development and evolution. Journal of Theoretical Biology, 97, 43–55.

    Article  Google Scholar 

  • Goodwin, B. C. (1994). How the leopard changed its spots: The evolution of complexity. London: Weidenfeld and Nicolson.

    Google Scholar 

  • Goodwin, B. C., Kauffman, S., & Murray, J. D. (1993). Is morphogenesis an intrinsically robust process? Journal of Theoretical Biology, 163, 135–144.

    Article  Google Scholar 

  • Gould, S. J. (1983). What happens to bodies if genes act for themselves? In S. J. Gould (Ed.), Hen’s teeth and horse’s toes (pp. 166–176). New York: Norton.

    Google Scholar 

  • Gould, S. J. (2002). The structure of evolutionary theory. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Gould, S. J., & Lewontin, R. C. (1979). The spandrels of San Marco and the Panglossian paradigm: A critique of the adaptationist programme. Proceedings of the Royal Society of London, Series B: Biological Sciences, 205, 581–598.

    Article  Google Scholar 

  • Goymer, P. (2008). Natural selection: The evolution of cancer. Nature, 454, 1046–1048.

    Article  Google Scholar 

  • Gregory, T. R. (2004). Macroevolution, hierarchy theory, and the C-value enigma. Paleobiology, 30, 179–202.

    Article  Google Scholar 

  • Gregory, T. R., Elliott, T. A., & Linquist, S. (2016). Why genomics needs multilevel evolutionary theory. In N. Eldredge, T. Pievani, E. Serrelli, & I. Tëmkin (Eds.), Evolutionary theory: A hierarchical perspective (pp. 137–150). Chicago: University of Chicago Press.

    Google Scholar 

  • Griffiths, P. E. (2002). Lost: One gene concept, reward to finder. Biology and Philosophy, 17, 271–283.

    Article  Google Scholar 

  • Griffiths, P., & Stotz, K. (2013). Genetics and philosophy: An introduction. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Haig, D. (1997). The social gene. In J. R. Krebs & N. B. Davies (Eds.), Behavioural ecology: An evolutionary approach (pp. 284–304). Oxford: Blackwell Publisher.

    Google Scholar 

  • Haig, D. (2006). Intragenomic politics. Cytogenetic and Genome Research, 113, 68–74.

    Article  Google Scholar 

  • Haig, D. (2007). Weismann rules! OK? Epigenetics and the Lamarckian temptation. Biology and Philosophy, 22, 415–428.

    Article  Google Scholar 

  • Haig, D. (2012). The strategic gene. Biology and Philosophy, 27, 461–479.

    Article  Google Scholar 

  • Haig, D. (2014). Genetic dissent and individual compromise. Biology and Philosophy, 29, 233–239.

    Article  Google Scholar 

  • Haldane, J. B. S. (1932). The causes of evolution. Princeton: Princeton University Press.

    Google Scholar 

  • Hall, B. K. (Ed.). (1994). Homology: The hierarchical basis of comparative biology. San Diego: Academic Press.

    Google Scholar 

  • Hall, B. K. (1998). Evolutionary developmental biology (2nd ed.). Dordrecht: Kluwer.

    Google Scholar 

  • Hamilton, W. D. (1963). The evolution of altruistic behavior. American Naturalist, 97, 354–356.

    Article  Google Scholar 

  • Hamilton, W. D. (1964). The genetical evolution of social behaviour. Journal of Theoretical Biology, 7, 1–52.

    Article  Google Scholar 

  • Higgs, P. G., & Lehman, N. (2014). The RNA world: Molecular cooperation at the origins of life. Nature Reviews Genetics, 16, 7–17.

    Article  Google Scholar 

  • Hull, D. L. (1980). Individuality and selection. Annual Reviews of Ecology and Systematics, 11, 311–332.

    Article  Google Scholar 

  • Hurst, G. D. D., & Werren, J. H. (2001). The role of selfish genetic elements in eukaryotic evolution. Nature Reviews Genetics, 2, 597–606.

    Article  Google Scholar 

  • Huxley, J. S. (1942). Evolution: The modern synthesis. London: Allen and Unwin.

    Google Scholar 

  • Jablonka, E., & Lamb, M. (2005). Evolution in four dimensions: Genetic, epigenetic, behavioral, and symbolic variation in the history of life. Cambridge, MA: MIT Press.

    Google Scholar 

  • Jablonka, E., & Raz, G. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176.

    Article  Google Scholar 

  • Jo, B.-S., & Choi, S. S. (2015). Introns: The functional benefits of introns in genomes. Genomics Informatics, 13, 112–118.

    Article  Google Scholar 

  • Jurka, J., Bao, W., & Kojima, K. K. (2011). Families of transposable elements, population structure and the origin of species. Biology Direct, 6, 44.

    Article  Google Scholar 

  • Kauffman, S. A. (1983). Developmental constraints: Internal factors in evolution. In B. C. Goodwin, N. Holder, & C. C. Wylie (Eds.), Development and evolution (pp. 195–225). Cambridge: Cambridge University Press.

    Google Scholar 

  • Kauffman, S. A. (1993). The origins of order: Self-organization and selection in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Keeling, P. J., & Palmer, J. D. (2008). Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics, 9, 605–618.

    Article  Google Scholar 

  • Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Kirschner, M., & Gerhart, J. (1998). Evolvability. PNAS, 95, 8420–8427.

    Article  Google Scholar 

  • Koonin, E. V. (2016). Viruses and mobile elements as drivers of evolutionary transitions. Philosophical Transactions of the Royal Society B, 371, 20150442.

    Article  Google Scholar 

  • Koonin, E. V., Senkevich, T. G., & Dolja, V. V. (2006). The ancient virus world and evolution of cells. Biology Direct, 1, 29.

    Article  Google Scholar 

  • Laland, K., Uller, T., Feldman, M., et al. (2014). Does evolutionary theory need a rethink? Nature, 514, 161–164.

    Article  Google Scholar 

  • Leigh, E. G. (1971). Adaptation and diversity: Natural history and the mathematics of evolution. San Francisco: Freeman.

    Google Scholar 

  • Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.

    Article  Google Scholar 

  • Lisch, D. (2013). How important are transposons for plant evolution? Nature Reviews Genetics, 14, 49–61.

    Article  Google Scholar 

  • Lynch, M. (2002). Intron evolution as a population-genetic process. PNAS USA, 99, 6118–6123.

    Article  Google Scholar 

  • Lynch, M. (2007a). The origins of genome architecture. Sunderland (MA): Sinauer Associates.

    Google Scholar 

  • Lynch, M. (2007b). The frailty of adaptive hypotheses for the origins of organismal complexity. PNAS, 104, 8597–8604.

    Article  Google Scholar 

  • Maynard Smith, J. M. (1976). Evolution and the theory of games. American Scientist, 64, 41–45.

    Google Scholar 

  • Maynard Smith, J. (1982). Evolution and the theory of games. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., et al. (1985). Developmental constraints and evolution. The Quarterly Review of Biology, 60, 265–287.

    Article  Google Scholar 

  • Maynard Smith, J., & Szathmáry, E. (1995). The major transitions in evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Mayr, E., & Provine, W. B. (Eds.). (1980). The evolutionary synthesis: Perspectives on the unification of biology. London, MA: Harvard University Press.

    Google Scholar 

  • Merlo, L. M. F., Pepper, J. W., Reid, B. J., & Maley, C. C. (2006). Cancer as an evolutionary and ecological process. Nature Reviews Cancer, 6, 924–935.

    Article  Google Scholar 

  • Michod, R. E. (1999). Darwinian dynamics: Evolutionary Transitions in fitness and individuality. Princeton: Princeton University Press.

    Google Scholar 

  • Moczek, A. P., Sultan, S., Foster, S., Ledón-Rettig, C., Dworkin, I., Nijhout, H. F., et al. (2011). The role of developmental plasticity in evolutionary innovation. Proceedings of the Royal Society of London B: Biological Sciences, 278, 2705–2713.

    Article  Google Scholar 

  • Newman, S. A., Forgacs, G., & Müller, G. B. (2006). Before programs: The physical origination of multicellular forms. International Journal of Developmental Biology, 50, 289–299.

    Article  Google Scholar 

  • Newman, S. A., & Müller, G. B. (2010). Morphological evolution: Epigenetic mechanisms. In J. Wiley (Ed.), Encyclopedia of life sciences (ELS). Chichester. New York: Wiley. https://doi.org/10.1002/9780470015902.a0002100.pub2.

  • Noble, D., Jablonka, E., Joyner, M. J., Müller, G. B., & Omholt, S. W. (2014). Evolution evolves: Physiology returns to centre stage. The Journal of Physiology, 592, 2237–2244.

    Article  Google Scholar 

  • Nowell, P. C. (1976). The clonal evolution of tumor cell populations. Science, 194, 23–28.

    Article  Google Scholar 

  • Okasha, S. (2006). Evolution and the levels of selection. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Okasha, S. (2008). Fisher’s fundamental theorem of natural selection: A philosophical analysis. The British Journal for the Philosophy of Science, 59, 319–351.

    Article  Google Scholar 

  • Okasha, S. (2012). Social justice, genomic justice and the veil of ignorance: Harsanyi meets Mendel. Economics and Philosophy, 28, 43–71.

    Article  Google Scholar 

  • Orgel, L. E., & Crick, F. H. C. (1980). Selfish DNA: The ultimate parasite. Nature, 284, 604–607.

    Article  Google Scholar 

  • Orr, H. A. (1996). Dobzhansky, Bateson, and the genetics of speciation. Genetics, 144, 1331–1335.

    Google Scholar 

  • Oyama, S., Griffiths, P. E., & Gray, R. D. (Eds.). (2001). Cycles of contingency: Developmental systems and evolution. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews Genetics, 9, 75–82.

    Article  Google Scholar 

  • Pigliucci, M., & Müller, G. B. (2010). Evolution—The extended synthesis. Cambridge, MA: The MIT Press.

    Book  Google Scholar 

  • Pigliucci, M., Murren, C. J., & Schlichting, C. D. (2006). Review: Phenotypic plasticity and evolution by genetic assimilation. The Journal of Experimental Biology, 209, 2362–2367.

    Article  Google Scholar 

  • Queller, D. C. (1997). Cooperators since life began. The Quarterly Review of Biology, 72, 184–188.

    Article  Google Scholar 

  • Queller, D. C. (2011). A gene’s eye view of Darwinian populations: Review of Peter Godfrey-Smith’s Darwinian populations and natural selection. Biology and Philosophy, 26, 905–913.

    Article  Google Scholar 

  • Queller, D. C., & Strassmann, J. E. (2009). Beyond society: The evolution of organismality. Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 3143–3155.

    Article  Google Scholar 

  • Rice, W. R. (2013). Nothing in genetics makes sense except in the light of genomic conflict. Annual Review of Ecology Evolution and Systematics, 44, 217–237.

    Article  Google Scholar 

  • Sapp, J. (2009). The new foundations of evolution: On the tree of life. New York: Oxford University Press.

    Google Scholar 

  • Schlosser, G., & Wagner, G. P. (2004). Modularity in development and evolution. Chicago: The University of Chicago Press.

    Google Scholar 

  • Sterelny, K., & Kitcher, P. (1988). The return of the gene. The Journal of Philosophy, 85, 339–360.

    Article  Google Scholar 

  • Strassmann, J. E., & Queller, D. C. (2010). The social organism: Congresses, parties, and committees. Evolution, 64, 605–616.

    Article  Google Scholar 

  • Tanghe, K. B. (2015). Mendel at the sesquicentennial of ‘Versuche über Pflanzen-Hybriden’ (1865): The root of the biggest legend in the history of science. Endeavour, 39, 106–115.

    Article  Google Scholar 

  • Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: Towards a more complete evolutionary theory. Paleobiology, 10, 146–171.

    Article  Google Scholar 

  • Waddington, C. H. (1957). The strategy of the genes. New York: Macmillan.

    Google Scholar 

  • Wagner, G. P. (2007). The developmental genetics of homology. Nature Reviews Genetics, 8, 473–479.

    Article  Google Scholar 

  • Wagner, G. P. (2014). Homology, genes, and evolutionary innovation. Princeton: Princeton University Press.

    Book  Google Scholar 

  • Wagner, G. P., & Altenberg, L. (1996). Perspective: Complex adaptations and the evolution of evolvability. Evolution, 50, 967–976.

    Article  Google Scholar 

  • Weismann, A. (1904). The evolution theory. London: Edward Arnold.

    Book  Google Scholar 

  • Werren, J. H. (2011). Selfish genetic elements, genetic conflict, and evolutionary innovation. PNAS, 108, 10863–10870.

    Article  Google Scholar 

  • Werren, J. H., Nur, U., & Wu, C.-I. (1988). Selfish genetic elements. Trends in Ecology and Evolution, 3, 297–302.

    Article  Google Scholar 

  • West, S. A., Fisher, R. M., Gardner, A., & Kiers, E. T. (2015). Major evolutionary transitions in individuality. PNAS, 112, 10112–10119.

    Article  Google Scholar 

  • West-Eberhard, M. J. (2003). Developmental plasticity and evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton: Princeton University Press.

    Google Scholar 

  • Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16, 97–159.

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers and Staffan Müller-Wille for valuable input into this paper. Preparation of this manuscript was made possible by the Fund for Scientific Research Flanders (FWO), Belgium (Project Number: G001013N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis De Tiège.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Tiège, A., Van de Peer, Y., Braeckman, J. et al. The sociobiology of genes: the gene’s eye view as a unifying behavioural-ecological framework for biological evolution. HPLS 40, 6 (2018). https://doi.org/10.1007/s40656-017-0174-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40656-017-0174-x

Keywords

Navigation