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Abstract

Climate scientists often apply statistical tools to a set of different es-
timates generated by an “ensemble” of models. In this paper, I argue
that the resulting inferences are justified in the same way as any other
statistical inference: what must be demonstrated is that the statistical
model that licenses the inferences accurately represents the probabilistic
relationship between data and target. This view of statistical practice
is appropriately termed “model-based,” and I examine the use of statis-
tics in climate fingerprinting to show how the difficulties that climate
scientists encounter in applying statistics to ensemble-generated data
are the practical difficulties of normal statistical practice. The upshot
is that whether the application of statistics to ensemble-generated data
yields trustworthy results should be expected to vary from case to case.

0 Introduction

Much of contemporary science is driven by either models or computer simu-
lations carried out using models. Climate science offers a particularly notable
example; as we’ll see, climate models are essential in estimating humanity’s
contribution to climate change. In climate science, it’s common—arguably
even standard practice—for the results provided by computer simulations us-
ing climate models to be treated as data. In particular, it’s common for climate
scientists to apply statistics to the different results generated by “ensembles”
of climate models—to treat these results in the same way that they might
treat data generated by sampling from a population. The resulting probability
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distributions are usually taken to be a more accurate representation of the
climate than is provided by any one model.

From a traditional or “design-based” perspective on statistical inference,
this practice might look odd and, indeed, it has been widely criticized by both
climate scientists and philosophers of science.1 After all, the models in an
ensemble are not sampled randomly from a space of possible models (whatever
that space looks like). Nor, as Winsberg (2018, 99) points out, do we have any
other good reason for thinking that our construction procedure will generate
models that are normally distributed around the truth. So what, if anything,
justifies the practice of applying statistics to the data produced by ensembles?

In this paper, I argue that statistical inferences from ensemble-generated
data are justified in the same way as any other statistical inferences. The
crucial step in both cases is specifying the probabilistic relationship between
the target and the sample—that is, what’s essential is that we can justify our
choice what’s called the “statistical model.”2 Or, more simply: we can treat
the results generated by an ensemble of models like a sample when we know
enough about the relationship between these results and the target to justify
assigning specific likelihoods to the relevant results.

This view might be termed “model-based” for two different reasons. First,
I’m endorsing a view of statistical inference according to which actual sampling
procedures take a back seat to the choice of statistical model, and such views
have often been termed “model-based” (Zhao 2020). Second, my account of
statistical inference in modeling contexts is consciously patterned on what are
called “model-based” views of measurement (for an overview, see Tal 2020, §7).
While to my knowledge the terminology was independently developed, this
coincidence is appropriate: both views stress that perfect experimental design
is neither necessary nor sufficient for successful inference, and hold that what is
instead essential is an accurate understanding of the probabilistic relationship
between the target and the data that are generated by the experiment.

The upshot for the discussion of climate modeling is that general criticisms
leveled at the very idea of applying statistics to the data generated by ensem-
bles of models are misguided. While it is plausible that some of these applica-
tions are flawed, if they are it’s for reasons familiar from paradigm examples

1See Betz (2015), Carrier and Lenhard (2019), Katzav (2014), Parker (2010b,c, 2013),
Parker and Risbey (2015), Stainforth et al. (2007), and Winsberg (2018).

2I’ll be using “essential” in formulation of this thesis throughout this paper. I choose this
term because “necessary” alone would imply not sufficient. On some views of statistics, how-
ever, an appropriately-warranted model of the probabilistic relationship is both necessary
and sufficient. On other views, Bayesian ones for example, we need additional information
(i.e., an assignment of priors for possible values of the quantity of interest).
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in statistics, namely that the relevant samples are too small or not genuinely
representative. And these familiar difficulties can be addressed so long as we
understand how they affect the probabilistic relationship. Non-representative
samples make statistical inference more difficult, but they don’t make it im-
possible.

I begin the paper with a sketch of a model-based account of scientific
inference, building largely on model-based accounts of measurement (§1). I
then offer an abstract argument for the central conclusion, urging that the
model-based picture given in the first section can be extended to cases in
which the data are generated by an ensemble of models (§2). With the abstract
picture on the table, I examine a case study–the use of “errors-in-variables”
methods in climate change attribution—that illustrates that the application of
statistics to ensemble-generated data can be successful in at least some cases
(§3). The final section returns to the literature’s criticisms of the application
of statistics to ensemble-generated data and discusses whether and to what
degree my arguments can be extrapolated (§4).

1 “Model-based” statistical inference

To derive knowledge from an instrumental reading, an agent must know how
to interpret that reading. This interpretative step is often non-trivial. Con-
sider the use of a pendulum to measure the radius of the earth.3 Since the
period of a pendulum is a function of the force acting on it, and the force is
a function of distance from the center of the earth, the period of a pendulum
can be used as a proxy for the distance from the surface to the center. The
instrumental reading—in this case, the period of the pendulum—is distinct
from the “measurement result”—the value for the radius that is inferred from
the readings—and the inference from the former to the latter relies on sub-
stantive background knowledge about the workings of a pendulum, the effects
of gravitation, and the off-setting centrifugal effect that acts on the pendulum
due of the earth’s rotation. That is, it relies on the existence of appropriately
warranted “model” of the relationship between the period of the pendulum
and the earth’s radius. Accounts of measurement that place the epistemolog-
ical focus on the model of the measurement process have come to be called
“model-based” (for an overview, see Tal 2020, §7). On model-based views, the
crucial step in justifying the measurement outcome is justifying the choice of
licensing model. My aim in this first section is to sketch a view of scientific
inference—including statistical inference in particular—that is “model-based”

3For further discussion of this example, see Dethier (2019) and Morrison (2015).
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in this same manner. This general discussion will set up the argument, given
in the next section, that statistical inferences from ensemble-generated data
should be understood in the same way.

It’s helpful to begin by returning to the case of the pendulum. As Morrison
(2015) argues in her treatment of this case, rarely is the pendulum so perfectly
shielded, isolated, and controlled that there are no influences affecting the
reading other than the radius of the earth. Our single reading may be affected,
for example, by user error or by a systematic influence such as a non-uniformity
in the density of the crust. Just as it is impractical to physically screen-off all of
these other potential influences, it is equally impractical to explicitly account
for all of the possible influences in the model of the relationship between the
radius of the earth and a single reading. Rather than trying to either physically
isolate the causal factor we’re interested in or explicitly account for every
possible influence on the instruments, therefore, scientists often account for
these other influences by “black-boxing” them, where this means building a
model in which random variables are used to represent some of the factors
that affect the instrumental reading.

A simple example is as follows. Suppose we have a data set of calculated
distances for the length to the center of the earth based on our instrumental
readings; call this data set Y . If we suppose that each element of Y was mea-
sured at the same location and let r represent the true distance between the
center of the earth and that location, our statistical model might characterized
with a simple equation, Y = r+ fX , where r is a constant and fX is a random
variable representing the random error in our measurements. Of course, this
model will be inappropriate—it will be a mis-specification—if the elements
of Y were measured at different locations rather than at a single location. In
that case, we’ll need a different model. On a first pass, for instance, we might
expect that Y = r(θ, ψ) + fX where r(θ, ψ) is a function representing the true
distance from the center of the earth to different points on the surface.

A statistical model represent the probabilistic relationship between the
target of the inference and the data. For the purposes of this paper, we can
understand “probabilistic relationship” here in terms of likelihoods.4 So our
data Y has a certain likelihood on different hypotheses about the nature of r.
These likelihoods are specified by the statistical model, and the quality of the

4Cashing “probabilistic relationship” out just in terms of likelihoods should be under-
stood as something of an idealization, as often we’ll need more detailed probabilistic data
than the simple likelihood relationship between actual data and a given hypothesis space. So,
for instance, in doing classical statistics we need to know the likelihood of any data “at least
as extreme as” the observed data. In what follows, I’m going to forego these complications
for sake of generality and ease of exposition.
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statistical model is a function of how accurately it represents these likelihoods.
For the conclusions of statistical inferences to be justified, the statistical model
must generate accurate (enough) likelihoods; if it doesn’t—if the model is “mis-
specified”—the conclusion is not warranted.

Statisticians take two different perspectives to statistical models. On one
view, often called “design-based,” the importance of statistical models is down-
played relative to the importance of certain sorts of sampling procedures—
randomization, blinding, etc.—by which an experimenter can directly control
how the data set is generated. On the other view, traditionally call “model-
based” (Zhao 2020), these physical procedures are important only insofar as
they serve to fix the probabilistic relationship between the data and the tar-
get. On this latter view, what’s essential for successful statistical inference is
just we’re able to justify the assumption that the statistical model accurately
represents this relationship. Deviations from a perfectly designed experiment—
non-random sampling, to use the traditional example—are acceptable so long
as the model accounts for these deviations.

There may well be good reasons to prefer a design-based view in prac-
tice; from a philosophical perspective, however, the model based-view is the
superior one. To see why, recall the problem that we began with, namely,
a situation where we’re working with a single data point that is influenced
by a number of different factors. Fundamentally, the problem in this case is
not that the sampling procedure is faulty or the sample size too small. It’s
that we don’t know enough about the relationship between this single data
point and the target. Were we in a position to know how every factor other
than the one we were interested in measuring affects our single data point, we
could draw successful inferences even from this single-element sample. Since
it’s impractical to come by this knowledge, however, we design experiments
that don’t require it. Nevertheless, on the model-based picture, there’s noth-
ing wrong with non-standard or non-ideal sampling procedures in principle.
On the contrary, the advantage of standardarized procedures is merely practi-
cal: they make the choice of statistical model—what is usually called “model
specification”—easier. As the statistician Fred Smith puts it: “The advantage
of randomization is that if a randomized design has been employed no further
justification is needed; the whole scientific community will accept the sample
that has been selected. With other forms of sampling users would need to be
convinced in each case” (Smith 1983, 399).

Again from a philosophical perspective, a crucial advantage of the model-
based view is that it explains why we can use statistics in cases—like our
running example—where no actual sampling takes place. With our imagined
pendulum, there is no real population that is actually being sampled. Instead,
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the statistical reasoning employed is essentially analogical ; the idea here is
we choose or “specify” a model such that the processes that determine the
character of the data behave like the probabilistic sampling procedure in the
model.5 As such, the statistical model isn’t required or expected to represent
the underlying mechanisms that actually serve to generate the data. Instead,
it is successful if and only if it accurately represents the probabilistic rela-
tionship between the target and the data. In applying statistics to this case,
therefore, we’re not supposing that the actual mechanisms of data generation
are anything like a sampling procedure. Much more minimally, we’re suppos-
ing that the these mechanisms—whatever they are—have similar probabilistic
implications on the data as a sampling procedure would, where again we can
understand this in terms of the likelihood values given by the model being
near (enough) to the real likelihoods.

The foregoing offers a rough picture of a “model-based” account of scientific
inference, with a particular focus on statistical inferences. The two important
takeaways are the following. First, statistical inferences rely on justifying the
choice of a particular statistical model that represents the relationship between
the target and the data in the sense that it delivers likelihood values for the
data on different hypotheses about the target. Second, the actual mechanisms
of data generation are not relevant to the justification of statistical inferences.
That is, varying these conditions makes no difference to justification if we hold
fixed the accuracy of the likelihood values delivered by the statistical model.
Instead, a statistical inference is justified if and only if and insofar as the
choice of statistical model that licenses the relevant inference is itself justified;
enacting physical controls on experiments and ensuring (e.g.) randomization
makes it (much!) easier to justify the choice of statistical model but is strictly
speaking not necessary.

2 Statistical inferences from ensembles

The last section put forward a “model-based” view of statistical inference, ac-
cording to which the actual mechanisms of data generation are relevant to the
justification of statistical inferences only insofar as they serve to fix the proba-
bilistic relationship between the data and the target: if we fix the assumption
that our statistical model accurately represents this relationship, then varia-
tion in the actual mechanisms of data generation makes no difference to the
justification of the inference. In the present section, I’m going to assume that

5One can find statements to essentially this effect throughout the statistical literature.
See, e.g, Cox and Wermuth (1996, 13), Kass (2011, 2), and Royall (1992, 229).
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this basic picture is correct, and argue that on this assumption, there are no
in-principle barriers to the application of statistics to the results generated by
running simulations on the different models that make up an ensemble. What’s
essential in both the modeling and experimental case is that we can justify the
choice of statistical model; while the actual mechanisms of data generation can
make this more or less difficult, they don’t change the fundamental picture.

Over the last two decades, a number of philosophers of science have argued
that the results of calculations or simulations carried out using models can
serve as evidence for hypotheses about the world.6 To illustrate the point, it
will be helpful to consider a schematized picture of a climate model.7 Our
imagined model represents the earth’s atmosphere: it consists of a number of
gridded shells, with each shell representing a layer of the atmosphere and each
grid box a location in that layer (individual grid boxes can then be picked
out using the triple 〈θ, ψ, r〉). Each grid box is assigned a number of climate
variables, representing (e.g.) the average temperature and precipitation in that
region over the course of a time-step (say, a month). The final component of
the model is a series of equations that determine how a change in the climate
variables of one box affects its neighbors. At the simplest level, quantities
like heat will simply defuse through the system, but of course there are more
complicated effects as well. So, just to take the most basic but also the most
important example, the wavelength of the energy going down through the
atmosphere is different from the wavelength of that going up, and the latter
is affected by greenhouse gas concentrations in a way that the former isn’t.
The upshot is that the movement of energy up through the atmosphere works
differently from the movement of energy down, and our model must account
for these differences.

As outlined, the model encodes our assumptions and knowledge (and more
besides; see below) about the climate system. To use this model to generate
evidence, climate scientists run simulations of the evolution of the system under
different conditions. So, for instance, a common simulation involves doubling
the CO2 concentration in the model and then repeatedly solving the various
equations to determine what effects this doubling has on the rest of the climate
variables that the model represents (see Eyring et al. 2016). The results of this
kind of simulation is that the variables in the model take on new states. If

6See, e.g., Lusk (2016), Mäki (2005), Morgan (2002), Morrison (2015), Parker (2009,
2020b), and Winsberg (2010).

7The picture I’ll be presenting is, of course, greatly simplified in a number of ways. For
a deeper discussion, see one of the extant climate model primers such as Gettelman and
Rood (2016) and McGuffie and Henderson-Sellers (2014). For a philosophical introduction,
see Winsberg (2018, 27–54).
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T (r, θ, ψ, t) represents the average temperature in the grid box picked out by
the spherical coordinates 〈r, θ, ψ〉 at time t, then running the simulation would
yield a series of values T (r, θ, ψ, 0) = x, T (r, θ, ψ, 1) = x′, etc. I’m going to
call these values and any basic calculations that can be made using them
(e.g., ∆T (r, θ, ψ) or T̄ (t)) “model reports.” This term should be understood
as analogous to “instrumental readings” in the sense that where the latter
are “directly” observable features of an instrument such as the location of a
pointer on a scale, the former are directly “observable” features of the model.
And we can learn from these features, at least in the right circumstances.
Given that we are not logically omniscient agents and climate models (in
particular) are extremely complicated, we won’t know what our assumptions
indicate the climate would be like if CO2 concentrations doubled. Observing
the model reports thus serves as evidence both for what our assumptions entail
and thereby (to the degree that those assumptions are reliable) for what the
world is in fact like.8

As is true of instrumental readings, background knowledge is required to
interpret model reports. Keeping with the earlier example, in early simulations
in which additional CO2 was introduced into climate models, it was typically
introduced all at once: the model would be set into a stable state, the CO2

concentration would be doubled, and then the simulation run until a new sta-
ble state was reached. Obviously, this method for introducing CO2 is idealized,
and this idealization is going to affect different elements of the model in dif-
ferent ways. So, for instance, even if the results of the simulation accurately
represent how much a given change in CO2 will eventually increase average
global temperatures, they might misrepresent how quickly that change will
come about. In order for an agent to reliably use the resulting model reports
as evidence for hypotheses about the world, in other words, they must have
sufficient background knowledge of how the model works and how it relates
to the true climate system. As in the instrumental case, we can think of this
background knowledge being encoded in a model, though now it is a model of
the relationship between the model report generated by simulations run on the
climate model and the target rather than between the instrumental reading
and the target.9

Qua data, therefore, model reports and instrumental readings are alike
in at least insofar as (a) they are capable of serving as evidence, (b) they

8See Parker (2020b) for a more in-depth picture of learning from simulations along these
same lines.

9Frigg and Nguyen (2016) make a similar point to this in their discussion of interpretive
“keys,” though our analyses diverge insofar as they are concerned solely with representa-
tional questions rather than epistemic ones.
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require interpretation, and (c) this interpretation is supplied or justified by
an understanding of how the data relates to the target of interest. The claim
I’m defending in this section goes further, however: it requires not just that
that a model report is like an instrumental reading, but in addition that sets of
model reports generated by different models aggregate (or can be aggregated?)
in the same way that sets of instrumental readings do. In short-hand, my claim
is not just that model-generated data are like instrumentally generated data,
but moreover that ensemble-generated data—the model reports generated by
running simulations on the different models that make up an ensemble—are
also like instrumentally generated data, at least insofar as the application of
statistics is concerned.

I think a straightforward case for the analogy can be made at the fully gen-
eral level, though a full defense will require looking more closely at the details.
In the context of measurement, we motivated the use of a set of instrumen-
tal readings—and accordingly, the incorporation of probability theory into the
licensing model—on the grounds that individual readings are influenced by
a wide variety of factors that it would be impractical to represent explicitly.
Rather than representing them explicitly, scientists use a sample of different
readings and “black-box” the influences other than the target of interest.

The use of ensembles of models has the same effect.10 Just as is true of
instrumental readings, model reports often track influences other than the true
value of the target quantity. So, for example, computational constraints or a
desire for generality may lead us to introduce idealizations or approximations
into a model, and these idealizations can cause it to misrepresent the target
in a variety of ways. Similarly, there may be features of the system that we
don’t understand very well, and a failure to perfectly represent these aspects
of the system can have the same effect. Finally, as Parker and Winsberg (2018)
and Schmidt and Sherwood (2015) have stressed, climate modeling cannot be
dissociated from particular value choices; to borrow a mundane example from
Schmidt and Sherwood (2015), modelers in Australia and England are likely to
prioritize accuracy in different parts of the world. In all of these cases, there’s
some feature of the model that’s determined not by the underlying system or
our knowledge thereof, but by external factors.

Ideally, we would account for these factors when drawing conclusions from
the model. As in the instrumental case, one means of doing so would be ex-
plicitly building them into the model of the relationship between the reports
given by the climate model and the target, but this is rarely practical: we’re

10For further discussion of the motivation for the use of ensembles along these same lines,
see Parker (2010b,c).
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rarely in a position to know how a particular idealization affects the quanti-
ties that we’re interested in, making it impossible to directly account for its
presence in our reasoning. As with instrumentally generated data, therefore,
the best way to account for these other influences may be to black-box them:
to build multiple models that have different influences (Katzav and Parker
2015). In principle, building an “ensemble” in this manner allows us to put
aside the effects of the idealizations or assumptions that are unique to a par-
ticular model and concern ourselves only with those that are shared between
all of the members of the ensemble.

This is in effect what climate scientists actually do: they build ensembles
of models with different “structural” assumptions and idealizations and then
apply statistics to draw inferences from the set of reports given by the ensemble
as a whole.11 It’s easier to understand this practice with an example. Recall
above that through simulation, a single model will deliver data in the form
of values for a variable T (r, θ, ψ, t), the average temperature in each grid box
over time. If we’re interested in the change in temperature over a given time
period, we can think of the model as providing a three-dimensional picture—a
vector field, basically—of the change in temperature in every grid box. When
dealing with an ensemble of models, rather than a single vector field, climate
scientists work with a set of around ten of these vector fields. The simplest of
means of applying statistics in his case involves treating each of these vector
fields as though it were sampled from a population of possible representations
of the true climate and then using this sample to determine what the true
climate is likely to be like. As I’ve stressed, and as I’ll illustrate in the next
section, the details of how this works will depend on the choice of statistical
model—that is, on the assumptions about the relationship between the sample
and the true climate—but this broad description will hold generally.

At least at this level of abstraction, both the motivation the methodology
employed here are no different from that of a standard example of statistical
inference from data sets composed of instrumental readings: the scientists are
essentially taking the individual data points to be the result of a combination
of random and non-random processes, with the aim of extracting info about
one of the non-random influences. Or, better, they’re taking the data points
to behave as though they were the result of such processes. What’s essential to
this methodology is justifying the choice of statistical model, where this can
once again be thought of as justifying the claim that likelihoods calculated on

11As we’ll see, it’s often been objected that this model-building strategy is ineffective.
My discussion in this paragraph should not be taken to imply that these different model
construction processes generate probabilistically independent models.
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the basis of the chosen model are close (enough) to the real likelihoods.
To summarize the argument just given, I’ve claimed that inferences from

single model reports are like inferences from single instrumental readings: in
both cases, the crucial move in justifying the inference lies in showing that
the statistical model accurately represents the relevant probabilistic relation-
ship. How the data points are actually generated is irrelevant once we’ve fixed
the accuracy of the representation. Further, I’ve argued that the relationship
between a single model report and a set of model reports generated by an en-
semble is like that between a single instrumental reading and a set of them. In
both cases, the data set as a whole introduces variation into the picture, and
this variation can be used—at least in principle—to “black-box” various fac-
tors that we don’t want to model explicitly. Given these two facts, we should
expect that drawing inferences from sets of model reports will be like drawing
inferences from sets of instrumental readings. The difference in these two cases
is merely a difference in how the data are generated, which (as we saw in the
last section) is not a difference that’s relevant to the application of statistics,
because statistics is only about capturing the probabilistic relationships that
the data-generation process introduces.

The above arguments are very general; nevertheless, if they are right, they
show that there’s nothing in principle objectionable about the practice of ap-
plying statistics to ensemble-generated data. There may well be serious practi-
cal problems of the same sort that we regularly encounter in everyday statisti-
cal practice: choosing the right statistical model is often quite hard. Indeed, a
number of philosophers and climate scientists have documented problems with
the application of statistics to ensemble-generated data; Carrier and Lenhard
nicely summarize these difficulties as follows: “First, the models are not inde-
pendent of each other in the sense that they only share physical principles and
other trustworthy assumptions but are different otherwise. ... Second, errors
are correlated between different models and are not random for this reason. ...
Third, the ensemble cannot be expected to represent the entire space of possi-
bility” (Carrier and Lenhard 2019, 3–4). All of these problems are symptoms
of the same fundamental problem, namely the the methods of model construc-
tion are very different from random sampling procedures and thus that the
data generated by running simulations on extant ensembles do not comprise
a representative sample of the relevant space of possibilities.

On the model-based view that I’ve defended here, the fact that the sam-
ple is non-representative does not alone impugn our ability to apply statistics
to it. As stressed in section 1, all that’s needed for the successful applica-
tion of statistics in this kind of case is that the statistical model accounts
for the non-random character of the sampling procedure. What makes ran-
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domized sampling so useful is that it makes model specification easier; when
dealing with cases like the present one in which the sample is known to be non-
representative, it’s harder to justify the choice of statistical model. Indeed, it
may be that for various practical reasons, we simply don’t have enough in-
formation to discriminate between different statistical models in this case.
Crucially, however, in this scenario it would not be the non-representative
character of the ensemble, but rather our inability to account for the non-
representative character, that undermines the application of statistics to ensemble-
generated data. As such, even if we’re not able to successfully justify statis-
tical inferences from ensemble-generated data in realistic cases, that doesn’t
threaten my thesis: the model-based view has a clear explanation for how that
can happen.

On the model-based view, the problems with extant ensembles are practical
problems in that there are (at least in principle) ways of addressing the non-
representative character of the sample. From a more design-based perspective,
by contrast, the non-representative character of extant ensembles looks much
more problematic. Recall that on a design-based view, what justifies statisti-
cal inferences are the actual sampling procedures employed. And thus the fact
that the actual procedures of model construction are not like random sam-
pling procedures and don’t produce a truly representative sample does seem
like a plausible reason for thinking that there are a principled reasons why we
cannot apply statistics in this case. A number of philosophers have endorsed
positions that at least seem to take this view towards ensemble-generated
data. Winsberg (2018, 98), for example, describes the application of statistics
to ensemble-generated data as “conceptually troubled” for essentially the rea-
sons outlined above. And both Betz (2015) and Katzav (2014) have argued for
“possibilist” interpretations of ensembles according to which climate models
don’t represent the world in the right way to justify the application of statis-
tics. If this design-based view is correct, the problem lies not in choosing the
statistical model, but in the character of the ensemble itself. And thus, unlike
what’s true on the model-based view, there’s nothing that we can do—even in
principle—to account for the non-representative character of the sample.

I’ve argued that we should prefer the model-based view of statistical infer-
ence. As such, we should prefer the former of these two views towards the prob-
lems with extant ensembles. Given the abstract presentation of the arguments
to this point, however, it’s open to those skeptical of the application of statis-
tics to ensemble-generated data to draw the opposite conclusion—namely, to
argue that the obvious problems with applying statistics to the data generated
by extant ensembles undermines my general arguments regarding the model-
based view.
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In the next section, therefore, I’ll examine a case in which the application
of statistics to ensemble-generated data has been at least somewhat successful
in generating trustworthy results. The idea here is not that this example is
representative in the sense that we should extrapolate the success in this case
to other cases.12 Instead, the case study serves as a kind of proof-of-concept:
it illustrates the point that the non-random character of extant ensembles can
be addressed in at least some cases by adopting the right statistical model. It
thus provides evidence for my central thesis by showing that while the non-
representative character of the sample generated by extant ensembles makes
successful statistical inference harder, it doesn’t render it impossible.

3 Statistics and climate fingerprinting

As of 2013, the Intergovernmental Panel on Climate Change (IPCC) esti-
mated that human-driven changes to greenhouse gas (GHG) concentrations
had caused a 0.5 to 1.3◦C increase in temperatures since 1951 (IPCC 2013, 869).13

It is not straightforward to estimate this quantity. The main technique that cli-
mate scientists use is called “fingerprinting” (Hegerl and Zwiers 2011; Parker
2010a). In this section, I’m going to examine one particular strand of fin-
gerprinting studies: those that involve what are called “errors-in-variables”
(EIV) methods and that rely a non-trivial application of statistics to ensemble-
generated data. I take this case study to illustrate two things. First, it rein-
forces the earlier argument by showing how the actual practice of applying
statistics to ensemble-generated data fits within a broader model-based un-
derstanding of statistical practice. Second, it illustrates that there are, at min-
imum, some applications of statistics to ensemble-generated data that are more
epistemically trustworthy than methods that don’t make use of such data.

The central idea behind all fingerprinting studies is that different potential
drivers of climate change have different effects on the distribution of tempera-
ture changes across the system. Think again of a representation of the global
temperature as consisting in vector in every atmospheric grid box; call the
vector field that represents the observations recorded in this way Y .14 The

12Though, as I’ll emphasize, the case below is representative in the sense that it is typical
for contemporary attribution studies to incorporate the application of statistics to ensemble-
generated data.

13Since this paper was initially submitted, the IPCC has revised both their estimates and
their scale for expressing humanity’s contribution to warming; for discussion, see IPCC (in
press, chapter 3).

14In this context, “observations” should be understood broadly; substantial corrections,
interpolations, and transformations are required to render instrumental readings into a form
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aim of fingerprinting is to regress Y onto different causal factors that might
be responsible for a change in temperature. Each of these factors has its own
signature or fingerprint, which we’ll represent with X terms (e.g., the arbitrary
Xi or the specific XGHG). These signatures or fingerprints are themselves vec-
tor fields that provide a picture of a change in temperature at each point on the
globe—essentially, we can think of XGHG as representing the three-dimensional
distribution of the of temperature change that would be observed were green-
house gases the only factor causing the temperature to change. Estimating
how much these different factors have affected the global mean temperature is
then a matter of constructing a regression line:

Y = β1X1 + β2X2 + ...

Each β term in this equation represents the percent of temperature change
due to a specific factor. This is the quantity that scientists use fingerprinting
studies to estimate. In effect, they’re decomposing the observed fingerprint
into weighted partial fingerprints, with the weights indicating how impactful
each factor has actually been.

The description just given is idealized in a number of ways; the actual prac-
tice of fingerprinting is much more complicated than this. One simplification is
particularly important in the present context. Standard regression techniques
rely crucially on the accuracy of the X terms; that is, they don’t take into ac-
count the possibility of errors in these terms, or what are called “measurement
errors” in the statistical literature.15 If one applies standard statistical tech-
niques in a case where there’s measurement error—note, that is to say, if one
mis-specifies the statistical model in a given way—the resulting estimates for
the β terms are liable to be inaccurate. The most well-known problem in this
context is what’s called regression “dilution” or “attentuation”—essentially,
an underestimation of the relevant β terms due to there being “more” varia-
tion than the model expects—but, as Carroll et al. (2006, 41) note, other kinds
of biases can crop up as well. The possibility of measurement errors is impor-
tant in the context of fingerprinting because the signatures of different causal
factors are not given directly by either theory or observation. Instead, they
are estimated by means of computer simulations using climate models, and
there is often non-trivial amount of uncertainty about the details of different
signatures.

that can actually be used in fingerprint study. For discussion, see Edwards (2010), Lloyd
(2012), and Parker (2016, 2020a).

15The classic surveys on this topic in the statistical literature are Carroll et al. (2006) and
Fuller (1987); I’ll be relying on Carroll et al. (2006) in particular in the coming discussion.
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One way around around this problem is to adopt what are called “errors-in-
variables” (EIV) statistical methods rather than the traditional linear regres-
sion method.16 Roughly speaking, the difference between a standard regression
and an EIV method is that where the former treats X terms as known, the
latter substitutes a distribution over possible values of X, where this distribu-
tion is calculated by applying statistical tools to ensemble-generated data.17

The technical details of EIV methods can and do differ in important ways from
study to study; fortunately, many of these technical details are unnecessary
for the philosophical purposes. What’s important is that EIV methods require
the application of statistics to ensemble-generated data.

A more detailed, but still schematic sketch of EIV methodology follows.
Recall the earlier characterization of X variables: effectively, each represents a
scenario in which the relevant causal factor (e.g., greenhouse gases) accounts
for 100% of observed warming. A probability distribution for the true value of
a given X variable can be estimated using simulations run on climate models.
To carry out this estimation procedure, of course, we need a statistical model.
Traditionally, statisticians have employed two different statistical models in
the context of measurement errors. In the first, which is used when the errors
are “classical,” each individual data point behaves as though it is sampled
from a distribution centered on X, which means that the mean of the distri-
bution should approximate X. In the second, which is used when the errors
are “Berkson errors” (after Berkson 1950), by contrast, X behaves as though
it were sampled from the same population as the data points. Following sta-
tistical tradition and using W̄ to indicate the mean of the data points, in a
Berkson scenario the probability density function for X is given by the follow-
ing equation:

P (a ≤ X ≤ b) =

∫ b

a

1

σ
√

2π
e
−1

2(z−W̄σ )2
dz

Standard examples of Berkson errors include cases in which we can’t measure
the degree to which a number of individuals were exposed to some chemical

16EIV methods were introduced to fingerprinting by Huntingford et al. (2006) and the EIV
methods employed in Gillett, Arora, et al. (2013) served as a basis for the IPCC’s estimate of
humanity’s contribution to climate change in the Fifth Assessment Report (IPCC 2013, 883).

17Note that there’s a broader sense in which most of methods used in fingerprinting since
the work of Allen and Stott (2003) are EIV methods in that they’re multi-level or hierarchical
models that assume that the X terms are uncertain quantities that must be estimated.
Climate scientists usually (but not always) use “EIV” to refer to the more restricted case
in which the degree uncertainty is estimated using an ensemble of models, which is the case
that we’re interested in here.
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or drug, and so we use a proxy that gives us the average exposure. It’s not
the case that everyone was in fact exposed to the average exposure, however,
and so the random (from the point of the view of the model) deviations from
average exposure must be accounted for.

Intuitively, we might expect that the ensemble-generated data used in attri-
bution studies would behave more like the classical scenario than the Berkson
one: since every model aims to capture the truth, we would expect them to be
clustered around it. As was discussed above, however, the actual construction
procedures of models are not anything like random sampling procedures. As
a consequence, empirical validation studies indicate that ensemble-generated
data behaves much more like the Berkson scenario (Annan and Hargreaves
2010, 2011; Sanderson and Knutti 2012). Climate scientists usually describe
this fact by either saying that the truth behaves as though it were sampled
from the same population as the models or that the ensemble is “statistically
indistinguishable” from the truth, but both of these formulations mean essen-
tially the same thing from a statistical perspective. They’re merely different
ways of describing the statistical model that yields the most accurate esti-
mates of the likelihood of the model reports on different hypotheses about
the true value of X. Once this model is selected, it can be used along with
ensemble-generated data to generate a distribution over possible values of X.

Once climate scientists have picked a statistical model to capture the re-
lationship between ensemble-generated data and the X terms, this model is
then embedded in the traditional regression model. The resulting resulting
EIV model now looks like this:

Y = β1(W̄1 + fZ1) + β2(W̄2 + fZ2) + ...

where the other variables are the same as before and each fZ is a (normally
distributed) random variable. Fingerprinting is then a matter of adapting stan-
dard algorithms for solving regressions (e.g., a least-squares analysis) to ac-
count for the additional source of variation—an extremely difficult and impor-
tant task, but one that won’t concern us here.

A schematic picture of the role of ensembles in fingerprinting is sketched
in figure 1. To summarize: in estimating the contribution of various different
factors to warming, climate scientists employ a “errors-in-variables” statistical
method to account for the possibility that they’ve mis-estimated the effect of
any one factor. This part of the application is “standard” statistical practice:
we’re simply complicating our regression techniques to account for measure-
ment error. Ensemble-generated data enter the picture because they are used
to estimate a distribution of possible values for the independent variables (the
Xs) that the observations are regressed onto. Of course, because estimating

16



theory data

model ensemble

construction

proxy

Statistical model 1
(P (Xi) = W̄i + fZi

)

validation

P dist. for each Xi

(W̄i + fZi
)

Statistical model 2
(Y =

∑
i βi(W̄i + fZi
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Figure 1: A schematic diagram of the role of ensembles of climate models in
EIV methodology. On this picture, climate models play two important roles.
First, the comparison between ensemble-generated data and proxy data is
used to build a statistical model of the relationship between the ensemble-
generated data and the true signals Xi (this step is labeled “validation”).
Second, this statistical model and the ensemble-generated data are used to
generate a distribution over possible values of each Xi variable that allows for
the calculation of the weights (βi) in the step labeled “regression.”

this distribution involves the use of statistics, the results are only justified inso-
far as we can motivate the the choice of statistical model. To identify the right
statistical model in this context, climate scientists use proxy data to exam-
ine the relationship between ensemble-generated data and X; this proxy data
reveals that the truth behaves roughly as though it were sampled from the
same distribution as the ensemble-generated data. EIV methods thus depend
crucially on the ability of climate scientists to treat ensemble-generated data
as like a sample; as we’ve seen, part of this process involves the construction
of a statistical model (what’s labeled “statistical model 1” in figure 1) that
relates the ensemble-generated data to the true fingerprint that the date are
used to estimate.

The above is intended to illustrate that the application of statistics to
the data generated by ensembles is, at the level of methodology, just like the
application of statistics to experimental data. What’s crucial, in both cases, is
a model of the probabilistic relationship between the data and the target; this
model is chosen of the basis of our background knowledge, which in this case
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(as is often true) is informed by empirical comparisons with proxies.
There’s another question here, which is whether this practice is in fact suc-

cessful. It’s hard to answer this question directly, of course: to know whether
the estimates generated by EIV methods are more accurate than other meth-
ods, we would need to know the true contribution of humans to climate
change.18 The best that can be achieved are comparisons against proxy data
that has known properties. This comparison has been carried out by Hannart,
Ribes, and Naveau (2014), indicating that their version of the EIV method is
generally more accurate than methods that don’t employ ensemble-generated
data and that in some scenarios it is substantially more accurate. It isn’t sur-
prising that this would be the case. To carry out any fingerprinting study,
climate scientists need some estimate of the value of the X terms. The basic
regression approach simply assumes that the best estimate of X is perfectly
accurate. The EIV method, by contrast, uses ensemble-generated data to con-
struct a distribution over possible values of X. Even if we can’t expect the
EIV methods to perfectly reliable, therefore, we should expect them to more
reliable than the standard regression method: insofar as the distribution used
in the EIV method is closer to the appropriate or true distribution than one
that assigns all of the probability to the mean of the distribution, the EIV
method should generate more accurate results.

In this section, I’ve examined one application of statistics to ensemble-
generated data. In the next section, I’ll further discuss the implications of
this case for the general argument of the paper, but let me end this section
by reiterating the role of this example in the argument. The point here is
not that the use of ensemble-generated data in EIV methods is particularly
representative of all applications of ensemble-generated data in climate science.
Instead, the example is a proof-of-concept: it shows that climate scientists can
productively apply statistics to ensemble-generated data so long as they are
sufficiently careful to choose the right statistical models for the job. I note that
while the particular EIV methodology may not be representative of the use
of ensemble-generated data in attribution studies let alone in climate science
broadly speaking, the reliance of EIV methods on the application of statistics
to ensemble-generated data is certainly not unique. More recent studies—
such as Gillett, Kirchmeier-Young, et al. (2021) and Ribes, Qasmi, and Gillett
(2021), both of which play an important role in the Sixth Assessment Report
(IPCC in press)—often forego EIV methods but employ ensemble-generated

18This problem is simply the realization of a common problem in measurement; see
Bokulich (2020) for a discussion of the same problem in the context of carbon dating,
for instance.
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data in other, philosophically similar, ways.

4 Climate fingerprinting and statistical infer-

ence

In section 2, I noted that there are a number of problems with the application of
statistics to ensemble-generated data and that one might read these problems
as undermining the paper’s thesis, namely that the application of statistics to
ensemble-generated data is just like any other application of statistics. If these
problems are unique to the modeling context or somehow insuperable, then
the application of statistics to ensemble-generated data is not at all like any
other application of statistics. If, however, these problems are normal statistical
problems that can be resolved in some cases, then there’s nothing conceptually
objectionable about the application of statistics to ensemble-generated data.
The case study of the last section is meant to serve as a kind of proof-of-concept
of my view: while there are (serious) problems with the use of statistics in the
context of EIV methods, this problems are (a) normal and (b) don’t ultimately
render the EIV method useless or misleading. This final section returns to the
criticisms leveled against the application of statistics to ensemble-generated
data and discusses the limits of the case study and the arguments offered here.

Beginning with the criticisms. As I’ve stressed throughout this paper, the
proper application of statistics requires choosing a statistical model that ad-
equately represents the relationship between the data and the target of the
inference. This is true regardless of how the data are generated. In easy cases,
we’re able to assume that the data-generation process approximates a gen-
uinely random sampling procedure. As we saw above, that isn’t the case in the
context of ensemble-generated data. Not only does the actual practice of model
construction give us no reason for thinking that model reports will be normally
distributed around the truth (Winsberg 2018, 97), empirical validation studies
indicate the results of simulations carried out on different models don’t behave
like independent draws and reports are more narrowly distributed around the
target values than an ideal sample would be (see Annan and Hargreaves 2011;
Knutti et al. 2010).

The upshot is that samples comprised of ensemble-generated data are bad
in the technical sense that they are non-representative. Two points, however.
First, samples that are non-representative are commonplace throughout the
sciences—non-representative samples are a very normal problem for scientists
to encounter in cases where it is difficult (or unethical) to exert substantial
control over the data-generation process. The reasons why it’s difficult to con-
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trol the data-generation process are different in the case of climate model
ensembles than they are in (say) macroeconomics, but the effect is the same in
the sense that scientists are faced with samples that make statistical inference
more difficult.

Second, that a sample is non-representative does not guarantee that statis-
tics cannot be applied to it in a productive manner. Again, what’s essential is
that we’re able to justify the choice of the statistical model; so long as we can
capture the non-representative character of the sample in our model, we can
justify the relevant statistical inferences. It’s simply not the case that samples
like those generated by extant ensembles cannot license statistical conclusions
in principle. Indeed, as we saw above, samples with similar statistical proper-
ties to those generated by extant ensembles have been recognized in the mea-
surement error literature since the 1950s, and there are well-known techniques
for drawing reliable statistical inferences from them. The non-representative
character of ensemble-generated data makes justifying the choice of statistical
model harder, but this is hardly unique to ensemble-generated data. In prac-
tice, model specification is often a difficult and complicated process that relies
on a combination of background knowledge, curve-fitting techniques, empirical
calibration, and validation checks (Spanos 2006); it’s only in the easiest cases
that the data comes out naturally in a normal distribution.

As the case study indicates, the non-representative character of ensemble-
generated data can be addressed in at least some cases; the EIV method dis-
cussed above is ultimately more accurate than a standard regression method
because it incorporates the application of statistics to ensemble-generated data.
It’s another question entirely whether the success of this case can be extrapo-
lated to other applications of statistics to ensemble-generated data. There are
at least two ways in which the case study discussed above may not be represen-
tative. First, it’s widely recognized that any given climate model is better at
answering some questions than others, and the same is true for ensembles. It’s
plausible that one of the questions that ensembles might be relatively good at
answering is the one posed in EIV studies—that is, climate ensembles might
be particularly good at estimating what climate change to date would look
like if it was driven entirely by (e.g.) CO2. Or it may be that the particu-
lar role played by the probability distributions in this case makes it so that
the final results are relatively insensitive to small errors in the characteriza-
tion of these distributions. In either case, there would be some reason why
ensemble-generated data are better suited to be used in EIV methods than
other contexts. We thus can’t treat the success of the application of statis-
tics to ensemble-generated data in this case as a guarantee that the similar
applications will be equally successful in helping us answer other questions.
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The second way in which the EIV case may be non-representative concerns
the relationship between the target being estimated and the proxies that are
used to justify the choice of statistical model. As Parker has emphasized in her
discussion of the use of ensemble methods in predicting the future climate (see,
in particular, Parker 2010b, 269), comparison with present-day proxies is no
way guaranteed to lead us to the right statistical model for the estimation of
future climate variables. For this kind of empirical validation to be successful,
we would need to be able to extrapolate the statistical model from the context
of the present-day climate to the future, an extrapolation that is particularly
problematic in the context of the climate science, where we expect that the
future will be importantly different from the present. As the climate scientists
involved in validating the choice of statistical model explicitly recognize, future
temperatures may well have a very different probabilistic relationship to model
reports than present-day temperatures do (Annan and Hargreaves 2011, 4).
As a consequence, it may be that the application of statistics to ensemble-
generated data concerning future climate change is quite distinct from the
case study discussed in the last section. At the very least, it is epistemically
riskier in that the target in the EIV case is more similar to the proxy targets
than the future climate variables are expected to be.

The above are reasons why we should not assume, on the basis of the case
study outlined above, that it will be easy or even feasible to productively ap-
ply statistics to ensemble-generated data in any climate context. Once again,
however, it’s important to stress that the difficulties that would prevent the
productive application of statistics in these cases are not unique to either
climate science or the application of statistics to ensemble-generated data. In-
deed, the problems with extrapolating the success of a model from one domain
to another are well-appreciated in philosophy of science, and particularly well-
appreciated in domains such as economics and psychology where there are
persistent problems with extrapolating results found in laboratory settings to
the “real world” (see, e.g., Steel 2008). Further, the particular extrapolation
problem found in this case is essentially no different from the extrapolation
problem found in projecting the results of any single climate model into the
future. In both cases, the problem is simply that we expect the future climate
to be different from the past climate. Regardless of whether we’re employing
a single model or applying statistics to ensemble-generated data, therefore,
the possibility of differences between the past climate and the future climate
introduces an additional source of uncertainty.

In this section, I’ve argued that that while the application of the statistics
to ensemble-generated data is non-trivial, the difficulties faced in this applica-
tion are familiar from other applications of statistics and there are—at least in
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principle—methods for addressing these problems. How successful these meth-
ods are will vary from case to case, but as the last section illustrated they are
at least in some cases successful in rendering the application of statistics to
ensemble-generated data productive and reliable—or at least more productive
and reliable than the alternatives.

The upshot of this discussion has been to reinforce the central thesis of the
paper: to justify statistical inferences—whether from instrumentally generated
or ensemble-generated data—what’s essential is justifying the choice of statis-
tical model. Close attention to actual applications of statistics to ensemble-
generated data reveals only normal difficulties associated with model specifica-
tion in cases where we can’t exert substantial control over the data-generation
process. The resulting problems are real, and may well undermine certain appli-
cations of statistics to ensemble-generated data, but don’t constitute anything
like the kind of in-principle problem that would pose trouble for my thesis.

5 Conclusion

The title of this paper is a question: when is an ensemble like a sample? The
answer to this question that I’ve defended in this paper is that an ensem-
ble is like a sample—or, better, the data generated by an ensemble compose
a sample—when we know enough about the relationship between the data
and the target of interest to treat it as one. On the picture of scientific in-
ference that I’ve offered, what justifies scientific inference generally speaking
is our understanding of the probabilistic relationship between the data that
the inference is based on and the target of the inferential process. This under-
standing is captured in a statistical model. All that the application of statistics
to ensemble-generated data requires, therefore, is that we’re able to chose the
right model of the probabilistic relationship between the results generated by
the ensemble and the target of the inference. This is often a difficult task, par-
ticularly in contexts in which there are no great proxy targets to validate the
statistical model against. As a result, the application of statistics to ensemble-
generated data often faces a number of practical problems. But the practical
problems are the familiar difficulties found in any application of statistics.
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Springer: 191–206.

— (2020b). Evidence and Knowledge from Computer Simulation. Erkenntnis
(online first).

Parker, Wendy S. and James S. Risbey (2015). False Precision, Surprise and
Improved Uncertainty Assessment. Philosophical Transactions of the Royal
Society Part A 373.3055: 20140453.

Parker, Wendy S. and Eric Winsberg (2018). Values and Evidence: How Models
Make a Difference. European Journal for Philosophy of Science 8.1: 125–
42.
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