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1

Introduction

In this PhD thesis we present new proof systems for several modal logics. We
also present an implementation of one of these proof systems in the Clojure
programming language.

The proof systems we present fall squarely in the category of tableau
systems. Such systems have a long history. Many tableau systems have been
developed for many different kinds of logic, including the logics found in
this volume. Thus the contribution of our tableau systems is not to be found
in their theoretical prowess. Rather, their intended benefits are conceptual
simplicity, ease-of-use, modularity, and extensibility.

To understand how we believe we can deliver on these promises, let us
take a step back and reflect on three core concepts of logic—syntax, semantics,
and deduction.

1.1 Syntax, semantics, and deduction
Syntax can be understood as a delineation of the natural or formal language
that we want to investigate. For example, we might be interested in sentences
containing ‘atomic’ propositions, their negations, negations of these nega-
tions, and so on. Semantics refers to theories about the meaning of sentences
and other terms of the language. Finally, deduction is a form of reasoning
and refers to the deriviation of conclusions from premises. Both the premises
and conclusions are here assumed to be expressible in the chosen language.
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In formal logic the above three concepts are studied using tools from
mathematics. We illustrate this using an example.

Consider the following syntax:

1. 𝑝,𝑞,𝑟 are atomic propositions.

2. Atomic propositions are well-formed formulas.

3. Recursively, if 𝜙 is a well-formed formula then so is not-𝜙.

4. Nothing else is a well-formed formula.

Before we can give a semantics for this language, we need to define what
constitutes a model. The job of the semantics is to tell us whether a given
well-formed formula is true in a given model. Let 𝑆 be a model if and only if
it is a set of atomic propositions. Also, let a proposition 𝑝 be true in a model
𝑆 if and only if 𝑝 ∈ 𝑆; a negation not-𝜙 is true in 𝑆 if and only if 𝜙 is not
true in 𝑆. We now have a semantics and it unambiguously tells us that, for
instance, not-not-not-𝑝 is true in the model {𝑞,𝑟}.

In formal logic, the aspect of deduction is covered by proof systems. For
instance, let’s create a proof system that allows us to prove that 𝜓 (the con-
clusion) follows from 𝜙 (the premise). The system is as follows:

1. Start with the set {𝜙,not-𝜓}, called a tableau.

2. Recursively, if the tableau contains not-not-𝜒 then add 𝜒 to the tableau.

3. If, for any atomic proposition 𝑝, the final tableau contains both 𝑝 and
not-𝑝 then 𝜓 follows from 𝜙; otherwise it does not follow.

The above proof system is called a tableau system. Using this system we
can demonstrate that 𝑝 follows from or is ‘entailed’ by not-not-𝑝. First of
all, by step 1 we start with {not-not-𝑝,not-𝑝}. By step 2 this tableau is trans-
formed into the tableau {not-not-𝑝,not-𝑝,𝑝}. This tableau contains the atom
𝑝 and its negation not-𝑝, which concludes our proof by step 3. Similarly, we
can prove that not-not-𝑞 follows from 𝑞 since step 1 gives us {𝑞,not-not-not-𝑞}
and step 2 leads to the tableau {𝑞,not-not-not-𝑞,not-𝑞}.
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Figure 1.1. In a sense, logic is a subfield of the study of languages. In formal logic, then,
formal languages are studied. Once the language is circumscribed, a formal semantics
and a proof system are sought out. Ideally, the proof system is sound and complete with
respect to the semantics.

Syntax

Semantics Proof System

Meaning Deduction

Completeness

Soundness

The above proof system is sound. This means it allows us to prove that
𝜓 follows from 𝜙 only if in all models in which 𝜙 is true, 𝜓 is also true. It is
also complete, meaning that if 𝜓 is true in all models in which 𝜙 is true then
we can prove this entailment.

In languages that have an operator ‘If … then …’ it is sometimes possible
to do away with premises. Instead of proving that 𝜓 follows from 𝜙 we prove
that ‘If 𝜙 then 𝜓’ always hold. For languages in which the deduction theorem
holds these statements are equivalent. In such languages we can prove that
𝜓 follows 𝜙 by starting with the tableau {not- If 𝜙 then 𝜓}. That is, we prove
that ‘If 𝜙 then 𝜓’ without using premises. In other words, in many logics it
suffices that a proof system is ‘weakly complete’, meaning that it can prove
tautologies—well-formed formulas that are true in every model.

1.2 The semantics–proof system gap
In formal logic the usual aim is to discover proof systems that are sound
and complete with respect to a semantics. However, both historically and in
much of contemporary literature, proof systems and semantics are developed
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relatively independently. This is sometimes true in a temporal sense, such as
when a proof system is devised long before a semantics is discovered (or vice
versa). However, this gap also exists in a conceptual sense. Understanding
many a proof system requires familiarity with a number of tautologies (techni-
cally, ‘tautology schemas’), and it is often non-obvious why these tautologies
hold simply by looking at the semantics.

We conjecture that the gap between semantics and proof systems is rooted
in the long, rich, and partially independent histories that both these areas
boast. We want to take a break from this tradition. In the proof systems
in this dissertation we attempt to reflect the semantics of our languages as
closely as possible. We aspire to the following benefits.

• Conceptual simplicity. Looking at the semantics, the proof system
should be easy to understand.

• Ease of use. For simple formulas, humans should be able to create proofs
and verify proofs easily. The proof system should also allow missteps
to be unwound without requiring unrelated results to be erased.

• Modularity. There should be an injective mapping from the discrete
elements of the semantics to the discrete elements of the proof system.

• Extensibility. Semantics tend to be easy to extend: After adding one
operator to the language it typically suffices to add but one clause to
the semantics. Proof systems should aspire to such extensibility also.
Ideally, extending the proof system should not require revising previous
elements of the proof system and it should not affect modularity.

1.3 What’s in a proof?
There’s one striking difference between tableau systems and most other for-
mal proof systems that deserves a special mention. Direct proofs are the
paradigm for most proofs systems. A proof might look as follows.

1. All people are mortal. Premise.
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2. Philosophers are people. Premise.

3. Socrates is a philosopher. Premise.

4. Socrates is a person. Inference from (2) and (3).

5. Socrates is mortal. Inference from (1) and (4).

Here we only make use of logically correct inferences. Therefore every step
in this proof is either (i) itself a premise or (ii) entailed by the premises. Thus
the line (1) to (5) comprise a proof that from “All people are mortal”, “Philoso-
phers are people”, and “Socrates is a philosopher” it follows that “Socrates is
mortal”.

In contrast, proofs by contradiction are the paradigm for tableau systems.
Here is one example of such a proof.

1. All people are mortal. Premise.

2. Philosophers are people. Premise.

3. Socrates is a philosopher. Premise.

4. Socrates is not mortal. Negation of the intended conclusion.

5. Socrates is not a person. Inference from (1) and (4).

6. Socrates is not a philosopher. Inference from (2) and (5).

This is a correct proof because lines (3) and (6) contradict each other. What
happened is that we tried to construct a model in which the premises were
true and the conclusion was false, but failed. Thus, constructing a proof in a
tableau system corresponds to a trial-and-error method of learning. Opinions
on this matter differ, but we personally feel trial-and-error methods are a
more instructive paradigm of learning.
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1.4 Modal Logics
Modal logics are logics for reasoning about possibility, knowledge, beliefs,
preferences, time, and other modalities. Their semantics are almost always
based on Saul Kripke’s possible world semantics.

Kripke semantics provides an intuitive way to look at modalities. It is so
intuitive that, from today’s perspective, it is almost puzzling that for the first
few decades after proof systems for modal logic were first invented, no one
managed to develop semantics for them [21].

The intuitiveness of Kripke semantics suggests that tableaux for modal
logic too should be easy to understand. This is indeed the case.

Dynamic modal logics are modal logics with dynamic operators for public
announcements, belief revision, preference upgrades, and so on. The dynamic
modal logics that interest us here are those that use Kripke semantics as a
starting point and define their dynamic operators via mathematical operations
on those semantics. Thus, for example, a belief revision operator in the syntax
would correspond to a belief revision operation on models.

The ‘dynamic’ semantics of dynamic modal logics are a clever way of
extending languages without compromising on intuitiveness. In this PhD
thesis we present ‘dynamic’ tableau systems for these dynamic semantics,
with the express aim to make them conceptually simple, easy to use, modular,
and extensible.
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2

Notation and Structures

The research that this volume reports on is heavily grounded in basic set
theory. As such, it should not come as a surprise that it contains a lot of
mathematical notation. Mostly, that’s a good thing!

It’s a feature of mathematical notation that set-theoretic notions (among
others) can be described in a very precise and concise way. It’s no exaggeration
to say that half a line of mathematical notation can often express ideas that
would take several plain English sentences to explain. This adds up quickly
when several such notions need to be related. Such verbosity is especially
problematic when the idea that is being communicated is complex enough
that it warrants repeated scanning. Additionally, mathematical notation is
highly structured, which further facilitates parsing (given some practice).

Throughout this work it’s assumed that the reader has a good grasp of
basic set theory. This includes an understanding of functions and relations,
graphs, and logical quantification.

In this chapter we discuss pivotal mathematical structures and introduce
succinct notation for them. Admittedly, some of this notation is unconven-
tional; however, it will be used often enough for the brevity that it affords to
pay off.

2.1 Tuples and sets of tuples
The following general mathematical structures are used throughout this vol-
ume: sets, tuples, sets of tuples, and labeled graphs. We will not make any
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special assumptions with respect to sets. As such, let us go through some
tuple-related notions straight away. (Notice that new names and notations
are enclosed in angle quotes.)

Definition 2.1. A «tuple» 𝑡 = ⟨𝑒0 …𝑒𝑙⟩ is an ordered list of elements 𝑒0,… , 𝑒𝑙.
A tuple with 𝑛 elements is also called an «𝑛-tuple». Moreover, a tuple with
one element is called a «single», a 2-tuple is called a «pair», and a 3-tuple is
called a «triple».

We will assume that the number of elements in a tuple is unambiguous.
With 𝑛 ≠ 𝑚, no 𝑛-tuple is also an 𝑚-tuple.

Finally, the notation «𝐸0 ×…×𝐸𝑙» is used to denote the set of all 𝑙-tuples
⟨𝑒0 …𝑒𝑙⟩ such that 𝑒0 ∈ 𝐸0,… , 𝑒𝑙 ∈ 𝐸𝑙.

The above notation is somewhat unorthodox in that elements of tuples are
not separated by commas. It is, however, in line with common notation for
relationships—e.g. 𝑅𝑎𝑏𝑐—and below we extend this convention even further.

Sets of tuples will prove to be a crucially important mathematical structure.
Thus, we define extra notation that is optimized for our intended interactions
with such sets.

Definition 2.2. With 𝑆 a set of tuples, we use «𝑆𝑒0 …𝑒𝑙» as a shorthand for
‘⟨𝑒0 …𝑒𝑙⟩ ∈ 𝑆’.

The shorthand 𝑆𝑒0 …𝑒𝑙 allows us to treat sets of tuples as if they were
relations. This is sensible because relations and sets of tuples are virtually
the same thing. The only difference is that relations have explicit domains.

Proposition 2.1. Let 𝑇 ⊆ 𝐷0×…×𝐷𝑙 be a set of tuples. 𝑇 corresponds to the
relation 𝑅 between the elements of 𝐷0,… ,𝐷𝑙 such that for all 𝑒0 ∈ 𝐷0,…𝑒𝑙 ∈
𝐷𝑙 it is the case that 𝑇𝑒0 …𝑒𝑙 ⟺ 𝑅𝑒0 …𝑒𝑙.

Given a sequence of elements 𝑒0,… , 𝑒𝑖′,…𝑒𝑙′ such that 𝑒𝑖′ ∉ 𝐷𝑖′ for at least
one 𝑖′ (where 0 ≤ 𝑖′ ≤ 𝑙) it is the case that 𝑇𝑒0 …𝑒𝑙′ is false whereas 𝑅𝑒0 …𝑒𝑙′

is undefined.

One important use case for sets of tuples is filtering elements that match
a certain pattern. The following notation makes this more convenient.
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Definition 2.3. Let «𝑆[𝑒0 …?…𝑒𝑙−1]» be the set {𝑥 ∣ 𝑆𝑒0 …𝑥…𝑒𝑙−1)}. Ad-
ditionally, given a sequence ∗0,… ,∗𝑙−1 of 𝑛 objects and 𝑚 = 𝑙 − 𝑛 ≥ 2
metasyntactic variables ?, let «𝑆[∗0 …∗𝑙−1]» be the set of 𝑚-tuples such
that ⟨𝑒0 …𝑒𝑚−1⟩ ∈ 𝑆[∗0 …∗𝑙−1] if and only if 𝑆 contains the tuple that re-
sults from substituting the elements 𝑒0,… , 𝑒𝑚−1 for the ?-placeholders in
∗0,… ,∗𝑙−1, preserving their order.

When we know that the result of a query 𝑆[∗0 …∗𝑙−1] is a singleton we
sometimes write «𝑆(∗0 …∗𝑙−1)» to denote its unique element.

Take notice that when a query 𝑆[∗0 …∗𝑙−1] contains exactly one ?, the
result is a set of objects that are not necessarily tuples. In contrast, when
such a query contains 𝑚 ≥ 2 variables then the result is a set of 𝑚-tuples.

Example. Given a set 𝑆 = {⟨𝑎⟩, ⟨𝑎𝑏𝑐⟩, ⟨𝑎𝑏𝑑⟩}, it is the case that

• 𝑆[𝑎𝑏?] = {𝑐,𝑑}

• 𝑆[𝑎??] = {⟨𝑏𝑐⟩, ⟨𝑏𝑑⟩}

• 𝑆[??𝑐] = {⟨𝑎𝑏⟩}

• 𝑆(??𝑐) = ⟨𝑎𝑏⟩

Given the correspondence of relations to sets of tuples we will sometimes
also use this notation to query relations.

2.2 Labeled graphs
Many definitions of labeled graphs start by stating that a graph is a triple
of the following three sets: a set of vertices, a set of vertex-label pairs, and
a set of (labeled) edges. We opt for a slightly different notational approach
and instead define graphs as sets that contain three kinds of tuples: singles
that contain vertices, vertex-label pairs, and triples that represent the labeled
edges.

Definition 2.4. G = {⟨𝑛⟩ ∣ 𝑛 ∈ 𝑁}∪ 𝐿∪ 𝐸 is an «lgraph» if and only if
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Figure 2.1. Diagram of the lgraph {⟨𝑛⟩, ⟨𝑚⟩, ⟨𝑎𝑛𝑚⟩, ⟨𝑛𝛼⟩, ⟨𝑛𝛽⟩, ⟨𝑚𝛾⟩}.

𝑛

𝛼,𝛽

𝑚

𝛾
𝑎

• 𝑁 is a set of objects. Every 𝑛 ∈ 𝑁 is called a «node» or «vertex» (plural:
vertices) of G.

• 𝐿 is a set of pairs. We say that 𝑙 is a «label» (of G) for 𝑛 if and only if
𝐿𝑛𝑙. The «label-set» of a node 𝑛 (of G) is the set G[𝑛?]. We also say
that the node 𝑛 contains 𝑙 if and only if 𝑙 ∈ G[𝑛?].

For every ⟨𝑛𝑙⟩ ∈ 𝐿 it is the case that 𝑛 is a node of G.

• 𝐸 is a set of triples. We say that 𝑛′ is «accessible» from 𝑛 over 𝑎 if and
only if 𝐸𝑎𝑛𝑛′. Every ⟨𝑎𝑛𝑛′⟩ ∈ 𝐸 is called a (labeled) «edge» or «link»
(of G) from 𝑛 to 𝑛′ indexed by 𝑎. Sometimes ⟨𝑎𝑛𝑛′⟩ is also described as
the «𝑎-edge» from 𝑛 to 𝑛′. Finally, ⟨𝑎𝑛𝑛′⟩ ∈ 𝐸 is called an «outgoing»
𝑎-link of 𝑛 (in G) and an «incoming» 𝑎-link of 𝑛′ (in G).

For every ⟨𝑎𝑛𝑛′⟩ ∈ 𝐸 it is the case that 𝑛 and 𝑛′ are nodes of G.

A «path» or «chain» in an lgraph G is a sequence 𝑛0,… ,𝑛𝑖, 𝑛𝑖+1,… ,𝑛𝑙

such that for every natural number 𝑖 < 𝑙 it is the case that G[?𝑛𝑖𝑛𝑖+1] ≠ ∅. If,
moreover, G𝑎𝑛𝑖𝑛𝑖+1 for all natural numbers 𝑖 < 𝑙 then the sequence is called
an «𝑎-path» or «𝑎-chain».

Given an lgraph G, let «root(G)» be any 𝑛 ∈ G[?] such that there is a path
from 𝑛 to any other node of G (or undefined if no such node exists).

One convenient feature of our notation is that its nodes, labels, and edges
can be accessed as elements of G in a fairly straightforward way.

Example. For any lgraph G it is the case that

• G𝑛 ⟺ 𝑛 ∈ G[?]

• G𝑛𝑙 ⟺ ⟨𝑛𝑙⟩ ∈ G[??]
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• G𝑎𝑛𝑛′ ⟺ ⟨𝑎𝑛𝑛′⟩ ∈ G[???]

Sometimes we will want to talk about graphs in combination with one
specially designated node. Other times we will be interested in the vertices
and edges of a graph, but not in its labels. Hence we introduce the following
terminology.

Definition 2.5. With G an lgraph and 𝑛 one of its nodes, the pair ⟨G𝑛⟩ is
called a «pointed graph». Here, 𝑛 is called the «current node» (of G).

The «frame» of an lgraph G is the lgraph F ≔ {⟨𝑛⟩ ∣ 𝑛 ∈ G[?]} ∪G[???].

We will investigate many different kinds of operations on graphs, many
of which are monotone—that is, they only ever extend graphs. The following
definition gives us a rough notion of what part of the graph was modified.

Definition 2.6. Given a monotone unary operation 𝑓 on graphs and a graph
G, we say that the nodes «affected» by applying 𝑓 to G are the elements of
the following set:

Δ[?] ∪ {𝑛 ∣ Δ[𝑛?] ≠ ∅,Δ[?𝑛?] ≠ ∅, or Δ[??𝑛] ≠ ∅},

where Δ = G′ −G.

That is to say, the nodes affected by 𝑓 are (i) the nodes that are added, (ii)
the nodes to or from which edges are added, and (iii) the nodes to which new
labels are added.

2.3 Graphs and relational structures
In the following chapters we will define Kripke models and action models as
lgraphs. This is unusual. Normally these models are defined as relational
structures. As mentioned above, however, sets of tuples and relations are
practically the same thing. Therefore it is not surprising that lgraphs can
easily be converted to relational structures (and vice versa).

CHAPTER 2 11



Definition 2.7. A «relational Kripke structure» is a triple ⟨𝑊𝑅𝑉⟩ such that 𝑊
is a set of nodes, 𝑅 is a function from indices to binary relations on 𝑊, and
𝑉 is a function from worlds to sets of labels.

Proposition 2.2. A relational Kripke structure ⟨𝑊𝑅𝑉⟩ is equivalent to an
lgraph G if and only if

• 𝑊 = G[?].

• For all indices 𝑎 and all {𝑤,𝑣} ⊆ 𝑊, 𝑅(𝑎)𝑤𝑣 ⟺ G𝑎𝑤𝑣.

• For all 𝑤 ∈ 𝑊 it is the case that 𝑉(𝑤) = G[𝑤?].

The reason why we will define Kripke models as lgraphs rather than as
relational structures is that throughout this thesis will often want to compare
models to (other) lgraphs. Directly representing models as lgraphs makes
this much more straightforward.

2.4 Embeddings and bisimulations
Embeddings and bisimulations are two general mechanisms for comparing
lgraphs and other structures. Embeddings map structure and contents of one
lgraph onto a second lgraph.

Definition 2.8. Given two lgraphs G and G′, we say that the function ℎ ∶
G[?] → G′[?] is an «embedding» from G in G′ if and only if

• G𝑛 ⟹ G′ℎ(𝑛)

• G𝑛𝑙 ⟹ G′ℎ(𝑛)𝑙

• G𝑎𝑛𝑛′ ⟹ G′𝑎ℎ(𝑛)ℎ(𝑛′)

The above definition maps labels and indices in G onto themselves (in
G′). This leaves room for further generalization. The present definition is
sufficiently abstract for our needs, however.
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Figure 2.2. The lgraph on the left is embedded in the lgraph on the right (but not vice
versa). The embedding is the function that maps 𝑛 and 𝑛′ onto 𝑚.
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Figure 2.3. Two bisimilar lgraphs. One bisimulation is the relation that holds between
the two 𝛽-nodes and between all 𝛼-nodes. In fact, this particular bisimulation also
happens to be the union of all bisimulations between these graphs.

𝛽

𝛼 𝛼

𝛼

𝛼

𝛽

𝑎
𝑏

𝑎
𝑎

𝑎,𝑏

𝑎

It is instructive to reflect on the following question: When are two lgraphs
or nodes ‘equivalent’? One answer would be to say that two lgraphs G and
G′ are equivalent if and only if there’s an embedding ℎ from G to G′ such
that its inverse function ℎ−1 is an embedding from G′ to G. This property is
called isomorphism. Isomorphism is but one notion of equivalence, however.

Bisimulations represent a more flexible kind of equivalence of two nodes.
The underlying idea is, metaphorically speaking, that we embark on two jour-
neys starting at 𝑛 and 𝑛′ and are allowed only (i) to travel over the outgoing
edges and (ii) to compare the labels of the current nodes. If after no such
journey we can tell 𝑛 and 𝑛′ apart then both nodes are deemed bisimilar.
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Definition 2.9. A «bisimulation» between (the nodes of) two lgraphs G and
G′ is a relation 𝑍 between G[?] and G′[?] such that 𝑍𝑛𝑛′ if and only if the
following conditions are met:

• G[𝑛?] = G′[𝑛′?].

• For every ⟨𝑎𝑚⟩ ∈ G[?𝑛?] there is an 𝑚′ ∈ G′[𝑎𝑛′?] such that 𝑍𝑚𝑚′.

• For every ⟨𝑎𝑚′⟩ ∈ G′[?𝑛′?] there is an 𝑚 ∈ G[𝑎𝑛?] such that 𝑍𝑚𝑚′.

Two pointed lgraphs ⟨G𝑛⟩ and ⟨G′𝑛′⟩ are «bisimilar» if and only if there
is a bisimulation 𝑍 between them such that 𝑍𝑛𝑛′. We also write «⟨G𝑛⟩ ↔
⟨G′𝑛′⟩» if and only if ⟨G𝑛⟩ is bisimilar to ⟨G′𝑛′⟩.

2.5 Notation for formal syntax
In the introduction we explained that formal logic encompasses the study
of formal languages. This means we need meta-syntax for describing said
languages—specifically, we need conventions (i) for specifying their syntax or
grammar and (ii) for denoting subsets of these languages that match certain
patterns.

We specify the syntax of formal languages using a variant of Backus-Naur
Form (BNF) that is commonplace in literature on formal logic. Let’s start with
an example.

Example. Let language L be the set of all formulas that are recursively defined
as follows:

𝜙 ⩴ 𝑝 ∣ ¬𝜙 ∣ (𝜙∧𝜙),

where 𝑝 ∈ Prop.

This notation raises many questions. For instance, what kind of elements
are in L and in Prop?

The elements of Prop are ‘symbols’ by virtue of their use in the definition
of L. It may help to think of Prop as consisting of letters of the Latin alphabet
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or as Unicode ‘codepoints’, although from a formal point of view they can be
anything.

The elements of L are concatenations, sequences, or ‘strings’ of the ele-
ments of Prop and the symbols ‘¬’, ‘(’, ‘)’, and ‘∧’. Of course it is not the
case that every string consisting of those symbols is an element of L. Only
elements that fit our recursive definition are.

It might help some readers if we recast our previous definition in a BNF
commonly used in computer science. Suppose that Prop contains the symbols
‘p’, ‘q’, ‘r’, and nothing else. L then contains exactly those symbols that can
be derived as ⟨expr⟩ using the following rules.

⟨atom⟩ ⩴ ‘p’ ∣ ‘q’ ∣ ‘r’

⟨expr⟩ ⩴ ⟨atom⟩ ∣ ‘¬’ ⟨expr⟩ ∣ ‘(’ ⟨expr⟩ ‘∧’ ⟨expr⟩ ‘)’.

That is to say, L is the smallest set that meets the following criteria:

• The elements of Prop are in L.

• The concatenation of ‘¬’ and any element of L is an element of L.

• The concatenation of ‘(’, any element of L, ‘∧’, any element of L, and ‘)’
is an element of L.

We use the notation |𝜙| to denote the length of the string 𝜙.
Throughout this thesis we use 𝜙,𝜓,𝜒, or 𝜉 to refer to strings of symbols.

We use lowercase italic letters 𝑝,𝑞,𝑟 to refer to single symbols from the set
Prop and 𝑎,𝑏, 𝑐 to refer to symbols from the set Ind. Finally, we sometimes
combine all of these, as well as the symbols (, ), [, ], ¬, ∧, !, and so on to refer
to strings that match certain patterns. Thus, outside of syntax specifications,
(𝜙∧𝜓) refers to any string of the pattern ‘(’ ⟨string⟩ ‘∧’ ⟨string⟩ ‘)’. Moreover,
if (𝜙∧𝜓) = (𝜒∧ 𝑝) then 𝜙 = 𝜒 and 𝜓 = 𝑝. Therefore, outside the scope of
BNF rules, (𝜙∧𝜙) may refer to the string (𝑝 ∧ 𝑝) but not to (𝑝 ∧ 𝑞).
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3

Modal Logic

Logic is often defined as the study of (correct) reasoning. In formal logic—also
known as symbolic logic—this study is approached in a mathematical way.
From here on, when we say ‘logic’ we mean ‘formal logic’.

Propositions are represented by sentences that are either true or false.
For instance, the sentences “Snow is white” and “Cats meow and dogs bark”
express propositions; contrariwise “Is it raining?” and “moon” are expressions
that are neither true nor false. Propositions should not be confused with the
sentences that represent them; rather, on one account propositions are the
metaphysical entities which those sentences refer to [29]. Propositional logics
are logics for reasoning about propositions.

In one popular way of doing propositional logic the following steps can
be distinguished:

1. A language is defined in a formal way by inductively defining a «syntax»
or «grammar». The language is the set of all sentences that adhere to
this syntax.

Propositional languages consist of atomic propositions 𝑝,𝑞,𝑟,… that
can be combined with a unary negation operator (‘not’, ¬) and binary
operators for conjunction (‘and’,∧), disjunction (‘or’,∨), and implication
(‘if … then’, →).

2. Each sentence of the formal language is given a meaning or «semantics»
in set-theoretic terms. This makes it possible to unambiguously decide



for each sentence if it is true or false in a given «model» (or possibly at
a certain ‘point’ in a model).

3. The semantics for the language may sometimes allow models to be con-
structed that, upon reflection, may not be germane to the language. For
instance, suppose the semantics allow for a model in which a sentence
𝐴 is true. By appealing to intuition 𝐴 might in fact seem incoherent—
meaning it should always be false. The logician’s job is then to identify
the set-theoretic property 𝑃 that singles out such subversive models. He
or she then stipulates that 𝑃-models are not models for the logic that is
being developed.

4. A proof system is devised. This involves specifying what a proof looks
like and specifying rules for checking whether or not a proof is «correct».
The outcome of a correct proof—after discharging all assumptions—is
a sentence of the formal language that is ‘logically true’. That is, a proof
serves to demonstrate that a certain sentence is true in every model
(excluding the subversive ones). This property is called «soundness».
Ideally, all sentences that are true in every model can also be proved in
the proof system. This is called «completeness».

The outcome of a proof is a sentence—a purely syntactic object—and
not a proposition. This means that when we prove that (𝑝 → 𝑝), we
put no restrictions on what 𝑝 refers to. We would have proved that ‘If
Brussels is the capital of Belgium then Brussels is the capital of Belgium’
and that ‘If Prague is the capital of Columbia then Prague is the capital
of Columbia’. In other words, logic concerns itself with the form of
reasoning.

In this chapter we discuss an extension of (a classical interpretation of)
propositional logic that is called modal logic. In subsequent chapters we
extend our investigations to dynamic modal logics.
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3.1 Syntax and semantics of L𝑈◻

Modal propositional logics extend (classical) propositional logic with modal-
ities such as ‘necessarily’, ‘knows that’, ‘believes that’, or ‘it ought to be the
case that’.

Definition 3.1. Let the language of multi-modal propositional logic L𝑈◻ con-
sist of all «well-formed formulas» (wffs) 𝜙 composed as follows:

𝜙 ⩴ 𝑝 ∣ ¬𝜙 ∣ (𝜙∧𝜙) ∣ 𝑈𝜙 ∣ ◻𝑎𝜙,

with 𝑝 an element of a nonempty set of atomic propositions or atoms «Prop»
and 𝑎 an element of a set of indices «Ind».

For convenience we also define the set of «literal propositions» or «literals»:
Let «Lit » ≔ Prop∪{¬𝑝 ∣ 𝑝 ∈ Prop}.

The disjunction (𝜙∨𝜓) can be defined as ¬(¬𝜙∧¬𝜓). The implication
(𝜙 → 𝜓) is commonly regarded as equivalent to (¬𝜙∨𝜓) and thus can also
be defined in terms of ¬ and ∧. There are also two logic symbols that do not
take any arguments: ⊤ (‘top’), which means ‘logically true’, and its negation ⊥
(‘bottom’, contradiction). These symbols can be reduced in terms of ¬, ∧, and
an arbitrary atomic proposition (on the assumption that Prop is nonempty).
The symbol ⊤ will prove very useful in chapter 5. For the modal operators 𝑈
(‘universally’) and ◻𝑎 (‘box-𝑎’) a ‘dual’ operator can be defined. Thus ¬𝑈¬ is
often abbreviated as 𝐸 (‘somewhere’) and ⋄𝑎 (‘diamond-𝑎’) stands for ¬⋄𝑎¬.

In contexts where it’s clear that Ind is a singleton, we sometimes omit the
subscript from the box and diamond operators.

It is commonplace to interpret modal logics in terms of Kripke semantics—
to the extent that the terms ‘modal logic’ and ‘Kripke semantics’ are often
treated as if they were synonymous.

Where in non-modal propositional logic you might want to know if a wff
holds in a model, in Kripke semantics you would want to know if a wff holds
at a ‘world’ in a model.

Definition 3.2. A «Kripke model» M is an lgraph such that
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Figure 3.1. The Kripke model {⟨𝑤⟩, ⟨𝑤′⟩, ⟨𝑎𝑤𝑤⟩, ⟨𝑎𝑤𝑤′⟩, ⟨𝑤𝑝⟩, ⟨𝑤′𝑝⟩, ⟨𝑤′𝑞⟩}. Notice
how ◻𝑎𝑝 is true in 𝑤 because 𝑝 is a label for every world that is accessible from 𝑤 over
𝑎. The formula ◻𝑎𝑞 is false in 𝑤. Finally, ⋄𝑎⊤ is true in 𝑤 and its negation ◻𝑎⊥ holds
in 𝑤′.

𝑤

𝑝

𝑤′

𝑝,𝑞

𝑎𝑎

• M[???] ⊆ Ind×M[?] ×M[?]

• M[??] ⊆ M[?] × Prop

The nodes of a Kripke model are called «worlds», «states», or «points».
The set of edges of a Kripke model is called its «accessibility relation». The
«valuation» of an atomic proposition 𝑝 ∈ Prop in a world 𝑤 is ‘true’ if and
only if M𝑤𝑝; otherwise it is ‘false’.

Beware that our definition of Kripke models is slightly non-standard, as
explained in section 2.3.

We can now have a look at the formal semantics for the formulas in L𝑈◻.

Definition 3.3. Let the «forcing relation» «⊩» be a binary relation such that
for all 𝑝 ∈ Prop, 𝑎 ∈ Ind, and pointed Kripke models ⟨M𝑤⟩ it is the case that

⟨M𝑤⟩ ⊩ 𝑝 ⟺ M𝑤𝑝

⟨M𝑤⟩ ⊩ ¬𝜙 ⟺ not ⟨M𝑤⟩ ⊩ 𝜙

⟨M𝑤⟩ ⊩ (𝜙∧𝜓) ⟺ ⟨M𝑤⟩ ⊩ 𝜙 and ⟨M𝑤⟩ ⊩ 𝜓

⟨M𝑤⟩ ⊩ 𝑈𝜙 ⟺ ∀𝑣 ∈ M[?] ∶ ⟨M𝑣⟩ ⊩ 𝜙

⟨M𝑤⟩ ⊩ ◻𝑎𝜙 ⟺ ∀𝑣 ∈ M[𝑎𝑤?] ∶ ⟨M𝑣⟩ ⊩ 𝜙

In a model M, a formula 𝜙 is said to be true in, hold in, or satisfied by a
world 𝑤 if and only if ⟨M𝑤⟩ ⊩ 𝜙.

The above semantics is compositional. That is to say, its truth schemas
reduce the question whether or not a formula 𝜙 (in a world 𝑤) is true to

CHAPTER 3 19



Table 3.1. Some of the more popular (well-behaved) frame conditions. The right-most
column contains the characteristic logical truth that results when the condition holds.

Name Predicate Schema Axiom

K𝑎 Always (◻𝑎(𝜙 → 𝜓) →
(◻𝑎𝜙 → ◻𝑎𝜓))

T𝑎 Reflexive G𝑎𝑛𝑛 (◻𝑎𝜙 → 𝜙)

D𝑎 Serial ∃𝑛′ ∶ G𝑎𝑛𝑛′ (◻𝑎𝜙 → ⋄𝑎𝜙)

4𝑎 Transitive G𝑎𝑛𝑛′ and G𝑎𝑛′𝑛′′ ⟹ G𝑎𝑛𝑛′′ (◻𝑎𝜙 → ◻𝑎◻𝑎𝜙)

B𝑎 Symmetric G𝑎𝑛𝑛′ ⟹ G𝑎𝑛′𝑛 (𝜙 → ◻𝑎⋄𝑎𝜙)

5𝑎 Euclidean G𝑎𝑛𝑛′ and G𝑎𝑛𝑛′′ ⟹ G𝑎𝑛′𝑛′′ (⋄𝑎𝜙 → ◻𝑎⋄𝑎𝜙)

the question of whether or not the ‘subformulas’ contained in 𝜙 are true
(in worlds 𝑤′,𝑤′′,… ). For instance, we evaluate the modal formula ◻𝑎𝜙 by
quantifying over the worlds that are accessible from the current world over
𝑎. Specifically, ◻𝑎𝜙 is defined to be true if and only if 𝜙 evaluates to true in
all the worlds accessible over 𝑎.

The intuitive understanding of the accessibility relation depends on the
application. For instance, epistemic logics are modal logics where ◻𝑎𝜙 is
interpreted as ‘agent 𝑎 knows that 𝜙’. It follows that ⋄𝑎𝜙 means ‘for all 𝑎
knows, 𝜙 is the case’. Consequently, a link ⟨𝑎𝑤𝑤′⟩ could be thought of as
representing agent 𝑎 as being unable to ‘distinguish’ 𝑤′ from 𝑤. In other
words, as far as agent 𝑎 in 𝑤 can tell, she is situated in 𝑤′. We return to this
issue in the next section.

Depending on the application the accessibility relations are restricted in
various ways (table 3.1). For instance, in epistemic logic reflexivity is imposed,
which has the effect of ensuring that if ◻𝑎𝜙 is true in a world then so is 𝜙.
This corresponds to the notion that it is impossible to know false propositions.
Of course it is possible to believe false propositions and hence in doxastic
logic, in which ◻𝑎𝜙 is read as ‘agent 𝑎 believes that 𝜙’, the requirement that
accessibility relations are reflexive is dropped. Instead seriality is substituted
for reflexivity so that agents can believe false things but cannot believe con-
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Figure 3.2. A frame F of which the set of 𝑎-edges constitutes an equivalence relation.
Every frame that is reflexive and Euclidean, or serial, symmetric, and transitive is an
equivalence frame. F is also serial with respect to 𝑏.

𝑎 𝑎

𝑎,𝑏

𝑎,𝑏
𝑎

𝑏

𝑎

tradictions. Restrictions on the accessibility relations are known as frame
conditions.

Definition 3.4. 𝜎 is a (universally defined) «frame condition» if and only if
it is a function from indices to predicates on lgraphs and, with 𝑎 any index,
𝜎(𝑎) is invariant under isomorphisms, changes in labeling, and changes in
edges that are not 𝑎-edges.

𝜎 is a «well-behaved» frame condition if and only if any lgraph can be
extended to make it 𝜎(𝑎)-compliant. Specifically, for any given lgraph G and
index 𝑎 there is an lgraph G′ ⊇ G for which 𝜎(𝑎) holds.

Given two frame conditions 𝜎 and 𝜎′, let 𝜎⊔𝜎′ be the frame condition
such that for all indices 𝑎, (𝜎⊔𝜎′)(𝑎) holds for an lgraph if and only if 𝜎(𝑎)
and 𝜎′(𝑎) hold for it. Similarly, we write 𝜎 ⊑ 𝜎′ if and only if there is a frame
condition 𝜎′′ such that 𝜎 = 𝜎′ ⊔𝜎′′.

We use the notation K𝑎 to indicate the absence of constraints on index 𝑎.
Thus K𝑎G is true for every index 𝑎 and every lgraph G. Despite the abuse of
terminology, we say that the frame condition 𝜎 contains no frame conditions
if and only if 𝜎(𝑎) = K𝑎 for every index 𝑎.

In addition to the predicates in table 3.1, we will also use the predicates
‘equivalence’ and ‘preorder’. An accessibility relation with index 𝑎 is equiv-
alent if and only if it meets T𝑎 ⊔ 5𝑎 or T𝑎 ⊔ 4𝑎 ⊔ B𝑎 (which amounts to the
same thing). It is a preorder relation if and only if it equals T𝑎 ⊔4𝑎.
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Finally, we say that a Kripke model M is a 𝜎-model if and only if for all
𝑎 ∈ Ind it is the case that 𝜎(𝑎) holds for M.

3.2 Applications
Modal logics have many applications. The following overview is not exhaus-
tive.

Alethic logics are logics for reasoning about logical or metaphysical pos-
sibility. Such logics have a single box operator. To put things differently,
in alethic logics there is one index that represents possibility. What is true
in all (accessible) possible worlds is considered necessary. Therefore ◻𝜙 is
read as ‘It is necessarily so that 𝜙’ and its dual ⋄𝜙 is read as ‘It is possible
that 𝜙’. Metaphysical possibility is sometimes taken to be an equivalence
relation. This means it’s assumed that possibility is a reflexive, transitive,
and symmetric relation.

Epistemic logics allow us to reason about knowledge of one or more agents.
Here, ◻𝑎𝜙 is read as ‘Agent 𝑎 knows that 𝜙. There is much disagreement
about what frame conditions are appropriate for knowledge. Sometimes equiv-
alence is assumed, but many logicians and philosophers would argue that this
assumption is too strong. The symmetry axiom (𝜙 → ◻𝑎¬◻𝑎¬𝜙) seems par-
ticularly untenable for it implies that if 𝜙 is true then you know that you
don’t know ¬𝜙.

Reading the literature it would appear thatmany logicians think knowledge
is at least reflexive and transitive. Philosophers, on the other hand, sometimes
argue that knowledge is not transitive. They argue that it is not the case that if
you know that 𝜙 then you know that you know that 𝜙, a principle that is also
known as ‘positive introspection’. A historically important defence of positive
introspection can be found in [24] (chapter 5). See [39] for one powerful
philosophical defense of knowledge as a modality that is not transitive. In
conclusion, we want to point out that this issue is closely aligned with the
internalism/externalism debate in epistemology.

Doxastic logics are logics of beliefs. The most notable difference between
knowledge and belief is that knowledge is factual—if it is known that 𝜙 then
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𝜙 must in fact be true. Belief, on the other had, allows for mistakes. It is
perfectly possible to believe something that turns out to be false.

Deontic logics deal with ethics, law, norms, and obligations. They encour-
age a reading of ◻𝜙 as ‘𝜙 ought to be the case‘, ‘One is obliged to do 𝜙’, ‘𝜙 is
required by law’, and so on. In terms of Kripke semantics it can also be read
as ‘𝜙 is the case in all perfect worlds’.

Temporal logics are logics for reasoning about time. Commonly two ac-
cessibility relations are used to represent time. The first one is a transitive
relation that orders instances in time from old to new. On this modality ◻𝜙
is read as ‘It will always be the case that 𝜙’ and ⋄𝜙 is read as ‘𝜙 is the case
at some point in the future’. The second relation is the inverse of the first
and orders instances in time from new to old. It affords statements about the
past such as ‘It was always the case that 𝜙’ or ‘𝜙 was true at some point’.

Temporal logics often also feature more advanced expressions, such as ‘𝜙
holds until 𝜓 becomes true’. Because a plethora of incompatible views exist
on the nature of time it should not come as a surprise that logicians disagree
on how to model it. For instance, is time deterministic or is it open ended?
Is time continuous or is it discrete?

Dynamic propositional logics (DPL) are logics for reasoning about state
transitions. Thus they can be used for reasoning about computer programs,
computer chips, and other state systems. In DPL ◻𝑎𝜙 is written as [𝑎]𝜙 and
the index 𝑎 represents a state transition. Additionally, DPL provides several
operations for creating complex indices out of simple ones. Thus, for instance
[𝑎 ∪ 𝑏]𝜙 could stand for ‘𝜙 is the case after state transition 𝑎 or 𝑏’. There
are usually also operators for expressing sequential operation, iteration, and
testing.

Modal logic has also been suggested as a type system for programming
languages. Type systems analyse programs for correctness and can prevent
programs from running if they have type errors. Programming languages with
type systems based on modal logic have been proposed. For instance, [11]
presents a language for staged computing and [31] describes a programming
language for safe computing with distributed resources.
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3.3 A tableau proof system for L𝑈◻

On encountering a well-formed formula 𝜙, a formal logician will immediately
want to know two things:

• Is 𝜙 valid?

• Is 𝜙 satisfiable?

Definition 3.5. A well-formed formula 𝜙 is «𝜎-valid» if and only if for every
pointed𝜎-model ⟨M𝑤⟩ it is the case that ⟨M𝑤⟩ ⊩ 𝜙. The notation⊨𝜎 𝜙 also
indicates that 𝜙 is 𝜎-valid. 𝜎-valid formulas are also called «𝜎-theorems». A
wff that is not 𝜎-valid is called «𝜎-invalid».

Well-formed formulas that hold in at least one pointed 𝜎-model are called
«𝜎-satisfiable». Formulas that are not 𝜎-satisfiable are «𝜎-unsatisfiable» and
are also called «𝜎-contradictions».

A wff 𝜙 is «𝜎-contingent» if and only if it is true in at least one pointed
𝜎-model and false in at least one pointed model.

We sometimes simply write that a formula 𝜙 is valid, invalid, satisfiable,
unsatisfiable, or contingent when 𝜎 contains no frame conditions.

The following proposition is the fundamental insight behind tableau proof
systems.

Proposition 3.1. A well-formed formula 𝜙 is 𝜎-valid if and only if ¬𝜙 is not
𝜎-satisfiable.

This gives rise to the following general strategy: Systematically try to
construct a (pointed) model for a formula 𝜙. If successful and if the model-
constructing system used is sound then this results in a pointed model for 𝜙.
If unsuccessful and if the model-constructing system is complete then this
means that its negation is valid.

Tableau systems are one way to implement this general strategy. The
tableau systems we will use are based on graph-rewriting.
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Definition 3.6. An «L-tableau» T is an lgraph with edges that are indexed by
elements of Ind and with well-formed formulas of the language L for labels.

When it is unambiguous what L is, we drop it as a prefix.

Tableau systems are based on rules which look for patterns in a tableau
and, based on the patterns they encounter, add new nodes, edges, or labels to
it. We also allow rules to transform tableaux into tableaux that embed them.

We can now formally define what a tableau rule is.

Definition 3.7. A «tableau rule» 𝑅 is a «non-destructive» relation between
tableaux, meaning that with T and T ′ tableaux, if 𝑅T T ′ then T is embedded
in T ′.

Let Rules be the collection of tableau rules defined in table 3.2 and let
Rules𝜎 be the largest subcollection of Rules that contains a frame condition
rule 𝐑𝐚

𝐗 only if X𝑎 ⊑ 𝜎 (where X𝑎 is a frame condition as defined in table 3.1).

In later chapters we will add further constraints to Rules. However, those
rules will concern formulas outside L𝑈◻, and as such will not affect the results
in this chapter.

As for 𝐑⋆, it is important to understand that it can be used to merge nodes,
add nodes and edges, add literals to nodes, and rename nodes. One purpose
of 𝐑⋆ is to help us turn those situations where the tableau rules conspire to
create acyclic never-ending paths around by transforming these paths into
loops. We will find additional uses for 𝐑⋆ in later chapters.

One interesting property of the mandatory rules of Rules—where 𝐑⋆ is
the only optional or non-mandatory rule—is that they are non-destructive in
a strong sense.

Proposition 3.2. If 𝑅 is a mandatory rule of Rules then, with T and T ′

tableaux, if 𝑅T T ′ then T ⊆ T ′.

The mandatory rules also have the property that they add at most three
elements to the tableau.

Proposition 3.3. If 𝑅 is a mandatory rule of Rules then, with T and T ′

tableaux, if 𝑅T T ′ then the cardinality of T ′ − T is at most 3.
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Moreover, whenever a mandatory rule of Rules is triggered to add a for-
mula 𝜙 to the tableau, 𝜙 is shorter than the formula that triggered the rule.

Definition 3.8. A tableau rule 𝑅 is «reductive» if and only if, given any two
tableaux T and T ′, if 𝑅T T ′ then for all ⟨𝑛𝜙⟩ ∈ T ′ − T it is the case that
there is a node-label pair ⟨𝑛′𝜓⟩ ∈ T such that |𝜙| ≤ |𝜓|.

Proposition 3.4. All mandatory rules of Rules are reductive.

To further aid our understanding of the tableau rules it may be instructive
to reflect on the following situations.

Example. Given a tableau T and a tableau rule 𝑅, we make a distinction
between the following cases:

• 𝑅[T ?] = ∅. For the rules in table 3.2 this occurs when the precondition
does not match a pattern in T .

• 𝑅T T . If 𝑅 is a rule of table 3.2 then this means 𝑅 has already been
applied to T .

• 𝑅[T ?]−{T } ≠ ∅. This indicates that 𝑅 can be applied to T to produce
a new tableau.

• {T ′,T ′′} ⊆ 𝑅[T ?] − {T } and T ′ ≠ T ′′. Here T ′ and T ′′ are two
branches. In other words, they represent two possible outcomes of
applying 𝑅 to T .

It is important to realize that the cases 𝑅[T ?] = ∅ and 𝑅[T ?] = {T }
have the same effect: 𝑅 cannot be used to transform T into a new tableau.

Tableaux represent (partial) attempts at constructing a model that satisfies
a certain formula. We now define terminology for describing this process.

Definition 3.9. A tableau T ′ is a «𝜎-development» of a tableau T if and only
if it is either an element of or the limit of a sequence T ,… ,T 𝑖,T 𝑖+1,… such
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that for every T 𝑖+1 in the sequence there is an 𝑅 ∈ Rules𝜎 such that 𝑅T 𝑖T 𝑖+1

and T 𝑖 ≠ T 𝑖+1.
A tableau T is a 𝜎-tableau «for» ⟨𝑛𝜙⟩ if and only if (i) T 𝑛𝜙 and (ii) T is

a 𝜎-development of a tableau T 0 ≔ {⟨𝑛′⟩, ⟨𝑛′𝜙⟩} (for some 𝑛′).
We sometimes also say that a tableau T is a 𝜎-tableau for 𝜙 if and only if

there is an 𝑛 such that T is a 𝜎-tableau for ⟨𝑛𝜙⟩.

Proposition 3.5. If T is a 𝜎-tableau for 𝜙 then any 𝜎-development of T is a
𝜎-tableau for 𝜙.

We now introduce the notion of saturation to indicate that all mandatory
rules have been applied to a tableau. In other words, saturated tableaux are
tableaux that cannot be changed further by mandatory rules.

Definition 3.10. A tableauT is said to be «𝑅-saturated» if and only if𝑅[T ?]−
{T } = ∅. With 𝜎 a frame condition, a tableau is said to be «𝜎-saturated» if
and only if it is 𝑅-saturated for all mandatory rules 𝑅 ∈ Rules𝜎. Finally, a
tableau is said to be «saturated» if and only if it is 𝑅-saturated for all manda-
tory rules 𝑅 ∈ Rules that act on the presence of formulas.

To be clear, saying that a tableau is saturated is synonymous with saying
it is K𝑎-saturated.

For every tableau there is a 𝜎-saturated extension.

Proposition 3.6. If 𝑆 = T 0,… ,T 𝑖,T 𝑖+1,… is a sequence of tableaux such
that for every T 𝑖+1 in the sequence there is a mandatory rule 𝑅 ∈ Rules𝜎
such that 𝑅T 𝑖T 𝑖+1 then there is a 𝜎-saturated tableau T that 𝑆 converges to
(in the limit).

Proof. By propositions 3.2 and 3.3, 𝑆 is a countable sequence of sets ordered
by the subset relation. Therefore the limit of 𝑆 equals ⋃𝑆. This proves that
T exists. By construction of 𝑆 it also follows that T is 𝜎-saturated.

When we want to (try to) construct a 𝜎-model for a formula 𝜙, we will first
construct a tableau {⟨𝑛⟩, ⟨𝑛𝜙⟩} (for some 𝑛). Next, we apply the mandatory
rules from Rules𝜎 until we arrive at a 𝜎-saturated tableau T ′. Finally we
check if the tableau we found can be transformed into a model.
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Definition 3.11. A tableau T contains a «literal contradiction» if and only
if there is a node 𝑛 and an an atom 𝑝 ∈ Prop such that T 𝑛𝑝 and T 𝑛¬𝑝.
Otherwise T is free of literal contradictions.

Rather than speak of tableaux free of literal contradictions, it is customary
to instead say that we are looking for ‘open’ saturated tableaux.

Definition 3.12. An L𝑈◻-tableau is «open» if and only if it doesn’t contain
literal contradictions. If a tableau is not open then it is «closed».

For now no distinction is made between tableaux free of literal contra-
dictions and open tableaux. Nevertheless, such a distinction exists for the
tableaux for dynamic modal logics that we will discuss in subsequent chap-
ters.

We now turn to proving soundness. We want it to be the case that if all
𝜎-saturated tableaux for 𝜙 are closed then no 𝜎-model exists in which 𝜙 is
true (at some world). We will prove the contrapositive—if there’s a 𝜎-model
for 𝜙 then there’s an open 𝜎-saturated tableau for 𝜙.

First, we define what models a tableau can be said to represent.

Definition 3.13. A model M «satisfies» a tableau T up to 𝜙 via a function
𝑓 ∶ T [?] → M[?] if and only if

1. T 𝑛𝜓 ⟹ ⟨M𝑓(𝑛)⟩ ⊩ 𝜓

2. T 𝑎𝑛𝑛′ ⟹ M𝑎𝑓(𝑛)𝑓(𝑛′)

for all 𝜓 such that |𝜓| ≤ 𝜙.
We simply say that M satisfies T (via 𝑓) if and only if M satisfies T (via

𝑓) up to arbitrary formulas.
Finally, we say that M «natively satisfies» T if and only if M satisfies T

via the identity function.

Suppose there is a 𝜎-model M such that ⟨M𝑤⟩ ⊩ 𝜙. It is easy to see that
the tableau {⟨𝑛⟩, ⟨𝑛𝜙⟩} is satisfied by M via the function that maps 𝑛 onto
𝑤. Let this be the base step. Next, let T be any tableau that is satisfied by
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Figure 3.3. Proof that (𝑝 → ◻𝑎⋄𝑎𝑝) is B𝑎-valid. As a preliminary, we eliminate the
operators → and ⋄𝑎 since they are not primitives of L𝑈◻. This yields the formula
¬(𝑝∧¬◻𝑎¬◻𝑎¬𝑝). Next, we attempt to construct an open B𝑎-saturated tableau for its
negation (for ease of presentation we remove the sequence ¬¬). However, we discover
that we inevitably run into a literal contradiction. This proves that (𝑝 → ◻𝑎⋄𝑎𝑝) is
B𝑎-valid.

(𝑝 ∧¬◻𝑎¬◻𝑎¬𝑝)

𝑝

¬◻𝑎¬◻𝑎¬𝑝
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𝑝
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¬¬◻𝑎¬𝑝
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M. We want to show that, for any mandatory rule 𝑅 ∈ Rules𝜎, if there is an
𝑅-development of T then there is an 𝑅-development of T that is satisfied by
M.

Lemma 3.7 (Basic Lemma to Soundness). Let T be a tableau that is satisfied
by a 𝜎-model M via a function 𝑓. For every 𝑅 ∈ Rules𝜎 such that T is not
𝑅-saturated it is then the case that there is a tableau T ′ ∈ 𝑅[T ] − {T } and
a function 𝑓′ such that M satisfies T ′ via 𝑓′.

Proof. Suppose a rule is triggered by T 𝑛𝜙.
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• If 𝜙 is ¬¬𝜓 or (𝜓∧𝜒) then T ′ is uniquely determined and T ′ has the
same frame as T . Let 𝑓′ ≔ 𝑓.

• Suppose 𝜙 is ¬(𝜓∧𝜒). By definition of ∧ and ¬ either ⟨M𝑓(𝑛)⟩ ⊩ ¬𝜓
or ⟨M𝑓(𝑛)⟩ ⊩ ¬𝜒. Let T ′ = T ∪ {⟨𝑛¬𝜓⟩} or T ′ = T ∪ {⟨𝑛¬𝜒⟩}
accordingly and let 𝑓′ ≔ 𝑓.

• If 𝜙 equals 𝑈𝜓 then T ′ = T ∪ {⟨𝑛′𝜓⟩} for some 𝑛′ ∈ T [?]. By defini-
tion of 𝑈, however, ⟨M𝑓(𝑛′)⟩ ⊩ 𝜓. Thus, let 𝑓′ ≔ 𝑓.

• If 𝜙 equals ¬𝑈𝜓 then it is the case that T ′ = T ∪ {⟨𝑛′⟩, ⟨𝑛′¬𝜓⟩} for
some 𝑛′ ∉ T [?]. Since ⟨M𝑓(𝑛)⟩ ⊩ ¬𝑈𝜓 it follows that there is a 𝑤
such that M𝑤 and ⟨M𝑤⟩ ⊩ ¬𝜓. Hence, let 𝑓′ be the smallest extension
of 𝑓 such that 𝑓′(𝑛′) = 𝑤.

• Suppose 𝜙 is ◻𝑎𝜓. This could yield a tableau T ′ ≔ T ∪ {⟨𝑛′𝜓⟩}, for
some 𝑛′ ∈ T [𝑎𝑛?]. By definition of ◻𝑎 it is so that ⟨M𝑛′′⟩ ⊩ 𝜙 for
every 𝑛′′ ∈ M[𝑎𝑓(𝑛)?]. Since for every 𝑛′′′ ∈ T [𝑎𝑛?] it is the case that
M𝑎𝑓(𝑛)𝑓(𝑛′′′) it follows that M satisfies T via 𝑓; thus let 𝑓′ ≔ 𝑓.

• Suppose 𝜙 is ¬◻𝑎𝜓. This means T ′ = T ∪ {⟨𝑛′⟩, ⟨𝑎𝑛𝑛′⟩, ⟨𝑛′¬𝜓⟩}
for some 𝑛′ ∉ T [?]. Since ⟨M𝑓(𝑛)⟩ ⊩ ¬◻𝑎𝜓 there is a 𝑤 such that
M𝑎𝑓(𝑛)𝑤 and ⟨M𝑤⟩ ⊩ ¬𝜓. Thus let 𝑓′ be the smallest extension of
𝑓 such that 𝑓′(𝑛′) = 𝑤.

Suppose a tableau T ′ is the result of applying a rule 𝑅 for enforcing frame
conditions.

• If 𝑅 is an instance of 𝐑𝐚
𝐓, 𝐑𝐚

𝟒, 𝐑𝐚
𝐁, or 𝐑𝐚

𝟓 then let 𝑓′ ≔ 𝑓.

• If 𝑅 is an instance of 𝐑𝐚
𝐃 then it is assumed that the model M is serial.

This implies that there is a a 𝑤 such that M𝑎𝑓(𝑛)𝑤. Thus, let T ′ ≔
T ∪ ⟨𝑎𝑛𝑛′⟩ (with 𝑛′ ∉ T [?]) and let 𝑓′ be the smallest extension of 𝑓
such that 𝑓′(𝑛) = 𝑤.

Theorem 3.8 (Soundness). Given some 𝜙 ∈ L𝑈◻, if all 𝜎-saturated tableaux
for 𝜙 are closed then ⊨𝜎 ¬𝜙.
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Proof. We prove the contrapositive—viz. that if there is a pointed 𝜎-model
⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙 then there is an open saturated 𝜎-tableau T for
⟨𝑤𝜙⟩.

Evidently, the pointed model ⟨M𝑤⟩ natively satisfies the tableau {⟨𝑤⟩,
⟨𝑤𝜙⟩}. By repeatedly applying lemma 3.7 it follows, by proposition 3.6, that
there is a saturated open 𝜎-tableau for ⟨𝑤𝜙⟩ that is satisfied by M via some
function. Because it is satisfied by a model it also follows that the tableau is
free of literal contradictions and that it is open since an atom cannot be both
true and false in a single point in a model.

Our next task is to prove that our tableau method is complete. We would
like it to be the case that if a tableau T for 𝜙 is 𝜎-saturated and open then
we can transform T into a 𝜎-model for 𝜙.

Here’s what we will treat as the orthodox transformation of a tableau into
a model.

Definition 3.14. A model M is the «stock model» of a tableau T if and only
if

• M[?] = T [?]

• M[???] = T [???]

• M[??] = T [??] ∩ (T [?] × Prop)

We now prove that if M is the stock model of an open saturated tableau
T then M satisfies T .

Lemma 3.9 (Basic Lemma to Completeness). Let T be any open saturated
tableau. If T 𝑛𝜙 then, with M the stock model of T , ⟨M𝑛⟩ ⊩ 𝜙.

Proof. Proof by induction. By induction hypothesis (IH) it is assumed that
the lemma holds for all 𝜓 shorter than 𝜙.

• Suppose 𝜙 is an atom. It is then the case that T 𝑛𝜙. Because M is the
stock model of T it follows that ⟨M𝑛⟩ ⊩ 𝜙.
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Figure 3.4. We use the tableau system to contruct a pointed (T𝑎 ⊔ 4𝑎)-model for
(¬◻𝑎◻𝑎𝑝 ∧ ◻𝑎𝑞). We start with a tableau that consists of a single node and a sin-
gle label. Next, we repeatedly apply the mandatory tableau rules. Because the final,
(T𝑎 ⊔ 4𝑎)-saturated, tableau is open we can convert it into a (T𝑎 ⊔ 4𝑎)-model M by
deleting all labels that are not atoms. It can be verified that ⟨M𝑛⟩ ⊩ (¬◻𝑎◻𝑎𝑝∧◻𝑎𝑞).
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• Suppose 𝜙 is ¬𝑝 (with 𝑝 ∈ Prop). Since T is an open tableau it is then
not the case that T 𝑛𝑝. Since M is the stock model of T it follows that
not ⟨M𝑛⟩ ⊩ 𝜙.

• Suppose 𝜙 is ¬¬𝜓. By 𝐑¬, since T is saturated, it is the case that T 𝑛𝜓.
By IH it follows that ⟨M𝑛⟩ ⊩ 𝜓. By definition of ¬ it now also follows
that ⟨M𝑛⟩ ⊩ ¬¬𝜓.

• Suppose 𝜙 is (𝜓 ∧ 𝜒). By 𝐑∧ it is the case that T 𝑛𝜓 and T 𝑛𝜒. By
induction hypothesis it follows that ⟨M𝑛⟩ ⊩ 𝜓 and ⟨M𝑛⟩ ⊩ 𝜒. By
definition of ∧ this entails that ⟨M𝑛⟩ ⊩ (𝜓∧𝜒).

• Suppose 𝜙 is ¬(𝜓∧𝜒). By 𝐑∨ either T 𝑛¬𝜓 or T 𝑛¬𝜒. In the first case,
by IH, ⟨M𝑛⟩ ⊩ ¬𝜓. In the second case ⟨M𝑛⟩ ⊩ ¬𝜒 for the same reason.
By definition of ∧ and ¬ it follows that ⟨M𝑛⟩ ⊩ ¬(𝜓∧𝜒).

• Suppose 𝜙 is 𝑈𝜓. It is then the case that T 𝑛′𝜓 for all 𝑛′ ∈ T [?]. By IH
it follows that ⟨M𝑛′⟩ ⊩ 𝜓 for all 𝑛′ ∈ T [?]. By definition of 𝑈 it now
follows that ⟨M𝑛⟩ ⊩ 𝑈𝜓.

• Suppose 𝜙 is ¬𝑈𝜓. There is then an 𝑛′ ∈ T [?] such that T 𝑛′¬𝜓. By
IH it is also the case that ⟨M𝑛′⟩ ⊩ ¬𝜓. Finally, by definition of ¬ and
𝑈 it follows that ⟨M𝑛′⟩ ⊩ ¬𝜓.

• Suppose 𝜙 is ◻𝑎𝜓. For all 𝑛′ such that T 𝑎𝑛𝑛′ it is the case that (i)
T 𝑛′𝜓 (by 𝐑◻), (ii) ⟨M𝑛′⟩ ⊩ 𝜓 (by IH), and (iii) M𝑎𝑛𝑛′ (since M is the
stock model of T ). By definition of ◻𝑎 it follows that ⟨M𝑛⟩ ⊩ ◻𝑎𝜓.

• Suppose 𝜙 is ¬◻𝑎𝜓. By 𝐑⋄ it is the case that T 𝑛′¬𝜓 and T 𝑎𝑛𝑛′ for
some 𝑛′. By IH it follows that ⟨M𝑛′⟩ ⊩ ¬𝜓. Finally, it is a consequence
of the definition of ¬ and ◻𝑎 that ⟨M𝑛⟩ ⊩ ¬◻𝑎𝜓.

Theorem 3.10 (Completeness). If ⊨𝜎 ¬𝜙 (with 𝜙 ∈ L𝑈◻) then all saturated
𝜎-tableaux T for 𝜙 are closed.

Proof. Again we prove the contrapositive: If there is an open 𝜎-saturated
tableau T for ⟨𝑛𝜙⟩ then there’s a 𝜎-model M such that ⟨M𝑛⟩ ⊩ 𝜙.
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Let M be the stock model of T . By lemma 3.9 it immediately follows that
⟨M𝑛⟩ ⊩ 𝜙. That M is a 𝜎-model follows from the definitions of the frame
condition rules.

3.4 Decidability of L𝑈◻-tableaux
The above soundness and completeness results entail that if we possessed
infinite computing power, our tableau system could tell us if a formula was
valid, unsatisfiable, or contingent.

We now build on these results and show that even with finite computing
time we can decide whether or not a formula is satisfiable. This is all we need
because if a formula is unsatisfiable then by extension its negation is valid.
Additionally, if a formula and its negation are satisfiable then it is contingent.

To make the search for a saturated open tableau terminate after a finite
number of steps we need to keep an eye out for redundant copies of nodes
and replace them by loops.

First, we devise a formal method for summing up the constraints that are
imposed on a tableau node 𝑛 by ◻𝑎-formulas.

Definition 3.15. Given a tableau T and a node 𝑛 ∈ T [?], define

«◻T
𝑎 (𝑛)» ≔ {𝜙 ∣ ∃𝑛′ ∈ T [𝑎?𝑛] ∶ T 𝑛′◻𝑎𝜙}.

We can now specify what makes for a virtual loop and a redundant copy.

Definition 3.16. Given a tableau T , a «virtual 𝑎-loop» (in T ) from 𝑛0 to 𝑛𝑙 is
a sequence 𝑆 = 𝑛0,… ,𝑛𝑖, 𝑛𝑖+1,…𝑛𝑙 such that

• For every 𝑛𝑖+1 in the sequence it is the case that T 𝑎𝑛𝑖𝑛𝑖+1.

• All links between nodes in the sequence are 𝑎-links.

• There is a set of formulas 𝐹 such that for every 𝑛𝑖 in the sequence,
◻T

𝑎 (𝑛𝑖) = 𝐹.

• 𝑛𝑙 has no outgoing links.
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Figure 3.5. If we were to iteratively 4𝑎-develop the tableau T on the left in a naive way,
we would be constructing a countably infinite tableau. However, notice that 𝑆 ≔ 𝑛,𝑛′

is a virtual 𝑎-loop and that T is in fact ⌊4𝑎⌋-saturated. Thus, given that 𝑆 is the only
virtual loop in T , we can construct a 4𝑎-saturated tableau by folding 𝑆 in T .

𝑛

¬𝑝

¬◻𝑎𝑝

◻𝑎¬◻𝑎𝑝 𝑛′

¬𝑝

¬◻𝑎𝑝

𝑎 𝑛

¬𝑝

¬◻𝑎𝑝

◻𝑎¬◻𝑎𝑝 𝑎

• All labels of 𝑛𝑙 are labels of 𝑛0 (i.e. T [𝑛𝑙?] ⊆ T [𝑛0?]).

A node 𝑛′ is called a «copy» of a node 𝑛 (in T ) if and only if there is a
virtual 𝑎-loop (for some 𝑎) from 𝑛 to 𝑛′ (in T ).

Notice that the fact that 𝑛𝑙 has no outgoing links implies that 𝑛0 ≠ 𝑛𝑙.
As we will see shortly, in certain unsaturated tableaux it is necessary to

replace the virtual loops by actual loops in order to ensure that the further
development of these tableaux eventually terminates. To this end our general
strategy is to block rules from adding outgoing links to copies. When the only
rules that remain to be applied are those that would add outgoing links to
copies, we transform the virtual loops into actual loops.

We now revise some notions relating to rule application such that rules
do not add outgoing links to copies.

Definition 3.17. Given a tableau rule 𝑅, let «⌊𝑅⌋» be such that for any two
tableaux T and T ′ it is the case that ⌊𝑅⌋T T ′ if and only if

• 𝑅T T ′.

• There is no edge ⟨𝑎𝑛𝑛′⟩ ∈ T ′[???] − T [???] where 𝑛 is a copy of
another node in T (based on any 𝑏-loop).

A tableau T ′ is a «⌊𝜎⌋-development» of a tableau T if and only if it is
either an element of or the limit of a sequence T ,… ,T 𝑖,T 𝑖+1,… such that
for every T 𝑖+1 in the sequence there is a rule 𝑅 ∈ Rules𝜎 such that ⌊𝑅⌋T 𝑖T 𝑖+1

and T 𝑖 ≠ T 𝑖+1.
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Figure 3.6. The tableau T below is but one edge away from being (4𝑎 ⊔ 5𝑎)-saturated
(although some labels have been omitted). Nonetheless, it’s instructive to check if 𝑆 =
𝑛,𝑛′ is a virtual 𝑎-loop. The answer is no. 𝑆 is not a virtual 𝑎-loop because ◻T

𝑎 (𝑛) ≠
◻T

𝑎 (𝑛′).
Indeed, suppose that 𝑆 was folded. The resulting tableau would no longer have a node
𝑛′ and the 𝑎-edge from 𝑚 to 𝑛′ would have been replaced by an 𝑎-edge from 𝑚 to 𝑛.
Thus, by 𝐑𝐚

𝟒 an 𝑎-link from 𝑚 to 𝑚 would have to be added. Subsequently, by 𝐑◻, the
label ¬𝑝 would have to be added to 𝑚. This, however, introduces a literal contradiction.

𝑛

¬◻𝑎𝑝

¬𝑝

¬◻𝑎¬(𝑝∧◻𝑎¬𝑝)

𝑛′

¬𝑝

𝑚

𝑝

◻𝑎¬𝑝

𝑎

𝑎

𝑎

A tableau T is «⌊𝜎⌋-saturated» if and only if for all mandatory rules 𝑅 ∈
Rules𝜎 it is the case that T is ⌊𝑅⌋-saturated.

Finally, we define the embedding that transforms virtual 𝑎-loops into ac-
tual loops.

Definition 3.18. T ′ is the result of «folding» a virtual 𝑎-loop 𝑆 from 𝑛 to 𝑛′

in a tableau T if and only if, with ℎ ∶ T [?] → T [?]−{𝑛′} such that ℎ(𝑛′) = 𝑛
and ℎ(𝑥) = 𝑥 for all 𝑥 ≠ 𝑛′, it is the case that

• T ′[?] = T [?] − {𝑛′}

• T ′[???] = {⟨𝑎ℎ(𝑚)ℎ(𝑚′)⟩ ∣ T 𝑎𝑚𝑚′} ∪ ({𝑎} × 𝐼 ×𝑂), where

– 𝐼 ≔ {ℎ(𝑚) ∣ ∃𝑛𝑖 ∈ 𝑆 ∶ T 𝑎𝑚𝑛𝑖}

– 𝑂 ≔ {ℎ(𝑚) ∣ ∃𝑛𝑖 ∈ 𝑆 ∶ T 𝑎𝑛𝑖𝑚}
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Figure 3.7. The tableau T on the left is a 4𝑎-developed tableau. Notice that T has an
𝑎-loop 𝑆 = 𝑛,𝑛′, 𝑛′′. The tableau T ′ on the right is the folding of 𝑆 in T .
T ′ has four new edges. The edges from 𝑛 and 𝑛′ to 𝑛 are straightforward to explain:
They are a result of remapping 𝑛′′ onto 𝑛. The edges from 𝑛′ to 𝑛′ and to 𝑚 are more
interesting. They were added because (i) in T there was an 𝑎-edge from 𝑛′ to a node of
𝑆 (viz. 𝑛′′) and (ii) in T there was an 𝑎-edge from a node of 𝑆 to 𝑛′ and from a node of
𝑆 to 𝑛′′ (in both cases this node was 𝑛). Without these new edges T ′ would no longer
have been closed under transitivity.

𝑛¬𝑝

¬◻𝑎◻𝑎𝑝

¬◻𝑎𝑞

𝑛′

¬◻𝑎𝑝

𝑛′′

¬𝑝

𝑚

¬𝑞

𝑎 𝑎

𝑎

𝑎

𝑛¬𝑝

¬◻𝑎◻𝑎𝑝

¬◻𝑎𝑞

𝑛′

¬◻𝑎𝑝

𝑚

¬𝑞

𝑎

𝑎

𝑎 𝑎

𝑎

• T ′[??] = {⟨ℎ(𝑚)𝜙⟩ ∣ T 𝑚𝜙}

It is particularly important to notice that an 𝑎-edge is created between (i)
every node 𝑚𝐼 that has an outgoing 𝑎-edge to a node of 𝑆 and (ii) every node
𝑚𝑂 that has an incoming 𝑎-edge that originates from a node of 𝑆. Figure 3.7
illustrates how this works.

The following insight is crucial, for it entails that by repeatedly applying
folding, a ⌊𝜎⌋-saturated tableau can be turned into a 𝜎-saturated tableau.

Lemma 3.11 (Folding Lemma). If T ′ is the result of folding a virtual 𝑎-loop
𝑆 in a ⌊𝜎⌋-saturated tableau T then T ′ is ⌊𝜎⌋-saturated.

Proof. We need to show that for every mandatory rule 𝑅 ∈ Rules𝜎 it is the
case that T ′ is ⌊𝑅⌋-saturated.

• If 𝑅 is 𝐑¬, 𝐑∧, 𝐑∨, 𝐑𝐔, or 𝐑𝐄 then T ′ is ⌊𝑅⌋-saturated since no labels
were added or removed, and no nodes were added.
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• Suppose 𝑅 equals 𝐑◻ and is applied to the tuples ⟨𝑏𝑛𝑛′⟩ and ⟨𝑛◻𝑏𝜙⟩
in T ′. We distinguish two cases.

– If T 𝑏𝑛𝑛′ then it must already have been the case that T 𝑛′𝜙 since
T is ⌊𝐑◻⌋-saturated. This also deals with all cases where 𝑏 ≠ 𝑎
since only 𝑎-edges where added or moved.

– Suppose 𝑏 = 𝑎 and not T 𝑎𝑛𝑛′. It follows that 𝑛 has an 𝑎-link to
an element of 𝑆 in T and that there is an element of 𝑆 that has
an 𝑎-link to 𝑛′ in T . This, however, implies that ◻T

𝑎 (𝑛) ∪ {𝜙 ∣
T 𝑛◻𝑎𝜙} ⊆ ◻T

𝑎 (𝑛′). Consequently, there is nothing for ⌊𝐑◻⌋ to do
since T is already ⌊𝐑◻⌋-saturated.

• Suppose 𝑅 is 𝐑⋄ and is applied to the node-label pair ⟨𝑛⋄𝑏𝜙⟩ in T ′. We
distinguish three cases.

– Suppose 𝑛 is not a copy in T . Since T is ⌊𝜎⌋-saturated this means
that there is an 𝑛′ such that T 𝑏𝑛𝑛′ and T 𝑛′𝜙. This edge and label
would then also be in T ′ and hence there is nothing for ⌊𝐑⋄⌋ to
do.

– Suppose 𝑛 is not in the sequence 𝑆 but 𝑛 is a copy of another node.
In this case 𝑛 must be part of a virtual 𝑐-loop 𝑆′.

It is possible that a new link was created from a node 𝑛′′ of 𝑆 to
an element 𝑛′ of 𝑆′. However, in this case ◻T

𝑎 (𝑛′′) ⊆ ◻T
𝑎 (𝑛′) since

there must already have been a link from an element of 𝑆 to 𝑛′.
Hence 𝑛 is still a copy in T ′.

– Suppose 𝑛 is the last element of 𝑆 and thereby is a copy. 𝑛 is then
remapped to the first element of 𝑆. This case is thereby analogous
to the first case, where 𝑛 is not a copy.

Notice that no other element of 𝑆 can be a copy.

• Suppose 𝑅 is 𝐑𝐛
𝐓. Trivially, because T is ⌊𝜎⌋-saturated so is T ′.

• Suppose 𝑅 is 𝐑𝐛
𝐃. This is similar to the case 𝐑⋄.
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• Suppose 𝑅 is 𝐑𝐛
𝟒 . If T ′𝑏𝑛𝑛′ and T ′𝑏𝑛′𝑛′′ then we need to prove that

T ′𝑏𝑛𝑛′′.

– Suppose both T 𝑏𝑛𝑛′ and T 𝑏𝑛′𝑛′′. It is then already the case that
T 𝑏𝑛𝑛′′ since T is ⌊𝐑𝐛

𝟒⌋-saturated and 𝑛 is not a copy.

Notice that this case subsumes the case where 𝑏 ≠ 𝑎.

– Suppose neither T 𝑎𝑛𝑛′ nor T 𝑎𝑛′𝑛′′. By construction of T ′ it
must then be the case that 𝑛′ ∈ 𝑆 and that there is an 𝑎-link in T

from 𝑛 to a node in 𝑆 and an 𝑎-link from a node in 𝑆 to 𝑛′′.

By construction of T ′ it follows that T ′𝑎𝑛𝑛′′.

– Suppose T 𝑎𝑛𝑛′ but not T 𝑎𝑛′𝑛′′. It follows that there is an 𝑎-link
from 𝑛′ to an element of 𝑆 and that there is an 𝑎-link in T from
an element in 𝑆 to 𝑛′′.

By ⌊𝐑𝐚
𝟒⌋ it follows that there is an 𝑎-link in T from 𝑛 to an element

of 𝑆. By construction of T ′ it now follows that T ′𝑛𝑛′′.

– Suppose not T 𝑎𝑛𝑛′ but T 𝑎𝑛′𝑛′′. It follows that there’s an 𝑎-link
from 𝑛 to an element of 𝑆 and that there is an 𝑎-link from an
element of 𝑆 to 𝑛′.

By ⌊𝐑𝐚
𝟒⌋ it follows that there are 𝑎-links from elements of 𝑆 to 𝑛′′

in T . By construction of T ′ it now follows that T ′𝑛𝑛′′.

• Suppose 𝑅 is 𝐑𝐛
𝐁. We need to demonstrate that if T ′𝑏𝑛𝑛′ then T ′𝑏𝑛′𝑛.

Suppose T 𝑏𝑛𝑛′. In this case T 𝑏𝑛′𝑛 by ⌊𝐑𝐛
𝐁⌋. Hence T ′𝑏𝑛′𝑛 by con-

struction of T ′. This also covers the case where 𝑏 ≠ 𝑎.

If not T 𝑎𝑛𝑛′ then there must be {𝑚,𝑚′} ⊆ 𝑆 such that T 𝑎𝑛𝑚 and
T 𝑎𝑚′𝑛′. By ⌊𝐑𝐚

𝐁⌋ it is then also the case that T 𝑎𝑚𝑛 and T 𝑎𝑛′𝑚′.

It follows by construction of T ′ that T ′𝑎𝑛′𝑛.

• Suppose 𝑅 is 𝐑𝐛
𝟓 . We have to show that if T ′𝑏𝑛𝑛′ and T ′𝑏𝑛𝑛′′ then

T ′𝑏𝑛′𝑛′′.
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– Suppose T 𝑏𝑛𝑛′ and T 𝑏𝑛𝑛′′. By ⌊𝐑𝐛
𝟓⌋ it is then the case that

T 𝑏𝑛′𝑛′′. Hence T ′𝑏𝑛′𝑛′′ by construction of T ′. This also cov-
ers all cases where 𝑏 ≠ 𝑎.

– Suppose neither T 𝑎𝑛𝑛′ nor T 𝑎𝑛𝑛′′.
By construction of T ′ it follows that there are 𝑚′ and 𝑚′′ in 𝑆 such
that T 𝑎𝑚′𝑛′ and T 𝑎𝑚′′𝑛′′. Moreover 𝑚′ (like 𝑚′′) is not the last
element of 𝑆 since it has outgoing links. This also implies that 𝑚′

has an 𝑎-link to an element of 𝑚⋆ of 𝑆. By ⌊𝐑𝐚
𝟓⌋ it follows that

T 𝑎𝑛′𝑚⋆.
Finally, since there are 𝑎-links in T from 𝑛′ to an element of 𝑆 and
from an element of 𝑆 to 𝑛′′ it follows that T ′𝑎𝑛′𝑛′′.

– Suppose T 𝑎𝑛𝑛′ but not T 𝑎𝑛𝑛′′.
By construction of T ′ it follows that there are 𝑚 and 𝑚′′ in 𝑆 such
that T 𝑎𝑛𝑚 and T 𝑎𝑚′′𝑛′′. By ⌊𝐑𝐚

𝟓⌋ it also follows that T 𝑎𝑛′𝑚.
It can now be seen that T ′𝑛′𝑛′′ by construction of T ′.

– The case where T 𝑎𝑛𝑛′′ but not T 𝑎𝑛𝑛′ is entirely analogous to
the previous one.

The tableau method described in this chapter—including folding—is de-
cidable. To understand why let us partition the mandatory tableau rules in
two parts. The first kind of rules are those rules that add new formulas.
These rules only propagate formulas that are shorter than the formulas that
are already present in the tableau, however, and this places a bound on the
number of distinct formulas in a tableau. The second kind of rules are rules
that create new links and do not add new formulas. These rules only allow
limited interaction between nodes that are connected over different indices,
as is illustrated in figure 3.8. This implies that as formulas are propagated
over differently indexed links, they decrease in length. This imposes a bound
on the number of alternating indices in a chain of nodes. These insights lead
to the following theorem.

Theorem 3.12. If there is a pointed 𝜎-model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙
(where 𝜙 ∈ L𝑈◻) then an open saturated 𝜎-tableau T for ⟨𝑤𝜙⟩ can be found
in a finite number of steps.
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Figure 3.8. Tableaux produced by the mandatory rules lead to clusters of nodes con-
nected by the same index. Any two clusters can interact only to a limited extend via a
single node that connects those two clusters. This is the case because every tableau rule
contains at most one index. In the diagram below no new links (ignoring reflexive links)
can be added using mandatory rules.

𝑎

𝑎

𝑎

𝑏

𝑏

𝑏
𝑏

𝑏

𝑏
𝑎

𝑐

Proof. The procedure for finding the tableau is as follows. Start with the
tableau T = {⟨𝑤⟩, ⟨𝑤𝜙⟩}. Fairly apply the mandatory rules of Rules𝜎 until
an open ⌊𝜎⌋-saturated tableau T ′ is found. Fair application means that all
rules must be used (insofar they are applicable) and that it’s not allowed to
use a limited selection of rules to the exclusion of others. Next, repeatedly
apply folding until there are no more virtual loops.

Notice that for all ⟨𝑛𝜓⟩ ∈ T ′ it is the case that |𝜓| ≤ |𝜙|. Hence there’s
only a finite number of possible label-sets.

Because there are only a finite number of possible label-sets, 𝐑⋄ can only
attach a finite number of new links to any existing node 𝑛. The rule 𝐑𝐚

𝐃 is
similarly conservative. Consequently, the only way to indefinitely expand a
tableau using the mandatory rules of Rules𝜎, is to create longer and longer
chains of nodes.

However, the mandatory rules are such that for any two indices 𝑎 and 𝑏
such that 𝑎 ≠ 𝑏, if you take a set of nodes 𝐴 that are connected by 𝑎-edges
and another set of nodes 𝐵 that are connected by 𝑏-edges then there is at
most one node 𝑛 ∈ 𝐴 such that there are 𝑏-edges between 𝑛 and nodes of
𝐵 (in either direction). In other words, differently indexed modalities do not
interact.

Moreover, if such an𝑛 ∈ 𝐴 exists then there are no 𝑎-edges between nodes
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of 𝐴 and nodes of 𝐵. In fact, for any 𝑐 ≠ 𝑏 it is the case that there are no
𝑐-edges between nodes of 𝐴 and 𝐵. It follows that either

• For all labels 𝜙 of nodes in 𝐵 there is a label 𝜓 of a node in 𝐴 such that
|𝜓| > |𝜙|. This happens when a node of 𝐴 was added before any of the
nodes of 𝐵 were added.

• The same is true when substituting 𝐴 for 𝐵 and 𝐵 for 𝐴.

Thus there is a finite limit to the number of index alternations in a path.
It only remains to be shown that, for any index 𝑎, there is an upper bound

to the length of 𝑎-paths before there are no more mandatory rules to apply
or before a virtual 𝑎-loop is encountered.

It is easy enough to see that only a combination of 𝐑⋄ or 𝐑𝐚
𝐃, 𝐑◻, and 𝐑𝐚

𝟒

or 𝐑𝐚
𝟓 could lead to problematic paths.

However, notice that the possible extensions for ◻T ′
𝑎 (𝑛) are restricted by

𝜙 similar to how the possible label-sets are restricted by 𝜙. Moreover, if 𝜎
includes 𝐑𝐚

𝟒 or 𝐑𝐚
𝟓 then ◻T ′

𝑎 (𝑛) ⊆ ◻T ′
𝑎 (𝑛′) if there’s an 𝑎-path from 𝑛 to 𝑛′.

Consequently, any sufficiently long 𝑎-path is repetitive in a way that can be
dealt with by the process of folding.

3.5 Related work
Saul Kripke introduced tableau systems for modal logic alongside Kripke
semantics in [26,27]. In these papers he presents three approaches for dealing
with modal languages that do not have an operator 𝑈 and are not multiply
indexed.

Kripke sometimes uses different terminology than we are using now. For
instance, what we call a ‘tableau’ roughly corresponds to what Kripke calls
an ‘alternative set of tableaux’. In turn, the tableau nodes of our system cor-
respond to Kripke’s ‘tableaux’. In our sketch of Kripke’s tableau systems we
use the same terminology used throughout this chapter and ignore Kripke’s
usage of the term ‘tableau’.
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Kripke’s first approach is limited to models with equivalence frames. Due
to this restriction all nodes in a tableau can be thought of as being implicitly
linked, and thus there is no need for edges in tableau structures.

The second approach is similar to the path taken in this chapter. Kripke
adds an accessibility relation 𝑅 to his tableau structures. The rules for
◻-formulas (and their negation) are similar to the rules in definition 3.7. There
are no explicit rules for closing tableau frames under the desired frame con-
ditions 𝜎. Instead, Kripke merely stipulates that 𝑅 is closed under 𝜎. The
effect is almost the same. However, recall that our notions of ⌊⌋-development
and ⌊⌋-saturation required blocking the creation of new links under certain
conditions. This is not possible in Kripke’s system. Tellingly, Kripke gives
no decidable proof procedure for this tableau system. Instead he describes a
third approach.

On Kripke’s third approach there is again a relation 𝑅 but it is not closed
under any relational properties. Hence 𝑅 is always a tree structure, which
makes it easier to create a decidable proof procedure. Indeed, on this ap-
proach a loop is simply a sequence of two nodes 𝑛,𝑛′ such that 𝑅𝑛𝑛′ and
such that every label of 𝑛′ is also a label of 𝑛. The downside of this approach
is that the rule 𝐑◻ needs to be modified in accordance with the chosen frame
conditions. For example, this is the rule for serial and transitive tableaux: If
𝑛 has a label ◻𝜙 then the label 𝜙 is added to 𝑛 and ◻𝜙 is added to all nodes
accessible from 𝑛. Finally, on this approach a stock model’s frame is obtained
by closing the tableau’s frame under the desired frame conditions.

In the literature Kripke’s third approach has perhaps won out over his
second approach. There are other approaches but they widen the gap between
Kripke models and tableau structures even further. See [10] for a general
overview of tableau systems.

An interesting development occurs in [9,15]. In these papers tableau struc-
tures are represented by labeled graphs that are rooted and acyclic but not
necessarily tree structures. This enables the authors to use a mixture of
Kripke’s second and third approach. They still use the third approach where
convenient, but use rules of the second kind for seriality, denseness, and
confluence. Using this approach they construct an extensible tableau system
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that can handle many combinations of frame conditions for modal languages
without the operator 𝑈. In [14,19] a software application named Lotrec is pre-
sented that builds on these results. Lotrec implements an extensible tableau
system and is able to automatically construct models and prove theorems.

This dissertation may be understood as a continuation of Kripke’s second
approach, using techniques from [9, 15]. With respect to the usability and
ease of understanding of tableau systems, we believe this to be a superior
approach.

Finally, the reader interested in learning more about modal logic might
find it useful to start with [7,25]. To learn about the history of modal logic,
consult [21]. See [16] to learn more about proof systems for modal logic.
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4

Public Announcement Logic

In the previous chapter we saw that modal logic can be interpreted in a variety
of ways. In this chapter we discuss an extension of modal logic where the
modal operators are interpreted in epistemic terms.

Public announcement logic (PAL) can be classified as a dynamic modal
logic. It is ‘dynamic’ in two ways. First, it has an operator for representing
events—public announcements—where all agents become aware of a certain
fact. Thus the knowledge of agents in PAL is not static but dynamic—agents
can learn. Second, the language of PAL L◻! has a dynamic semantics. As
before, static formulas of L◻! are interpreted on Kripke models. Dynamic
formulas, however, are reduced to simpler formulas which are then evaluated
in models updated with the information that was publicly announced. These
updated models are a function of the original model and the dynamic formula.

When discussing PAL it is customary to assume the frame conditions𝜎 are
such that𝜎(𝑎) (where 𝑎 ∈ Ind) holds for a modelM if and only if the 𝑎-frame
of M is an equivalence frame. That is, it is assumed that 𝜎(𝑎) = T𝑎 ⊔5𝑎 or
𝜎(𝑎) = T𝑎 ⊔4𝑎 ⊔B𝑎. There is, however, no technical requirement for this to
be the case.

4.1 L◻! and its dynamic semantics
Definition 4.1. The language of public announcements L◻! is the set of for-
mulas 𝜙 recursively defined as follows:

𝜙 ⩴ 𝑝 ∣ ¬𝜙 ∣ (𝜙∧𝜙) ∣ ◻𝑎𝜙 ∣ [!𝜙]𝜙,



Figure 4.1. The model M (left) and the updated model M|!(𝑝∨𝑞) (right). The updated
model contains exactly those worlds 𝑥 such that ⟨M𝑥⟩ ⊩ (𝑝∨ 𝑞). All model diagrams
in this section should be interpreted as having transitive and reflexive 𝑎-edges.

𝑤

𝑝,𝑞

𝑤′𝑝

𝑤′′ 𝑞
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𝑝,𝑞

𝑤′𝑝

𝑤′′ 𝑞

𝑎

𝑎

with 𝑝 any element of the set of atomic proposition Prop and 𝑎 a member of
the set of agents Ind.

Read ◻𝑎𝜙 as ‘agent 𝑎 knows that 𝜙’ and read [!𝜙]𝜓 as ‘𝜓 is true after it
is truthfully and publicly announced that 𝜙 is the case’.

Implicitly, we defined a forcing relation in definition 3.3 not only for L𝑈◻,
but for any language that has compositional semantics that fit in the following
schema:

𝜙 ⩴ 𝑝 ∣ ¬𝑝 ∣ (𝜙∧𝜙) ∣ 𝑈𝜙 ∣ ◻𝑎𝜙 ∣ … ,

where 𝑝 ∈ Prop and 𝑎 ∈ Ind. In other words, our definition for ⊩ was open
ended. As such, we now define the semantics for L◻! by retroactively adding
one more constraint to this relation.

Definition 4.2. The forcing relation «⊩» is a relation that meets the stipula-
tions of definition 3.3 in addition to the following constraint:

⟨M𝑤⟩ ⊩ [!𝜙]𝜓 ⟺ if ⟨M𝑤⟩ ⊩ 𝜙 then ⟨M|!𝜙𝑤⟩ ⊩ 𝜓,

where

M|!𝜙 ≔ M∩ ({⟨𝑤′⟩ ∣ 𝑤′ ∈ 𝑊′} ∪ (𝑊′ × Prop) ∪ (Ind×𝑊′ ×𝑊′)) ,
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Figure 4.2. The very act of announcing a formula 𝜙 can sometimes make 𝜙 false. For
instance, the Moore sentence ‘𝑝, but you don’t know that 𝑝’ is false after it is truthfully
announced. To wit, after I inform you that, even though you don’t know it, it is raining out-
side, you will in fact know that it is raining outside. This phenomenon can be expressed
in L◻!. Let M be the model on the left. It is the case that ⟨M𝑤⟩ ⊩ (𝑝∧¬◻𝑎𝑝). However,
it is not the case that ⟨M𝑤⟩ ⊩ [! (𝑝 ∧¬◻𝑎𝑝)](𝑝∧¬◻𝑎𝑝) since ⟨M|!(𝑝∧¬◻𝑎𝑝)𝑤⟩ ⊩ ◻𝑎𝑝.

𝑤

𝑝

𝑤′𝑎 𝑤

𝑝

and

𝑊′ ≔ {𝑤′ ∈ M[?] ∣ ⟨M𝑤′⟩ ⊩ 𝜙}.

Intuitively, M|!𝜙 is the model that results from deleting all worlds in which
𝜙 does not hold.

4.2 Dynamic tableaux
We now extend the tableau system of L𝑈◻ in three steps.

First, we add a tableau rule for public announcements.

Definition 4.3. Let Rules and Rules𝜎 be as in definition 3.7, except they also
contain the tableau rule 𝐑! from table 4.1.

Second, we define the relation
!𝜙
−→ between tableaux. This relation serves

as a counterpart of |!𝜙 in the sense that T
!𝜙
−→ T ′ signifies that T ′ is the result

of updating T with the fact that 𝜙 was publicly revealed.

Definition 4.4. Given a wff 𝜙 and two tableau T and T ′, let «T
!𝜙
−→ T ′» if

and only if

• T ′[?] = T [?𝜙]

• T ′[???] = T ∩ (Ind×T [?𝜙] × T [?𝜙])
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Table 4.1. Public announcement logic necessitates one new tableau rule. Upon encoun-
tering a formula [!𝜙]𝜓 or ¬[!𝜙]𝜓 anywhere in the tableau, the rule 𝐑! forces every
other node to declare that 𝜙 or ¬𝜙 should be true.

Name Precondition Postcondition

𝐑! T 𝑛 and T 𝑛′[!𝜙]𝜓 T 𝑛𝜙 or T 𝑛¬𝜙
T 𝑛 and T 𝑛′¬[!𝜙]𝜓 T 𝑛𝜙 or T 𝑛¬𝜙

• T ′[??] ∩ (T [?𝜙] × Prop) = T [??] ∩ (T [?𝜙] × Prop)

The last line states that the atoms of the two tableaux must match in the
nodes that survive the announcement.

Third, we extend the definition of ‘open tableau’ to cover cases where
tableaux have dynamic formulas.

Definition 4.5. An L◻!-tableau T is «open» if and only if

• T is free of literal contradictions.

• If T 𝑛[!𝜙]𝜓 and T 𝑛𝜙 then there are no open saturated tableaux T ′

for ⟨𝑛¬𝜓⟩ such that T
!𝜙
−→ T ′.

• If T 𝑛¬[!𝜙]𝜓 then T 𝑛𝜙 and there is an open saturated tableau T ′ for
⟨𝑛¬𝜓⟩ such that T

!𝜙
−→ T ′.

Having just specified the tableau system for L◻!, let us reflect on the
relation

!𝜙
−→. A casual glance tells us this construction is remarkably similar

to the operation |!𝜙. In order to better understand exactly how they relate, we
first isolate tableaux in which every node contains either 𝜙 or its negation.

Definition 4.6. A tableau T is «𝜙-declarative» if and only for every 𝑛 ∈ T [?]
it is the case that T 𝑛𝜙 or T 𝑛¬𝜙.
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Figure 4.3. The diagrams on the left represent a saturated open tableau T for
⟨𝑛¬[!𝑝]◻𝑎𝑞⟩ and its stock model M. The diagrams on the right depict a saturated open
tableau T ′ for ⟨𝑛¬◻𝑎𝑞⟩ and its stock model M′. Notice that T

!𝑝
−→ T and M′ = M|!𝑝.
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The following lemma goes a long way to prove that
!𝜙
−→ holds between

any two 𝜙-declarative tableaux if and only if the stock model of the second
tableau is the result of applying the operation |!𝜙 to the stock model of the
first tableau. There is one minor caveat: We require a warrant that the first
tableau is natively satisfied by its stock model. We need this guarantee be-
cause we have not yet demonstrated completeness for L◻!-tableaux (insofar
they contain dynamic formulas). On the contrary, we will use this lemma to
prove soundness and completeness.

Lemma 4.1. If M is a stock model of a 𝜙-declarative tableau T such that M
natively satisfies T up to ¬𝜙 then it holds that M|!𝜙 is the stock model for
T ′ if and only if T

!𝜙
−→ T ′.

Proof. Since T is 𝜙-declarative either T 𝑛𝜙 or T 𝑛¬𝜙 for every 𝑛 ∈ T [?].
If T 𝑛𝜙 then ⟨M𝑛⟩ ⊩ 𝜙 since M natively satisfies T up to ¬𝜙; if T 𝑛¬𝜙
then ⟨M𝑛⟩ ⊩ ¬𝜙 by the same reasoning. Because by definition of ¬ it is not
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possible for a formula and its negation to be true in a single world, it follows
that ∀𝑛 ∈ T [?] ∶ T 𝑛𝜙 ⟺ ⟨M𝑛⟩ ⊩ 𝜙.

On the left-to-right reading of the lemma it is assumed that M|!𝜙 is a stock
model of T ′. Hence T ′[?] = {𝑤 ∈ M[?] ∣ ⟨M𝑤⟩ ⊩ 𝜙}. By the result in the
previous paragraph it follows that T ′[?] = T [?𝜙]. Since M|!𝜙 is the stock
model of T ′ it also follows that T ′[???] = T [???] ∩ (Ind×T [?𝜙] × T [?𝜙]).
Finally, for all 𝑛 ∈ T [?𝜙] and all atoms 𝑝 it is the case that T 𝑛𝑝 ⟺ T ′𝑛𝑝
since M is the stock model of T . Consequently, T

!𝜙
−→ T ′.

On the right-to-left reading of the lemma it is assumed that T
!𝜙
−→ T ′. It

follows that T ′[?] = T [?𝜙], T ′[???] = T [??]∩(Ind×T [?𝜙]×T [?𝜙]), and
T [??]∩ (T [?𝜙]× Prop) = T [??]∩ (T [?𝜙]× Prop). By the results from the
first paragraph and the fact that M is the stock model of T it is also the case
that T ′[?] = {𝑤 ∈ M[?] ∣ ⟨M𝑤⟩ ⊩ 𝜙}, that T ′ has the same frame as M|!𝜙,
and that for all𝑛 ∈ T ′[?] and 𝑝 ∈ Prop it is the case that T ′𝑛𝑝 ⟺ M|!𝜙𝑛𝑝.
Thus M|!𝜙 is the stock model of T ′.

In the previous chapter, lemma 3.7 did the heavy lifting with respect to
proving soundness. We now extend this result to cover 𝐑!.

Lemma 4.2. If a 𝜎-model M satisfies a tableau T via a function 𝑓 then it is
the case that, if T is not 𝐑!-saturated then there is a tableau T ′ ∈ 𝐑![T ]−{T }
and a function 𝑓′ such that M satisfies T ′ via 𝑓′.

Proof. Suppose 𝐑! is triggered by T 𝑛[!𝜙]𝜓 (or T 𝑛¬[!𝜙]𝜓) and T 𝑛′. If
⟨M𝑓(𝑛)⟩ ⊩ 𝜙 then let T ′ ≔ T ∪ ⟨𝑛′𝜙⟩; otherwise let T ′ ≔ T ∪ ⟨𝑛′¬𝜙⟩.
Since 𝐑! does not add new nodes, let 𝑓′ ≔ 𝑓. Evidently, M satisfies T ′ via 𝑓.

The above lemma plays a somewhat smaller role in the soundness proof for
L◻!-tableaux, however. The reason for that is that in this chapter a tableau’s
status as ‘open’ no longer merely depends on it being void of literal contradic-
tions; it also depends on the existence (or non-existence) of other tableaux.

In a bit we will tackle these extended requirements as we round off the
soundness and completeness proofs. We will address these requirements in
tandem and use mutual induction to prove soundness and completeness of
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the dynamic fragment of L◻!. First, however, we introduce a new concept that
mirrors the notion of ‘stock models’ by mapping models onto tableaux.

Definition 4.7. Given a pointed 𝜎-model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙 we say
that the tableau T is a «stock tableau» for ⟨M𝑤𝜙⟩ if and only if M is a stock
model for T and T is a saturated 𝜎-tableau for ⟨𝑤𝜙⟩ such that M natively
satisfies T .

Proposition 4.3. If ⟨M𝑤⟩ is a pointed 𝜎-model such that ⟨M𝑤⟩ ⊩ 𝜙 then
there is a stock tableau for ⟨M𝑤𝜙⟩.

Proof. First, let T ≔ {⟨𝑤⟩, ⟨𝑤𝜙⟩}. Trivially, T is natively satisfied by M.
Second, develop T into a saturated tableau T ′ that is satisfied via a function 𝑓
(as per lemma 4.2).

Third, let T ′′ be the tableau {⟨𝑓(𝑛)⟩ ∣ 𝑛 ∈ M[?]} ∪M[???] ∪ {⟨𝑓(𝑛)𝜙⟩ ∣
T ′𝑛𝜙}. It is easy to see that M natively satisfies T ′′. Moreover, embeddings
do not affect 𝑅-saturation for rules 𝑅 that are triggered by the presence of
formulas in a tableau. Finally, T ′′ is a 𝜎-tableau and is 𝑅-saturated for the
frame rules in Rules𝜎 because M is a 𝜎-model.

Everything is now in place to prove that the tableau system for L◻! is
sound and complete. As mentioned above, the bulk of these proofs are based
on mutual induction.

Lemma 4.4 (Lemma to Soundness and Completeness). Let M be the stock
model of a 𝜎-saturated tableau T .

1. If M natively satisfies T and T is a tableau for 𝜙 ∈ L◻! then T is open.

2. If T is open and T 𝑛𝜙 then ⟨M𝑛⟩ ⊩ 𝜙.

Proof. Proof by mutual induction on the length of 𝜙. Assume that the lemma
holds for all 𝜓 that are shorter than 𝜙.
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Part 1. We address the requirements of the extended definition of ‘open
tableau’ one by one:

• In lemmas 3.7 and 4.2 it is shown that T is free of literal contradictions.
These lemmas also handle the base cases where 𝜙 ∈ Lit.

• For all ⟨𝑛[!𝜓]𝜒⟩ ∈ T it must be demonstrated that if T 𝑛𝜓 then there
is no open saturated tableau T ′ for ⟨𝑛¬𝜒⟩ such that T

!𝜓
−→ T ′.

Suppose such a tableau T ′ did exist. By Part 2 of the IH it is then the
case that, with M′ the stock model of T ′, ⟨M′𝑛⟩ ⊩ ¬𝜒. By 𝐑!, since
T is 𝜎-saturated, it is the case that T is 𝜓-declarative. By lemma 4.1
it now follows that M′ = M|!𝜓. However, since M natively satisfies T

it is the case that ⟨M𝑛⟩ ⊩ 𝜓. This contradicts the assumption that
⟨M𝑛⟩ ⊩ [!𝜓]𝜒.

• For all ⟨𝑛¬[!𝜓]𝜒⟩ ∈ T it must be demonstrated that T 𝑛𝜓 and that
there is an open saturated tableau T ′ for ⟨𝑛¬𝜒⟩ such that T

!𝜓
−→ T ′.

Because M natively satisfies T it is the case that ⟨M𝑛⟩ ⊩ 𝜓 and that
⟨M|!𝜓𝑛⟩ ⊩ ¬𝜒. By Part 1 of the IH it follows that any stock tableau T ′

for ⟨M|!𝜓𝑛¬𝜒⟩ is open. Also notice that T is 𝜓-declarative because of
𝐑!. By lemma 4.1 it follows that T

!𝜓
−→ T ′ and this concludes our proof.

Part 2. Most of this proof has already been covered in lemma 3.9, which can
be interpreted as proceeding by induction on Part 2 of the current IH. In what
follows we only deal with the patterns that are new to L◻!.

• Suppose 𝜙 is [!𝜓]𝜒. It has to be demonstrated that if ⟨M𝑛⟩ ⊩ 𝜓
then ⟨M|!𝜓𝑛⟩ ⊩ 𝜒. The proof proceeds by contradiction. Assume that
⟨M𝑛⟩ ⊩ 𝜓 and ⟨M|!𝜓𝑛⟩ ⊩ ¬𝜒.

By Part 1 of the IH it follows that the stock tableau T ′ for ⟨M|!𝜓𝑛¬𝜒⟩
is open.

Because of 𝐑! it is the case that T is 𝜓-declarative and by Part 2 of the
IH it follows that M natively satisfies T up to ¬𝜓. By lemma 4.1 it now
follows that T

!𝜓
−→ T ′.
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However, since T is an open tableau we know that there is no saturated
open tableau T ′′ for ⟨𝑛¬𝜒⟩ such that T

!𝜓
−→ T ′′. This concludes the

proof by contradiction.

• Suppose 𝜙 is ¬[!𝜓]𝜒. We need to show that ⟨M𝑛⟩ ⊩ 𝜓 and ⟨M|!𝜓⟩ ⊩
¬𝜒.

Since T is open it follows that T 𝑛𝜓 and that there is an open saturated
tableau T ′ for ⟨𝑛¬𝜒⟩ such that T

!𝜓
−→ T ′.

Notice that T is 𝜓-declarative by 𝐑!. Additionally, by Part 2 of the IH it
also follows that M natively satisfies T up to ¬𝜓. By lemma 4.1 it is
now the case that M|!𝜓 is a stock model of T ′.

Finally, by Part 2 of the IH it is the case that ⟨M𝑛⟩ ⊩ 𝜓 and ⟨M|!𝜓𝑛⟩ ⊩
¬𝜒.

Notice that where Part 1 and Part 2 make use of lemma 4.1, they either
use a combination of (i) induction on Part 1 and a left-to-right reading of
lemma 4.1 or (ii) induction on Part 2 and a right-to-left reading of lemma 4.1.
This means that lemma 4.1 could just as well be incorporated in the above
lemma, although the resulting lemma would arguably be convoluted. This
does, however, explain the surprising requirement of lemma 4.1 that the first
tableau must have been demonstrated to be natively satisfied by its stock
model.

At this point proving soundness and completeness is a straightforward
matter.

Theorem 4.5 (Soundness). If all 𝜎-saturated tableaux for 𝜙 ∈ L◻! are closed
then ⊨𝜎 ¬𝜙.

Proof. As before, we prove the contrapositive—namely, that if there is a
pointed 𝜎-model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙 then there’s an open saturated
𝜎-tableau T for ⟨𝑤𝜙⟩.

By Part 1 of lemma 4.4 the stock tableau for ⟨M𝑤𝜙⟩ is open. This con-
cludes our proof.
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Theorem 4.6 (Completeness). If ⊨𝜎 ¬𝜙 (with 𝜙 ∈ L◻!) then all saturated
𝜎-tableaux T for 𝜙 are closed.

Proof. The contrapositive states that if there is an open 𝜎-saturated tableau
T for ⟨𝑛𝜙⟩ then there’s a 𝜎-model M such that ⟨M𝑛⟩ ⊩ 𝜙.

By Part 2 of lemma 4.4 it indeed follows that 𝜙 holds in 𝑛 in the stock
model of T .

4.3 Tableau cascades and decidability
How do we decide, for any given tableau T , if there’s another tableau T ′

such that T
!𝜙
−→ T ′? This concern makes searching for tableaux for dynamic

formulas quite the different enterprise from searching for L𝑈◻-tableaux.
Multiple approaches are conceivable. We discuss two approaches with

different trade-offs.
In both approaches, upon encountering a formula ¬[!𝜙]𝜓 in a node, we

add 𝜙 to the node and create a new tableau for ¬𝜓. We then try and see if
this new tableau can be developed into a saturated open tableau that stands
in the relation

!𝜙
−→ to the original tableau. Similarly, when we find formulas

[!𝜙]𝜓 and 𝜙 in a node, we create a tableau for 𝜓 and try to develop it into
a saturated open tableau that stands in a

!𝜙
−→ relation to the original tableau.

This works because |!𝜙 always yields exactly one model; by lemma 4.1 this
means we only need to find one open tableau.

The question remains, however, how we can develop two tableaux such
that they are saturated, open, and stand in a relation

!𝜙
−→ to one another.

What’s clear is that this will typically require the use of the tableau rule 𝐑⋆

(table 3.2), with the caveat that this makes finding a decidable proof procedure
non-obvious.

On the first approach we forgo the use of a rigid proof procedure. Instead
we can let our intuition advise us on how to apply 𝐑⋆. Given two tableaux T 1

and T 2 it is sometimes quite easy to find tableaux T ′
1 ⊃ T 1 and T ′

2 ⊃ T 2

such that T ′
1

!𝜙
−→ T ′

2. Using our intuition we might very well be able to prove
that a formula is satisfiable. However, we cannot prove that a formula is
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unsatisfiable—at best we can show that our intuition failed to find a tableau
that satisfies it.

In the remainder of this section we will discuss a second approach, which
involves a more mechanical proof procedure. This procedure has the property
that if a formula is satisfiable then we can find a saturated and demonstrably
open tableau for it in a finite number of steps. That is to say, the procedure
is decidable.

To start, we define a tree structure for keeping track of the different
tableaux we are developing.

Definition 4.8. A «tableau cascade» C is an lgraph such that

• Every node has exactly one label and this label is a tableau.

• The indices of the edges are relations
!𝜙
−→ as defined in definition 4.4.

An edge ⟨
!𝜙
−→ 𝑡𝑡′⟩ ∈ C signals the intent to transform C into a tableau

cascade C ′ such that C ′(𝑡?)
!𝜙
−→ C ′(𝑡′?).

We first encountered the notion that models satisfy certain other con-
structs in definition 3.3. We stipulated that a pointed model ⟨M𝑤⟩ satisfies a
wff 𝜙 if and only if ⟨M𝑤⟩ ⊩ 𝜙. In definition 3.13 we generalized this notion,
saying that M satisfies a tableau T via a function 𝑓 if for all ⟨𝑛𝜓⟩ ∈ T it is
the case that ⟨M𝑓(𝑛)⟩ ⊩ 𝜓. We now abstract this concept even further by
defining what it means for a model to satisfy a tableau cascade.

Definition 4.9. A pointed tableau cascade ⟨C𝑡⟩ is «satisfied» by a model M
via a function 𝑓 if and only if

• M satisfies C(𝑡?) via 𝑓.

• For every ⟨
!𝜙
−→𝑡′⟩ ∈ C[?𝑡?] it is the case that M|!𝜙 satisfies ⟨C𝑡′⟩ via 𝑓.

We say that a tableau cascade C is satisfied by a model M via a function
𝑓 if and only if ⟨C root(C)⟩ is satisfied by M via 𝑓.

There are three kinds of operations that we want to perform on tableau
cascades. The first kind of operation merely constitutes applying a tableau
rule to a node in a tableau cascade.
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Figure 4.4. The diagram below shows what happens when the tableau cascade that
consists solely of the top tableau is primed—viz. the three bottom tableaux are added
to the tableau cascade. The leftmost one is added as a result of 𝜙1 and [!𝜙1]𝜙2 being
labels for 𝑛 in the top tableau. The label ¬[!𝜓1]𝜓2 for 𝑛 gives rise to the middle tableau.
The rightmost tableau is created because 𝑛′ contains 𝜒1 and [! 𝜒1]𝜒2. Finally, the label
[! 𝜉1]𝜉2 for 𝑛′ does not result in a new tableau because 𝑛′ does not contain 𝜉1.

𝑛

𝜙1

[!𝜙1]𝜙2

¬[!𝜓1]𝜓2

𝑛′

𝜒1

[! 𝜒1]𝜒2

[! 𝜉1]𝜉2

𝑎

𝑛

¬𝜓2

𝑛

𝜙2

𝑛′

𝜒2

!𝜙1
−−→ !𝜓1

−−→
!𝜒1
−−→

Definition 4.10. C ′ is an outcome of «applying» a tableau rule 𝑅 to 𝑡 in a
tableau cascade C if and only if 𝑅C(𝑡?)C ′(𝑡?) and C ′ − ⟨𝑡C ′(𝑡?)⟩ = C −
⟨𝑡C(𝑡?)⟩.

Lemma 4.7. Given a tableau cascade C that is satisfied by a model M via a
function 𝑓, if 𝑅 is a tableau rule and the tableau C(𝑡?) is not 𝑅-saturated then
there is an outcome C ′ ≠ C of applying 𝑅 to 𝑡 in C such that C ′ is satisfied
by M via some function 𝑓′.

Proof. This is a direct result of lemmas 3.7 and 4.2.

The second kind of operation looks for public announcements in the differ-
ent tableaux in the cascade and adds new tableaux to the cascade as a result.

Definition 4.11. C ′ is the result of «!-priming» a tableau cascade C if and only
if C ′ is a minimal extension of C (and the tableaux therein) such that for all
⟨𝑡T ⟩ ∈ C and ⟨𝑛𝜙⟩ ∈ T ,
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• If 𝜙 = [!𝜓]𝜒 and T 𝑛𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′

such that T ′ is a tableau for ⟨𝑛𝜒⟩ and ⟨
!𝜓
−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = ¬[!𝜓]𝜒 then T 𝑛𝜓 and there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′

such that T ′ is a tableau for ⟨𝑛¬𝜒⟩ and ⟨
!𝜓
−→𝑡𝑡′⟩ ∈ C ′.

Lemma 4.8. Given a tableau cascade C that is satisfied by a model M⋆ via a
function 𝑓, if C ′ is the result of !-priming C then C ′ is satisfied by M⋆ via 𝑓.

Proof. We need to prove that for all new nodes 𝑡′ that are accessible from a
node 𝑡 over

!𝜙
−→ in C ′, if T ≔ C(𝑡?) is satisfied by M via 𝑓 then T ′ ≔ C ′(𝑡′?)

is satisfied by M|!𝜙 via 𝑓.
We distinguish the two cases that could have led to this situation:

1. T 𝑛[!𝜙]𝜓, T 𝑛𝜙, and T ′ = {⟨𝑛⟩, ⟨𝑛,𝜓⟩}.

It is then the case that ⟨M𝑓(𝑛)⟩ ⊩ 𝜙 and ⟨M|!𝜙𝑓(𝑛)⟩ ⊩ 𝜓. Hence M|!𝜙
satisfies T ′ via 𝑓.

2. T 𝑛¬[!𝜙]𝜓 and T ′ = {⟨𝑛⟩, ⟨𝑛,¬𝜓⟩}.

It is then the case that ⟨M𝑓(𝑛)⟩ ⊩ 𝜙 and ⟨M|!𝜙𝑓(𝑛)⟩ ⊩ ¬𝜓 by defini-
tion of ¬ and [!𝜙]. Hence M|!𝜙 satisfies T ′ via 𝑓.

The third and final type of operation ensures that the different tableaux in
a tableau cascade can be properly compared by dynamic relations

!𝜙
−→. This

means copying edges and atomic propositions between tableaux and ensuring
that only 𝜙-nodes ‘survive’ an update.

Definition 4.12. C ′ is the result of «synchronizing» a tableau cascade C if
and only if

• C and C ′ have the same frame.

• C ′ is an extension of C in the sense that ∀𝑡 ∈ C[?] ∶ C(𝑡?) ⊆ C ′(𝑡?).

• The set {⟨𝑡𝑥⟩ ∣ 𝑡 ∈ C[?] and 𝑥 ∈ C ′(𝑡?) − C(𝑡?)} is a minimal set
(ordered by the subset relation) such that for some edge ⟨

𝜋
−→𝑡1𝑡2⟩ ∈ C

it is the case that C ′(𝑡1?)
𝜋
−→ C ′(𝑡2?) but not C(𝑡1?)

𝜋
−→ C(𝑡2?).
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Figure 4.5. Forward propagation of nodes, edges, and atoms. Suppose 𝑝 was added to
𝑛 and 𝑛′ by 𝐑! in the tableau on the left. By synchronizing the tableau cascade, the node
𝑛 is copied from the tableau on the left to the tableau on the right because it contains 𝑝.
Atoms and edges are also copied from the left to the right insofar they concern surviving
nodes.
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𝑎

𝑏

𝑛

𝑝
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¬𝑞

𝑝

𝑎
!𝑝
−→

We also say that a tableau cascade is «fully synchronized» if and only if it
cannot be synchronized.

Proposition 4.9. A synchronization operation affects one or two tableau cas-
cade nodes.

The following lemma entails that the satisfiability of a tableau cascade is
unaffected by synchronization.

Lemma 4.10. Let C be a tableau cascade such that ⟨
!𝜙
−→𝑡𝑡′⟩ ∈ C and such that

C(𝑡?) is satisfied by a model M via a function 𝑓 and C(𝑡′?) is satisfied by
M|!𝜙 via 𝑓. If C can be synchronized such that at most 𝑡 and 𝑡′ are affected
then there’s an outcome C ′ of synchronizing C such that M satisfies C ′(𝑡?)
via 𝑓 and M|!𝜙 satisfies C ′(𝑡′?) via 𝑓.

Proof. We need to demonstrate that there are finite tableaux T ⊇ C(𝑡?) and
T ′ ⊇ C(𝑡′?) (i) which are satisfied via M and M|!𝜙 via 𝑓 and (ii) such that
T

!𝜙
−→ T ′. It then immediately follows that there are minimal tableaux that

are supersets of C(𝑡?) and C(𝑡′?) and meet conditions (i) and (ii).
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Figure 4.6. Backward propagation of nodes, edges, and atoms. By synchronizing the
tableau cascade, all nodes, edges, and atoms from the right hand tableau are copied to
the left. Moreover, the label ¬𝑝 is added to the tableau on the left for all nodes that also
exist in the tableau on the right.

𝑛¬[!¬𝑝]◻𝑎¬𝑞

¬𝑝

𝑛′

𝑞

¬𝑝

𝑎 𝑛¬◻𝑎¬𝑞 𝑛′

¬¬𝑞

𝑞
𝑎

!¬𝑝
−−→

First, let 𝑁 be the known domain of 𝑓. That is, 𝑁 ≔ C(𝑡?)[?] ∪ C(𝑡′?)[?].
Informally, 𝑁 is the totality of nodes of the tableaux named 𝑡 and 𝑡′.

Next, let T be the following tableau:

• T [?] = 𝑁

• T [???] = {⟨𝑎𝑛𝑛′⟩ ∈ Ind×𝑁×𝑁 ∣ ⟨𝑎𝑓(𝑛)𝑓(𝑛′) ∈ M⟩}

• T [??] = C(𝑡?)[??] ∪ {⟨𝑛𝑝⟩ ∈ 𝑁 × Prop ∣ M𝑓(𝑛)𝑝} ∪ {⟨𝑛𝜙⟩ ∣ 𝑛 ∈
𝑁 and ⟨M𝑓(𝑛)⟩ ⊩ 𝜙}

T is a superset of C(𝑡?). For consider that (i) 𝑁 is a superset of C(𝑡?)[?],
(ii) for every edge ⟨𝑎𝑛𝑛′⟩ of C(𝑡?) there is an edge ⟨𝑎𝑓(𝑛)𝑓(𝑛′)⟩ in M by
definition 3.13, and (iii) the formulas of C(𝑡?) are copied verbatim.

Let T ′ be the following tableau:

• T ′[?] = T [?𝜙]

• T ′[???] = {⟨𝑎𝑛𝑛′⟩ ∈ Ind×T ′[?] × T ′[?] ∣ ⟨𝑎𝑓(𝑛)𝑓(𝑛′)⟩ ∈ M}

• T ′[??] = C(𝑡′?)[??] ∪ {⟨𝑛𝑝⟩ ∈ T ′[?] × Prop ∣ M𝑓(𝑛)𝑝}

Again, T ′ is a superset of C(𝑡′?). For assume, to the contrary, that there was
a node 𝑛 of C(𝑡′?) that was not in T ′. This would mean that not T 𝑛𝜙. But
by construction this implies that not ⟨M𝑓(𝑛)⟩ ⊩ 𝜙. However, such a node
cannot be in C(𝑡′?) since C(𝑡′?) is satisfied by M|!𝜙 via 𝑓.

That T
!𝜙
−→ T ′ holds is also clearly the case by construction.
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Theorem 4.11. If there is a pointed 𝜎-model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙
(where 𝜙 ∈ L◻!) then an open saturated 𝜎-tableau T for ⟨𝑤𝜙⟩ can be found
in a finite number of steps.

Proof. Start with the tableau cascade C0 = {⟨0⟩, ⟨0{⟨𝑤⟩, ⟨𝑤𝜙⟩}⟩}. Thus C0

contains a node 0 and the label for 0 is a tableau that consists of a node 𝑤
with a label 𝜙.

Next, consider all series C1,… ,C 𝑖,C 𝑖+1,… such that for every natural
number 𝑖, C 𝑖+1 is the result of applying a rule from Rules to any tableau in
C 𝑖 or a rule from Rules𝜎 to C 𝑖(0?) and such that

1. The mandatory rules that do not add new edges (or nodes) are applied
first.

2. Fairly select zero or more of the mandatory rules that were skipped in
the first step and apply them if the following condition is met: Do not
add outgoing edges to a node 𝑛 if and only if there is a node 𝑛′ such
that in every tableau of C 𝑖, 𝑛 either does not exist or 𝑛 is a copy of 𝑛′.

Informally speaking, fair selection means that given due time every rule
is chosen (repeatedly).

3. !-prime the tableau cascade.

4. Synchronize the tableau cascade until it is fully synchronized.

Repeat this process until there are no more rules to apply. At that point,
fold all virtual 𝑎-loops.

It’s straightforward to see how the above steps will indeed result in sat-
urated tableaux and how on some of the resulting branches all tableaux are
free of literal contradictions.

Moreover, the above steps always lead to saturation in a finite number of
steps. The argument is the same as in theorem 3.12.

Finally, let C be a tableau cascade derived from C0 as detailed above such
that all tableaux in C are 𝜎-saturated and free of literal contradictions. Be-
cause, moreover, C is fully synchronized it is clear that all tableaux in C are
open.
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4.4 Related work
Public announcement logic was originally devised in [30] and, later but inde-
pendently, in [20].

Two similar tableau systems for public announcement are described in
[2, 12]. However, these tableau systems are unintuitive and difficult to use
because of the non-trivial relation of the tableau rules to the semantics of
PAL.

A different approach is taken in [22]. In this system dynamic formulas
with public announcements are rewritten to equivalent non-dynamic formulas
using ‘reduction rules’. Such rules are also used in axiomatic proof systems
for PAL. Indeed, axiomatic systems for propositional logic can be extended
to PAL by adding the following axiom schemas:

[!𝜙]𝑝 ⟺ (𝜙 → 𝑝)

[!𝜙]¬𝜓 ⟺ (𝜙 → ¬[!𝜙]𝜓)

[!𝜙](𝜓∧ 𝜒) ⟺ ([!𝜙]𝜓∧ [!𝜙]𝜒)

[!𝜙]◻𝑎𝜓 ⟺ (𝜙 → ◻𝑎(𝜙 → [!𝜙]𝜓))

[!𝜙][!𝜓]𝜒 ⟺ [! (𝜙∧ [!𝜙]𝜓)]𝜒

where 𝑝 ∈ Prop and {𝜙,𝜓,𝜒} ⊆ L◻! [38]. The relation of the reduction
rules to the semantics of PAL might not be immediately obvious, however.
Therefore the proof system in this chapter is arguably easier to understand
and use.
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5

Dynamic Epistemic Logic

with Action Models

In the previous chapter we discussed public announcement logic, which is a
dynamic modal logic for reasoning about agents who discover facts in a public
setting. In this chapter we will look at an extension of public announcement
logic that allows us to reason about many more kinds of epistemic events.
Using dynamic epistemic logic with action models (DEL) we can reason not
only about public discovery of facts, but also about various forms of private
and semi-private learning.

DEL can be used to reason about card games and other knowledge games.
Some of these games are relevant for cryptography and security protocols.
The link between knowledge games and dynamic epistemic logic is treated
extensively in [36,37].

5.1 Syntax and semantics of L◻⊗

The language of dynamic epistemic logic L◻⊗ adds formulas of the form
[⊗𝜋]𝜙 to the language of modal logic. Here 𝜋 represents an epistemic event
or action and 𝜙 is a formula of L◻⊗. Epistemic events, in turn, are described
by lgraphs that have L◻⊗ sentences for labels. These lgraphs are called action
models.

The definitions for L◻⊗ and ‘action models’ are mutually recursive.
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Figure 5.1. A basic action model A with one node. This action model represent the
update where non-𝜙 worlds are deleted; 𝑎-edges are kept as-is unless they originate
from or point to a non-𝜙 world. The update operation |⊗A is equivalent to the update
operation |!𝜙.

𝜙

𝑎

Definition 5.1. The set «L◻⊗» is determined by the following grammar:

𝜙 ⩴ 𝑝 ∣ ¬𝜙 ∣ (𝜙∧𝜙) ∣ ◻𝑎𝜙 ∣ [⊗A𝑒]𝜙.

As usual, 𝑝 stands for any element of the set of atomic proposition Prop and
𝑎 is any member of the set of agents Ind. Finally, let ⟨A𝑒⟩ be any pointed
action model.

Definition 5.2. An «action model» A is an lgraph such that

• The nodes of A are called «actions» or «events».

• The edges of A are edges indexed by elements of Ind.

• Every node 𝑛 has exactly one label𝜙 ∈ L◻⊗, called a «precondition». By
abuse of terminology, if 𝜙 = ⊤ then we say that 𝑛 has no preconditions.
The notation A(𝑛?) denotes the precondition of 𝑛.

The mutual recursion is unproblematic if action models are thought of
as syntactic structures. For instance, we could convert them to a string that
describes their structure. It is then immediately apparent that action models
are longer in ‘length’ than all of the labels they contain.

Our conversion of action models to syntactic structures makes the issue
salient that having semantic objects as part of a language is unusual. We
admit that this is unusual but don’t think it’s a real problem. We think it’s
simply the case that the most convenient way to describe an epistemic event
is to draw a diagram. Indeed, Hans van Ditmarsch argues that we can think
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of action models as syntactic objects from the get-go [37, §6.1]. Johan van
Benthem has a more poetic view: “If you are down-to-earth, you will find a
syntax putting models in a language weird, and your life will be full of fears
of inconsistency. If you are born to be wild, you will see DEL as a welcome
flight of the imagination.” [34, p. 86].

In the previous chapter we defined the forcing relation ⊩ by taking the
definition for⊩ frommodal logic and adding an extra clause to it for sentences
of the form [!𝜙]𝜓. That is, in chapter 3 the behavior of the forcing relation
was left undefined for wffs [!𝜙]𝜓 and in chapter 4 we retroactively defined
how to interpret such formulas.

We are again faced with a gap in the definition of ⊩. Hence we extend the
definition of the forcing relation again.

Definition 5.3. The forcing relation «⊩» is as before, but also meets the fol-
lowing constraint.

⟨M𝑤⟩ ⊩ [⊗A𝑒]𝜙 ⟺ if ⟨M𝑤⟩ ⊩ A(𝑒?) then ⟨M|⊗A⟨𝑤𝑒⟩⟩ ⊩ 𝜙

where

M|⊗A = {⟨𝑛⟩ ∣ 𝑛 ∈ 𝑁}∪ 𝐸∪ 𝐿

such that

• 𝑁 ≔ {⟨𝑤′𝑒′⟩ ∈ M[?] ×A[?] ∣ ⟨M𝑤′⟩ ⊩ A(𝑒′?)}

• 𝐸 ≔ {⟨𝑎⟨𝑤′𝑒′⟩⟨𝑤′′𝑒′′⟩⟩ ∈ Ind×𝑁×𝑁 ∣ M𝑎𝑤′𝑤′′ and A𝑎𝑒′𝑒′′}

• 𝐿 ≔ {⟨⟨𝑤′𝑒′⟩𝑝⟩ ∈ 𝑁× Prop ∣ M𝑤′𝑝}

Thus the set of nodes of M|⊗A is a subset of the Cartesian product of
the set of nodes of M and A. For any two nodes ⟨𝑤′𝑒′⟩ and ⟨𝑤′′𝑒′′⟩, there is
an 𝑎-edge in M|⊗A if and only if there is an 𝑎-edge between 𝑤′ and 𝑤′′, and
between 𝑒′ and 𝑒′′. Finally, the atoms for any node ⟨𝑤′𝑒′⟩ in M|⊗A are copied
from 𝑤′ in M; non-atomic labels are not transferred.

The above semantics also suggest an interpretation of action models as
semantic objects. They can be thought of as relativizations of Kripke models
(cf. [3, §1] and [37, §6.1]).
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Figure 5.2. Below a Kripke model M, an action model A, and the updated Kripke model
M|⊗A are depicted. In the original model M the agents 𝑎 and 𝑏 are ignorant about the
truth value of the formula 𝜙. That is, in both worlds it is the case that ¬◻𝑎𝜙, ¬◻𝑎¬𝜙,
¬◻𝑏𝜙, and ¬◻𝑏¬𝜙. The update model A represents an update where (i) all 𝜙-worlds
are copied once and (ii) all worlds are copied indescriminately. Thus the 𝜙-worlds are
copied twice. A also specifies that all 𝑏-links to the worlds of (i) are cut. The last figure
shows the result of updating M with the action model A. In ⟨𝑤𝑒⟩ agent 𝑎 has come
to learn that 𝜙 is true but 𝑏 doesn’t know that 𝜙. Moreover, 𝑏 doesn’t know that 𝑎
knows whether 𝜙 is true (¬◻𝑏(◻𝑎𝜙 ∨ ◻𝑎¬𝜙)) and 𝑎 knows that 𝑏 doesn’t know this
(◻𝑎¬◻𝑏(◻𝑎𝜙∨◻𝑎¬𝜙)).

𝑤

𝜙 ¬𝜙
𝑎,𝑏

𝑎,𝑏 𝑎,𝑏 It is not know if 𝜙 is true or not.

𝑒

𝜙 ⊤
𝑏𝑎 𝑎,𝑏 𝑎 learns that 𝜙 is true.

⟨𝑤𝑒⟩

𝜙 ¬𝜙

𝜙

𝑏

𝑏 𝑎,𝑏

𝑎 𝑎,𝑏

𝑎,𝑏

𝑎 now knows that 𝜙 holds.

5.2 Dynamic Tableaux
We now extend our tableau system to cover all formulas of L◻⊗. We accom-
plish this through three amendments that are entirely analogous to how we
implemented the tableau system for PAL.

First, we extend the tableau rules.
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Table 5.1. For every [⊗A𝑒]𝜙 and ¬[⊗A𝑒]𝜙 in the tableau, the rule 𝐑⊗ forces every node
to decide, for all preconditions of A, if the precondition or its negation should be true.

Name Precondition Postcondition

𝐑⊗ T 𝑛[⊗A𝑒]𝜙,T 𝑛′, and A𝑒′ T 𝑛′A(𝑒′?) or T 𝑛′¬A(𝑒′?)
T 𝑛¬[⊗A𝑒]𝜙,T 𝑛′, and A𝑒′ T 𝑛′A(𝑒′?) or T 𝑛′¬A(𝑒′?)

Definition 5.4. Let the mandatory rules of Rules (and Rules𝜎) include the
additional rule in table 5.1.

Second, we translate the operation |⊗A to a relation between tableaux.

Definition 5.5. For any two tableaux T and T ′ the relationship «T
⊗A
−−→ T ′»

holds if and only if

1. T ′[?] = {⟨𝑛𝑒⟩ ∈ T [?] ×A[?] ∣ T 𝑛A(𝑒?)}.

2. T ′[???] = {⟨𝑎⟨𝑛𝑒⟩⟨𝑛′𝑒′⟩⟩ ∈ Ind×T ′[?] × T ′[?] ∣ T 𝑎𝑛𝑛′ and A𝑎𝑒𝑒′}.

3. T ′[??] ∩ (T ′[?] × Prop) = {⟨⟨𝑛𝑒⟩𝑝⟩ ∈ T ′[?] × Prop ∣ T 𝑛𝑝}.

Third and last, we redefine the notion of ‘open tableau’.

Definition 5.6. Let the predicate «open» be as before, except for two added
conditions:

1. If T 𝑛[⊗A𝑒]𝜙 and T 𝑛A(𝑒?) then there are no open saturated tableaux
T ′ for ⟨⟨𝑛𝑒⟩¬𝜙⟩ such that T

⊗A
−−→ T ′.

2. If T 𝑛¬[⊗A𝑒]𝜙 then T 𝑛A(𝑒?) and there is an open saturated tableau
T ′ for ⟨⟨𝑛𝑒⟩¬𝜙⟩ such that T

⊗A
−−→ T ′.

As in the previous chapter we define a declarativeness notion, and demon-
strate a form of symmetry between |⊗A and

⊗A
−−→ for ‘A-declarative’ tableaux

and the models that natively satisfy them.

Definition 5.7. A tableau T is A-declarative if and only for every 𝑛 ∈ T [?]
and every 𝑒 ∈ A[?] it is the case that T 𝑛A(𝑒?) or T 𝑛¬A(𝑒?).
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Figure 5.3. In this diagram two tableaux T (top left) and M′ (top right), two Kripke
modelsM (bottom left) andM′ (bottom right), and an action modelA (center) are shown.
M and M′ are stock models of T and T ′. Moreover, T

⊗A
−−→ T ′ and M′ = M|⊗A .

𝑛

¬𝑝,𝑞

𝑛′

𝑝,𝑟

𝑒

¬𝑝

𝑒′
¬𝑝

⟨𝑛𝑒⟩

𝑞

⟨𝑛𝑒′⟩

¬𝑝,𝑞

𝑛′

𝑝,𝑟

𝑛

𝑞

⟨𝑛𝑒⟩

𝑞

⟨𝑛𝑒′⟩

𝑞

𝑎

𝑎 𝑎

𝑎

𝑎

𝑎 𝑎

𝑎

𝑎

Lemma 5.1. Let A be an action model and let M be the stock model of an
A-declarative tableau T such that M natively satisfies T up to the negation
of all formulas in A. It is then the case that M|⊗A is the stock model for T ′

if and only if T
⊗A
−−→ T ′.

Proof. First of all, observe that (i) M natively satisfies T (up to the negation
of all preconditions in A) and (ii) T is A-declarative. Therefore it is the case
that for all 𝑛 ∈ T [?] and 𝑒 ∈ A[?],

T 𝑛A(𝑒?) ⟺ ⟨M𝑛⟩ ⊩ A(𝑒?). (5.1)

Proof for the left-to-right part of the lemma. Assume that M|⊗A is the
stock model of T ′. Thus,

T ′[?] = {⟨𝑤𝑒⟩ ∈ M[?] ×A[?] ∣ ⟨M𝑤⟩ ⊩ A(𝑒?)}.

By equation (5.1) it follows that

T ′[?] = {⟨𝑛𝑒⟩ ∈ T [?] ×A[?] ∣ T 𝑛A(𝑒?)}.
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Because M|⊗A is the stock model of T ′ it also follows that

T ′[???] = {⟨𝑎⟨𝑛𝑒⟩⟨𝑛′𝑒′⟩ ∈ Ind×T ′[?] × T ′[?]⟩ ∣ T 𝑎𝑛𝑛′ and A𝑎𝑒𝑒′}

and that for all nodes ⟨𝑛𝑒⟩ ∈ T ′[?] and atoms 𝑝 it is the case that

T 𝑛𝑝 ⟺ T ′⟨𝑛𝑒⟩𝑝.

Finally, it follows that T
⊗A
−−→ T ′.

Proof from right to left. Assume that

T
⊗A
−−→ T ′.

It follows that

• T ′[?] = {⟨𝑛𝑒⟩ ∈ T [?] ×A[?] ∣ T 𝑛A(𝑒?)}

• T ′[???] = {⟨𝑎⟨𝑛𝑒⟩⟨𝑛′𝑒′⟩ ∈ Ind×T ′[?] × T ′[?]⟩ ∣ T 𝑎𝑛𝑛′ and A𝑎𝑒𝑒′}

• T ′[??] ∩ (T ′[?] × Prop) = {⟨⟨𝑛𝑒⟩𝑝⟩ ∈ T ′[?] × Prop ∣ T 𝑛𝑝}.

By the results from the first paragraph and the fact that M is the stock model
of T it is also the case that

T ′[?] = {⟨𝑤𝑒⟩ ∈ M[?] ×A[?] ∣ ⟨M𝑤⟩ ⊩ A(𝑒?)},

that T ′ has the same frame as M|⊗A , and that

T ′𝑛𝑝 ⟺ M|⊗A𝑛𝑝

for every atom 𝑝. Thus M|⊗A is the stock model of T ′.

We extend lemma 3.7 once more and prove that 𝐑⊗ preserves satisfiability.

Lemma 5.2. If a𝜎-modelM satisfies a tableau T via a function𝑓 then it is the
case that, if T is not 𝐑⊗-saturated then there is a tableau T ′ ∈ 𝐑⊗[T ]− {T }
and a function 𝑓′ such that M satisfies T ′ via 𝑓′.

Proof. Suppose 𝐑⊗ is triggered by T 𝑛[⊗A𝑒]𝜙 (or T 𝑛¬[⊗A𝑒]𝜙), A𝑒′, and
T 𝑛′. If ⟨M𝑓(𝑛′)⟩ ⊩ A(𝑒′?) then let T ′ ≔ T ∪ ⟨𝑛′A(𝑒′?)⟩; otherwise let
T ′ ≔ T ∪ ⟨𝑛′¬A(𝑒′?)⟩. As M satisfies T ′ via 𝑓, let 𝑓′ ≔ 𝑓.
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It is now time to prove soundness and completeness. As before we use
mutual induction.

Lemma 5.3 (Lemma to Soundness and Completeness). Given a stock model
M for a saturated tableau T ,

1. If M natively satisfies T and T is a tableau for 𝜙 then T is open.

2. If T is open and T 𝑛𝜙 then ⟨M𝑛⟩ ⊩ 𝜙.

Proof. Proof by mutual induction on the length of 𝜙. Assume that the lemma
holds for all 𝜓 shorter than 𝜙.

Part 1.

• In lemmas 3.7 and 5.2 it is shown that T is free of literal contradictions.

• For all ⟨𝑛[⊗A𝑒]𝜓⟩ ∈ T it must be demonstrated that if T 𝑛A(𝑒?)
then there is no open saturated tableau T ′ for ⟨⟨𝑛𝑒⟩¬𝜓⟩ such that
T

⊗A
−−→ T ′.

Proof by contradiction. Suppose such a tableau T ′ did exist and that
T 𝑛A(𝑒?). By Part 2 of the IH it is then the case that, with M′ the
stock model of T ′, ⟨M′⟨𝑛𝑒⟩⟩ ⊩ ¬𝜓. By lemma 5.1 it also follows that
M′ = M|⊗A .

Moreover, since M natively satisfies T it is the case that ⟨M𝑛⟩ ⊩
A(𝑒?). These results, however, contradict the assumption that ⟨M𝑛⟩ ⊩
[⊗A𝑒]𝜓. This ends the proof by contradiction.

• For all ⟨𝑛¬[⊗A𝑒]𝜓⟩ ∈ T it must be demonstrated that T 𝑛A(𝑒?) and
that there is an open saturated tableau T ′ for ⟨⟨𝑛𝑒⟩¬𝜓⟩ such that
T

⊗A
−−→ T ′.

First of all, by 𝐑⊗ it is the case that T 𝑛A(𝑒?) or T 𝑛¬A(𝑒?). Because
M natively satisfies T and because T 𝑛¬[⊗A𝑒]𝜓, however, it follows
that T 𝑛A(𝑒?) and not T 𝑛¬A(𝑒?).
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Since M natively satisfies T it is also the case that ⟨M|⊗A⟨𝑛𝑒⟩⟩ ⊩
¬𝜓. By Part 1 of the IH it now follows that the stock tableau T ′ for
⟨M|⊗A⟨𝑛𝑒⟩¬𝜓⟩ is open. Also notice that T is A-declarative because
of 𝐑⊗. By lemma 5.1 it follows that T

⊗𝜓
−−→ T ′ and this concludes our

proof.

Part 2. The bulk of this proof has already been covered in lemma 3.9. We
only provide the proofs for the patterns specific to L◻⊗.

• Suppose 𝜙 is [⊗A𝑒]𝜓. It has to be demonstrated that if ⟨M𝑛⟩ ⊩ A(𝑒?)
then ⟨M|⊗A⟨𝑛𝑒⟩⟩ ⊩ 𝜓.

The proof proceeds by contradiction. Assume that ⟨M𝑛⟩ ⊩ A(𝑒?) and
⟨M|⊗A⟨𝑛𝑒⟩⟩ ⊩ ¬𝜓.

By Part 1 of the induction hypothesis it follows that every stock tableau
T ′ for ⟨M|⊗A⟨𝑛𝑒⟩¬𝜓⟩ is open. Moreover, T is A-declarative by 𝐑⊗. By
Part 2 of the IH it follows that M natively satisfies T up to the negation
of all formulas in A. By lemma 5.1 it now follows that T

⊗A
−−→ T ′.

However, since T is an open tableau we know that there is no saturated
open tableau T ′′ for ⟨𝑛¬𝜓⟩ such that T

⊗A
−−→ T ′′. This concludes the

proof by contradiction.

• Suppose 𝜙 is ¬[⊗A𝑒]𝜓. We need to demonstrate that ⟨M𝑛⟩ ⊩ A(𝑒?)
and that ⟨M|⊗A⟨𝑛𝑒⟩⟩ ⊩ ¬𝜓.

First, since T is open it follows that T 𝑛A(𝑒?) and that there is an open
saturated tableau T ′ for ⟨𝑛¬𝜓⟩ such that T

⊗A
−−→ T ′.

Second, T is A-declarative by 𝐑⊗. Hence, by Part 2 of the IH it also
follows that M natively satisfies T up to the negation of all formulas in
A. By lemma 5.1 it is now the case that M|⊗A is the stock model of T ′.

Finally, again by Part 2 of the IH, it is the case that ⟨M𝑛⟩ ⊩ A(𝑒?) and
⟨M|⊗A⟨𝑛𝑒⟩⟩ ⊩ ¬𝜓.
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5.3 Decidability
In this section we demonstrate that tableaux for L◻⊗ are decidable. The proof
extends the techniques used in the previous chapter.

First we need to tweak the definition of satisfiability with respect to tableau
cascades.

Definition 5.8. A pointed tableau cascade ⟨C𝑡⟩ is «satisfied» by a model M
via a function 𝑓 if and only if

• M satisfies the tableau C(𝑡?) via 𝑓.

• For every ⟨
⊗A
−−→𝑡′⟩ ∈ C[?𝑡?] it is the case that M|⊗𝜙 satisfies ⟨C𝑡′⟩ via

the function 𝑓′ ∶ ⟨𝑥𝑦⟩ ↦ ⟨𝑓(𝑥)𝑦⟩.

We say that a tableau cascade C is satisfied by a model M via a function
𝑓 if and only if ⟨C root(C)⟩ is satisfied by M via 𝑓.

Next, we expand the notion of priming to formulas of the form [⊗A]𝜙
and ¬[⊗A]𝜙.

Definition 5.9. C ′ is the result of «⊗-priming» a tableau cascade C if and only
if C ′ is a minimal extension of C such that for every ⟨𝑡T ⟩ ∈ C[??],

• If T 𝑛[⊗A𝑒]𝜙 and T 𝑛A(𝑒?) then there is a tableau T ′ for ⟨⟨𝑛𝑒⟩𝜙⟩
such that in C there is a

⊗A
−−→-link from 𝑡 to C(?T ′).

• If T 𝑛¬[⊗A𝑒]𝜙 then there is a tableau T ′ for ⟨⟨𝑛𝑒⟩¬𝜙⟩ such that in
C there is a

⊗A
−−→-link from 𝑡 to C(?T ′).

As before, priming does not affect the satisfiability of a tableau cascade.

Lemma 5.4. Given a tableau cascade C that is satisfied by a model M⋆ via
a function 𝑓⋆, it is the case that any C ′ that is the result of ⊗-priming C is
satisfied by M⋆ via 𝑓⋆.
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Proof. Let 𝑡′ be a node that is new in C ′ and that is accessible from a node 𝑡
over

⊗A
−−→. Notice that 𝑡 is a node of both C and C ′ by construction. Define

T ≔ C(𝑡?) and T ′ ≔ C ′(𝑡′?).
LetM and 𝑓 be anymodel and function such that ⟨C𝑡⟩ is satisfied byM via

𝑓. We demonstrate that ⟨C ′𝑡′⟩ is satisfied by M|⊗A via 𝑓′ ∶ ⟨𝑥𝑦⟩ → ⟨𝑓(𝑥)𝑦⟩.
The case where the precondition A(𝑒?) is not in 𝑛 is trivial. Suppose 𝑡′

was added because T 𝑛[⊗A𝑒]𝜙 and T 𝑛A(𝑒?). By definition of priming it is
then the case that T ′ = {⟨𝑛𝑒⟩, ⟨⟨𝑛𝑒⟩𝜙⟩}. Because C is satisfied by M via 𝑓
it is the case that ⟨M𝑓(𝑛)⟩ ⊩ [⊗A𝑒]𝜙 and ⟨M𝑓(𝑛)⟩ ⊩ A(𝑒?). This implies
that the model M|⊗A is nonempty and contains a world ⟨𝑓(𝑛)𝑒⟩. Moreover,
⟨M|⊗A⟨𝑓(𝑛)𝑒⟩⟩ ⊩ 𝜙. We can now conclude that M|⊗A satisfies T ′ via 𝑓′.

Suppose 𝑡′ was added because T 𝑛¬[⊗A𝑒]𝜙. From the definition of prim-
ing it follows that T ′ = {⟨𝑛𝑒⟩, ⟨⟨𝑛𝑒⟩¬𝜙⟩}. Since C is satisfied by M via 𝑓
it also follows that ⟨M𝑓(𝑛)⟩ ⊩ ¬[⊗A𝑒]𝜙 and that ⟨M|⊗A⟨𝑓(𝑛)𝑒⟩⟩ ⊩ ¬𝜓.
Consequently, M|⊗A satisfies T ′ via 𝑓′.

There’s a small problem. The nodes created by 𝐑⋄ or 𝐑𝐚
𝐃 are elements of

ℕ. However, the satisfaction definition we use in this chapter stipulates that
in a tableau cascade C , for any node 𝑡 ≠ root(C) it is the case that the tableau
nodes of C(𝑡?) are not elements of ℕ. Rather, with

⊗A1
−−−→,… ,

⊗A𝑛
−−−→ the edges

from root(C) to 𝑡, the nodes of C(𝑡?) are elements of ℕ×A1 ×⋯×A𝑛. We
introduce a simple operation to remedy this problem.

Definition 5.10. C ′ is the result of «⊗-correcting» a tableau cascade C if and
only if

• C and C ′ have the same frame.

• For every tableau cascade node 𝑡 ∈ C[?] there is an embedding ℎ from
T ≔ C(𝑡?) to T ′ ≔ C ′(𝑡?) such that for all 𝑛 ∈ T [?],

– 𝑛 ∈ ℕ ⟹ ℎ(𝑛) ∈ {𝑛}×A1[?] ×⋯×A𝑛[?]

– ℎ(𝑛) = 𝑛 otherwise

where
⊗A1
−−−→,… ,

⊗A𝑛
−−−→ are the

⊗
−→-edges on the path from root(C) to 𝑡.
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Figure 5.4. Below a tableau cascade is shown right after the rule 𝐑⋄ was applied and
after a correcting operation is performed. The correcting operation renames the node
𝑛′ to ⟨𝑛′𝑒′⟩, which fits the tableau cascade’s configuration.

𝑒

𝜙

𝑒′
¬𝜙

𝑎𝑎 𝑎 The action model A

𝑛

¬[⊗A𝑒]◻𝑎𝜙

⟨𝑛𝑒⟩

¬◻𝑎𝜙

𝑛′

¬𝜙
𝑎

⊗A𝑒
−−−→ 𝑛′ was added by 𝐑⋄

𝑛

¬[⊗A𝑒]◻𝑎𝜙

⟨𝑛𝑒⟩

¬◻𝑎𝜙

⟨𝑛′𝑒′⟩

¬𝜙
𝑎

⊗A𝑒
−−−→ Correction

We prefer to introduce the correcting operation over changing the tableau
rules because this problem only surfaces after the soundness and complete-
ness proofs for DEL. We feel this makes for insufficient justification for com-
plicating the tableau rules. This is all the more true considering that we use
the same tableau rules for the other logics in this dissertation, which are not
affected by this issue.

Notice that any tableau cascade can be corrected using only 𝐑⋆. By correct-
ing tableau cascades after a tableau rule is applied, satisfiability—as defined
in definition 5.8—can be restored.

Lemma 5.5. Given a tableau cascade C that is satisfied by a model M via a
function 𝑓, if 𝑅 is a tableau rule and C(𝑡?) is not 𝑅-saturated then there is a
corrected outcome C ′ ≠ C of applying 𝑅 to C that is satisfied by M via some
function 𝑓′.

Proof. By lemmas 3.7 and 5.2 it is the case that there is a tableau T ⋆ that is
the result of applying 𝑅 to C(𝑡?) that is satisfied by some function 𝑓⋆. If T ⋆

contains no new nodes then C ′(𝑡?) = T ⋆ and 𝑓′ = 𝑓⋆. If a new node was
added then it merely has to be renamed in accordance with definition 5.8.
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The notion of synchronization remains unchanged and so does the follow-
ing property.

Lemma 5.6. Let C be a tableau cascade such that ⟨
⊗A
−−→𝑡𝑡′⟩ ∈ C and such that

C(𝑡?) is satisfied by a model M via a function 𝑓 and C(𝑡′?) is satisfied by
M|⊗A via 𝑓′ ∶ ⟨𝑛𝑒⟩ ↦ ⟨𝑓(𝑛)𝑒⟩. If C can be synchronized such that at most 𝑡
and 𝑡′ are affected then there’s an outcome C ′ of synchronizing C such that
M satisfies C ′(𝑡?) via 𝑓 and M|!𝜙 satisfies C ′(𝑡′?) via 𝑓′.

Proof. The principles behind synchronization remain the same as before.
Therefore we omit this proof.

We now have all the scaffolding we need to demonstrate that L◻⊗-tableaux
are decidable.

Theorem 5.7. If there is a pointed model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙 (where
𝜙 ∈ L◻⊗) then an open saturated tableau T for 𝜙 can be found in a finite
number of steps.

Proof. We skip most of the proof because it is analogous to the proof for
L◻!. The main exception is that ⊗-correction must be performed before syn-
chronization. Because action models and tableau cascades are finite there are
only a finite number of ways in which such ⊗-correction can be performed.
Therefore this introduces no new issues.

5.4 Related work
The roots of DEL can be found in [4, 20, 30]. The seminal work describing
action models is [3].

We know of only one tableau system for dynamic epistemic logic with
action models, namely the system described by Hansen in [22]. We already
discussed this tableau system in section 4.4 and the same comments apply
here.
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6

Dynamic Preorder Logics

In chapter 3 we saw that modal logic has a variety of applications. Up to this
point, however, we only discussed dynamics for epistemic logics. In this chap-
ter we focus on dynamic operators for changing preference and plausibility
relations. Both of these are quintessential preorder relations—that is to say,
they are reflexive and transitive. Sometimes they are also presumed to be
connected relations but we will not make this assumption here.

In this chapter we take operators from two existing logics and combine
them in a new language and proof system. The first of these existing logics
is a logic for reasoning about preferences and changes in preferences. The
second logic interprets plausibility relations as belief strength.

6.1 Belief revision and preference change
One particularly important work on belief revision is [1]. In this article the
authors arrive at a series of postulates for belief revision. These postulates
are generally known as the AGM postulates and are an important reference
for assessing the coherence of belief change operations. That’s not to say
that they are perfect: The AGM postulates have problems with iterated belief
revision [23] and only cover single-agent settings and beliefs about ontic facts.

Dynamic doxastic logic is the dynamic modal logic take on [1], while also
addressing some of its shortcomings. In this chapter we discuss the lexical
upgrade operator from [6]. Edges from 𝑤 to 𝑤′ are interpreted in [6] as
meaning that 𝑤′ is at least as plausible as 𝑤.



[6] contains another operator for belief change that has the moniker ‘con-
servative upgrade’. Unfortunately we failed to model it in our tableau system.
The culprit is that it implicitly refers to a belief operator [best]𝑎𝜙 which
holds true in a world 𝑤 if and only if 𝜙 is true in the most plausible worlds
connected to 𝑤 over 𝑎. It’s an open problem whether the operator [best]𝑎
can be added in our tableau system without extending tableau structures. As
extending tableau structures would go against the spirit of this thesis, we
opted instead to ignore conservative upgrades in the rest of this chapter.

We also discuss two dynamic operators for preference change—namely
the update and upgrade operators from [35]. An edge from 𝑤 to 𝑤′ is taken
to mean that 𝑤′ is preferred at least as much as 𝑤.

6.2 L𝑈◻¡♯⇑ and its dynamic semantics
Definition 6.1. Let the dynamic doxastic and preference language L𝑈◻¡♯⇑ be
the set of all formulas that conform to the following specification.

𝜙 ⩴ 𝑝 ∣ ¬𝜙 ∣ (𝜙∧𝜙) ∣ 𝑈𝜙 ∣ ◻𝑎𝜙 ∣ [¡𝜙]𝜙 ∣ [♯𝜙]𝜙 ∣ [⇑𝜙]𝜙,

where 𝑝 ∈ Prop and 𝑎 ∈ Ind. Moreover, let Ind𝑃 ⊆ Ind be indices for prefer-
ences and let Ind𝐵 ⊆ Ind be indices for doxastic plausibility relations.

Where 𝑎 ∈ Ind𝑃, read ◻𝑎𝜙 as ‘𝑎 prefers 𝜙 to be the case’; where 𝑎 ∈ Ind𝐵,
read ◻𝑎𝜙 as ‘𝑎 safely believes that 𝜙 is true’.

When modeling a doxastic setting with preferences, every agent should
usually be assigned one preference index and one doxastic index.

Our preorder language has two new types of dynamic formulas. Read
[¡𝜙]𝜓 as ‘after the state is updated with 𝜙, 𝜓 is the case’; [♯𝜙]𝜓 stands for
the statement ‘after 𝜙 is upgraded in the state, 𝜓 is the case’. Finally, read
[⇑𝜙]𝜓 as ‘after 𝜙 is lexically upgraded, 𝜓 is the case’.

We extend definition 3.3 once more.
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Figure 6.1. The meaning of edges in doxastic and preference models is illustrated below.
Substitute the specific notions ‘more plausible than’ or ‘preferred over’ for the general
description ‘better than’ at will.

𝑤

𝜙

𝑤′

¬𝜙

𝑎 𝑎𝑎 𝑤′ and ¬𝜙 are better than 𝑤 and 𝜙.

𝑤

𝜙

𝑤′

¬𝜙

𝑎 𝑎𝑎 𝑤, 𝑤′, 𝜙, and ¬𝜙 are equally good.

Definition 6.2. Let the forcing relation «⊩» be as before, except for the fol-
lowing additional constraints:

⟨M𝑤⟩ ⊩ [¡𝜙]𝜓 ⟺ ⟨M|¡𝜙𝑤⟩ ⊩ 𝜓

⟨M𝑤⟩ ⊩ [♯𝜙]𝜓 ⟺ ⟨M|♯𝜙𝑤⟩ ⊩ 𝜓

⟨M𝑤⟩ ⊩ [⇑𝜙]𝜓 ⟺ ⟨M|⇑𝜙𝑤⟩ ⊩ 𝜓

where

M|¡𝜙 ≔ M− {⟨𝑎𝑤′𝑤′′⟩ ∈ M ∣ 𝑎 ∈ Ind𝑃 , and

⟨M𝑤′⟩ ⊩ 𝜙 xor ⟨M𝑤′′⟩ ⊩ 𝜙},

M|♯𝜙 ≔ M− {⟨𝑎𝑤′𝑤′′⟩ ∈ M ∣ 𝑎 ∈ Ind𝑃 ,

⟨M𝑤′⟩ ⊩ 𝜙, and ⟨M𝑤′′⟩ ⊩ ¬𝜙},

and

M|⇑𝜙 ≔ {⟨𝑎𝑤′𝑤′′⟩ ∣ 𝑎 ∈ Ind𝐵,M𝑎𝑤′𝑤′′ or M𝑎𝑤′′𝑤′,

⟨M𝑤′⟩ ⊩ ¬𝜙, and ⟨M𝑤′′⟩ ⊩ 𝜙}

∪ {⟨𝑎𝑤′𝑤′′⟩ ∈ M ∣ 𝑎 ∉ Ind𝐵 or

⟨M𝑤′⟩ ⊩ 𝜙 ⟺ ⟨M𝑤′′⟩ ⊩ 𝜙}
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Table 6.1. For every [$𝜙]𝜓 and ¬[$𝜙]𝜓] in the tableau (with $ a placeholder for ¡, ♯, and
⇑), we force every node to decide if 𝜙 or ¬𝜙 should be true.

Name Precondition Postcondition

𝐑¡ T 𝑛[¡𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙
T 𝑛¬[¡𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙

𝐑♯ T 𝑛[♯𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙
T 𝑛¬[♯𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙

𝐑⇑ T 𝑛[⇑𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙
T 𝑛¬[⇑𝜙]𝜓 and T 𝑛′ T 𝑛′𝜙 or T 𝑛′¬𝜙

In other words, the update operation |¡𝜙 deletes all preference links be-
tween 𝜙-worlds and ¬𝜙-worlds. The upgrade operation |♯𝜙, on the other
hand, deletes only preference links from 𝜙-worlds to ¬𝜙-worlds.

Suppose an update operation |¡𝑝 (with 𝑝 an atom) is performed. From
the point of view of a 𝑝-world 𝑝 then becomes preferable (as it would after a
public announcement). Similarly,¬𝑝 becomes preferable for¬𝑝-worlds. If an
upgrade operation |♯𝑝 is performed, however, then 𝑝 still becomes preferable
for 𝑝-worlds but the preference of ¬𝑝-worlds for 𝑝 is not affected.

The lexical upgrade operation |⇑𝜙 changes doxastic plausibility orders. It
makes 𝜙-worlds more plausible than ¬𝜙-worlds. However, it only adds or
removes 𝑎-edges between worlds that are connected over an 𝑎-edge to begin
with.

6.3 Dynamic tableaux for dynamic preorder

logics
We will now construct a tableau system for L𝑈◻¡♯⇑ along familiar lines.

As usual, we start by adding rules for the dynamic operators. We add two
rules for every dynamic modal operator.

Definition 6.3. Let the mandatory rules of Rules (and Rules𝜎) include the
additional rules in table 6.1.
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Adapting the operations |¡𝜙, |♯𝜙, and |⇑𝜙 to a tableau setting is again
straightforward. This results in the following definitions.

Definition 6.4. For any two tableaux T and T ′ the relationship «T
¡𝜙
−→ T ′»

holds if and only if

1. T ′[?] = T [?].

2. T ′[???] = T [???] − {⟨𝑎𝑛𝑛′⟩ ∣ 𝑎 ∈ Ind𝑃 , and T 𝑛𝜙 xor T 𝑛′𝜙}.

3. T ′[??] ∩ (T ′[?] × Prop) = T [??] ∩ (T ′[?] × Prop).

The relationship «T
♯𝜙
−−→ T ′» holds if and only if

1. T ′[?] = T [?].

2. T ′[???] = T [???] − {⟨𝑎𝑛𝑛′⟩ ∣ 𝑎 ∈ Ind𝑃 ,T 𝑛𝜙, and T 𝑛′¬𝜙}.

3. T ′[??] ∩ (T ′[?] × Prop) = T [??] ∩ (T ′[?] × Prop).

The relationship «T
⇑𝜙
−−→ T ′» holds if and only if

1. T ′[?] = T [?].

2. T ′[???] = {⟨𝑎𝑛𝑛′⟩ ∣ 𝑎 ∈ Ind𝐵,T 𝑎𝑛𝑛′ or T 𝑎𝑛′𝑛,T 𝑛¬𝜙, and T 𝑛′𝜙}
∪{⟨𝑎𝑛𝑛′⟩ ∈ T ∣ 𝑎 ∉ Ind𝐵 or T 𝑛𝜙 ⟺ 𝑇𝑎𝑏𝑛′𝜙}

3. T ′[??] ∩ (T ′[?] × Prop) = T [??] ∩ (T ′[?] × Prop).

Again we ammend the notion of ‘open tableau’, akin to how we added
truth schemas for our new operators to the semantics.

Definition 6.5. Let the predicate «open» be as before, except for following
added conditions:

1. If T 𝑛[¡𝜙]𝜓 then there are no open saturated tableaux T ′ for ⟨𝑛¬𝜓⟩
such that T

¡𝜙
−→ T ′.

2. If T 𝑛¬[¡𝜙]𝜓 then there is an open saturated tableau T ′ for ⟨𝑛¬𝜓⟩
such that T

¡𝜙
−→ T ′.
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3. If T 𝑛[♯𝜙]𝜓 then there are no open saturated tableaux T ′ for ⟨𝑛¬𝜓⟩
such that T

♯𝜙
−−→ T ′.

4. If T 𝑛¬[♯𝜙]𝜓 then there is an open saturated tableau T ′ for ⟨𝑛¬𝜓⟩
such that T

♯𝜙
−−→ T ′.

5. If T 𝑛[⇑𝜙]𝜓 then there are no open saturated tableaux T ′ for ⟨𝑛¬𝜓⟩
such that T

⇑𝜙
−−→ T ′.

6. If T 𝑛¬[⇑𝜙]𝜓 then there is an open saturated tableau T ′ for ⟨𝑛¬𝜓⟩
such that T

⇑𝜙
−−→ T ′.

As before we prove that |¡𝜙, |♯𝜙, and |⇑𝜙 on the one hand and
¡𝜙
−→,

♯𝜙
−−→,

and
⇑𝜙
−−→ on the other hand are symmetric for 𝜙-declarative tableaux and the

models that natively satisfy them.

Lemma 6.1. If M is the stock model of a 𝜙-declarative tableau T such that
M natively satisfies T up to ¬𝜙 then it holds that

1. M|¡𝜙 is the stock model for T ′ if and only if T
¡𝜙
−→ T ′.

2. M|♯𝜙 is the stock model for T ′ if and only if T
♯𝜙
−−→ T ′.

3. M|⇑𝜙 is the stock model for T ′ if and only if T
⇑𝜙
−−→ T ′.

Proof. The three cases are similar. Below we provide the proof for the first
case. We leave the rest as an exercise for the reader

Proof for the left-to-right part of the lemma. Assume that M|¡𝜙 is the
stock model of T ′. It follows that T ′[?] = T [?] and T ′[??] ∩ (T ′[?] ×
Prop) = T [??] ∩ (T ′[?] × Prop) since (i) the operation |¡𝜙 doesn’t delete
worlds or labels, and (ii) M is the stock model of T . We also have that
T ′[???] = M|¡𝜙[???]. From this it follows that T ′[???] = T [???]− {⟨𝑎𝑛𝑛′⟩ ∣
𝑎 ∈ Ind𝑃 , and T 𝑛𝜙 xor T 𝑛′𝜙} by definition of |¡𝜙 and because M natively
satisfies T up to ¬𝜙. This proves that T

¡𝜙
−→ T ′.

Proof from right to left. Assume that T
¡𝜙
−→ T ′. It follows that T ′[?] =

T [?] and T ′[??] ∩ (T ′[?] × Prop) = T [??] ∩ (T ′[?] × Prop) by definition
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of
¡𝜙
−→. Similarly, M|¡𝜙[?] = M[?] and M|¡𝜙[??] = M[??] by definition of |¡𝜙.

Since M is the stock model of T it now follows that M|¡𝜙[?] = T ′[?] and
M|¡𝜙[??] = T ′[??] ∩ (T ′[?] × Prop). Because M natively satisfies T up to
¬𝜙, we have T 𝑛𝜙 ⟺ ⟨M𝑛⟩ ⊩ 𝜙 for all 𝑛 ∈ T [?]. By definition of

¡𝜙
−→

it now also follows that M|¡𝜙[???] = T [???]. This concludes the proof that
M|¡𝜙 is the stock model for T ′.

We extend lemma 3.7 once more and prove that our new tableau rules
preserve satisfiability.

Lemma 6.2. If a 𝜎-model M satisfies a tableau T via a function 𝑓 then it is
the case that

1. If T is not 𝐑¡-saturated then there is a tableau T ′ ∈ 𝐑¡[T ] − {T } and
a function 𝑓′ such that M satisfies T ′ via 𝑓′.

2. If T is not 𝐑♯-saturated then there is a tableau T ′ ∈ 𝐑♯[T ] − {T } and
a function 𝑓′ such that M satisfies T ′ via 𝑓′.

3. If T is not 𝐑⇑-saturated then there is a tableau T ′ ∈ 𝐑⇑[T ]− {T } and
a function 𝑓′ such that M satisfies T ′ via 𝑓′.

Proof. The four cases are similar. We only present the proof for the first one.
Suppose 𝐑¡ is triggered by T 𝑛[¡𝜙]𝜓 and T 𝑛′. Because it is assumed that

⟨M𝑓(𝑛)⟩ ⊩ [¡𝜙]𝜓 it follows that ⟨M|¡𝜙𝑓(𝑛)⟩ ⊩ 𝜓. Thus, let 𝑓′ ≔ 𝑓.
Similarly, if T 𝑛¬[¡𝜙]𝜓 and T 𝑛′ then not ⟨M|¡𝜙𝑓(𝑛)⟩ ⊩ 𝜓. Again, let

𝑓′ ≔ 𝑓.

It is now time to prove soundness and completeness. As before we use
mutual induction.

Lemma 6.3 (Lemma to Soundness and Completeness). Given a stock model
M for a saturated tableau T ,

1. If M natively satisfies T and T is a tableau for 𝜙 then T is open.
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2. If T is open and T 𝑛𝜙 then ⟨M𝑛⟩ ⊩ 𝜙.

Proof. Proof by mutual induction on the length of 𝜙. Assume that the lemma
holds for all 𝜓 shorter than 𝜙.

Part 1.

• In lemmas 3.7 and 6.2 it is proved that T is free of literal contradictions.

• For all ⟨𝑛[¡𝜓]𝜒⟩ ∈ T it must be demonstrated that there is no open
saturated tableau T ′ for ⟨𝑛¬𝜒⟩ such that T

¡𝜓
−→ T ′.

Proof by contradiction. Suppose such a tableau T ′ did exist. By Part 2 of
the IH it is then the case that, with M′ the stock model of T ′, ⟨M′𝑛⟩ ⊩
¬𝜒. From 𝐑¡ and the premise that T is saturated it follows that T is
𝜓-declarative. By lemma 6.1 it now follows that M′ = M|¡𝜓.

However, since M natively satisfies T it is the case that ⟨M𝑛⟩ ⊩ [¡𝜓]𝜒
and ⟨M|¡𝜓𝑛⟩ ⊩ 𝜒. This ends the proof by contradiction.

• For all ⟨𝑛¬[¡𝜓]𝜒⟩ ∈ T it must be demonstrated that there is an open
saturated tableau T ′ for ⟨𝑛¬𝜓⟩ such that T

¡𝜓
−→ T ′.

As M natively satisfies T it is the case that ⟨M𝑛⟩ ⊩ ¬[¡𝜓]𝜒. By defini-
tion of [¡𝜓] and ¬ it follows that ⟨M|¡𝜙𝑛⟩ ⊩ ¬𝜒.

By Part 1 of the IH it follows that the stock tableau T ′ for ⟨M|¡𝜙𝑛¬𝜓⟩
is open. Moreover, T is 𝜓-declarative because of 𝐑¡. By lemma 6.1 it

now follows that T
¡𝜓
−→ T ′ and this concludes our proof.

• The proof for other dynamic formulas of L𝑈◻¡♯⇑ are entirely analogous
to the proofs for formulas [¡𝜓]𝜒 and their negations.

Part 2. The bulk of this proof has already been covered in lemma 3.9. We
only provide the proofs for the patterns specific to L𝑈◻¡♯⇑.

• Suppose 𝜙 is [¡𝜓]𝜒. It has to be demonstrated that ⟨M|¡𝜓𝑛⟩ ⊩ 𝜒.

Proof by contradiction. Assume that ⟨M|¡𝜓𝑛⟩ ⊩ ¬𝜒.
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By Part 1 of the IH it follows that any stock tableau T ′ for ⟨M|¡𝜓𝑛¬𝜒⟩ is
open. Moreover, T is 𝜓-declarative by 𝐑¡. By Part 2 of the IH it follows
that M natively satisfies T up to ¬𝜓. By lemma 6.1 it now follows that
T

¡𝜓
−→ T ′.

However, since T is an open tableau we know that there is no saturated
open tableau T ′′ for ⟨𝑛¬𝜒⟩ such that T

¡𝜓
−→ T ′′. This concludes the

proof by contradiction.

• Suppose 𝜙 is ¬[¡𝜓]𝜒. We need to demonstrate that ⟨M|¡𝜓𝑛⟩ ⊩ ¬𝜒.

First, since T is open it follows that there is an open saturated tableau
T ′ for ⟨𝑛¬𝜒⟩ such that T

¡𝜓
−→ T ′.

Second, T is 𝜓-declarative by 𝐑¡. Hence, by Part 2 of the IH it also
follows that M natively satisfies T up to ¬𝜓. By lemma 6.1 it is now
the case that M|¡𝜓 is the stock model of T ′.

Finally, again by Part 2 of the IH, it is the case that ⟨M|¡𝜓𝑛⟩ ⊩ ¬𝜒.

• The proofs for [♯𝜓]𝜒, [⇑𝜓]𝜒, and their negations are similar to those of
[¡𝜓]𝜒 and ¬[¡𝜓]𝜒.

6.4 Decidability of tableaux for L𝑈◻¡♯⇑

In this section we construct a decidable proof procedure for L𝑈◻¡♯⇑. We
proceed along familiar lines. That is, we define priming operations for the
dynamic formulas of this language and we show that priming and synchro-
nizing operations preserve satisfiability. But first we define what satisfaction
means for tableau cascades in light of our new operators.

Definition 6.6. A pointed tableau cascade ⟨C𝑡⟩ is «satisfied» by a model M
via a function 𝑓 if and only if

• M satisfies C(𝑡?) via 𝑓.

• For every ⟨
¡𝜙
−→𝑡′⟩ ∈ C[?𝑡?] it is the case that M|¡𝜙 satisfies ⟨C𝑡′⟩ via 𝑓.
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• For every ⟨
♯𝜙
−−→𝑡′⟩ ∈ C[?𝑡?] it is the case that M|♯𝜙 satisfies ⟨C𝑡′⟩ via 𝑓.

• For every ⟨
⇑𝜙
−−→𝑡′⟩ ∈ C[?𝑡?] it is the case that M|⇑𝜙 satisfies ⟨C𝑡′⟩ via 𝑓.

We say that a tableau cascade C is satisfied by a model M via a function
𝑓 if and only if ⟨C root(C)⟩ is satisfied by M via 𝑓.

If desired the above definition could be made compatible with defini-
tions 4.9 and 5.8. This would result in a decidable tableau system for the
language that results from combining all previously defined operators.

We now define a priming operation for our new operators.

Definition 6.7. C ′ is the result of «¡♯⇑-priming» a tableau cascade C if and
only if C ′ is a minimal extension of C (and the tableau therein) such that for
all ⟨𝑡T ⟩ ∈ C ,

• If 𝜙 = [¡𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that T ′

is a tableau for ⟨𝑛𝜓⟩ and ⟨
¡𝜙
−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = ¬[¡𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that
T ′ is a tableau for ⟨𝑛¬𝜓⟩ and ⟨

¡𝜙
−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = [♯𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that T ′

is a tableau for ⟨𝑛𝜓⟩ and ⟨
♯𝜙
−−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = ¬[♯𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that
T ′ is a tableau for ⟨𝑛¬𝜓⟩ and ⟨

♯𝜙
−−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = [⇑𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that
T ′ is a tableau for ⟨𝑛𝜓⟩ and ⟨

⇑𝜙
−−→𝑡𝑡′⟩ ∈ C ′.

• If 𝜙 = ¬[⇑𝜙]𝜓 then there is a node-tableau pair ⟨𝑡′T ′⟩ ∈ C ′ such that
T ′ is a tableau for ⟨𝑛¬𝜓⟩ and ⟨

⇑𝜙
−−→𝑡𝑡′⟩ ∈ C ′.

The new priming operation preserves the property that if a tableau cascade
C is satisfiable then so is any tableau cascade that results from priming C .
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Lemma 6.4. Given a tableau cascade C that is satisfied by a model M⋆ via a
function 𝑓, if C ′ is the result of ¡♯⇑-priming C then C ′ is satisfied by M⋆ via
𝑓.

Proof. Suppose ⟨𝑛[¡𝜙]𝜓⟩ ∈ T , where T is a tableau in C , and suppose T ′ =
{𝑛, ⟨𝑛𝜙⟩} is a tableau in C ′ but not C . LetM′ be anymodel and𝑓′ any function
such that ⟨M′𝑓′(𝑛)⟩ ⊩ [¡𝜙]𝜓. Such a model exists by assumption and we
want to prove that ⟨M′|¡𝜙𝑓′(𝑛)⟩ ⊩ 𝜓. In fact, this immediately follows from
the definition of [¡𝜙]. It also follows that M⋆ satisfies C ′ via 𝑓.

The proofs for negated [¡𝜙] formulas and for the other operators are struc-
turally identical to the above case and we omit them here.

Synchronization also preserves satisfiability.

Lemma 6.5. Where $ stands for ¡, ♯, or ⇑, let C be a tableau cascade such that
⟨

$𝜙
−−→𝑡𝑡′⟩ ∈ C and such that C(𝑡?) is satisfied by a model M via a function
𝑓 and C(𝑡′?) is satisfied by M|$𝜙 via 𝑓. If C can be synchronized such that
at most 𝑡 and 𝑡′ are affected then there’s an outcome C ′ of synchronizing C

such that M satisfies C ′(𝑡?) via 𝑓 and M|$𝜙 satisfies C ′(𝑡′?) via 𝑓.

Proof. The proofs are similar to the proof for lemma 4.10.

We have now implemented the scaffolding for using dynamic tableaux in
a completely automated fashion.

Theorem 6.6. If there is a pointed 𝜎-model ⟨M𝑤⟩ such that ⟨M𝑤⟩ ⊩ 𝜙
(where 𝜙 ∈ L𝑈◻¡♯⇑) then an open saturated 𝜎-tableau T for ⟨𝑤𝜙⟩ can be
found in a finite number of steps.

Proof. Our dynamic tableaux for preorder logics introduce no difficulties that
were not already covered in theorem 4.11. Therefore, we omit the decidability
proof.

CHAPTER 6 89



6.5 Related work
To the best of our knowledge no tableau system exists for dynamic doxas-
tic logic. We also don’t know of a tableau system that directly implements
dynamic preference logic. Indirectly, however, such tableau systems exist
since the update and upgrade operations discussed in this chapter can be
represented by action models. Lexical upgrades cannot be modeled by the
operation |⊗𝜙. In [6] this limitation is explained and an alternative kind of
action model update—named ‘action-priority update’—is presented that can
express lexical upgrades. Again, though, we know of no tableau system for
action priority update logic.

The lexical upgrade operator was first introduced in [33]. See [5, §1] for a
discussion of how it relates to the formalisms in [6] and in this chapter.

For a detailed discussion of dynamic preference logics, see [28].
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7

Clojure Implementation

In this chapter we present a proof-of-concept computer implementation of
our dynamic tableau system for public announcement logic. It is implemented
in the programming language Clojure. Clojure is a functional programming
language in the style of LISP. It is a young programming language but has
several things going for it that make it well-suited to our purposes.

Functional programming languages are heavily inspired by lambda calcu-
lus. Unlike most other types of programming languages this means that they
are organized in a way to encourage the use of immutable data structures and
functions as primary means of abstraction. This makes such languages a good
fit for implementing procedures that were first described using mathematical
notation. Allow us to illustrate this point with an example.

Computer programs usually store ordered sequences of elements in one of
two data structures—‘lists’ or ‘vectors’. Ignoring implementation details, the
key difference is that it’s very fast to access, add, or remove elements at the
front of a list, whereas it’s very fast to access elements from a vector regard-
less their position in the sequence. The trade-off is that adding or removing
elements at the front of a vector is slower. Suppose that we want to sort a
vector. In a functional programming language we would use a procedure—
called a function—that yields or ‘returns’ a new vector. In other (imperative)
languages the original vector is typically modified and the original data is
lost.

Using Clojure also has performance advantages because Clojure programs
are executed on the Java Virtual Machine (JVM). Clojure programs are trans-
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lated or ‘compiled’ to an intermediate representation called ‘Java bytecode’.
The JVM is then asked to run this bytecode. The JVM is a mature software
platform and is very efficient at this task. Another advantage is that Clojure
has good abstractions for writing code that performs tasks in parallel.

Performance benefits are important because theorem provers are inher-
ently computationally intensive applications. Code parallelism is especially
important because in recent years high-end computer processors have only
seen modest year-over-year improvements with respect to running sequential
programs. There are, on the other hand, clear trends towards more parallel
computing architectures.

Clojure programs are highly portable. First of all, because they are run on
the JVM they can be executed on any computer architecture and operating
system that can run Java programs. This includes Windows, OS X, Linux, and
Android. Second, there is a dialect of Clojure that is compiled to JavaScript.
This dialect, named ClojureScript, is very similar to Clojure and it is in fact
typical that large parts of a Clojure programs are also valid ClojureScript code.
Such programs could, for instance, be run on the JVM when performance is
essential and in a web browser when user-friendly distribution of the program
is deemed more important.

In the remainder of this chapter we implement the proof system from
chapter 4 in Clojure. We present it as a proof-of-concept. We set out to create
highly parallel code but also tried to be true to the core principles of our
approach. This means that we refrained from trying several optimizations
that we felt might work. We leave these for further research.

7.1 A brief overview of Clojure
In this section we briefly outline the major distinguishing features and syntax
of Clojure. We refer the reader to [17] for a more thorough introduction to
this programming language.

Being a variant on LISP, Clojure is homoiconic. This means that it is possi-
ble to interpret Clojure source code in terms of Clojure data structures in a
straightforward way. Take the following program:
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1 ( defn is−even? [n]
2 ( i f (= (mod n 2) 0)
3 true
4 fa lse ) )

The above code is represented by the following list:

• The ‘symbol’ ‹defn›.

• The symbol ‹is−even?›.

• The following vector:

– The symbol ‹n›.

• The following list:

– The symbol ‹if›.

– The following list:

* The symbol ‹=›.

* The following list:

· The symbol ‹mod›.

· The symbol ‹n›.

· The integer ‹2›.

* The integer ‹0›.

This is also called an abstract syntax tree (AST).
In a Clojure AST, symbols are usually names or ‘bindings’. Bindings are

primarily lexically scoped. This means they behave like lambda abstraction.
The code above defines a function ‹is−even?› that takes one argument,

bound to ‹n›. The function itself is in fact bound by ‹defn› to the variable
name ‹is−even?› in the current ‘namespace’. It can also be accessed from
other namespaces or files. We’ll look into how to do this in a bit. For now we
merely want to point out that the code above already uses this feature: The
functions ‹=› and ‹mod› are actually defined in the namespace ‹clojure.core›.
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In Clojure programs, lists are usually interpreted as invocations of func-
tions, ‘special forms’, or ‘macros’. Special forms are used for fundamental
constructs like if-then-else branching, variable declarations, and function defi-
nitions. We will discuss macros later on. The first element in a list is the name
of the function, special form, or macro. It is executed with the remaining ele-
ments in the list serving as arguments.

Other data structures—including vectors, numbers, and booleans—are not
evaluated further. Therefore the Clojure code ‹[1 2 3]› corresponds to a vector
of the numbers 1, 2, and 3 in the AST and in the program. Observe that we
cannot include a list of the numbers 1, 2, 3 in our program by typing ‹(1 2 3)›.
Instead we are expected to type ‹( list 1 2 3)›.

With the very basics out of the way, let’s look at those functions, special
forms, and macros built-in to Clojure that we will be using. We will also
introduce some extra syntax along the way.

We start by giving some more examples of ‹if› statements, and of the spe-
cial form ‹cond›. Note that semicolons start a comment and absorb everything
up to the end of the line. Strings (sequences of characters) are surrounded by
double quotes.

5 ( i f fa lse 1 2) ; 2

6 ( i f n i l 1 2) ; 2

7 ( i f ” for sure” 1 2) ; 1 ( only fa l se and n i l are ’ falsy ’ )

8 ( i f fa lse 1) ; n i l

9 ( if−not false 1 2) ; 1

10

11 ; a s ingle cond−statement can replace multiple if−statements

12 ( cond (= 1 3) :one
13 (= 2 3) :two
14 (= 3 3) : three
15 : e l se :i−give−up )

To define a variable the ‘special form’ ‹def› is used.

16 ( def x ” tex t ” )
17 ; the variable x i s bound to ” tex t ” from th i s point on

CHAPTER 7 94



There are several ways to create functions.

18 ( defn f [ x y ]
19 (+ x y ) )
20 ; from here on ( f 3 4) evaluates to 7

21

22 ( def f ( fn [ x y ] (+ x y ) ) ) ; th i s has the same ef fec t

23

24 ( ( fn [ x ] ( * x x ) ) 3) ; 9

Functions that are not assigned a variable name are often called lambdas.
There’s also a special form for creating functions with exactly one argument.

25 #( * % %) ; equivalent to ( fn [ x ] ( * x x ) )

The following syntax enables us to create functions that take a variable
number of arguments.

26 ( defn count−args [ x & xs ] (+ 1 ( count xs ) ) )
27 ; ( count−args ”a” 10 5.2 [1 2 3 4 5 ] ) evaluates to 4

Above, in the function body of ‹count−args›, ‹x› evaluates to ‹”a”› and ‹xs›
evaluates to the list ‹(10 5.2 [1 2 3 4 5])›.

Functions can dispatch to different bodies of code depending on the num-
ber of arguments passed.

28 ( defn f
29 ( [ ] ”zero” ) ; ( f ) −> ”zero”

30 ( [ x ] ”one” ) ; ( f n i l ) −> ”one”

31 ( [ x y ] ”two” ) ; ( f ”a” ”b” ) −> ”two”

32 ( [ x y & xs ] ”more” ) ) ; ( f [ ] [ ] [ ] ) −> ”more”

Function arguments that are vectors can also be ‘destructured’. That is to
say, the elements of the vector can directly be assigned to individual variables.
Here’s an example:

33 ( defn str−birthday [name [ [ year month day ] place ] ]
34 ( str name ” was born in ” place
35 ” on ” day ” ”
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36 ( get {1 ”January” ; e t c .

37 6 ”June” ; e t c .

38 12 ”December” }
39 month)
40 ” ” year ” . ” ) )
41 ; e . g . ( str−birthday ”Rousseau” [[1712 6 28] ”Geneva ” ] )

The above example also illustrates the use of ‘maps’ (or dictionaries). We
discuss more examples of maps further down. The function ‹str› converts
each of its arguments to a string and appends the results.

Bindings can also be introduced using the special form ‹let›.

42 ( defn f [n ]
43 ( l e t [ x ( * n n)
44 y ( * x x ) ]
45 (+ y 1 ) ) )
46 ; equivalent to (+ ( * n n n n) 1)

Note that it’s also possible to use destructuring in combination with ‹let›.
We also want to use this opportunity to mention an advanced destructuring
feature. It is possible to destructure a sequence—that is, a list or a vector—and
create a binding for the entire sequence at the same time

47 ( l e t [ [ a b & xs :as l ] [1 2 3 4 5 ] ]
48 l )
49 ; [1 2 3 4 5]

Here’s a variant on ‹let› for defining functions:

50 ( let fn [ ( f [ x ] ( inc x ) ) ]
51 ( f 3 ) )

Note that the functions ‹inc› and ‹dec› increment and decrement their
argument by one.

Clojure has a unique syntax for loops.

52 ( defn repeat−string [n s ]
53 ( loop [n n
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54 acc ” ” ]
55 ( i f (= n 0)
56 acc
57 ( recur ( dec n) ( str acc s ) ) ) ) )
58 ; ( repeat−string 5 ”ab” ) evaluates to ”ababababab”

Every time ‹recur› is used, new values are bound to ‹n› and ‹acc› and the
loop body is executed once more.

The first thing at the top of a Clojure source file is normally a names-
pace declaration. For this, ‹ns› is used; ‹ns› is also used to make outside
namespaces accessible.

59 ( ns myproject.this
60 ( : require [ clojure.core.reducers :as r ]
61 [ c lo jure .set : r e fe r : a l l ]
62 [ myproject.that ] ) )

The above instruction makes the function ‹map› from the namespace
‹clojure.core.reducers› accessible as ‹r/map›. It also binds the ‹intersection›
to the intersection function from the namespace ‹clojure.set›. Functions and
macros from ‹clojure.core› are made available without a prefix by default.
Since the namespace of this file is called ‹myproject.this›, the file should be
stored in file named ‘this.clj’ in a folder ‘myproject’. Similarly the last line
loads the file ‘that.clj’ in the same folder.

The syntax for ‹ns› is a bit peculiar as ‹:require› is not a function but a
keyword. All terms starting with a colon are keywords. You can think of
keywords as strings that are not intended to be manipulated and are not in-
tended to be ever shown to the user. Still, the question remains why ‹:require›
is at the start of a list. Without disclosing the details we want to use this case
as a segue to one feature typical of homoiconic languages.

Macros allow powerful transformations on parts of the Clojure AST. When
a macro is invoked, the expressions passed to it are rewritten into a new
expression. This happens at compile time. The program is only run after
all macros have expanded into macro-free code. Macros are a great feature
because they allow Clojure to have a simple yet extensible syntax.
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There are two important macros that we will use throughout this chap-
ter. They are called the ‘threading’ macros. The macro ‹−>› takes a variable
number of arguments. Given two expressions for arguments, the second one
being a list, it inserts the first expression as the second element of the sec-
ond expression. Given a third argument—also a list—it inserts the resulting
expression as the second element of the third expression. And so on.

63 (−> foo
64 ( bar baz ) )
65 ; expands to ( bar foo baz )

66

67 (−> foo
68 ( bar baz )
69 ( qux quux quuux ) )
70 ; expands to ( qux ( bar foo baz ) quux quuux )

The second threading macro ‹−>>› is similar to ‹−>› but inserts results as
the last, rather than second, element of the next expression.

71 (−>> foo
72 ( bar baz ) )
73 ; expands to ( bar baz foo )

74

75 (−>> foo
76 ( bar baz )
77 ( qux quux quuux ) )
78 ; expands to ( qux quux quuux ( bar baz foo ) )

Relatedly, the function ‹apply› can be used to change how functions are
called. The special form ‹partial› can be used for partial application of func-
tions.

79 ( apply + [1 2 3 4 ] ) ; equivalent to (+ 1 2 3 4)

80

81 ( def f ( part ia l + 1 2 3 ) )
82 ( f 4 5) ; ( + 1 2 3 4 5)
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Let’s now turn our attention to functions that operate on collections—lists,
vectors, sets, and maps. Once more we illustrate their usage by example.

83 ( l i s t 1 2 3 4) ; l i s t

84 ( conj ( l i s t 1 2 3 4) 5) ; ( l i s t 5 1 2 3 4) ( prepends )

85 ( cons 1 ( l i s t 2 3 4 5 ) ) ; ( l i s t 1 2 3 4 5)

86

87 [1 2 3 4] ; vector

88 ( vector 1 2 3 4) ; same

89 ( conj [1 2 3 4] 5) ; [1 2 3 4 5] ( appends )

90 ( cons 1 [2 3 4 5 ] ) ; ( l i s t 1 2 3 4 5)

91

92 ( f i r s t [1 2 3 ] ) ; 1

93 ( second ( l i s t 1 2 3 ) ) ; 2

94 ( nth [1 2 3] 2) ; 3

95 ( next [1 2 3 ] ) ; [2 3]

96

97 #{1 2 3 4} ; se t

98 ( hash−set 1 2 3 4) ; same

99 ( contains? #{1 2 3} 3) ; true

100 ( conj #{1 2 3 4} 5) ; #{1 2 3 4 5}

101

102 { : a 1 :b 2 : c 3} ; map

103 (hash−map :a 1 :b 2 : c 3) ; same

104 ( get { :a 1 :b 2 : c 3} :b ) ; 2

105 ( conj { :a 1 :b 2} [ : c 3 ] ) ; adds a key−value pair

106 ( assoc { :a 1 :b 2} : c 3) ; same

107

108 ( count [1 2 3 ] ) ; 3

109

110 ( into [1 2] [3 4 ] ) ; same as ( conj ( conj [1 2] 3) 4)

We need to do a lot of computations on collections. For this purpose we
use Clojure’s ‘combine-reduce’ infrastructure. It allows us to perform such
operations efficiently.
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Every collection we have mentioned is ‘reducible’. This means they can be
transformed using the functions ‹map›, ‹mapcat›, and ‹ filter › from the names-
pace ‹clojure.core.reducers›. This yields a new but abstract collection. This
abstract collection keeps a reference to the original collection and to the oper-
ations that have to be performed. Notice that ‹map› and the other functions
we just mentioned don’t actually perform any transformations on the original
collection. Afterwards the function ‹reduce› can be used to materialize the
modified collection as, for example, a vector.

Some collections are also ‘foldable’. For these collections the function
‹fold› can be used instead of ‹reduce› to perform the scheduled transforma-
tions in parallel. When ‹fold› is applied to a non-foldable but reducible collec-
tion it simply calls ‹reduce›.

We illustrate by example. Assume the namespace ‹clojure.core.reducers›
has been aliased to ‹r›.

111 (−>> [1 10 100 1000] ; or ig inal co l l e c t i on

112 ( r/map #( * 2 %) ) ; multiply every element by 2

113 ( r/reduce conj # { } ) ) ; conj every element into a set

114 ; #{2 20 200 2000}

115

116 (−>> [1 10 100 1000]
117 ( r/mapcat ( fn [ x ] [ x ( * 2 x ) ] ) )
118 ; 1 , 2 , 10 , 20 , 100, 200, 1000, 2000

119 ( r/ f i l t e r #(> % 100))
120 ; 200, 1000, 2000

121 ( r/reduce conj [ 5 ] ) )
122 ; [5 200 1000 2000]

123

124 (−>> ( range 1 5000) ; create a non−foldable co l l e c t i on

125 ( apply vector ) ; convert the l i s t to a ( foldable ) vector

126 ( r/map −)
127 ( r/ fold ( fn
128 ( [ ] # { } )
129 ( [ l e f t right ] ( into l e f t right ) ) )
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130 conj ) )
131 ; #{−1 −2 −3 −4 −5 −6 −7 −8 −9 −10 . . . }

The first type of argument passed to ‹fold› is called a monoid in Clojure
parlance. Clojure monoids are functions that, when passed zero arguments,
return an identity element. When passed two arguments, both of the same
type as the identity element, it combines them. This latter operation must be
associative. This also explains why they are called monoids—their namesake
algebraic structures are structures that contain an identity element and an
associative operation.

When ‹fold› is applied to a foldable collection, the collection is partitioned
into large classes of elements. The previously discussed function ‹reduce›
is applied to every one of these classes. Its first argument is the second
argument passed to ‹fold› (in the example above this function is ‹conj›) and
its second argument is the monoid’s identity element.

It is also possible to apply ‹map› (the function) to maps (the data structure).
Simply pass a function to ‹map› that takes two arguments—a key and a value.

132 (−>> { :a 1 :b 2}
133 ( r/map ( fn [ key val ] [ key (− val ) ] ) )
134 ( r/ fold ( r/monoid into ( constantly { } ) ) conj ) )
135 ; { : a −1 :b −2}

The function ‹constantly› creates a function that takes any number of
arguments and always returns the same value. The function ‹monoid› creates
a monoid, where the first argument is the combining function and the second
argument is a function that returns the identity element.

Notice that, as a matter of fact, the original map in the previous example
is small and would therefore not actually be processed in parallel.

A naive way to fold a collection ‹coll› would be to write the following code:

136 ( r/ fold ( r/monoid into vector ) conj co l l )

This, however, involves a lot of unnecessary copying. For first the collec-
tion is divided into several parts—provided it is foldable and contains many
elements—and each of these parts is reduced to a vector. Afterwards the
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elements of these vectors, starting from the second vector, are appended to
the first one. A better solution is to write ‹(r/foldcat coll)›. This will first
reduce different parts of ‹coll› to a vector-like structure (technically, Java’s
‹ArrayList›) and append them in a list-like structure. The result is usually

foldable—we omit the specifics but will come back to this at the end of sec-
tion 7.6.

‹foldcat› uses the monoid ‹cat› internally. This monoid can also be used
to concatenate two foldable collections.

137 ( r/cat coll1 coll2 )
138 ; s imilar to ( into co l l1 co l l2 ) , but faster

Finally, we want to mention that it’s sometimes possible to omit the second
argument—the function to use in the reducing phase—to ‹fold›. In this case
the monoid is used instead.

139 ( r/ fold ( r/monoid + ( constantly 0 ) )
140 ( apply vector ( range 0 10000)))
141 ; equals ( apply + ( range 0 10000))

We have now discussed the basics of Clojure. We use more features of
Clojure than have been explained so far, but we will explain these as we
discuss our Clojure program.

7.2 Utility functions
We start by defining a namespace ‹dyntab.util›. Here we define functions that
will prove useful, but are more broad in scope than our current enterprise—
creating a theorem prover.

First, we register the namespace and load two required Clojure package.
We already discussed the package ‹clojure.core.reducers› in the previous sec-
tion. The functions in ‹clojure.set› have self-explaining names.

1 ( ns dyntab.uti l
2 ( : require [ clojure.core.reducers :as r ]
3 [ c lo jure .set :as set ] ) )
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We will make a lot of use of multi-maps. We represent them using maps
that have sets for values.

4 ( defn mmap−get [m k]
5 ( get m k # { } ) )
6

7 ( defn mmap−conj [m [k v ] ]
8 ( assoc m k ( conj (mmap−get m k)
9 v ) ) )

10

11 ( defn mmap−merge [& ms]
12 ( apply merge−with into ms) )
13

14 ( defn map−merge−overwrite [& ms]
15 ( apply merge−with ( fn [ x y ] y ) ms) )
16

17 ( defn mmap−get−unique [m k]
18 ( l e t [ v (mmap−get m k ) ]
19 ( if−not (= ( count v ) 1)
20 ( throw ( str ”No unique value for ” k ” in ” m) ) )
21 ( f i r s t v ) ) )
22

23 ( defn mmap−diff [m1 m2]
24 (−>> m1
25 ( r/map ( fn [ [ k v ] ]
26 [ k ( set/difference v ( get m2 k # { } ) ) ] ) )
27 ( r/ f i l t e r ( fn [ [ k v ] ]
28 ( not (= v # { } ) ) ) )
29 ( r/reduce conj { } ) ) )

The first function here, ‹mmap−get› is straightforward. When querying
a multi-map, if there’s no value that corresponds to our key ‹k› then we pre-
fer to get an empty set rather than the value ‹nil›. The second function,
‹mmap−conj›, defines the preferred way of adding a single element to a multi-
map—viz. by adding it to the set currently associated with its key.
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Next we have two functions for merging (multi-)maps. The first merge
function assigns to every key ‹k› the union of all sets associated with ‹k›
in the multi-maps ‹ms›. The second merge function represents a different
way of ‘merging’ multi-sets. To every key ‹k› it assigns the value associ-
ated with ‹k› in the rightmost multi-map ‹m› (in the order that they are
passed to ‹mmap−merge−overwrite›) that assigns a nonempty set to ‹k›.
‹mmap−merge−overwrite› assumes that whenever a multi-map assigns a
nonempty set to a key ‹k›, it internally stores no value at all for ‹k›; this
is a difference that is ‘hidden’ by ‹mmap−get›.

The call ‹(mmap−get−unique m k)› is a shorthand for the expression
‹( first (mmap−get m k))›, except that it raises an error if ‹m› does not as-
sociate a singleton with the key ‹k›.

Finally, the function ‹mmap−diff› returns the multi-map that assigns to
every ‹k› the set that results from subtracting the set associated with ‹k› in
the second argument from the set associated with ‹k› in the first argument.

The following function is an efficient way to check if a foldable collection
that results from applying ‹mapcat› or ‹ filter › is empty. (For other collections,
‹count› can be used.)

30 ( defn fold−empty? [ co l l ]
31 ( r/ fold ( fn
32 ( [ ] true )
33 ( [ l e f t right ] ( and l e f t right ) ) )
34 ( constantly false )
35 co l l ) )

Maps and sets will be our preferred data types for storing collections of
objects. The following function folds a foldable collection into a set.

36 ( defn foldset [ co l l ]
37 ( r/ fold set/union conj co l l ) )

Next up is the function ‹rjuxt›. Given a collection ‹coll› and a function
‹f› that maps every element of ‹coll› onto a set, ‹rjuxt› returns a foldable
collection of all lists ‹[x y]› such that ‹x› is an element of ‹coll› and ‹y› is an
element of ‹(f x)›.
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38 ( defn rjuxt [ f co l l ]
39 ( r/mapcat ( fn [ x ] ( r/map ( fn [ y ] [ x y ] )
40 ( f x ) ) )
41 co l l ) )

Given a sequence of sets, the following function first removes the empty
sets and then returns the Cartesian product of the remaining sets.

42 ( defn one−from−each [ coll−of−colls ]
43 ( let fn [ [ f [ acc rem]
44 ( cond (empty? rem) [ acc ]
45 ( empty? ( f i r s t rem ) ) ( f acc ( next rem ) )
46 : e l se (−>> ( f i r s t rem)
47 ( r/mapcat #( f ( conj acc %)
48 ( next rem ) ) ) ) ) ] ]
49 ( f # { } coll−of−colls ) ) )

With the above definitions we have enough tools to build a theorem prover.

7.3 Syntax
We start by defining the syntax. We interpret the keywords ‹:p›–‹ :t › as atomic
propositions and the keywords ‹:a›–‹:e› as indices.

1 ( ns dyntab.syntax )
2

3 ( def Prop #{ :p :q : r : s : t } )
4

5 ( def Ind #{ :a :b : c :d :e } )

Complex formulas are represented by vectors. Thus we write the negation
of ‹A› as ‹[:not A]›, the conjunction of ‹A› and ‹B› as ‹[:and A B]›, box-‹x› ‹A›
as ‹[:box x A]›, and ‘‹B› holds after announcing ‹A›’ as ‹[ :! A B]›.

The function ‹wff?› tests if its argument is a well-formed formula.
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6 ( defn wff? [ form]
7 ( try
8 ( case [ ( count form) ( nth form 0) ]
9 [2 :not ] ( wff? ( nth form 1) )

10 [3 :and ] (and ( wff? ( nth form 1) )
11 ( wff? ( nth form 2 ) ) )
12 [3 :box ] (and ( contains? Ind ( nth form 1) )
13 ( wff? ( nth form 2 ) ) )
14 [3 : ! ] ( and ( wff? ( nth form 1) )
15 ( wff? ( nth form 2 ) ) )
16 fa lse )
17 ( catch Exception x ; not a co l l or empty co l l

18 ( contains? Prop form ) ) ) )

The ‹case› construct matches the result of clj(count form) and ‹nth form 0›
against four possibilities. If matching fails then ‹false› is returned.

If ‹form› is a proposition (or otherwise not a collection) then ‹(count form)›
raises an exception or error. Similarly, if ‹form› is an empty collection then
‹(nth form 0)› raises an exception. In these case we return ‹true› if and only
if ‹form› is an atomic proposition.

7.4 Tuple bags
In this section we define the data type that we will use to store lgraphs. We
call this data type a ‘tuple bag’.

We start by defining the namespace ‹tableaux.bag› and importing two fa-
miliar packages.

1 ( ns dyntab.bag
2 ( : require [ clojure.core.reducers :as r ]
3 [ dyntab.uti l :as u ] ) )

Next, we define the ‘interface’ ‹ITupleBag›.

4 ( defprotocol ITupleBag
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5 ( post [ this co l l ] )
6 ( query [ this k ] )
7 ( newest [ this k ] )
8 (mark [ this marker ] )
9 ( since [ this marker ] )

10 ( process [ this marker rules ] ) )

In a sense, what we say is that to be a tuple bag is to implement the following
functions:

• Given a tuple bag and a collection of ‘messages’, ‹post› sends every one
of these messages to a ‘indexer’ (internal to the tuple bag). This indexer
assigns zero or more keys to the message. The updated tuple bag is
returned.

• Given a tuple bag and a key, ‹query› returns the set of messages associ-
ated with that key.

• Given a tuple bag and a key, ‹newest› looks up the last time a ‹post›
invocation assigned one or more messages to that key. It returns the set
of those messages (or the empty set if no such messages were posted).

• Given a tuple bag and a keyword, ‹mark› returns a new tuple bag. The
keyword serves as an annotation in the history of posts.

• Given a tuple bag and a keyword, ‹since› returns a multi-map of those
messages—and the keys they were assigned to—added since the tuple
bag was marked with the given keyword. If a message is posted twice,
only the first time it was posted is taken into account.

• Given a tuple bag, a keyword, and a collection of rules, the function
‹process› looks up what messages were posted ‹since› the tuple bag was
marked with the given keyword. These messages (and their keys) are
processed by the given rules.

Rules are functions. When called with no arguments, a rule return a key
indicating that it can process messages that are associated with that key.
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‹process› calls these rules with two arguments—viz. the tuple-bag (after
marking it) and a new message. Rules return foldable collections.

‹process› returns a list of the following elements: (i) the tuple bagmarked
with the given keyword and (ii) the union of the foldable collections
returned by the rules.

These are the functions through which we interact with tuple bags. We explain
what indexers and rules are further down.

First we define the data type ‹TupleBag›. Here we specify how we will,
as a matter of fact, store tuple bags in memory. We also define a function
for creating tuple bags with a given collection of indexers but no messages
initially.

11 ( defrecord TupleBag [ indexers everything newest history ] )
12

13 ( defn tuple−bag [ indexers ]
14 ( TupleBag. indexers { } { } ( l i s t ) ) )

Notice that our tuple bag initially contains the following elements or
‘fields’:

• ‹indexers› A foldable collection of indexers. Each indexer is a function
that takes a message as an argument and returns a collection of keys.

• ‹everyting› is a multi-map that maps keys (as returned by the indexers)
to sets of messages. It’s monotone in the sense that posting messages
to the tuple bag only ever increases this multi-map.

• ‹newest› is also a multi-map of keys to sets of messages. It maps every
key ‹k› to the set of messages assigned to ‹k› the last time ‹post› assigned
a message to ‹k›.

• ‹history› is a list of two kind of arguments. The first kind of elements are
multi-maps, where each multi-map maps keys to sets of messages. The
function ‹post› prepends a multi-map to this list everytime it is invoked.
This multi-map contains the key-value pairs that were newly added to
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‹everything›. The second elements are keywords, which serve as markers
in the history stream. This keywords are added by the function ‹mark›.

Our implementation is as follows.

15 ( extend−type TupleBag
16 ITupleBag
17 ( post [ this co l l ]
18 ( l e t [ aggr−result (−>> ( .indexers this )
19 (u/ rjuxt ( constantly co l l ) )
20 ( r/mapcat
21 ( fn [ [ f v ] ]
22 ( r/map ( fn [k ] [k v ] )
23 ( f v ) ) ) )
24 ( r/ fold u/mmap−merge
25 u/mmap−conj ) ) ]
26 ( TupleBag. ( . indexers this )
27 (u/mmap−merge ( .everything this )
28 aggr−result )
29 (u/map−merge−overwrite ( .newest this )
30 aggr−result )
31 ( cons (u/mmap−diff aggr−result
32 ( .everything this ) )
33 ( .h istory this ) ) ) ) )
34 ( query [ this k ] (u/mmap−get ( .everything this ) k ) )
35 ( newest [ this k ] (u/mmap−get−unique ( .newest this ) k ) )
36 (mark [ this marker ]
37 ( assert ( keyword? marker ) )
38 ( TupleBag. ( . indexers this )
39 ( .everything this )
40 ( .newest this )
41 ( cons marker ( .h istory this ) ) ) )
42 ( since [ this marker ]
43 (−>> ( .h istory this )
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44 ( r/take−while #(not= % marker ) )
45 ( r/ f i l t e r col l? )
46 ( r/ fold u/mmap−merge) ) )
47 ( process [ this marker rules ]
48 ( l e t [new−bags ( since this marker ) ]
49 [ (mark this marker )
50 (−>> rules
51 (u/ rjuxt #( get new−bags ( % ) ) )
52 ( r/mapcat ( fn [ [ f v ] ] ( f this v ) ) )
53 (u/ foldset ) ) ] ) ) )

The function ‹assert› causes the program to terminate abruptly if passed
‹false› or ‹nil›. In ‹mark› we used it tomake sure ‹marker› is a keyword because
passing a collection here would be confusing.

The function ‹take−while› from ‹clojure.core.reducers› does what its name
suggests. Here we use it to keep only the first items in the tuple-bag history;
we ignore everything starting at ‹marker›.

Notice that the functions that start with a period, access the members
of ‹TupleBag› instances directly. The function ‹TupleBag.› (notice the trailing
dot) instantiates such instances. It takes four arguments, corresponding to
the desired values for the fields of the tuple bag.

Our next task is to define the indexers that we need. But first we define a
little utility function. It works like ‹nth›, but returns ‹nil› instead of raising an
exception when the requested element could not be found, even when ‹nth›
is applied to a non-sequential object.

54 ( defn nth−or−nil [ obj n]
55 ( try
56 ( nth obj n)
57 ( catch Exception x n i l ) ) )

There’s one indexer that indexes all messages (assuming they are indeed
tuples). It files them under the key ‹[:by−arity x]›, with ‹x› the number of
elements in the message.

58 ( defn index−by−arity [ x ]
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59 [ [ :by−arity ( count x ) ] ] )

All other indexers either only index pairs or only index triples. We first
discuss the ones that index pairs.

60 ( defn index−pairs−by−first [ x ]
61 ( i f (= 2 ( count x ) )
62 [ [ :pairs−by−first ( f i r s t x ) ] ]
63 ni l ) )
64

65 ( defn index−pairs−by−second [ x ]
66 ( i f (= 2 ( count x ) )
67 [ [ :pairs−by−second ( second x ) ] ]
68 ni l ) )
69

70 ( defn index−pairs−by−fsecond [ x ]
71 ( i f (= 2 ( count x ) )
72 [ [ :pairs−by−fsecond ( nth−or−nil ( second x ) 0 ) ] ]
73 ni l ) )
74

75 ( defn index−pairs−by−first−fsecond−ssecond [ x ]
76 ( i f (= 2 ( count x ) )
77 ( l e t [ form ( second x ) ]
78 [ [ :pairs−by−first−fsecond−ssecond
79 ( f i r s t x )
80 ( nth−or−nil form 0)
81 ( nth−or−nil form 1 ) ] ] )
82 ni l ) )
83

84 ( defn index−pairs−by−fsecond−fssecond [ x ]
85 ( i f (= 2 ( count x ) )
86 ( l e t [ outer−form ( second x )
87 inner−form (nth−or−nil outer−form 1) ]
88 [ [ :pairs−by−fsecond−fssecond
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89 ( nth−or−nil outer−form 0)
90 ( nth−or−nil inner−form 0 ) ] ] )
91 ni l ) )

The first of the above indexers indexes pairs by their first element. The
other indexers index by the second element of the pair. Thus the indexer
‹index−pairs−by−second› indexes pairs by the entirety of their second ele-
ment. The next function indexes by the result of applying ‹first › to the second
element of the pair. The function ‹index−pairs−by−first−fsecond−ssecond›
indexes pairs ‹x› by their first element, and by ‹( first (second x))›, or ‹nil›
if no such element exists, and ‹(second (second x))› (or ‹nil›). The fifth and
final pair indexer, ‹index−pairs−by−fsecond−fssecond›, indexes pairs ‹x› by
‹( first (second x))› (or ‹nil›) and ‹( first (second (second x)))› (or ‹nil›). Finally,
we list the indexers for triples. They are straightforward so we don’t discuss
them any further.

92 ( defn index−triples−by−first−second [ x ]
93 ( i f (= 3 ( count x ) )
94 [ [ :triples−by−first−second ( f i r s t x ) ( second x ) ] ]
95 ni l ) )
96

97 ( defn index−triples−by−first−third [ x ]
98 ( i f (= 3 ( count x ) )
99 [ [ :triples−by−first−third ( f i r s t x ) ( nth x 2 ) ] ]

100 ni l ) )
101

102 ( defn index−triples−by−second [ x ]
103 ( i f (= 3 ( count x ) )
104 [ [ :triples−by−second ( second x ) ] ]
105 ni l ) )
106

107 ( defn index−triples−by−third [ x ]
108 ( i f (= 3 ( count x ) )
109 [ [ :triples−by−third ( nth x 2 ) ] ]
110 ni l ) )
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7.5 Tableau system
We have everything we need to implement the tableau system for PAL. First
we set up a new namespace and then we define the tableau rules.

1 ( ns dyntab.tableau
2 ( : require [ clojure.core.reducers :as r ]
3 [ c lo jure .set :as set ]
4 [ dyntab.bag :as bag ]
5 [ dyntab.uti l :as u]
6 [ dyntab.syntax :as syntax ] ) )

There are two kinds of rules that we need to take into account: determin-
istic rules and nondeterministic rules. Deterministic rules present us with
a collection of tuples that have to be added to the tableau. Nondetermin-
istic rules, on the other hand, give us a collection of collections of tuples.
From each of these collections of tuples we are expected to choose one tuple.
Of course, in practice we want to try all of our options anyway, but only as
branches that we investigate independently.

Deterministic rules are easy. We can process them in parallel and simply
merge the collection of formulas that they return. We then ‹post› the merged
collection.

Let us first look at the deterministic rules. Recall that when a rule is called
with no arguments it returns the key that should trigger the rule. Whenever
a message is associated with said key, the rule is called with the tuple bag
(after marking it) and the message for arguments.

7 ( defn rule−not−not
8 ( [ ] [ :pairs−by−fsecond−fssecond :not :not ] )
9 ( [ tb [n

10 [ not1 [ not2 form ] ] ] ]
11 [ [ n form ] ] ) )
12

13 ( defn rule−and
14 ( [ ] [ :pairs−by−fsecond :and ] )
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15 ( [ tb [n
16 [ and1 form1 form2 ] ] ]
17 [ [ n form1]
18 [n form2 ] ] ) )
19

20 ( defn rule−box1
21 ( [ ] [ :pairs−by−fsecond :box ] )
22 ( [ tb [n
23 [ box1 idx form ] ] ]
24 (−>> (bag/query tb [ :triples−by−first−second idx n ] )
25 ( r/map ( fn [m] [ ( nth m 2) form ] ) ) ) ) )
26

27 ( defn rule−box2
28 ( [ ] [ :by−arity 3 ] )
29 ( [ tb [ idx src dest ] ]
30 (−>> (bag/query
31 tb
32 [ :pairs−by−first−fsecond−ssecond
33 src :box idx ] )
34 ( r/map ( fn [m] [ dest ( nth ( second m) 2 ) ] ) ) ) ) )
35

36 ( defn rule−not−box
37 ( [ ] [ :pairs−by−fsecond−fssecond :not :box ] )
38 ( [ tb [n
39 [ not1 [box1 idx form ] ] ] ]
40 ( i f (−>> (bag/query tb [ :triples−by−first−second idx n ] )
41 ( r/ f i l t e r ( fn [ [ idx2 src2 dest2 ] ]
42 ( get ( bag/query tb [ :by−arity 2 ] )
43 [ dest2 [ :not form ] ] ) ) )
44 (u/fold−empty? ) )
45 ( l e t [m (gensym ”node” ) ]
46 [ [m]
47 [ idx n m]
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48 [m [ :not form ] ] ] )
49 [ ] ) ) )
50

51 ( defn rule−T
52 ( [ ] [ :by−arity 1 ] )
53 ( [ tb [n ] ] (−>> syntax/Ind
54 ( r/map ( fn [ x ] [ x n n ] ) ) ) ) )
55

56 ( defn rule−B
57 ( [ ] [ :by−arity 3 ] )
58 ( [ tb [ idx src dest ] ] [ [ idx dest src ] ] ) )
59

60 ( defn rule−4
61 ( [ ] [ :by−arity 3 ] )
62 ( [ tb [ idx src dest ] ]
63 (−>> [ ( r/map ( fn [ [ idx2 src2 dest2 ] ] [ idx src dest2 ] )
64 ( bag/query
65 tb
66 [ :triples−by−first−second idx dest ] ) )
67 ( r/map ( fn [ [ idx2 src2 dest2 ] ] [ idx src2 dest ] )
68 ( bag/query
69 tb
70 [ :triples−by−first−third idx src ] ) ) ]
71 ( r/mapcat identity ) ) ) )

Notice that there are two rules for (non-negated) box formulas. One is
triggered by the addition of a box formula and the other rule is triggered by
the addition of edges.

We use the function ‹gensym› to create previously unused names for new
nodes. Predictably, ‹identity› is a function that takes one argument and re-
turns said argument unmodified.

As explained above, nondeterministic rules return collections of collec-
tions of tuples. To aid readability we let the names of the nondeterministic
rules end in an asterisk.
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72 ( defn rule−not−and*
73 ( [ ] [ :pairs−by−fsecond−fssecond :not :and ] )
74 ( [ tb [n
75 [ not1 [and1 form1 form2 ] ] ] ]
76 [ [ [ n [ :not form1 ] ]
77 [n [ :not form2 ] ] ] ] ) )
78

79 ( defn rule−precond1*
80 ( [ ] [ :pairs−by−fsecond : ! ] )
81 ( [ tb [n
82 [ bang1 ann−form post−form ] ] ]
83 (−>> (bag/query tb [ :by−arity 1 ] )
84 ( r/map ( fn [ [ n ] ]
85 [ [ n ann−form] [n [ :not ann−form ] ] ] ) ) ) ) )
86

87 ( defn rule−precond2*
88 ( [ ] [ :pairs−by−fsecond−fssecond :not : ! ] )
89 ( [ tb [n
90 [ not1 [bang1 ann−form post−form ] ] ] ]
91 (−>> (bag/query tb [ :by−arity 1 ] )
92 ( r/map ( fn [ [ n ] ]
93 [ [ n ann−form] [n [ :not ann−form ] ] ] ) ) ) ) )
94

95 ( defn rule−precond3*
96 ( [ ] [ :by−arity 1 ] )
97 ( [ tb [n ] ]
98 (−>> (bag/query tb [ :pairs−by−fsecond : ! ] )
99 ( r/map ( fn [ [ x [ann1 ann−form post−form ] ] ]

100 [ [ n ann−form] [n [ :not ann−form ] ] ] ) ) ) ) )
101

102 ( defn rule−precond4*
103 ( [ ] [ :by−arity 1 ] )
104 ( [ tb [n ] ]
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105 (−>> (bag/query
106 tb
107 [ :pairs−by−fsecond−fssecond :not : ! ] )
108 ( r/map ( fn [ [ x [ not1 [ann1 ann−form post−form ] ] ] ]
109 [ [ n ann−form] [n [ :not ann−form ] ] ] ) ) ) ) )

There are four precondition rules. The first two rules add ‹ann−form› or
‹[:not ann−form]› to every node when a formula ‹[ :! ann−form post−form]›
or ‹[:not [ :! ann−form post−form]]› is added to any node. The other two
rules are activated when a node is added. They look up all dynamic formulas
‹[ :! ann−form post−form]› (and negations thereof) from any node and add
‹ann−form› or ‹[:not ann−form]› to the current node.

The function ‹post› that we discussed earlier takes as arguments a tuple
bag and a collection of messages (tuples). It returns an updated tuple bag.
For nondeterministic rules we need slightly different behavior. We start from
a collection of collections of tuples. From each of these collections of tuples
we take one tuple and we put the chosen tuples in a new collection. This gives
us 𝑛 collections of tuples. We independently post these collections to the
tuple bag and thus end up with 𝑛 tuple bags. Each representing a different
branch.

110 ( defn disjunctive−post [ tb coll−of−colls ]
111 ( r/map ( part ia l bag/post tb )
112 (u/one−from−each coll−of−colls ) ) )

We now define a function for constructing a new tableau. Given a node and
a formula, ‹tableau› constructs a new tuple bag with all the indexes required
by the rules we discussed earlier and posts the node and formula. If ‹tableau›
is given only a formula then the node ‹:start−node› is used.

113 ( defn tableau
114 ( [ form] ( tableau :start−node form ) )
115 ( [ node form]
116 ( i f ( not ( syntax/wff? form ) )
117 ( throw ( IllegalArgumentException.
118 ( str ”Not a wff : ” form ) ) ) )
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119 (−> (bag/tuple−bag
120 [ bag/index−by−arity
121 bag/index−pairs−by−second
122 bag/index−pairs−by−fsecond
123 bag/index−pairs−by−first−fsecond−ssecond
124 bag/index−pairs−by−fsecond−fssecond
125 bag/index−triples−by−first−second
126 bag/index−triples−by−first−third
127 bag/index−triples−by−second
128 bag/index−triples−by−third ] )
129 ( bag/post [ [ node ] [node form ] ] ) ) ) )

Given a tableau, the following operation returns the limit of applying all
the tableau rules.

130 ( defn saturate [ tableaux ]
131 ( let fn [ ( phase1 [ inner−tabs ]
132 (−>> inner−tabs
133 ( r/map #(bag/process %
134 :tab−sat−mark
135 [ rule−not−not
136 rule−and
137 rule−box1
138 rule−box2
139 rule−T
140 rule−B
141 rule−4 ] ) )
142 ( r/map ( part ia l apply bag/post ) )
143 ( r/ foldcat ) ) )
144 ( phase2 [ inner−tabs ]
145 (−>> inner−tabs
146 ( r/map #(bag/process %
147 :tab−sat−mark2
148 [ rule−not−box ] ) )
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149 ( r/map ( part ia l apply bag/post ) )
150 ( r/map #(bag/process %
151 :tab−sat−mark3
152 [ rule−not−and*
153 rule−precond1*
154 rule−precond2*
155 rule−precond3*
156 rule−precond4* ] ) )
157 ( r/mapcat ( part ia l apply disjunctive−post ) )
158 ( r/ foldcat ) ) ) ]
159 ( loop [ tableaux tableaux
160 cur−phase phase1
161 changed false ]
162 ( l e t [ new−tableaux ( cur−phase tableaux ) ]
163 ( if−not (−>> new−tableaux
164 ( r/mapcat #(bag/since % :tab−sat−mark ) )
165 (u/fold−empty? ) )
166 ( recur new−tableaux phase1 true )
167 ( i f (= cur−phase phase1 )
168 ( recur new−tableaux phase2 changed )
169 [ changed new−tableaux ] ) ) ) ) ) )

It is very noticeable that there are two phases to the saturation process.
In the first phase all of the deterministic rules except ‹rule−not−box› are
applied. It is only when these rules are saturated that the second phase
commences. If changes are made to the tableau in the second phase then the
process immediately starts over from the first phase. The reason for this is
to ensure that, via ‹rule−T›, ‹rule−B›, and ‹rule−4›, for all 𝑎 the set of 𝑎-links
is an equivalence relation before ‹rule−not−box› is given the opportunity to
create new nodes. This ensures that the function terminates.

Finally, we define a function for checking if a tableau has literal contradic-
tions.

170 ( defn consistent? [ tab ]
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171 ( l e t [not−forms (bag/query
172 tab
173 [ :pairs−by−fsecond :not ] ) ]
174 (−>> (bag/query tab [ :pairs−by−fsecond ni l ] )
175 ( r/ f i l t e r ( fn [ [ n p ] ] ( get not−forms [n [ :not p ] ] ) ) )
176 (u/fold−empty? ) ) ) )

We now have a tableau system that can be used to check the satisfiability of
non-dynamic formulas. To check the satisfiability of public announcements
we need tableau cascades.

7.6 Tableau cascades
As before we start by configuring the namespace and defining a function for
creating tableau cascades.

1 ( ns dyntab.cascade
2 ( : require [ clojure.core.reducers :as r ]
3 [ c lo jure .set :as set ]
4 [ dyntab.uti l :as u]
5 [ dyntab.bag :as bag ]
6 [ dyntab.syntax :as syntax ]
7 [ dyntab.tableau :as tab ] ) )
8

9 ( defn tableau−cascade [ form]
10 ( bag/post ( bag/tuple−bag [ bag/index−by−arity
11 bag/index−pairs−by−first
12 bag/index−triples−by−first−second
13 bag/index−triples−by−second
14 bag/index−triples−by−third ] )
15 [ [ :start−tableau ]
16 [ :start−tableau ( tab/tableau form ) ] ] ) )

Our tableau structures are monotone in the sense that we only ever add
tuples to them. We never remove anything. Tableau cascades, as presented in
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previous chapters, are not monotone. Their labels (tableaux) are repeatedly
replaced by new labels—although the new labels are always supersets of the
labels they replace. Below we take a slightly different approach. We will not
remove deprecated labels. Instead we simply provide a function that allows
us to easily retrieve the most up-to-date label.

17 ( defn newest−tableau [ casc t ]
18 (−> (bag/newest casc [ :pairs−by−first t ] )
19 ( second ) ) )

Recall that saturating tableau cascades involves three operations—namely,
developing the tableaux therein, priming, and synchronizing.

We start by providing a rule for developing a tableau in a tableau cascade
until the tableau is saturated. The new tableau is then posted to the tableau
cascade (unless it was already saturated from the start).

20 ( defn saturate−tableau
21 ( [ ] [ :by−arity 2 ] )
22 ( [ casc [ t tab ] ]
23 (−>> [ tab ]
24 ( tab/saturate )
25 ( ( fn [ [ changed tableaux ] ]
26 ( i f changed
27 ( r/map ( fn [new−tab] [ t new−tab ] )
28 tableaux ) ) ) )
29 ( r/ foldcat )
30 ( vector ) ) ) )

Priming and synchronizing may trigger updates on tableaux within the
tableau cascade. Upon encountering a pattern in a first tableau a second
tableau may need to be updated and vice versa.

To detect patterns in a tableau we apply rules to it. These rules return a
collection of multi-maps. These multi-maps are interpreted as follows:

• The set associated with the key ‹nil› is a collection of messages to post
to the tableau cascade.
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• Any key that is not ‹nil› is assumed to be a tableau cascade node ‹t›.
The set associated with this key is a collection of messages to post to
‹(newest−tableau casc t)›. The updated tableau becomes the new label
for ‹t›.

The following function takes a tableau and a collection of rules as argu-
ments. It applies the rules and merges the vectors of multi-maps that are
returned.

31 ( defn meta−process [ tab rules ]
32 [ ( r/ fold
33 u/mmap−merge
34 ( second (bag/process tab :meta−post−mark rules ) ) ) ] )

Given a tableau cascades and a vector of multi-maps the following function
posts the messages in the multi-map and returns an updated tableau cascade.

35 ( defn meta−post [ casc tables ]
36 (−>> ( apply u/mmap−merge tables )
37 ( r/mapcat ( fn [ t co l l ]
38 ( i f t
39 [ [ t (−> ( newest−tableau casc t )
40 ( bag/mark :meta−post−mark)
41 ( bag/post co l l ) ) ] ]
42 co l l ) ) )
43 ( r/ foldcat )
44 ( bag/post casc ) ) )

Notice that when a tableau is updated it is marked with the keyword
‹:meta−post−mark›. This marker is also used in the function ‹meta−process›
above.

We use the above conventions in our priming operation. The rule ‹prime›
is triggered when a tableau is changed in a tableau cascade. When triggered
by ‹[t tab]› it invokes ‹meta−process› on the tableau. The first two rules
given to ‹meta−process› ensure that if a tableau node contains the formulas
‹[ :! form1 form2]› and ‹form1› then a new tableau is created. Specifically, the

CHAPTER 7 122



first rule is triggered by the presence of formulas ‹[ :! form1 form2]› and then
checks if ‹form1› is present in the tableau node; the second rule is triggered
by the addition of any formula ‹form1› and checks if ‹[ :! form1 form2]› is
also present. The third rule is triggered by negated public announcements. It
adds the precondition to the current tableau node and adds a new tableau to
the tableau cascade.

45 ( defn prime
46 ( [ ] [ :by−arity 2 ] )
47 ( [ casc [ t tab ] ]
48 (meta−process
49 tab
50 [ ( fn
51 ( [ ] [ :pairs−by−fsecond : ! ] )
52 ( [ cur−tab [n [op form1 form2] :as node−label ] ]
53 ( l e t [new−t (gensym ” tableau” ) ]
54 ( i f (−> (bag/query cur−tab [ :by−arity 2 ] )
55 ( contains? [n form1 ] ) )
56 [ { n i l # { [new−t]
57 [new−t ( tab/tableau n form2 ) ]
58 [ form1 t new−t ] }
59 t #{node−label } } ]
60 [ ] ) ) ) )
61 ( fn
62 ( [ ] [ :by−arity 2 ] )
63 ( [ cur−tab [n form :as node−label ] ]
64 [ { n i l (−>> (bag/query
65 cur−tab
66 [ :pairs−by−first−fsecond−fssecond
67 n : ! form ] )
68 ( r/mapcat
69 ( fn [ [ n2 [op form2 form3 ] ] ]
70 ( l e t [new−t (gensym ” tableau” ) ]
71 [ [ new−t]
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72 [new−t ( tab/tableau n form3 ) ]
73 [ form t new−t ] ] ) ) )
74 (u/ foldset ) )
75 t #{node−label } } ] ) )
76 ( fn
77 ( [ ] [ :pairs−by−fsecond−fssecond :not : ! ] )
78 ( [ cur−tab [n [op1 [op2 form1 form2 ] ] :as node−label ] ]
79 ( l e t [new−t (gensym ” tableau” ) ]
80 [ { n i l # { [new−t]
81 [new−t ( tab/tableau n [ :not form2 ] ) ]
82 [ form1 t new−t ] }
83 t #{node−label } }
84 { t # { [n form1 ] } } ] ) ) ) ] ) ) )

We now turn our attention to synchronization. We start by defining a
function that, given a tableau cascade ‹casc› and a tableau cascade node ‹t›,
returns a multi-map from tableau nodes ‹n› to the tableau cascade nodes ‹t2›
such that (i) ‹(newest−tableau casc t2)› contains ‹n› and (ii) there is an edge
in ‹casc› between ‹t› and ‹t2›.

85 ( defn synchronization−range [ casc t ]
86 (−>> (bag/query casc [ :triples−by−second t ] )
87 ( r/map #(nth % 2 ) )
88 ( r/ foldcat )
89 ( r/cat (−>> (bag/query casc [ :triples−by−third t ] )
90 ( r/map second )
91 ( r/ foldcat ) ) )
92 ( r/mapcat ( fn [ t2 ]
93 (−>> ( newest−tableau casc t2 )
94 ( # ( bag/query % [ :by−arity 1 ] ) )
95 ( r/map ( fn [ [ n ] ] {n #{ t2 } } ) ) ) ) )
96 ( r/ fold u/mmap−merge) ) )

Definition 4.12 frames the synchronizing operation in set-theoretic terms.
It does not give us an algorithm for synchronizing tableaux, but fortunately
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it’s not difficult to create such an algorithm. For any two tableau cascade
nodes 𝑡1 and 𝑡2 of a tableau cascade C , all we have to do is decide which
tuples of C(𝑡1?) should be added to the label of 𝑡2 (and vice versa).

When a new tableau ‹t2› is added we start by copying over all nodes from
the tableau ‹t1› that spawned it. The rule for this is triggered by the addition
of a tableau cascade edge, which is only ever added when a new tableau is
created.

97 ( defn synchronize−init
98 ( [ ] [ :by−arity 3 ] )
99 ( [ casc [ precond t1 t2 ] ]

100 [ ( r/ fold u/mmap−merge
101 [ (−>> (bag/query ( newest−tableau casc t1 )
102 [ :pairs−by−second precond ] )
103 ( r/map ( fn [ [ n form ] ] { t2 #{ [n ] } } ) )
104 ( r/ fold u/mmap−merge ) ) ] ) ] ) )

Other triggers for copying tableau nodes are the result of changes within
‹t1› or ‹t2›. Every node that is added to ‹t2› is added to ‹t1›. If the formula
‹form› is added to a node in ‹t1› then this node is copied to ‹t2›. The rule
‹synchronize› takes care of these conditions. It also deals with atoms and
edges.

105 ( defn synchronize
106 ( [ ] [ :by−arity 2 ] )
107 ( [ casc [ t tab ] ]
108 ( l e t [ sync−range ( synchronization−range casc t ) ]
109 (meta−process
110 tab
111 [ ( fn ; copy node to left−hand tableaux

112 ( [ ] [ :by−arity 1 ] )
113 ( [ cur−tab [n ] ]
114 (−>> (bag/query casc [ :triples−by−third t ] )
115 ( r/map ( fn [ [ precond t1 t2 ] ]
116 { t1 #{ [n ]
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117 [n precond ] } } ) ) ) ) )
118 ( fn ; copy node to right−hand tableaux

119 ( [ ] [ :by−arity 2 ] )
120 ( [ cur−tab [n form ] ]
121 (−>> (bag/query casc
122 [ :triples−by−first−second
123 form t ] )
124 ( r/map ( fn [ [ precond t1 t2 ] ]
125 { t2 #{ [n ] } } ) ) ) ) )
126 ( fn ; copy atoms to th i s tableau

127 ( [ ] [ :by−arity 1 ] )
128 ( [ cur−tab [n ] ]
129 (−>> ( get sync−range n)
130 ( r/map #(bag/newest casc
131 [ :pairs−by−first % ] ) )
132 ( r/mapcat
133 #(bag/query
134 ( second %)
135 [ :pairs−by−fsecond ni l ] ) )
136 ( r/ f i l t e r #(= ( f i r s t %) n ) )
137 ( r/map ( fn [ x ] { t #{x } } ) ) ) ) )
138 ( fn ; copy atoms to neighboring tableaux

139 ( [ ] [ :pairs−by−fsecond ni l ] )
140 ( [ cur−tab [n atom ] ]
141 ( r/map ( fn [ t2 ] { t2 #{ [n atom ] } } )
142 ( get sync−range n ) ) ) )
143 ( fn ; copy incoming edges to th i s tableau

144 ( [ ] [ :by−arity 1 ] )
145 ( [ cur−tab [n ] ]
146 (−>> ( get sync−range n)
147 ( r/map #(bag/newest casc
148 [ :pairs−by−first % ] ) )
149 ( r/mapcat #(bag/query ( second %)
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150 [ :triples−by−third n ] ) )
151 ( r/ f i l t e r
152 #( contains? ( bag/query cur−tab
153 [ :by−arity 1 ] )
154 [ ( second % ) ] ) )
155 ( r/map ( fn [ x ] { t #{x } } ) ) ) ) )
156 ( fn ; copy outgoing edges to th i s tableau

157 ( [ ] [ :by−arity 1 ] )
158 ( [ cur−tab [n ] ]
159 (−>> ( get sync−range n)
160 ( r/map #(bag/newest casc
161 [ :pairs−by−first % ] ) )
162 ( r/mapcat
163 #(bag/query ( second %)
164 [ :triples−by−second n ] ) )
165 ( r/ f i l t e r
166 #( contains? ( bag/query cur−tab
167 [ :by−arity 1 ] )
168 [ ( nth % 2 ) ] ) )
169 ( r/map ( fn [ x ] { t #{x } } ) ) ) ) )
170 ( fn ; copy edges to neighboring tableaux

171 ( [ ] [ :by−arity 3 ] )
172 ( [ cur−tab [ idx n m] ]
173 ( r/map ( fn [ t2 ] { t2 #{ [ idx n m] } } )
174 ( set/ intersection
175 ( get sync−range n)
176 ( get sync−range m) ) ) ) ) ] ) ) ) )

Whenever a node is added to ‹t1› or ‹t2› the atoms of the other tableau
must be copied over. Similarly, when an atom is added to ‹t1› or ‹t2› then
this same atom must be added to the other tableau. Copying edges follows
similar reasoning.

We can now define the algorithm for saturating tableau cascades. The
following function develops, primes, and synchronizes a given collection of
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tableau cascades. It returns the limit of all branches resulting from these
operations.

177 ( defn saturate [ cascades ]
178 ( l e t [ next−casc
179 (−>> cascades
180 ( r/map #(bag/process
181 %
182 :casc−sat−mark
183 [ saturate−tableau ] ) )
184 ( r/mapcat ( part ia l apply tab/disjunctive−post ) )
185 ( r/map #(bag/process
186 %
187 :casc−sat−mark2
188 [ prime
189 synchronize
190 synchronize−init ] ) )
191 ( r/map ( part ia l apply meta−post ) )
192 ( r/ fold 8 ( r/monoid r/cat vector ) conj ) ) ]
193 ( if−not (−>> next−casc
194 ( r/mapcat #(bag/since % :casc−sat−mark ) )
195 (u/fold−empty? ) )
196 ( recur next−casc )
197 next−casc ) ) )

The fragment ‹(r/fold 8 (r/monoid r/cat vector) conj)› behaves similarly
to ‹r/foldcat›. However, ‹r/foldcat› only returns a foldable collection if the
initial collection is foldable and large enough to make it worthwhile to pro-
cess in parallel. Our replacement code always returns a foldable collection.
Moreover, it does parallel processing in batches of 8 tableau cascades. This
is more sensible for our purposes than using batches of 512 items—as is the
default for ‹r/fold›.

With the system that we developed in this chapter we can check whether
a formula of L◻! is satisfiable. We start by constructing an initial tableau
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cascade and applying ‹saturate›. The formula is satisfiable if and only if this
yields us a tableau cascade in which all tableaux are consistent.

198 ( defn consistent? [ casc ]
199 (−>> (bag/query casc [ :by−arity 1 ] )
200 ( r/map #(bag/newest casc [ :pairs−by−first ( f i r s t % ) ] ) )
201 ( r/ f i l t e r #(not ( tab/consistent? ( second % ) ) ) )
202 (u/fold−empty? ) ) )
203

204 ( defn sat i s f iab le? [ form]
205 (−>> ( saturate [ ( tableau−cascade form ) ] )
206 ( r/ f i l t e r consistent? )
207 (u/fold−empty? )
208 ( not ) ) )
209

210 ( defn valid? [ form]
211 ( not ( sa t i s f iab le? [ :not form ] ) ) )

The source code that was presented in this chapter is also available online
at https://github.com/jdevuyst/tableaux.

7.7 Remarks
We set out to create a proof of concept theorem prover for public announce-
ment logic. On this we believe to have delivered.

We do have some comments with respect to possible expansions on our
codebase. First, we want to make a few retrospective comments on the over-
all design of our theorem prover. Afterwards we would like to make some
comments on its performance in practice.

We are satisfied with the overall structure of our code. Nevertheless, the
‹TupleBag› data structure could use some rethinking. The system of installing
ad hoc indexers provides good performance and is easy to implement. How-
ever, it comes at a cost. That cost is the complexity of the rules. A better tuple
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bag would allow us to rewrite ‹rule−box1› and ‹rule−box2› into one rule. In-
formally this rule would be as follows: Given two tuples ‹[n [:box idx form]]›
and ‹[idx n m]›, add ‹[m form]›.

The RETE algorithm provides functionality as described above [18]. We
know of two RETE implementations for Clojure, Mímir [32] and Clara [8].

RETE relies on heuristics to provide good performance. Because our appli-
cation was expected to be performance sensitive from the start we decided
not to use RETE at this point. Whether or not these performance concerns
are justified is something we leave to future research. Indeed, our present tu-
ple bag implementation provides a useful performance baseline for possible
future efforts to refactor ‹TupleBag›.

If RETE, or any other forward chaining system, were to be added in a future
update then ideally it should be implemented in a such a way that it can also
match inter-tableau patterns. For instance, it should be possible to have a
tableau cascade rule such that, given a tableau cascade edge ‹[form t1 t2]› in
‹casc›, an edge ‹[idx n m]› in ‹(newest−tableau casc t1)›, and two singles ‹[n]›
and ‹[m]› in ‹(newest−tableau casc t2)› the edge ‹[idx n m]› is added to the
tableau for ‹t2›. Currently ‹synchronize› contains three rules for this!

Given a forward chaining system it would also be worth considering to
implement a domain specific language for specifying rules. This would make
it easier to extend our software. Knowledge of Clojure would no longer be
required, thereby significantly reducing the barrier to entry.

Finally, we want to make some remarks about performance. We used
the Oracle Java 7 virtual machine. The first thing we noticed was that for
complex formulas we had to manually increase the memory available to the
JVM. We used the command line option ‹−Xmxn› to increase the available
memory to 6 GB (out of 8 GB total memory). Still, we found that for sufficiently
complex formulas our theorem prover ran out of memory after a few minutes.
Specifically, the garbage collector would start ‘trashing’. This means that
most of the time spent executing the program was spent on garbage collection.
Each garbage collection cycle would take tens of seconds and a new ‘full’ cycle
was started right after the previous one ended. We did attempt to use the
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incremental garbage collection (available using the option ‹−Xincgc›) but this
did not help.

Because the ‘full’ garbage collection cycles were started one after another
we conjecture that the problem is that not enough memory was available.
The JVM has a generational garbage collector, meaning that it tries to recycle
recently allocatedmemory before searching for unreferenced parts in old data.
Hence, had the problem been that the garbage collector could not handle the
intermediate data generated then we would not expect to see so many full
cycles being performed.

The above results suggest that tuple bags should be refactored to use
less memory or to offload parts of their content to disk. On the other hand,
it might be the case that a linear decrease of memory used by ‹TupleBag›
would be immediately defeated due to the theoretic space complexity of our
algorithm. Analysis of the space complexity of our program is left for further
reasearch. Furthermore, refactoring ‹TupleBag› to use less memory might
involve performance tradeoffs that create new bottlenecks.

We ran our theorem prover on a laptop with an 1.7 GHz Intel i7 Haswell
processor. This processor has four cores. We found that we could easily attain
CPU utilization of 370% and more by processing tableau cascades in batches
of around 8 items at a time. However, we also found that this decreased the
execution time by slightly less than 50%. More research is needed to determine
the cause of this somewhat disappointing speed up.

7.8 Related work
LoTREC is the only software program that we know of that contains a tableau-
based theorem prover for public announcement logic. LoTREC is an extensible
system that comes with a domain specific language and a graphical user inter-
face. Evidently our Clojure program does not have the same level of maturity.
Nevertheless, the theoretic foundations of our program are simple enough
that, at this point, the lack of a domain specific language for tableau rules
(and tableau cascade rules) does not strike us as a major shortcoming. Addi-
tionally, the graphical user interface of LoTREC is rather complicated.
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8

Conclusion

We set out to create proof systems for dynamic modal logics that are concep-
tually simple, easy to use, modular, and extensible. Let’s review these items
one by one and evaluate if we succeeded.

• Conceptual simplicity. From the get go we modeled our tableau systems
closely after the semantics they target. We believe this has resulted in
transparent proof systems.

• Ease of use. Because the rules of the tableau systems are based on the se-
mantics of the different dynamic languages, they are easy to understand
and apply.

Determining whether two tableau stand in relations
!𝜙
−→,

⊗𝜙
−−→,

¡𝜙
−→,

♯𝜙
−−→,

or
⇑𝜙
−−→ is no more difficult than computing the outcome of an operation

|!𝜙, |⊗𝜙, |¡𝜙, |♯𝜙, or |⇑𝜙.

The workings of tableau cascades and the operations of priming and
synchronizing are fairly straightforward. We reckon that the operation
of ⊗-correcting is somewhat inelegant, but that the benefit of having
the tableau rules be independent of tableau cascades is worth the cost.

Finally, folding is not the easiest concept to understand but (i) it is only
required for certain combinations of frame conditions and (ii) we feel it
is preferable to have a folding operation than to include frame condition
properties in the rule 𝐑◻ (as is common in the literature).



• Modularity. For every truth schema in the different languages we have
at most two tableau rules. Every dynamic operator also has two cor-
responding clauses that constrain what it means for a tableau to be
‘open’. Finally, these clauses depend on a relation between tableaux that
is closely related to the dynamic operation on models. Consequently,
our tableau systems are highly modular.

The way the relations
!𝜙
−→,

⊗𝜙
−−→,

¡𝜙
−→,

♯𝜙
−−→, and

⇑𝜙
−−→ are related to the

operations |!𝜙, |⊗𝜙, |¡𝜙, |♯𝜙, and |⇑𝜙 is also modular in the sense that
lemmas 4.1, 5.1, and 6.1 were established before the soundness and
completeness proofs.

Similarly, we would tout it as a benefit with respect to modularity that
the operations of folding, priming, and synchronizing are not needed
for the soundness and completeness proofs. Indeed, we only introduced
tableau cascades after proving soundness and completeness.

Our tableau cascades themselves are also modular. Most dynamic op-
erators require only that a priming operation is defined and that the
definition of satisfaction of tableau cascades is amended.

• Extensibility. Throughout this dissertation we have to a large extent
been able to add constructs to our languages without having to revisit
earlier results. To wit, we did not have to create a proof system from
scratch for every logic and it would be straightforward to create a proof
system for the language that would result from combining all dynamic
operators in one language.

To summarize, we hold that we have succeeded in creating an alternative
proof theory for several popular dynamic modal logics that has pedagogic
and esthetic advantages.

In section 6.1 we encountered one belief revision operator that we did not
(yet) manage to translate to our style of tableau systems. This is a notable
limitation. It’s presently not known what changes would need to be made to
our general approach to make it compatible with ‘conservative upgrades’.
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For future research we would be interested in applying the techniques
discussed in this volume to more expressive logics. For instance, presently
no tableau systems appear to exist for dynamic epistemic logics with common
knowledge [22]. Beyond this, the minimal revision logic in [13] has dynamic
operators that might fit in well with our approach to tableau systems.

Our Clojure implementation demonstrates that our tableau system for
public announcement logic can readily be turned into an automatic theorem
prover. A synchronization algorithm has to be devised but this is an easy
enough task. No complicated new algorithms are required. For future re-
search we think the primary focus should be on adding a forward chaining
engine and defining a domain specific language for defining tableau rules
and tableau cascade rules. Afterwards, adding support for L◻⊗ and L𝑈◻¡♯⇑

should require only a fairly straightforward translation of the results from
chapters 5 and 6.
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!𝜙
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⇑𝜙
⟶, 83
⊗𝜙
⟶, 67
♯𝜙
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¡𝜙
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𝜎-contradictions, 24
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𝑎-path, 10
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.everything, 108
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abstract syntax tree, 93
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action model, 64

139



actions, 64
affected, 11
AGM, 76
applying, 57
AST, 93

Backus-Naur Form, 14
belief revision, 76
bisimilar, 14
bisimulation, 14
BNF, 14

chain, 10
closed, 29
collection, 99
completeness, 3, 17
conclusion, 1, 2
consistent?, 119, 129
constraints, 35
copy, 36
correct, 17
current node, 11

deduction, 1
deduction theorem, 3
disjunctive-post, 117
dyntab.bag, 106
dyntab.cascade, 120
dyntab.syntax, 105
dyntab.tableau, 113
dyntab.util, 102

edge, 10
embedding, 12
entailment, 2

events, 64

fold-empty?, 104
folding, 37
foldset, 104
for, 28
forcing relation, 19
frame, 11
frame condition, 21
fully synchronized, 59

grammar, 16

incoming 𝑎-edge, 10
Ind, 105
index-by-arity, 110
index-pairs-by-first, 111
index-pairs-by-first-…, 111
index-pairs-by-fsecond, 111
index-pairs-by-fsecond-…, 111
index-pairs-by-second, 111
index-triples-by-first-second, 112
index-triples-by-first-third, 112
index-triples-by-second, 112
index-triples-by-third, 112
ITupleBag, 106

Kripke model, 12, 18
Kripke semantics, 6

label, 10
label-set, 10
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literal contradiction, 29
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literal propositions, 18
literals, 18

map-merge-overwrite, 103
mark, 106, 109
meta-post, 122
meta-process, 122
mmap-conj, 103
mmap-diff, 103
mmap-get, 103
mmap-get-unique, 103
mmap-merge, 103
model, 2, 17
monoid, 101

natively satisfies, 29
newest, 106, 109
newest-tableau, 121
node, 10
non-destructive, 25
nth-or-nil, 110

one-from-each, 105
open, 29, 49, 67, 83
outgoing 𝑎-edge, 10

pair, 8
path, 10
pointed graph, 11
points, 19
possible world semantics, 6
post, 106
precondition, 64
preference change, 77
premise, 1, 2

prime, 123
process, 106, 109
proof system, 2
Prop, 105

query, 106, 109

reasoning, 1, 16
reductive, 27
rjuxt, 104
rule-4, 113
rule-and, 113
rule-B, 113
rule-box1, 113
rule-box2, 113
rule-not-and*, 115
rule-not-box, 113
rule-not-not, 113
rule-precond*, 115
rule-precond2*, 115
rule-precond3*, 115
rule-precond4*, 115
rule-T, 113

satisfiable?, 129
satisfied, 56, 72, 87
satisfies, 29
saturate, 118, 128
saturate-tableau, 121
saturated, 28
semantics, 1, 16
sequence, 96
since, 106, 109
single, 8
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soundness, 3, 17
states, 19
stock model, 32
stock tableau, 52
string, 94
synchronization-range, 124
synchronize, 125
synchronize-init, 125
synchronizing, 58
syntax, 1, 16

tableau, 117
tableau cascade, 56
tableau rule, 25
tableau system, 2, 4
tableau-cascade, 120
tautology, 3
threading macro, 98
triple, 8
tuple, 8
tuple-bag, 108
TupleBag, 108, 109

valid?, 129
valuation, 19
vertex, 10
virtual 𝑎-loop, 35

weak completeness, 3
well-behaved frame condition, 21
well-formed formula (wff), 18
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world, 19

INDEX OF DEFINITIONS 142


	Contents
	Introduction
	Syntax, semantics, and deduction
	The semantics–proof system gap
	What's in a proof?
	Modal Logics

	Notation and Structures
	Tuples and sets of tuples
	Labeled graphs
	Graphs and relational structures
	Embeddings and bisimulations
	Notation for formal syntax

	Modal Logic
	Syntax and semantics
	Applications
	A tableau proof system for modal logic
	Decidability of modal tableaux
	Related work

	Public Announcement Logic
	PAL and its dynamic semantics
	Dynamic tableaux
	Tableau cascades and decidability
	Related work

	Dynamic Epistemic Logic with Action Models
	Syntax and semantics
	Dynamic Tableaux
	Decidability
	Related work

	Dynamic Preorder Logics
	Belief revision and preference change
	Syntax and semantics
	Dynamic tableaux for dynamic preorder logics
	Decidability
	Related work

	Clojure Implementation
	A brief overview of Clojure
	Utility functions
	Syntax
	Tuple bags
	Tableau system
	Tableau cascades
	Remarks
	Related work

	Conclusion
	Bibliography
	Index of Definitions

